// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2019 MediaTek Inc. * Author: Michael Hsiao */ /******************************************************************************* * * Filename: * --------- * mt_soc_pcm_i2s0.c * * Project: * -------- * Audio Driver Kernel Function * * Description: * ------------ * Audio i2s0 playback * * Author: * ------- * Chipeng Chang * *------------------------------------------------------------------------------ * * ****************************************************************************** */ /***************************************************************************** * C O M P I L E R F L A G S *****************************************************************************/ /***************************************************************************** * E X T E R N A L R E F E R E N C E S *****************************************************************************/ #include "mtk-auddrv-afe.h" #include "mtk-auddrv-ana.h" #include "mtk-auddrv-clk.h" #include "mtk-auddrv-common.h" #include "mtk-auddrv-def.h" #include "mtk-auddrv-kernel.h" #include "mtk-soc-afe-control.h" #include "mtk-soc-pcm-common.h" #include "mtk-soc-pcm-platform.h" #include "mtk-auddrv-gpio.h" #include static struct afe_mem_control_t *pI2s0MemControl; static struct device *mDev; /* * function implementation */ static int mtk_i2s0_probe(struct platform_device *pdev); static int mtk_pcm_i2s0_close(struct snd_pcm_substream *substream); static int mtk_afe_i2s0_component_probe(struct snd_soc_component *component); int mtk_soc_always_hd; int extcodec_echoref_control; static int mi2s0_sidegen_control; static int hdoutput_control; const char *const i2s0_SIDEGEN[] = {"Off", "On8000", "On16000", "On32000", "On44100", "On48000", "On96000", "On192000"}; const char *const i2s0_HD_output[] = {"Off", "On"}; const char *const ExtCodec_EchoRef_Routing[] = {"Off", "MD1", "MD3", "SCP"}; static const struct soc_enum Audio_i2s0_Enum[] = { SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(i2s0_SIDEGEN), i2s0_SIDEGEN), SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(i2s0_HD_output), i2s0_HD_output), SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(ExtCodec_EchoRef_Routing), ExtCodec_EchoRef_Routing), }; static int Audio_i2s0_SideGen_Get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.integer.value[0] = mi2s0_sidegen_control; return 0; } static int Audio_i2s0_SideGen_Set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { bool ret = false; static int samplerate; unsigned int u32AudioI2sOut = 0; unsigned int u32Audio2ndI2sIn = 0; AudDrv_Clk_On(); if (ucontrol->value.enumerated.item[0] > ARRAY_SIZE(i2s0_SIDEGEN)) { pr_err("return -EINVAL\n"); return -EINVAL; } mi2s0_sidegen_control = ucontrol->value.integer.value[0]; /* Config smart pa I2S pin */ AudDrv_GPIO_SMARTPA_Select(mi2s0_sidegen_control > 0 ? 