// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016 MediaTek Inc. */ #define pr_fmt(fmt) " " fmt #include "inc/mag.h" #include "sensor_performance.h" #include struct mag_context *mag_context_obj /* = NULL*/; static struct mag_init_info *msensor_init_list[MAX_CHOOSE_G_NUM] = {0}; static void initTimer(struct hrtimer *timer, enum hrtimer_restart (*callback)(struct hrtimer *)) { hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); timer->function = callback; } static void startTimer(struct hrtimer *timer, int delay_ms, bool first) { struct mag_context *obj = (struct mag_context *)container_of(timer, struct mag_context, hrTimer); if (obj == NULL) { pr_err("NULL pointer\n"); return; } if (first) { obj->target_ktime = ktime_add_ns(ktime_get(), (int64_t)delay_ms * 1000000); } else { do { obj->target_ktime = ktime_add_ns( obj->target_ktime, (int64_t)delay_ms * 1000000); } while (ktime_to_ns(obj->target_ktime) < ktime_to_ns(ktime_get())); } hrtimer_start(timer, obj->target_ktime, HRTIMER_MODE_ABS); } #ifndef CONFIG_NANOHUB static void stopTimer(struct hrtimer *timer) { hrtimer_cancel(timer); } #endif static void mag_work_func(struct work_struct *work) { struct mag_context *cxt = NULL; struct hwm_sensor_data sensor_data; int64_t m_pre_ns, cur_ns; int64_t delay_ms; struct timespec time; int err; int x, y, z, status; cxt = mag_context_obj; delay_ms = atomic_read(&cxt->delay); memset(&sensor_data, 0, sizeof(sensor_data)); time.tv_sec = time.tv_nsec = 0; get_monotonic_boottime(&time); cur_ns = time.tv_sec * 1000000000LL + time.tv_nsec; err = cxt->mag_dev_data.get_data(&x, &y, &z, &status); if (err) { pr_err("get data fails!!\n"); return; } cxt->drv_data.x = x; cxt->drv_data.y = y; cxt->drv_data.z = z; cxt->drv_data.status = status; m_pre_ns = cxt->drv_data.timestamp; cxt->drv_data.timestamp = cur_ns; if (true == cxt->is_first_data_after_enable) { m_pre_ns = cur_ns; cxt->is_first_data_after_enable = false; /* filter -1 value */ if (cxt->drv_data.x == MAG_INVALID_VALUE || cxt->drv_data.y == MAG_INVALID_VALUE || cxt->drv_data.z == MAG_INVALID_VALUE) { pr_debug(" read invalid data\n"); goto mag_loop; } } while ((cur_ns - m_pre_ns) >= delay_ms * 1800000LL) { struct mag_data tmp_data = cxt->drv_data; m_pre_ns += delay_ms * 1000000LL; tmp_data.timestamp = m_pre_ns; mag_data_report(&tmp_data); } mag_data_report(&cxt->drv_data); mag_loop: if (true == cxt->is_polling_run) startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), false); } enum hrtimer_restart mag_poll(struct hrtimer *timer) { struct mag_context *obj = (struct mag_context *)container_of(timer, struct mag_context, hrTimer); queue_work(obj->mag_workqueue, &obj->report); return HRTIMER_NORESTART; } static struct mag_context *mag_context_alloc_object(void) { struct mag_context *obj = kzalloc(sizeof(*obj), GFP_KERNEL); pr_debug("%s start\n", __func__); if (!obj) { pr_err("Alloc magel object error!\n"); return NULL; } atomic_set(&obj->delay, 200); /* set work queue delay time 200ms */ atomic_set(&obj->wake, 0); INIT_WORK(&obj->report, mag_work_func); obj->mag_workqueue = NULL; obj->mag_workqueue = create_workqueue("mag_polling"); if (!obj->mag_workqueue) { kfree(obj); return NULL; } initTimer(&obj->hrTimer, mag_poll); obj->is_first_data_after_enable = false; obj->is_polling_run = false; obj->is_batch_enable = false; mutex_init(&obj->mag_op_mutex); obj->power = 0; obj->enable = 0; obj->delay_ns = -1; obj->latency_ns = -1; pr_debug("%s end\n", __func__); return obj; } #ifndef CONFIG_NANOHUB static int mag_enable_and_batch(void) { struct mag_context *cxt = mag_context_obj; int