/* * LIRC base driver * * by Artur Lipowski * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include "rc-core-priv.h" #include #define LIRCBUF_SIZE 1024 static dev_t lirc_base_dev; /* Used to keep track of allocated lirc devices */ static DEFINE_IDA(lirc_ida); /* Only used for sysfs but defined to void otherwise */ static struct class *lirc_class; /** * ir_lirc_raw_event() - Send raw IR data to lirc to be relayed to userspace * * @dev: the struct rc_dev descriptor of the device * @ev: the struct ir_raw_event descriptor of the pulse/space */ void ir_lirc_raw_event(struct rc_dev *dev, struct ir_raw_event ev) { unsigned long flags; struct lirc_fh *fh; int sample; /* Packet start */ if (ev.reset) { /* * Userspace expects a long space event before the start of * the signal to use as a sync. This may be done with repeat * packets and normal samples. But if a reset has been sent * then we assume that a long time has passed, so we send a * space with the maximum time value. */ sample = LIRC_SPACE(LIRC_VALUE_MASK); dev_dbg(&dev->dev, "delivering reset sync space to lirc_dev\n"); /* Carrier reports */ } else if (ev.carrier_report) { sample = LIRC_FREQUENCY(ev.carrier); dev_dbg(&dev->dev, "carrier report (freq: %d)\n", sample); /* Packet end */ } else if (ev.timeout) { if (dev->gap) return; dev->gap_start = ktime_get(); dev->gap = true; dev->gap_duration = ev.duration; sample = LIRC_TIMEOUT(ev.duration / 1000); dev_dbg(&dev->dev, "timeout report (duration: %d)\n", sample); /* Normal sample */ } else { if (dev->gap) { dev->gap_duration += ktime_to_ns(ktime_sub(ktime_get(), dev->gap_start)); /* Convert to ms and cap by LIRC_VALUE_MASK */ do_div(dev->gap_duration, 1000); dev->gap_duration = min_t(u64, dev->gap_duration, LIRC_VALUE_MASK); spin_lock_irqsave(&dev->lirc_fh_lock, flags); list_for_each_entry(fh, &dev->lirc_fh, list) kfifo_put(&fh->rawir, LIRC_SPACE(dev->gap_duration)); spin_unlock_irqrestore(&dev->lirc_fh_lock, flags); dev->gap = false; } sample = ev.pulse ? LIRC_PULSE(ev.duration / 1000) : LIRC_SPACE(ev.duration / 1000); dev_dbg(&dev->dev, "delivering %uus %s to lirc_dev\n", TO_US(ev.duration), TO_STR(ev.pulse)); } /* * bpf does not care about the gap generated above; that exists * for backwards compatibility */ lirc_bpf_run(dev, sample); spin_lock_irqsave(&dev->lirc_fh_lock, flags); list_for_each_entry(fh, &dev->lirc_fh, list) { if (LIRC_IS_TIMEOUT(sample) && !fh->send_timeout_reports) continue; if (kfifo_put(&fh->rawir, sample)) wake_up_poll(&fh->wait_poll, EPOLLIN | EPOLLRDNORM); } spin_unlock_irqrestore(&dev->lirc_fh_lock, flags); } /** * ir_lirc_scancode_event() - Send scancode data to lirc to be relayed to * userspace. This can be called in atomic context. * @dev: the struct rc_dev descriptor of the device * @lsc: the struct lirc_scancode describing the decoded scancode */ void ir_lirc_scancode_event(struct rc_dev *dev, struct lirc_scancode *lsc) { unsigned long flags; struct lirc_fh *fh; lsc->timestamp = ktime_get_ns(); spin_lock_irqsave(&dev->lirc_fh_lock, flags); list_for_each_entry(fh, &dev->lirc_fh, list) { if (kfifo_put(&fh->scancodes, *lsc)) wake_up_poll(&fh->wait_poll, EPOLLIN | EPOLLRDNORM); } spin_unlock_irqrestore(&dev->lirc_fh_lock, flags); } EXPORT_SYMBOL_GPL(ir_lirc_scancode_event); static int ir_lirc_open(struct inode *inode, struct file *file) { struct rc_dev *dev = container_of(inode->i_cdev, struct rc_dev, lirc_cdev); struct lirc_fh *fh = kzalloc(sizeof(*fh), GFP_KERNEL); unsigned long flags; int retval; if (!fh) return -ENOMEM; get_device(&dev->dev); if (!dev->registered) { retval = -ENODEV; goto out_fh; } if (dev->driver_type == RC_DRIVER_IR_RAW) { if (kfifo_alloc(&fh->rawir, MAX_IR_EVENT_SIZE, GFP_KERNEL)) { retval = -ENOMEM; goto out_fh; } } if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { if (kfifo_alloc(&fh->scancodes, 32, GFP_KERNEL)) { retval = -ENOMEM; goto out_rawir; } } fh->send_mode = LIRC_MODE_PULSE; fh->rc = dev; fh->send_timeout_reports = true; if (dev->driver_type == RC_DRIVER_SCANCODE) fh->rec_mode = LIRC_MODE_SCANCODE; else fh->rec_mode = LIRC_MODE_MODE2; retval = rc_open(dev); if (retval) goto out_kfifo; init_waitqueue_head(&fh->wait_poll); file->private_data = fh; spin_lock_irqsave(&dev->lirc_fh_lock, flags); list_add(&fh->list, &dev->lirc_fh); spin_unlock_irqrestore(&dev->lirc_fh_lock, flags); nonseekable_open(inode, file); return 0; out_kfifo: if (dev->driver_type != RC_DRIVER_IR_RAW_TX) kfifo_free(&fh->scancodes); out_rawir: if (dev->driver_type == RC_DRIVER_IR_RAW) kfifo_free(&fh->rawir); out_fh: kfree(fh); put_device(&dev->dev); return retval; } static int ir_lirc_close(struct inode *inode, struct file *file) { struct lirc_fh *fh = file->private_data; struct rc_dev *dev = fh->rc; unsigned long flags; spin_lock_irqsave(&dev->lirc_fh_lock, flags); list_del(&fh->list); spin_unlock_irqrestore(&dev->lirc_fh_lock, flags); if (dev->driver_type == RC_DRIVER_IR_RAW) kfifo_free(&fh->rawir); if (dev->driver_type != RC_DRIVER_IR_RAW_TX) kfifo_free(&fh->scancodes); kfree(fh); rc_close(dev); put_device(&dev->dev); return 0; } static ssize_t ir_lirc_transmit_ir(struct file *file, const char __user *buf, size_t n, loff_t *ppos) { struct lirc_fh *fh = file->private_data; struct rc_dev *dev = fh->rc; unsigned int *txbuf; struct ir_raw_event *raw = NULL; ssize_t ret; size_t count; ktime_t start; s64 towait; unsigned int duration = 0; /* signal duration in us */ int i; ret = mutex_lock_interruptible(&dev->lock); if (ret) return ret; if (!dev->registered) { ret = -ENODEV; goto out_unlock; } if (!dev->tx_ir) { ret = -EINVAL; goto out_unlock; } if (fh->send_mode == LIRC_MODE_SCANCODE) { struct lirc_scancode scan; if (n != sizeof(scan)) { ret = -EINVAL; goto out_unlock; } if (copy_from_user(&scan, buf, sizeof(scan))) { ret = -EFAULT; goto out_unlock; } if (scan.flags || scan.keycode || scan.timestamp) { ret = -EINVAL; goto out_unlock; } /* * The scancode field in lirc_scancode is 64-bit simply * to future-proof it, since there are IR protocols encode * use more than 32 bits. For now only 32-bit protocols * are supported. */ if (scan.scancode > U32_MAX || !rc_validate_scancode(scan.rc_proto, scan.scancode)) { ret = -EINVAL; goto out_unlock; } raw = kmalloc_array(LIRCBUF_SIZE, sizeof(*raw), GFP_KERNEL); if (!raw) { ret = -ENOMEM; goto out_unlock; } ret = ir_raw_encode_scancode(scan.rc_proto, scan.scancode, raw, LIRCBUF_SIZE); if (ret < 0) goto out_kfree_raw; count = ret; txbuf = kmalloc_array(count, sizeof(unsigned int), GFP_KERNEL); if (!txbuf) { ret = -ENOMEM; goto out_kfree_raw; } for (i = 0; i < count; i++) /* Convert from NS to US */ txbuf[i] = DIV_ROUND_UP(raw[i].duration, 1000); if (dev->s_tx_carrier) { int carrier = ir_raw_encode_carrier(scan.rc_proto); if (carrier > 0) dev->s_tx_carrier(dev, carrier); } } else { if (n < sizeof(unsigned int) || n % sizeof(unsigned int)) { ret = -EINVAL; goto out_unlock; } count = n / sizeof(unsigned int); if (count > LIRCBUF_SIZE || count % 2 == 0) { ret = -EINVAL; goto out_unlock; } txbuf = memdup_user(buf, n); if (IS_ERR(txbuf)) { ret = PTR_ERR(txbuf); goto out_unlock; } } for (i = 0; i < count; i++) { if (txbuf[i] > IR_MAX_DURATION / 1000 - duration || !txbuf[i]) { ret = -EINVAL; goto out_kfree; } duration += txbuf[i]; } start = ktime_get(); ret = dev->tx_ir(dev, txbuf, count); if (ret < 0) goto out_kfree; kfree(txbuf); kfree(raw); mutex_unlock(&dev->lock); /* * The lircd gap calculation expects the write function to * wait for the actual IR signal to be transmitted before * returning. */ towait = ktime_us_delta(ktime_add_us(start, duration), ktime_get()); if (towait > 0) { set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(usecs_to_jiffies(towait)); } return n; out_kfree: kfree(txbuf); out_kfree_raw: kfree(raw); out_unlock: mutex_unlock(&dev->lock); return ret; } static long ir_lirc_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct lirc_fh *fh = file->private_data; struct rc_dev *dev = fh->rc; u32 __user *argp = (u32 __user *)(arg); u32 val = 0; int ret; if (_IOC_DIR(cmd) & _IOC_WRITE) { ret = get_user(val, argp); if (ret) return ret; } ret = mutex_lock_interruptible(&dev->lock); if (ret) return ret; if (!dev->registered) { ret = -ENODEV; goto out; } switch (cmd) { case LIRC_GET_FEATURES: if (dev->driver_type == RC_DRIVER_SCANCODE) val |= LIRC_CAN_REC_SCANCODE; if (dev->driver_type == RC_DRIVER_IR_RAW) { val |= LIRC_CAN_REC_MODE2; if (dev->rx_resolution) val |= LIRC_CAN_GET_REC_RESOLUTION; } if (dev->tx_ir) { val |= LIRC_CAN_SEND_PULSE; if (dev->s_tx_mask) val |= LIRC_CAN_SET_TRANSMITTER_MASK; if (dev->s_tx_carrier) val |= LIRC_CAN_SET_SEND_CARRIER; if (dev->s_tx_duty_cycle) val |= LIRC_CAN_SET_SEND_DUTY_CYCLE; } if (dev->s_rx_carrier_range) val |= LIRC_CAN_SET_REC_CARRIER | LIRC_CAN_SET_REC_CARRIER_RANGE; if (dev->s_learning_mode) val |= LIRC_CAN_USE_WIDEBAND_RECEIVER; if (dev->s_carrier_report) val |= LIRC_CAN_MEASURE_CARRIER; if (dev->max_timeout) val |= LIRC_CAN_SET_REC_TIMEOUT; break; /* mode support */ case LIRC_GET_REC_MODE: if (dev->driver_type == RC_DRIVER_IR_RAW_TX) ret = -ENOTTY; else val = fh->rec_mode; break; case LIRC_SET_REC_MODE: switch (dev->driver_type) { case RC_DRIVER_IR_RAW_TX: ret = -ENOTTY; break; case RC_DRIVER_SCANCODE: if (val != LIRC_MODE_SCANCODE) ret = -EINVAL; break; case RC_DRIVER_IR_RAW: if (!(val == LIRC_MODE_MODE2 || val == LIRC_MODE_SCANCODE)) ret = -EINVAL; break; } if (!ret) fh->rec_mode = val; break; case LIRC_GET_SEND_MODE: if (!dev->tx_ir) ret = -ENOTTY; else val = fh->send_mode; break; case LIRC_SET_SEND_MODE: if (!dev->tx_ir) ret = -ENOTTY; else if (!(val == LIRC_MODE_PULSE || val == LIRC_MODE_SCANCODE)) ret = -EINVAL; else fh->send_mode = val; break; /* TX settings */ case LIRC_SET_TRANSMITTER_MASK: if (!dev->s_tx_mask) ret = -ENOTTY; else ret = dev->s_tx_mask(dev, val); break; case LIRC_SET_SEND_CARRIER: if (!dev->s_tx_carrier) ret = -ENOTTY; else ret = dev->s_tx_carrier(dev, val); break; case LIRC_SET_SEND_DUTY_CYCLE: if (!dev->s_tx_duty_cycle) ret = -ENOTTY; else if (val <= 0 || val >= 100) ret = -EINVAL; else ret = dev->s_tx_duty_cycle(dev, val); break; /* RX settings */ case LIRC_SET_REC_CARRIER: if (!dev->s_rx_carrier_range) ret = -ENOTTY; else if (val <= 0) ret = -EINVAL; else ret = dev->s_rx_carrier_range(dev, fh->carrier_low, val); break; case LIRC_SET_REC_CARRIER_RANGE: if (!dev->s_rx_carrier_range) ret = -ENOTTY; else if (val <= 0) ret = -EINVAL; else fh->carrier_low = val; break; case LIRC_GET_REC_RESOLUTION: if (!dev->rx_resolution) ret = -ENOTTY; else val = dev->rx_resolution / 1000; break; case LIRC_SET_WIDEBAND_RECEIVER: if (!dev->s_learning_mode) ret = -ENOTTY; else ret = dev->s_learning_mode(dev, !!val); break; case LIRC_SET_MEASURE_CARRIER_MODE: if (!dev->s_carrier_report) ret = -ENOTTY; else ret = dev->s_carrier_report(dev, !!val); break; /* Generic timeout support */ case LIRC_GET_MIN_TIMEOUT: if (!dev->max_timeout) ret = -ENOTTY; else val = DIV_ROUND_UP(dev->min_timeout, 1000); break; case LIRC_GET_MAX_TIMEOUT: if (!dev->max_timeout) ret = -ENOTTY; else val = dev->max_timeout / 1000; break; case LIRC_SET_REC_TIMEOUT: if (!dev->max_timeout) { ret = -ENOTTY; } else if (val > U32_MAX / 1000) { /* Check for multiply overflow */ ret = -EINVAL; } else { u32 tmp = val * 1000; if (tmp < dev->min_timeout || tmp > dev->max_timeout) ret = -EINVAL; else if (dev->s_timeout) ret = dev->s_timeout(dev, tmp); else dev->timeout = tmp; } break; case LIRC_GET_REC_TIMEOUT: if (!dev->timeout) ret = -ENOTTY; else val = DIV_ROUND_UP(dev->timeout, 1000); break; case LIRC_SET_REC_TIMEOUT_REPORTS: if (dev->driver_type != RC_DRIVER_IR_RAW) ret = -ENOTTY; else fh->send_timeout_reports = !!val; break; default: ret = -ENOTTY; } if (!ret && _IOC_DIR(cmd) & _IOC_READ) ret = put_user(val, argp); out: mutex_unlock(&dev->lock); return ret; } static __poll_t ir_lirc_poll(struct file *file, struct poll_table_struct *wait) { struct lirc_fh *fh = file->private_data; struct rc_dev *rcdev = fh->rc; __poll_t events = 0; poll_wait(file, &fh->wait_poll, wait); if (!rcdev->registered) { events = EPOLLHUP | EPOLLERR; } else if (rcdev->driver_type != RC_DRIVER_IR_RAW_TX) { if (fh->rec_mode == LIRC_MODE_SCANCODE && !kfifo_is_empty(&fh->scancodes)) events = EPOLLIN | EPOLLRDNORM; if (fh->rec_mode == LIRC_MODE_MODE2 && !kfifo_is_empty(&fh->rawir)) events = EPOLLIN | EPOLLRDNORM; } return events; } static ssize_t ir_lirc_read_mode2(struct file *file, char __user *buffer, size_t length) { struct lirc_fh *fh = file->private_data; struct rc_dev *rcdev = fh->rc; unsigned int copied; int ret; if (length < sizeof(unsigned int) || length % sizeof(unsigned int)) return -EINVAL; do { if (kfifo_is_empty(&fh->rawir)) { if (file->f_flags & O_NONBLOCK) return -EAGAIN; ret = wait_event_interruptible(fh->wait_poll, !kfifo_is_empty(&fh->rawir) || !rcdev->registered); if (ret) return ret; } if (!rcdev->registered) return -ENODEV; ret = mutex_lock_interruptible(&rcdev->lock); if (ret) return ret; ret = kfifo_to_user(&fh->rawir, buffer, length, &copied); mutex_unlock(&rcdev->lock); if (ret) return ret; } while (copied == 0); return copied; } static ssize_t ir_lirc_read_scancode(struct file *file, char __user *buffer, size_t length) { struct lirc_fh *fh = file->private_data; struct rc_dev *rcdev = fh->rc; unsigned int copied; int ret; if (length < sizeof(struct lirc_scancode) || length % sizeof(struct lirc_scancode)) return -EINVAL; do { if (kfifo_is_empty(&fh->scancodes)) { if (file->f_flags & O_NONBLOCK) return -EAGAIN; ret = wait_event_interruptible(fh->wait_poll, !kfifo_is_empty(&fh->scancodes) || !rcdev->registered); if (ret) return ret; } if (!rcdev->registered) return -ENODEV; ret = mutex_lock_interruptible(&rcdev->lock); if (ret) return ret; ret = kfifo_to_user(&fh->scancodes, buffer, length, &copied); mutex_unlock(&rcdev->lock); if (ret) return ret; } while (copied == 0); return copied; } static ssize_t ir_lirc_read(struct file *file, char __user *buffer, size_t length, loff_t *ppos) { struct lirc_fh *fh = file->private_data; struct rc_dev *rcdev = fh->rc; if (rcdev->driver_type == RC_DRIVER_IR_RAW_TX) return -EINVAL; if (!rcdev->registered) return -ENODEV; if (fh->rec_mode == LIRC_MODE_MODE2) return ir_lirc_read_mode2(file, buffer, length); else /* LIRC_MODE_SCANCODE */ return ir_lirc_read_scancode(file, buffer, length); } static const struct file_operations lirc_fops = { .owner = THIS_MODULE, .write = ir_lirc_transmit_ir, .unlocked_ioctl = ir_lirc_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ir_lirc_ioctl, #endif .read = ir_lirc_read, .poll = ir_lirc_poll, .open = ir_lirc_open, .release = ir_lirc_close, .llseek = no_llseek, }; static void lirc_release_device(struct device *ld) { struct rc_dev *rcdev = container_of(ld, struct rc_dev, lirc_dev); put_device(&rcdev->dev); } int ir_lirc_register(struct rc_dev *dev) { const char *rx_type, *tx_type; int err, minor; minor = ida_simple_get(&lirc_ida, 0, RC_DEV_MAX, GFP_KERNEL); if (minor < 0) return minor; device_initialize(&dev->lirc_dev); dev->lirc_dev.class = lirc_class; dev->lirc_dev.parent = &dev->dev; dev->lirc_dev.release = lirc_release_device; dev->lirc_dev.devt = MKDEV(MAJOR(lirc_base_dev), minor); dev_set_name(&dev->lirc_dev, "lirc%d", minor); INIT_LIST_HEAD(&dev->lirc_fh); spin_lock_init(&dev->lirc_fh_lock); cdev_init(&dev->lirc_cdev, &lirc_fops); err = cdev_device_add(&dev->lirc_cdev, &dev->lirc_dev); if (err) goto out_ida; get_device(&dev->dev); switch (dev->driver_type) { case RC_DRIVER_SCANCODE: rx_type = "scancode"; break; case RC_DRIVER_IR_RAW: rx_type = "raw IR"; break; default: rx_type = "no"; break; } if (dev->tx_ir) tx_type = "raw IR"; else tx_type = "no"; dev_info(&dev->dev, "lirc_dev: driver %s registered at minor = %d, %s receiver, %s transmitter", dev->driver_name, minor, rx_type, tx_type); return 0; out_ida: ida_simple_remove(&lirc_ida, minor); return err; } void ir_lirc_unregister(struct rc_dev *dev) { unsigned long flags; struct lirc_fh *fh; dev_dbg(&dev->dev, "lirc_dev: driver %s unregistered from minor = %d\n", dev->driver_name, MINOR(dev->lirc_dev.devt)); spin_lock_irqsave(&dev->lirc_fh_lock, flags); list_for_each_entry(fh, &dev->lirc_fh, list) wake_up_poll(&fh->wait_poll, EPOLLHUP | EPOLLERR); spin_unlock_irqrestore(&dev->lirc_fh_lock, flags); cdev_device_del(&dev->lirc_cdev, &dev->lirc_dev); ida_simple_remove(&lirc_ida, MINOR(dev->lirc_dev.devt)); } int __init lirc_dev_init(void) { int retval; lirc_class = class_create(THIS_MODULE, "lirc"); if (IS_ERR(lirc_class)) { pr_err("class_create failed\n"); return PTR_ERR(lirc_class); } retval = alloc_chrdev_region(&lirc_base_dev, 0, RC_DEV_MAX, "BaseRemoteCtl"); if (retval) { class_destroy(lirc_class); pr_err("alloc_chrdev_region failed\n"); return retval; } pr_debug("IR Remote Control driver registered, major %d\n", MAJOR(lirc_base_dev)); return 0; } void __exit lirc_dev_exit(void) { class_destroy(lirc_class); unregister_chrdev_region(lirc_base_dev, RC_DEV_MAX); } struct rc_dev *rc_dev_get_from_fd(int fd) { struct fd f = fdget(fd); struct lirc_fh *fh; struct rc_dev *dev; if (!f.file) return ERR_PTR(-EBADF); if (f.file->f_op != &lirc_fops) { fdput(f); return ERR_PTR(-EINVAL); } fh = f.file->private_data; dev = fh->rc; get_device(&dev->dev); fdput(f); return dev; } MODULE_ALIAS("lirc_dev");