1 : 0); pr_debug( "%s(), sidegen = %d, hdoutput = %d, extcodec_echoref = %d, always_hd = %d\n", __func__, mi2s0_sidegen_control, hdoutput_control, extcodec_echoref_control, mtk_soc_always_hd); /* Set SmartPa i2s by platform. Return false if no platform implement, * then use default i2s3/0. */ if (get_afe_platform_ops()->set_smartpa_i2s != NULL) { ret = get_afe_platform_ops()->set_smartpa_i2s( mi2s0_sidegen_control, hdoutput_control, extcodec_echoref_control, mtk_soc_always_hd); goto i2s_config_done; } if (mi2s0_sidegen_control) { /* Phone call echo ref, speaker mode connection*/ switch (extcodec_echoref_control) { case 1: /* MD1 connection */ SetIntfConnection( Soc_Aud_InterCon_Connection, Soc_Aud_AFE_IO_Block_MODEM_PCM_2_I_CH1, Soc_Aud_AFE_IO_Block_I2S3); SetIntfConnection( Soc_Aud_InterCon_Connection, Soc_Aud_AFE_IO_Block_I2S0_CH1, Soc_Aud_AFE_IO_Block_MODEM_PCM_2_O_CH4); break; case 2: /* MD3 connection */ SetIntfConnection( Soc_Aud_InterCon_Connection, Soc_Aud_AFE_IO_Block_MODEM_PCM_1_I_CH1, Soc_Aud_AFE_IO_Block_I2S3); SetIntfConnection( Soc_Aud_InterCon_Connection, Soc_Aud_AFE_IO_Block_I2S0_CH1, Soc_Aud_AFE_IO_Block_MODEM_PCM_1_O_CH4); break; case 3: /* SCP IV data */ SetIntfConnection(Soc_Aud_InterCon_Connection, Soc_Aud_AFE_IO_Block_I2S0, get_usage_digital_block_io (AUDIO_USAGE_SCP_SPK_IV_DATA)); break; default: break; } switch (mi2s0_sidegen_control) { case 1: samplerate = 8000; break; case 2: samplerate = 16000; break; case 3: samplerate = 32000; break; case 4: samplerate = 44100; break; case 5: samplerate = 48000; break; case 6: samplerate = 96000; break; case 7: samplerate = 192000; break; default: pr_err("%s, sidegen_control error, return -EINVAL\n", __func__); return false; } AudDrv_Clk_On(); if (!mtk_soc_always_hd) { EnableALLbySampleRate(samplerate); EnableAPLLTunerbySampleRate(samplerate); } /* I2S0 clock-gated */ Afe_Set_Reg(AUDIO_TOP_CON1, 0x1 << 4, 0x1 << 4); /* I2S sample rate Control */ SetSampleRate(Soc_Aud_Digital_Block_MEM_I2S, samplerate); /* I2S0 Input Control */ SetMemoryPathEnable(Soc_Aud_Digital_Block_I2S_IN_2, true); u32Audio2ndI2sIn |= (Soc_Aud_LR_SWAP_NO_SWAP << 31); u32Audio2ndI2sIn |= (hdoutput_control ? Soc_Aud_LOW_JITTER_CLOCK : Soc_Aud_NORMAL_CLOCK) << 12; u32Audio2ndI2sIn |= (Soc_Aud_I2S_IN_PAD_SEL_I2S_IN_FROM_IO_MUX << 28); u32Audio2ndI2sIn |= (Soc_Aud_INV_LRCK_NO_INVERSE << 5); u32Audio2ndI2sIn |= (Soc_Aud_I2S_FORMAT_I2S << 3); u32Audio2ndI2sIn |= (Soc_Aud_I2S_WLEN_WLEN_16BITS << 1); Afe_Set_Reg(AFE_I2S_CON, u32Audio2ndI2sIn, MASK_ALL); /* I2S3 clock-gated */ Afe_Set_Reg(AUDIO_TOP_CON1, 0x1 << 7, 0x1 << 7); /* I2S3 Input Control */ SetMemoryPathEnable(Soc_Aud_Digital_Block_I2S_OUT_2, true); u32AudioI2sOut = SampleRateTransform(samplerate, Soc_Aud_Digital_Block_I2S_OUT_2) << 8; u32AudioI2sOut |= Soc_Aud_I2S_FORMAT_I2S << 3; /* us3 I2s format */ u32AudioI2sOut |= Soc_Aud_I2S_WLEN_WLEN_16BITS << 1; /* 16 BITS */ u32AudioI2sOut |= (hdoutput_control ? Soc_Aud_LOW_JITTER_CLOCK : Soc_Aud_NORMAL_CLOCK) << 12; Afe_Set_Reg(AFE_I2S_CON3, u32AudioI2sOut, AFE_MASK_ALL); /* set I2S3 configuration */ /* Clear I2S0 clock-gated */ Afe_Set_Reg(AUDIO_TOP_CON1, 0 << 4, 0x1 << 4); /* Enable I2S0 */ Set2ndI2SEnable(true); pr_debug( "%s(), Turn on. AFE_I2S_CON0=0x%x, AFE_DAC_CON1=0x%x", __func__, Afe_Get_Reg(AFE_I2S_CON), Afe_Get_Reg(AFE_DAC_CON1)); /* Clear I2S3 clock-gated */ Afe_Set_Reg(AUDIO_TOP_CON1, 0 << 7, 0x1 << 7); /* Enable I2S3 */ Set2ndI2SOutEnable(true); /* pr_debug("%s(), Turn on. AFE_I2S_CON3=0x%x\n", __func__, * Afe_Get_Reg(AFE_I2S_CON3)); */ EnableAfe(true); } else { if (extcodec_echoref_control > 