err; /* power on -> power off */ if (cxt->power == 1 && cxt->enable == 0) { pr_debug("MAG disable\n"); /* stop polling firstly, if needed */ if (cxt->mag_ctl.is_report_input_direct == false && cxt->is_polling_run == true) { smp_mb(); /* for memory barrier */ stopTimer(&cxt->hrTimer); smp_mb(); /* for memory barrier */ cancel_work_sync(&cxt->report); cxt->drv_data.x = MAG_INVALID_VALUE; cxt->drv_data.y = MAG_INVALID_VALUE; cxt->drv_data.z = MAG_INVALID_VALUE; cxt->is_polling_run = false; pr_debug("mag stop polling done\n"); } /* turn off the power */ err = cxt->mag_ctl.enable(0); if (err) { pr_err("mag turn off power err = %d\n", err); return -1; } pr_debug("mag turn off power done\n"); cxt->power = 0; cxt->delay_ns = -1; pr_debug("MAG disable done\n"); return 0; } /* power off -> power on */ if (cxt->power == 0 && cxt->enable == 1) { pr_debug("MAG power on\n"); err = cxt->mag_ctl.enable(1); if (err) { pr_err("mag turn on power err = %d\n", err); return -1; } pr_debug("mag turn on power done\n"); cxt->power = 1; pr_debug("MAG power on done\n"); } /* rate change */ if (cxt->power == 1 && cxt->delay_ns >= 0) { pr_debug("MAG set batch\n"); /* set ODR, fifo timeout latency */ if (cxt->mag_ctl.is_support_batch) err = cxt->mag_ctl.batch(0, cxt->delay_ns, cxt->latency_ns); else err = cxt->mag_ctl.batch(0, cxt->delay_ns, 0); if (err) { pr_err("mag set batch(ODR) err %d\n", err); return -1; } pr_debug("mag set ODR, fifo latency done\n"); /* start polling, if needed */ if (cxt->mag_ctl.is_report_input_direct == false) { uint64_t mdelay = cxt->delay_ns; do_div(mdelay, 1000000); atomic_set(&cxt->delay, mdelay); /* the first sensor start polling timer */ if (cxt->is_polling_run == false) { cxt->is_polling_run = true; cxt->is_first_data_after_enable = true; startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), true); } pr_debug("mag set polling delay %d ms\n", atomic_read(&cxt->delay)); } pr_debug("MAG batch done\n"); } return 0; } #endif /*----------------------------------------------------------------------------*/ static ssize_t magdev_show(struct device *dev, struct device_attribute *attr, char *buf) { int len = 0; pr_debug("sensor test: mag function!\n"); return len; } static ssize_t magactive_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mag_context *cxt = mag_context_obj; int err = 0; pr_debug("%s buf=%s\n", __func__, buf); mutex_lock(&mag_context_obj->mag_op_mutex); if (!strncmp(buf, "1", 1)) cxt->enable = 1; else if (!strncmp(buf, "0", 1)) cxt->enable = 0; else { pr_err("%s error !!\n", __func__); err = -1; goto err_out; } #ifdef CONFIG_NANOHUB err = cxt->mag_ctl.enable(cxt->enable); if (err) { pr_err("mag turn on power err = %d\n", err); goto err_out; } #else err = mag_enable_and_batch(); #endif err_out: mutex_unlock(&mag_context_obj->mag_op_mutex); pr_debug("%s done\n", __func__); if (err) return err; else return count; } /*----------------------------------------------------------------------------*/ static ssize_t magactive_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mag_context *cxt = NULL; int div = 0; cxt = mag_context_obj; div = cxt->mag_dev_data.div; pr_debug("mag mag_dev_data m_div value: %d\n", div); return snprintf(buf, PAGE_SIZE, "%d\n", div); } static ssize_t magbatch_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mag_context *cxt = mag_context_obj; int handle = 0, flag = 0, err = 0; pr_debug("%s %s\n", __func__, buf); err = sscanf(buf, "%d,%d,%lld,%lld", &handle, &flag, &cxt->delay_ns, &cxt->latency_ns); if (err != 4) { pr_err("%s param error: err = %d\n", __func__, err); return -1; } mutex_lock(&mag_context_obj->mag_op_mutex); #ifdef CONFIG_NANOHUB if (cxt->mag_ctl.is_support_batch) err = cxt->mag_ctl.batch(0, cxt->delay_ns, cxt->latency_ns); else err = cxt->mag_ctl.batch(0, cxt->delay_ns, 0); if (err) pr_err("mag set batch(ODR) err %d\n", err); #else err = mag_enable_and_batch(); #endif mutex_unlock(&mag_context_obj->mag_op_mutex); pr_debug("%s done: %d\n", __func__, cxt->is_batch_enable); if (err) return err; else return count; } static ssize_t magbatch_show(struct device *dev, struct device_attribute *attr, char *buf) { int len = 0; pr_debug(" not support now\n"); return len; } static ssize_t magflush_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", 0); } static ssize_t magflush_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mag_context *cxt = NULL; int handle = 0, err = 0; err = kstrtoint(buf, 10, &handle); if (err != 0) pr_err("%s param error: err = %d\n", __func__, err); pr_debug("%s param: handle %d\n", __func__, handle); mutex_lock(&mag_context_obj->mag_op_mutex); cxt = mag_context_obj; if (cxt->mag_ctl.flush != NULL) err = cxt->mag_ctl.flush(); else pr_debug( "MAG DRIVER OLD ARCHITECTURE DON'T SUPPORT ACC COMMON VERSION FLUSH\n"); if (err < 0) pr_err("mag enable flush err %d\n", err); mutex_unlock(&mag_context_obj->mag_op_mutex); if (err) return err; else return count; } static ssize_t magcali_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", 0); } static ssize_t magcali_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mag_context *cxt = NULL; int err = 0; uint8_t *cali_buf = NULL; cali_buf = vzalloc(count); if (cali_buf == NULL) return -EFAULT; memcpy(cali_buf, buf, count); mutex_lock(&mag_context_obj->mag_op_mutex); cxt = mag_context_obj; if (cxt->mag_ctl.set_cali != NULL) err = cxt->mag_ctl.set_cali(cali_buf, count); else pr_debug( "MAG DRIVER OLD ARCHITECTURE DON'T SUPPORT MAG COMMON VERSION FLUSH\n"); if (err < 0) pr_err("mag set cali err %d\n", err); mutex_unlock(&mag_context_obj->mag_op_mutex); vfree(cali_buf); return count; } /* need work around again */ static ssize_t magdevnum_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", 0); } static ssize_t maglibinfo_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mag_context *cxt = mag_context_obj; if (!buf) return -1; memcpy(buf, &cxt->mag_ctl.libinfo, sizeof(struct mag_libinfo_t)); return sizeof(struct mag_libinfo_t); } static int msensor_remove(struct platform_device *pdev) { pr_debug("%s\n", __func__); return 0; } static int msensor_probe(struct platform_device *pdev) { pr_debug("%s\n", __func__); return 0; } #ifdef CONFIG_OF static const struct of_device_id msensor_of_match[] = { { .compatible = "mediatek,msensor", }, {}, }; #endif static struct platform_driver msensor_driver = { .probe = msensor_probe, .remove = msensor_remove, .driver = { .name = "msensor", #ifdef CONFIG_OF .of_match_table = msensor_of_match, #endif } }; static int mag_real_driver_init(void) { int i = 0; int err = 0; pr_debug("%s start\n", __func__); for (i = 0; i < MAX_CHOOSE_G_NUM; i++) { pr_debug(" i=%d\n", i); if (msensor_init_list[i] != 0) { pr_debug(" mag try to init driver %s\n", msensor_init_list[i]->name); err = msensor_init_list[i]->init(); if (err == 0) { pr_debug(" mag real driver %s probe ok\n", msensor_init_list[i]->name); break; } } } if (i == MAX_CHOOSE_G_NUM) { pr_debug("%s fail\n", __func__); err = -1; } return err; } int mag_driver_add(struct mag_init_info *obj) { int err = 0; int i = 0; pr_debug("%s\n", __func__); if (!obj) { pr_err("%s fail, mag_init_info is NULL\n", __func__); return -1; } for (i = 