/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_UACCESS_H__ #define __LINUX_UACCESS_H__ #include #include #include #define VERIFY_READ 0 #define VERIFY_WRITE 1 #define uaccess_kernel() segment_eq(get_fs(), KERNEL_DS) #include /* * Architectures should provide two primitives (raw_copy_{to,from}_user()) * and get rid of their private instances of copy_{to,from}_user() and * __copy_{to,from}_user{,_inatomic}(). * * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and * return the amount left to copy. They should assume that access_ok() has * already been checked (and succeeded); they should *not* zero-pad anything. * No KASAN or object size checks either - those belong here. * * Both of these functions should attempt to copy size bytes starting at from * into the area starting at to. They must not fetch or store anything * outside of those areas. Return value must be between 0 (everything * copied successfully) and size (nothing copied). * * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting * at to must become equal to the bytes fetched from the corresponding area * starting at from. All data past to + size - N must be left unmodified. * * If copying succeeds, the return value must be 0. If some data cannot be * fetched, it is permitted to copy less than had been fetched; the only * hard requirement is that not storing anything at all (i.e. returning size) * should happen only when nothing could be copied. In other words, you don't * have to squeeze as much as possible - it is allowed, but not necessary. * * For raw_copy_from_user() to always points to kernel memory and no faults * on store should happen. Interpretation of from is affected by set_fs(). * For raw_copy_to_user() it's the other way round. * * Both can be inlined - it's up to architectures whether it wants to bother * with that. They should not be used directly; they are used to implement * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic()) * that are used instead. Out of those, __... ones are inlined. Plain * copy_{to,from}_user() might or might not be inlined. If you want them * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER. * * NOTE: only copy_from_user() zero-pads the destination in case of short copy. * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything * at all; their callers absolutely must check the return value. * * Biarch ones should also provide raw_copy_in_user() - similar to the above, * but both source and destination are __user pointers (affected by set_fs() * as usual) and both source and destination can trigger faults. */ static __always_inline unsigned long __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) { kasan_check_write(to, n); check_object_size(to, n, false); return raw_copy_from_user(to, from, n); } static __always_inline unsigned long __copy_from_user(void *to, const void __user *from, unsigned long n) { might_fault(); kasan_check_write(to, n); check_object_size(to, n, false); return raw_copy_from_user(to, from, n); } /** * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking. * @to: Destination address, in user space. * @from: Source address, in kernel space. * @n: Number of bytes to copy. * * Context: User context only. * * Copy data from kernel space to user space. Caller must check * the specified block with access_ok() before calling this function. * The caller should also make sure he pins the user space address * so that we don't result in page fault and sleep. */ static __always_inline unsigned long __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) { kasan_check_read(from, n); check_object_size(from, n, true); return raw_copy_to_user(to, from, n); } static __always_inline unsigned long __copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); kasan_check_read(from, n); check_object_size(from, n, true); return raw_copy_to_user(to, from, n); } #ifdef INLINE_COPY_FROM_USER static inline unsigned long _copy_from_user(void *to, const void __user *from, unsigned long n) { unsigned long res = n; might_fault(); if (likely(access_ok(VERIFY_READ, from, n))) { kasan_check_write(to, n); res = raw_copy_from_user(to, from, n); } if (unlikely(res)) memset(to + (n - res), 0, res); return res; } #else extern unsigned long _copy_from_user(void *, const void __user *, unsigned long); #endif #ifdef INLINE_COPY_TO_USER static inline unsigned long _copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); if (access_ok(VERIFY_WRITE, to, n)) { kasan_check_read(from, n); n = raw_copy_to_user(to, from, n); } return n; } #else extern unsigned long _copy_to_user(void __user *, const void *, unsigned long); #endif static __always_inline unsigned long __must_check copy_from_user(void *to, const void __user *from, unsigned long n) { if (likely(check_copy_size(to, n, false))) n = _copy_from_user(to, from, n); return n; } static __always_inline unsigned long __must_check copy_to_user(void __user *to, const void *from, unsigned long n) { if (likely(check_copy_size(from, n, true))) n = _copy_to_user(to, from, n); return n; } #ifdef CONFIG_COMPAT static __always_inline unsigned long __must_check copy_in_user(void __user *to, const void __user *from, unsigned long n) { might_fault(); if (access_ok(VERIFY_WRITE, to, n) && access_ok(VERIFY_READ, from, n)) n = raw_copy_in_user(to, from, n); return n; } #endif static __always_inline void pagefault_disabled_inc(void) { current->pagefault_disabled++; } static __always_inline void pagefault_disabled_dec(void) { current->pagefault_disabled--; } /* * These routines enable/disable the pagefault handler. If disabled, it will * not take any locks and go straight to the fixup table. * * User access methods will not sleep when called from a pagefault_disabled() * environment. */ static inline void pagefault_disable(void) { pagefault_disabled_inc(); /* * make sure to have issued the store before a pagefault * can hit. */ barrier(); } static inline void pagefault_enable(void) { /* * make sure to issue those last loads/stores before enabling * the pagefault handler again. */ barrier(); pagefault_disabled_dec(); } /* * Is the pagefault handler disabled? If so, user access methods will not sleep. */ #define pagefault_disabled() (current->pagefault_disabled != 0) /* * The pagefault handler is in general disabled by pagefault_disable() or * when in irq context (via in_atomic()). * * This function should only be used by the fault handlers. Other users should * stick to pagefault_disabled(). * Please NEVER use preempt_disable() to disable the fault handler. With * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled. * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT. */ #define faulthandler_disabled() (pagefault_disabled() || in_atomic()) #ifndef ARCH_HAS_NOCACHE_UACCESS static inline unsigned long __copy_from_user_inatomic_nocache(void *to, const void __user *from, unsigned long n) { return __copy_from_user_inatomic(to, from, n); } #endif /* ARCH_HAS_NOCACHE_UACCESS */ /* * probe_kernel_read(): safely attempt to read from a location * @dst: pointer to the buffer that shall take the data * @src: address to read from * @size: size of the data chunk * * Safely read from address @src to the buffer at @dst. If a kernel fault * happens, handle that and return -EFAULT. */ extern long probe_kernel_read(void *dst, const void *src, size_t size); extern long __probe_kernel_read(void *dst, const void *src, size_t size); /* * probe_user_read(): safely attempt to read from a location in user space * @dst: pointer to the buffer that shall take the data * @src: address to read from * @size: size of the data chunk * * Safely read from address @src to the buffer at @dst. If a kernel fault * happens, handle that and return -EFAULT. */ extern long probe_user_read(void *dst, const void __user *src, size_t size); /* * probe_kernel_write(): safely attempt to write to a location * @dst: address to write to * @src: pointer to the data that shall be written * @size: size of the data chunk * * Safely write to address @dst from the buffer at @src. If a kernel fault * happens, handle that and return -EFAULT. */ extern long notrace probe_kernel_write(void *dst, const void *src, size_t size); extern long notrace __probe_kernel_write(void *dst, const void *src, size_t size); /* * probe_user_write(): safely attempt to write to a location in user space * @dst: address to write to * @src: pointer to the data that shall be written * @size: size of the data chunk * * Safely write to address @dst from the buffer at @src. If a kernel fault * happens, handle that and return -EFAULT. */ extern long notrace probe_user_write(void __user *dst, const void *src, size_t size); extern long notrace __probe_user_write(void __user *dst, const void *src, size_t size); extern long strncpy_from_unsafe(char *dst, const void *unsafe_addr, long count); extern long strncpy_from_unsafe_user(char *dst, const void __user *unsafe_addr, long count); extern long strnlen_unsafe_user(const void __user *unsafe_addr, long count); /** * probe_kernel_address(): safely attempt to read from a location * @addr: address to read from * @retval: read into this variable * * Returns 0 on success, or -EFAULT. */ #define probe_kernel_address(addr, retval) \ probe_kernel_read(&retval, addr, sizeof(retval)) #ifndef user_access_begin #define user_access_begin(type, ptr, len) access_ok(type, ptr, len) #define user_access_end() do { } while (0) #define unsafe_get_user(x, ptr, err) do { if (unlikely(__get_user(x, ptr))) goto err; } while (0) #define unsafe_put_user(x, ptr, err) do { if (unlikely(__put_user(x, ptr))) goto err; } while (0) static inline unsigned long user_access_save(void) { return 0UL; } static inline void user_access_restore(unsigned long flags) { } #endif #ifdef CONFIG_HARDENED_USERCOPY void usercopy_warn(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len); void __noreturn usercopy_abort(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len); #endif #endif /* __LINUX_UACCESS_H__ */