0) { SetIntfConnection( Soc_Aud_InterCon_DisConnect, Soc_Aud_AFE_IO_Block_I2S0_CH1, Soc_Aud_AFE_IO_Block_MODEM_PCM_1_O_CH4); SetIntfConnection( Soc_Aud_InterCon_DisConnect, Soc_Aud_AFE_IO_Block_I2S0_CH1, Soc_Aud_AFE_IO_Block_MODEM_PCM_2_O_CH4); SetIntfConnection(Soc_Aud_InterCon_DisConnect, Soc_Aud_AFE_IO_Block_I2S0, get_usage_digital_block_io (AUDIO_USAGE_SCP_SPK_IV_DATA)); } SetMemoryPathEnable(Soc_Aud_Digital_Block_I2S_IN_2, false); SetMemoryPathEnable(Soc_Aud_Digital_Block_I2S_OUT_2, false); if (GetMemoryPathEnable(Soc_Aud_Digital_Block_I2S_OUT_2) == false) { Set2ndI2SOutEnable(false); /* Disable I2S3 */ udelay(20); Afe_Set_Reg(AUDIO_TOP_CON1, 0x1 << 7, 0x1 << 7); /* I2S3 clock-gated */ if (GetMemoryPathEnable( Soc_Aud_Digital_Block_I2S_IN_2) == false) { Set2ndI2SEnable(false); /* Disable I2S0 */ udelay(20); Afe_Set_Reg(AUDIO_TOP_CON1, 0x1 << 4, 0x1 << 4); /* I2S0 clock-gated */ } SetIntfConnection( Soc_Aud_InterCon_DisConnect, Soc_Aud_AFE_IO_Block_MODEM_PCM_2_I_CH1, Soc_Aud_AFE_IO_Block_I2S3); SetIntfConnection( Soc_Aud_InterCon_DisConnect, Soc_Aud_AFE_IO_Block_MODEM_PCM_1_I_CH1, Soc_Aud_AFE_IO_Block_I2S3); pr_debug( "%s(), Turn off. AFE_I2S_CON=0x%x, AFE_I2S_CON3=0x%x\n", __func__, Afe_Get_Reg(AFE_I2S_CON), Afe_Get_Reg(AFE_I2S_CON3)); } if (!mtk_soc_always_hd) { DisableAPLLTunerbySampleRate(samplerate); DisableALLbySampleRate(samplerate); } EnableAfe(false); AudDrv_Clk_Off(); } i2s_config_done: AudDrv_Clk_Off(); return 0; } static int audio_always_hd_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { pr_debug("%s(), mtk_soc_always_hd %d\n", __func__, mtk_soc_always_hd); ucontrol->value.integer.value[0] = mtk_soc_always_hd; return 0; } static int audio_always_hd_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { pr_debug("%s(), mtk_soc_always_hd %d\n", __func__, mtk_soc_always_hd); if (ucontrol->value.enumerated.item[0] > ARRAY_SIZE(i2s0_HD_output)) { pr_err("return -EINVAL\n"); return -EINVAL; } mtk_soc_always_hd = ucontrol->value.integer.value[0]; return 0; } static int Audio_i2s0_hdoutput_Get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { pr_debug("%s(), hdoutput_control = %d\n", __func__, hdoutput_control); ucontrol->value.integer.value[0] = hdoutput_control; return 0; } static int Audio_i2s0_hdoutput_Set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { pr_debug("+%s()\n", __func__); if (ucontrol->value.enumerated.item[0] > ARRAY_SIZE(i2s0_HD_output)) { pr_err("return -EINVAL\n"); return -EINVAL; } hdoutput_control = ucontrol->value.integer.value[0]; /* if (hdoutput_control) { EnableApll1(true); EnableApll2(true); EnableI2SDivPower(AUDIO_APLL1_DIV0, true); EnableI2SDivPower(AUDIO_APLL2_DIV0, true); } else { EnableApll1(false); EnableApll2(false); EnableI2SDivPower(AUDIO_APLL1_DIV0, false); EnableI2SDivPower(AUDIO_APLL2_DIV0, false); } */ return 0; } static int Audio_i2s0_ExtCodec_EchoRef_Get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { pr_debug("%s(), extcodec_echoref_control = %d\n", __func__, extcodec_echoref_control); ucontrol->value.integer.value[0] = extcodec_echoref_control; return 0; } static int Audio_i2s0_ExtCodec_EchoRef_Set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { pr_debug("%s()\n", __func__); if (ucontrol->value.enumerated.item[0] > ARRAY_SIZE(ExtCodec_EchoRef_Routing)) { pr_err("return -EINVAL\n"); return -EINVAL; } extcodec_echoref_control = ucontrol->value.integer.value[0]; return 0; } static const struct snd_kcontrol_new Audio_snd_i2s0_controls[] = { SOC_ENUM_EXT("Audio_i2s0_SideGen_Switch", Audio_i2s0_Enum[0], Audio_i2s0_SideGen_Get, Audio_i2s0_SideGen_Set), SOC_ENUM_EXT("Audio_i2s0_hd_Switch", Audio_i2s0_Enum[1], Audio_i2s0_hdoutput_Get, Audio_i2s0_hdoutput_Set), SOC_ENUM_EXT("Audio_always_hd_Switch", Audio_i2s0_Enum[1], audio_always_hd_get, audio_always_hd_set), SOC_ENUM_EXT("Audio_ExtCodec_EchoRef_Switch", Audio_i2s0_Enum[2], Audio_i2s0_ExtCodec_EchoRef_Get, Audio_i2s0_ExtCodec_EchoRef_Set), }; static struct snd_pcm_hardware mtk_i2s0_hardware = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = Dl1_MAX_BUFFER_SIZE, .rates = SOC_HIGH_USE_RATE, .rate_min = SOC_HIGH_USE_RATE_MIN, .rate_max = SOC_HIGH_USE_RATE_MAX, .channels_min = SOC_NORMAL_USE_CHANNELS_MIN, .channels_max = SOC_NORMAL_USE_CHANNELS_MAX, .buffer_bytes_max = Dl1_MAX_BUFFER_SIZE, .period_bytes_max = Dl1_MAX_BUFFER_SIZE, .periods_min = SOC_NORMAL_USE_PERIODS_MIN, .periods_max = SOC_NORMAL_USE_PERIODS_MAX, .fifo_size = 0, }; static int mtk_pcm_i2s0_stop(struct snd_pcm_substream *substream) { struct afe_block_t *Afe_Block = &(pI2s0MemControl->rBlock); pr_debug("%s()\n", __func__); irq_remove_user(substream, irq_request_number(Soc_Aud_Digital_Block_MEM_DL1)); /* here start digital part */ SetIntfConnection(Soc_Aud_InterCon_DisConnect, Soc_Aud_AFE_IO_Block_MEM_DL1, Soc_Aud_AFE_IO_Block_I2S3); SetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1, false); /* stop I2S */ Afe_Set_Reg(AFE_I2S_CON3, 0x0, 0x1); EnableAfe(false); /* clean audio hardware buffer */ memset_io(Afe_Block->pucVirtBufAddr, 0, Afe_Block->u4BufferSize); RemoveMemifSubStream(Soc_Aud_Digital_Block_MEM_DL1, substream); return 0; } static snd_pcm_uframes_t mtk_pcm_i2s0_pointer(struct snd_pcm_substream *substream) { return get_mem_frame_index(substream, pI2s0MemControl, Soc_Aud_Digital_Block_MEM_DL1); } static int mtk_pcm_i2s0_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { int ret = 0; #if defined(AUD_DEBUG_LOG) pr_debug("mtk_pcm_hw_params\n"); #endif /* runtime->dma_bytes has to be set manually to allow mmap */ substream->runtime->dma_bytes = params_buffer_bytes(hw_params); /* here to allcoate sram to hardware --------------------------- */ AudDrv_Allocate_mem_Buffer(mDev, Soc_Aud_Digital_Block_MEM_DL1, substream->runtime->dma_bytes); substream->runtime->dma_area = (unsigned char *)Get_Afe_SramBase_Pointer(); substream->runtime->dma_addr = AFE_INTERNAL_SRAM_PHY_BASE; SetHighAddr(Soc_Aud_Digital_Block_MEM_DL1, false, substream->runtime->dma_addr); AudDrv_Emi_Clk_On(); /* ------------------------------------------------------- */ #if defined(AUD_DEBUG_LOG) pr_debug("1 dma_bytes = %zu dma_area = %p dma_addr = 0x%lx\n", substream->runtime->dma_bytes, substream->runtime->dma_area, (long)substream->runtime->dma_addr); #endif return ret; } static int mtk_pcm_i2s0_hw_free(struct snd_pcm_substream *substream) { AudDrv_Emi_Clk_Off(); return 0; } static struct snd_pcm_hw_constraint_list constraints_sample_rates = { .count = ARRAY_SIZE(soc_high_supported_sample_rates), .list = soc_high_supported_sample_rates, .mask = 0, }; static unsigned int mPlaybackDramState; static int mtk_pcm_i2s0_open(struct snd_pcm_substream *substream) { int ret = 0; struct snd_pcm_runtime *runtime = substream->runtime; AfeControlSramLock(); if (GetSramState() == SRAM_STATE_FREE) { mtk_i2s0_hardware.buffer_bytes_max = GetPLaybackSramFullSize(); mPlaybackDramState = SRAM_STATE_PLAYBACKFULL; SetSramState(mPlaybackDramState); } else { mtk_i2s0_hardware.buffer_bytes_max = GetPLaybackSramPartial(); mPlaybackDramState = SRAM_STATE_PLAYBACKPARTIAL; SetSramState(mPlaybackDramState); } AfeControlSramUnLock(); runtime->hw = mtk_i2s0_hardware; AudDrv_Clk_On(); memcpy((void *)(&(runtime->hw)), (void *)&mtk_i2s0_hardware, sizeof(struct snd_pcm_hardware)); pI2s0MemControl = Get_Mem_ControlT(Soc_Aud_Digital_Block_MEM_DL1); ret = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &constraints_sample_rates); ret = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); /* print for hw pcm information */ pr_debug( "%s(), runtime rate = %d, channels = %d, substream->pcm->device = %d\n", __func__, runtime->rate, runtime->channels, substream->pcm->device); if (ret < 0) { pr_err("mtk_pcm_i2s0_close\n"); mtk_pcm_i2s0_close(substream); return ret; } pr_debug("%s(), return\n", __func__); return 0; } static int mtk_pcm_i2s0_close(struct snd_pcm_substream *substream) { pr_debug("%s\n", __func__); AfeControlSramLock(); ClearSramState(mPlaybackDramState); mPlaybackDramState = GetSramState(); AfeControlSramUnLock(); AudDrv_Clk_Off(); return 0; } static int mtk_pcm_i2s0_prepare(struct snd_pcm_substream *substream) { return 0; } static int mtk_pcm_i2s0_start(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; unsigned int u32AudioI2S = 0; SetMemifSubStream(Soc_Aud_Digital_Block_MEM_DL1, substream); if (runtime->format == SNDRV_PCM_FORMAT_S32_LE || runtime->format == SNDRV_PCM_FORMAT_S32_LE) { SetMemIfFetchFormatPerSample( Soc_Aud_Digital_Block_MEM_DL1, AFE_WLEN_32_BIT_ALIGN_8BIT_0_24BIT_DATA); } else { SetMemIfFetchFormatPerSample(Soc_Aud_Digital_Block_MEM_DL1, AFE_WLEN_16_BIT); } SetConnectionFormat(OUTPUT_DATA_FORMAT_16BIT, Soc_Aud_AFE_IO_Block_I2S3); /* here start digital part */ SetIntfConnection(Soc_Aud_InterCon_Connection, Soc_Aud_AFE_IO_Block_MEM_DL1, Soc_Aud_AFE_IO_Block_I2S3); u32AudioI2S = SampleRateTransform(runtime->rate, Soc_Aud_Digital_Block_I2S_OUT_2) << 8; u32AudioI2S |= Soc_Aud_I2S_FORMAT_I2S << 3; /* us3 I2s format */ u32AudioI2S |= Soc_Aud_I2S_WLEN_WLEN_16BITS << 1; /* 16 BITS */ if (hdoutput_control) u32AudioI2S |= Soc_Aud_LOW_JITTER_CLOCK << 12; /* Low jitter mode */ Afe_Set_Reg(AFE_I2S_CON3, u32AudioI2S | 1, AFE_MASK_ALL); SetSampleRate(Soc_Aud_Digital_Block_MEM_DL1, runtime->rate); SetChannels(Soc_Aud_Digital_Block_MEM_DL1, runtime->channels); SetMemoryPathEnable(Soc_Aud_Digital_Block_MEM_DL1, true); /* here to set interrupt */ irq_add_user(substream, irq_request_number(Soc_Aud_Digital_Block_MEM_DL1), substream->runtime->rate, substream->runtime->period_size); EnableAfe(true); return 0; } static int mtk_pcm_i2s0_trigger(struct snd_pcm_substream *substream, int cmd) { pr_debug("%s(), cmd = %d\n", __func__, cmd); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: return