0; i < MAX_CHOOSE_G_NUM; i++) { if ((i == 0) && (msensor_init_list[0] == NULL)) { pr_debug("register mensor driver for the first time\n"); if (platform_driver_register(&msensor_driver)) pr_err( "failed to register msensor driver already exist\n"); } if (msensor_init_list[i] == NULL) { obj->platform_diver_addr = &msensor_driver; msensor_init_list[i] = obj; break; } } if (i >= MAX_CHOOSE_G_NUM) { pr_err("MAG driver add err\n"); err = -1; } return err; } EXPORT_SYMBOL_GPL(mag_driver_add); static int magnetic_open(struct inode *inode, struct file *file) { nonseekable_open(inode, file); return 0; } static ssize_t magnetic_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { ssize_t read_cnt = 0; read_cnt = sensor_event_read(mag_context_obj->mdev.minor, file, buffer, count, ppos); return read_cnt; } static unsigned int magnetic_poll(struct file *file, poll_table *wait) { return sensor_event_poll(mag_context_obj->mdev.minor, file, wait); } static const struct file_operations mag_fops = { .owner = THIS_MODULE, .open = magnetic_open, .read = magnetic_read, .poll = magnetic_poll, }; static int mag_misc_init(struct mag_context *cxt) { int err = 0; cxt->mdev.minor = ID_MAGNETIC; cxt->mdev.name = MAG_MISC_DEV_NAME; cxt->mdev.fops = &mag_fops; err = sensor_attr_register(&cxt->mdev); if (err) pr_err("unable to register mag misc device!!\n"); return err; } DEVICE_ATTR_RO(magdev); DEVICE_ATTR_RW(magactive); DEVICE_ATTR_RW(magbatch); DEVICE_ATTR_RW(magflush); DEVICE_ATTR_RW(magcali); DEVICE_ATTR_RO(magdevnum); DEVICE_ATTR_RO(maglibinfo); static struct attribute *mag_attributes[] = { &dev_attr_magdev.attr, &dev_attr_magactive.attr, &dev_attr_magbatch.attr, &dev_attr_magflush.attr, &dev_attr_magcali.attr, &dev_attr_magdevnum.attr, &dev_attr_maglibinfo.attr, NULL }; static struct attribute_group mag_attribute_group = { .attrs = mag_attributes }; int mag_register_data_path(struct mag_data_path *data) { struct mag_context *cxt = NULL; cxt = mag_context_obj; cxt->mag_dev_data.div = data->div; cxt->mag_dev_data.get_data = data->get_data; cxt->mag_dev_data.get_raw_data = data->get_raw_data; pr_debug("mag register data path div: %d\n", cxt->mag_dev_data.div); return 0; } int mag_register_control_path(struct mag_control_path *ctl) { struct mag_context *cxt = NULL; int err = 0; cxt = mag_context_obj; cxt->mag_ctl.set_delay = ctl->set_delay; cxt->mag_ctl.enable = ctl->enable; cxt->mag_ctl.open_report_data = ctl->open_report_data; cxt->mag_ctl.batch = ctl->batch; cxt->mag_ctl.flush = ctl->flush; cxt->mag_ctl.set_cali = ctl->set_cali; cxt->mag_ctl.is_report_input_direct = ctl->is_report_input_direct; cxt->mag_ctl.is_support_batch = ctl->is_support_batch; cxt->mag_ctl.is_use_common_factory = ctl->is_use_common_factory; memcpy(cxt->mag_ctl.libinfo.libname, ctl->libinfo.libname, sizeof(cxt->mag_ctl.libinfo.libname)); cxt->mag_ctl.libinfo.layout = ctl->libinfo.layout; cxt->mag_ctl.libinfo.deviceid = ctl->libinfo.deviceid; if (cxt->mag_ctl.set_delay == NULL || cxt->mag_ctl.enable == NULL || cxt->mag_ctl.open_report_data == NULL) { pr_debug("mag register control path fail\n"); return -1; } /* add misc dev for sensor hal control cmd */ err = mag_misc_init(mag_context_obj); if (err) { pr_err("unable to register mag misc device!!