mtk_pcm_i2s0_start(substream); case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: return mtk_pcm_i2s0_stop(substream); } return -EINVAL; } static int mtk_pcm_i2s0_copy(struct snd_pcm_substream *substream, int channel, unsigned long pos, void __user *dst, unsigned long count) { return mtk_memblk_copy(substream, channel, pos, dst, count, pI2s0MemControl, Soc_Aud_Digital_Block_MEM_DL1); } static int mtk_pcm_i2s0_silence(struct snd_pcm_substream *substream, int channel, unsigned long pos, unsigned long bytes) { return 0; /* do nothing */ } static void *dummy_page[2]; static struct page *mtk_i2s0_pcm_page(struct snd_pcm_substream *substream, unsigned long offset) { return virt_to_page(dummy_page[substream->stream]); /* the same page */ } static struct snd_pcm_ops mtk_i2s0_ops = { .open = mtk_pcm_i2s0_open, .close = mtk_pcm_i2s0_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = mtk_pcm_i2s0_hw_params, .hw_free = mtk_pcm_i2s0_hw_free, .prepare = mtk_pcm_i2s0_prepare, .trigger = mtk_pcm_i2s0_trigger, .pointer = mtk_pcm_i2s0_pointer, .copy_user = mtk_pcm_i2s0_copy, .fill_silence = mtk_pcm_i2s0_silence, .page = mtk_i2s0_pcm_page, }; static const struct snd_soc_component_driver mtk_i2s0_soc_component = { .name = AFE_PCM_NAME, .ops = &mtk_i2s0_ops, .probe = mtk_afe_i2s0_component_probe, }; static int mtk_i2s0_probe(struct platform_device *pdev) { pr_debug("%s\n", __func__); pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32); if (!pdev->dev.dma_mask) pdev->dev.dma_mask = &pdev->dev.coherent_dma_mask; if (pdev->dev.of_node) dev_set_name(&pdev->dev, "%s", MT_SOC_I2S0_PCM); pdev->name = pdev->dev.kobj.name; pr_debug("%s: dev name %s\n", __func__, dev_name(&pdev->dev)); mDev = &pdev->dev; return snd_soc_register_component(&pdev->dev, &mtk_i2s0_soc_component, NULL, 0); } static int mtk_afe_i2s0_component_probe(struct snd_soc_component *component) { pr_debug("%s\n", __func__); snd_soc_add_component_controls(component, Audio_snd_i2s0_controls, ARRAY_SIZE(Audio_snd_i2s0_controls)); return 0; } static int mtk_i2s0_remove(struct platform_device *pdev) { snd_soc_unregister_component(&pdev->dev); return 0; } #ifdef CONFIG_OF static const struct of_device_id mt_soc_pcm_dl1_i2s0_of_ids[] = { { .compatible = "mediatek,mt_soc_pcm_dl1_i2s0", }, {} }; #endif static struct platform_driver mtk_i2s0_driver = { .driver = { .name = MT_SOC_I2S0_PCM, .owner = THIS_MODULE, #ifdef CONFIG_OF .of_match_table = mt_soc_pcm_dl1_i2s0_of_ids, #endif }, .probe = mtk_i2s0_probe, .remove = mtk_i2s0_remove, }; #ifndef CONFIG_OF static struct platform_device *soc_mtki2s0_dev; #endif static int __init mtk_i2s0_soc_platform_init(void) { int ret; pr_debug("%s\n", __func__); #ifndef CONFIG_OF soc_mtki2s0_dev = platform_device_alloc(MT_SOC_I2S0_PCM, -1); if (!soc_mtki2s0_dev) return -ENOMEM; ret = platform_device_add(soc_mtki2s0_dev); if (ret != 0) { platform_device_put(soc_mtki2s0_dev); return ret; } #endif ret = platform_driver_register(&mtk_i2s0_driver); return ret; } module_init(mtk_i2s0_soc_platform_init); static void __exit mtk_i2s0_soc_platform_exit(void) { platform_driver_unregister(&mtk_i2s0_driver); } module_exit(mtk_i2s0_soc_platform_exit); MODULE_DESCRIPTION("AFE PCM module platform driver"); MODULE_LICENSE("GPL");