\n"); return -2; } err = sysfs_create_group(&mag_context_obj->mdev.this_device->kobj, &mag_attribute_group); if (err < 0) { pr_err("unable to create mag attribute file\n"); return -3; } kobject_uevent(&mag_context_obj->mdev.this_device->kobj, KOBJ_ADD); return 0; } static int x1, y1, z1; static long pc; static int check_repeat_data(int x, int y, int z) { if ((x1 == x) && (y1 == y) && (z1 == z)) pc++; else pc = 0; x1 = x; y1 = y; z1 = z; if (pc > 100) { pr_debug("Mag sensor output repeat data\n"); pc = 0; } return 0; } int mag_data_report(struct mag_data *data) { /* pr_debug("update!valus: %d, %d, %d, %d\n" , x, y, z, status); */ struct sensor_event event; int err = 0; memset(&event, 0, sizeof(struct sensor_event)); check_repeat_data(data->x, data->y, data->z); event.flush_action = DATA_ACTION; event.status = data->status; event.time_stamp = data->timestamp; event.word[0] = data->x; event.word[1] = data->y; event.word[2] = data->z; event.word[3] = data->reserved[0]; event.word[4] = data->reserved[1]; event.word[5] = data->reserved[2]; event.reserved = data->reserved[0]; if (event.reserved == 1) mark_timestamp(ID_MAGNETIC, DATA_REPORT, ktime_get_boot_ns(), event.time_stamp); err = sensor_input_event(mag_context_obj->mdev.minor, &event); return err; } int mag_bias_report(struct mag_data *data) { /* pr_debug("update!valus: %d, %d, %d, %d\n" , x, y, z, status); */ struct sensor_event event; int err = 0; memset(&event, 0, sizeof(struct sensor_event)); event.flush_action = BIAS_ACTION; event.word[0] = data->x; event.word[1] = data->y; event.word[2] = data->z; err = sensor_input_event(mag_context_obj->mdev.minor, &event); return err; } int mag_cali_report(int32_t *param) { struct sensor_event event; int err = 0; memset(&event, 0, sizeof(struct sensor_event)); event.flush_action = CALI_ACTION; event.word[0] = param[0]; event.word[1] = param[1]; event.word[2] = param[2]; event.word[3] = param[3]; event.word[4] = param[4]; event.word[5] = param[5]; err = sensor_input_event(mag_context_obj->mdev.minor, &event); return err; } int mag_flush_report(void) { struct sensor_event event; int err = 0; memset(&event, 0, sizeof(struct sensor_event)); pr_debug_ratelimited("flush\n"); event.flush_action = FLUSH_ACTION; err = sensor_input_event(mag_context_obj->mdev.minor, &event); return err; } int mag_info_record(struct mag_libinfo_t *p_mag_info) { struct mag_context *cxt = NULL; int err = 0; cxt = mag_context_obj; memcpy(cxt->mag_ctl.libinfo.libname, p_mag_info->libname, sizeof(cxt->mag_ctl.libinfo.libname)); cxt->mag_ctl.libinfo.layout = p_mag_info->layout; cxt->mag_ctl.libinfo.deviceid = p_mag_info->deviceid; return err; } static int mag_probe(void) { int err; pr_debug("%s ++++!!\n", __func__); mag_context_obj = mag_context_alloc_object(); if (!mag_context_obj) { err = -ENOMEM; pr_err("unable to allocate devobj!\n"); goto exit_alloc_data_failed; } /* init real mageleration driver */ err = mag_real_driver_init(); if (err) { pr_err("mag_real_driver_init fail\n"); goto real_driver_init_fail; } pr_debug("%s OK !!\n", __func__); return 0; real_driver_init_fail: kfree(mag_context_obj); exit_alloc_data_failed: pr_err("%s fail !!!\n", __func__); return err; } static int mag_remove(void) { int err = 0; pr_debug("%s\n", __func__); sysfs_remove_group(&mag_context_obj->mdev.this_device->kobj, &mag_attribute_group); err = sensor_attr_deregister(&mag_context_obj->mdev); if (err) pr_err("misc_deregister fail: %d\n", err); kfree(mag_context_obj); platform_driver_unregister(&msensor_driver); return 0; } static int __init mag_init(void) { pr_debug("%s\n", __func__); if (mag_probe()) { pr_err("failed to register mag driver\n"); return -ENODEV; } return 0; } static void __exit mag_exit(void) { mag_remove(); platform_driver_unregister(&msensor_driver); } late_initcall(mag_init); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MAGELEROMETER device driver"); MODULE_AUTHOR("Mediatek");