// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2015-2019 Jason A. Donenfeld . All Rights Reserved. */ #include "noise.h" #include "device.h" #include "peer.h" #include "messages.h" #include "queueing.h" #include "peerlookup.h" #include #include #include #include #include #include /* This implements Noise_IKpsk2: * * <- s * ****** * -> e, es, s, ss, {t} * <- e, ee, se, psk, {} */ static const u8 handshake_name[37] = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s"; static const u8 identifier_name[34] = "WireGuard v1 zx2c4 Jason@zx2c4.com"; static u8 handshake_init_hash[NOISE_HASH_LEN] __ro_after_init; static u8 handshake_init_chaining_key[NOISE_HASH_LEN] __ro_after_init; static atomic64_t keypair_counter = ATOMIC64_INIT(0); void __init wg_noise_init(void) { struct blake2s_state blake; blake2s(handshake_init_chaining_key, handshake_name, NULL, NOISE_HASH_LEN, sizeof(handshake_name), 0); blake2s_init(&blake, NOISE_HASH_LEN); blake2s_update(&blake, handshake_init_chaining_key, NOISE_HASH_LEN); blake2s_update(&blake, identifier_name, sizeof(identifier_name)); blake2s_final(&blake, handshake_init_hash); } /* Must hold peer->handshake.static_identity->lock */ void wg_noise_precompute_static_static(struct wg_peer *peer) { down_write(&peer->handshake.lock); if (!peer->handshake.static_identity->has_identity || !curve25519(peer->handshake.precomputed_static_static, peer->handshake.static_identity->static_private, peer->handshake.remote_static)) memset(peer->handshake.precomputed_static_static, 0, NOISE_PUBLIC_KEY_LEN); up_write(&peer->handshake.lock); } void wg_noise_handshake_init(struct noise_handshake *handshake, struct noise_static_identity *static_identity, const u8 peer_public_key[NOISE_PUBLIC_KEY_LEN], const u8 peer_preshared_key[NOISE_SYMMETRIC_KEY_LEN], struct wg_peer *peer) { memset(handshake, 0, sizeof(*handshake)); init_rwsem(&handshake->lock); handshake->entry.type = INDEX_HASHTABLE_HANDSHAKE; handshake->entry.peer = peer; memcpy(handshake->remote_static, peer_public_key, NOISE_PUBLIC_KEY_LEN); if (peer_preshared_key) memcpy(handshake->preshared_key, peer_preshared_key, NOISE_SYMMETRIC_KEY_LEN); handshake->static_identity = static_identity; handshake->state = HANDSHAKE_ZEROED; wg_noise_precompute_static_static(peer); } static void handshake_zero(struct noise_handshake *handshake) { memset(&handshake->ephemeral_private, 0, NOISE_PUBLIC_KEY_LEN); memset(&handshake->remote_ephemeral, 0, NOISE_PUBLIC_KEY_LEN); memset(&handshake->hash, 0, NOISE_HASH_LEN); memset(&handshake->chaining_key, 0, NOISE_HASH_LEN); handshake->remote_index = 0; handshake->state = HANDSHAKE_ZEROED; } void wg_noise_handshake_clear(struct noise_handshake *handshake) { down_write(&handshake->lock); wg_index_hashtable_remove( handshake->entry.peer->device->index_hashtable, &handshake->entry); handshake_zero(handshake); up_write(&handshake->lock); } static struct noise_keypair *keypair_create(struct wg_peer *peer) { struct noise_keypair *keypair = kzalloc(sizeof(*keypair), GFP_KERNEL); if (unlikely(!keypair)) return NULL; spin_lock_init(&keypair->receiving_counter.lock); keypair->internal_id = atomic64_inc_return(&keypair_counter); keypair->entry.type = INDEX_HASHTABLE_KEYPAIR; keypair->entry.peer = peer; kref_init(&keypair->refcount); return keypair; } static void keypair_free_rcu(struct rcu_head *rcu) { kzfree(container_of(rcu, struct noise_keypair, rcu)); } static void keypair_free_kref(struct kref *kref) { struct noise_keypair *keypair = container_of(kref, struct noise_keypair, refcount); net_dbg_ratelimited("%s: Keypair %llu destroyed for peer %llu\n", keypair->entry.peer->device->dev->name, keypair->internal_id, keypair->entry.peer->internal_id); wg_index_hashtable_remove(keypair->entry.peer->device->index_hashtable, &keypair->entry); call_rcu(&keypair->rcu, keypair_free_rcu); } void wg_noise_keypair_put(struct noise_keypair *keypair, bool unreference_now) { if (unlikely(!keypair)) return; if (unlikely(unreference_now)) wg_index_hashtable_remove( keypair->entry.peer->device->index_hashtable, &keypair->entry); kref_put(&keypair->refcount, keypair_free_kref); } struct noise_keypair *wg_noise_keypair_get(struct noise_keypair *keypair) { RCU_LOCKDEP_WARN(!rcu_read_lock_bh_held(), "Taking noise keypair reference without holding the RCU BH read lock"); if (unlikely(!keypair || !kref_get_unless_zero(&keypair->refcount))) return NULL; return keypair; } void wg_noise_keypairs_clear(struct noise_keypairs *keypairs) { struct noise_keypair *old; spin_lock_bh(&keypairs->keypair_update_lock); /* We zero the next_keypair before zeroing the others, so that * wg_noise_received_with_keypair returns early before subsequent ones * are zeroed. */ old = rcu_dereference_protected(keypairs->next_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); RCU_INIT_POINTER(keypairs->next_keypair, NULL); wg_noise_keypair_put(old, true); old = rcu_dereference_protected(keypairs->previous_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); RCU_INIT_POINTER(keypairs->previous_keypair, NULL); wg_noise_keypair_put(old, true); old = rcu_dereference_protected(keypairs->current_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); RCU_INIT_POINTER(keypairs->current_keypair, NULL); wg_noise_keypair_put(old, true); spin_unlock_bh(&keypairs->keypair_update_lock); } void wg_noise_expire_current_peer_keypairs(struct wg_peer *peer) { struct noise_keypair *keypair; wg_noise_handshake_clear(&peer->handshake); wg_noise_reset_last_sent_handshake(&peer->last_sent_handshake); spin_lock_bh(&peer->keypairs.keypair_update_lock); keypair = rcu_dereference_protected(peer->keypairs.next_keypair, lockdep_is_held(&peer->keypairs.keypair_update_lock)); if (keypair) keypair->sending.is_valid = false; keypair = rcu_dereference_protected(peer->keypairs.current_keypair, lockdep_is_held(&peer->keypairs.keypair_update_lock)); if (keypair) keypair->sending.is_valid = false; spin_unlock_bh(&peer->keypairs.keypair_update_lock); } static void add_new_keypair(struct noise_keypairs *keypairs, struct noise_keypair *new_keypair) { struct noise_keypair *previous_keypair, *next_keypair, *current_keypair; spin_lock_bh(&keypairs->keypair_update_lock); previous_keypair = rcu_dereference_protected(keypairs->previous_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); next_keypair = rcu_dereference_protected(keypairs->next_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); current_keypair = rcu_dereference_protected(keypairs->current_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); if (new_keypair->i_am_the_initiator) { /* If we're the initiator, it means we've sent a handshake, and * received a confirmation response, which means this new * keypair can now be used. */ if (next_keypair) { /* If there already was a next keypair pending, we * demote it to be the previous keypair, and free the * existing current. Note that this means KCI can result * in this transition. It would perhaps be more sound to * always just get rid of the unused next keypair * instead of putting it in the previous slot, but this * might be a bit less robust. Something to think about * for the future. */ RCU_INIT_POINTER(keypairs->next_keypair, NULL); rcu_assign_pointer(keypairs->previous_keypair, next_keypair); wg_noise_keypair_put(current_keypair, true); } else /* If there wasn't an existing next keypair, we replace * the previous with the current one. */ rcu_assign_pointer(keypairs->previous_keypair, current_keypair); /* At this point we can get rid of the old previous keypair, and * set up the new keypair. */ wg_noise_keypair_put(previous_keypair, true); rcu_assign_pointer(keypairs->current_keypair, new_keypair); } else { /* If we're the responder, it means we can't use the new keypair * until we receive confirmation via the first data packet, so * we get rid of the existing previous one, the possibly * existing next one, and slide in the new next one. */ rcu_assign_pointer(keypairs->next_keypair, new_keypair); wg_noise_keypair_put(next_keypair, true); RCU_INIT_POINTER(keypairs->previous_keypair, NULL); wg_noise_keypair_put(previous_keypair, true); } spin_unlock_bh(&keypairs->keypair_update_lock); } bool wg_noise_received_with_keypair(struct noise_keypairs *keypairs, struct noise_keypair *received_keypair) { struct noise_keypair *old_keypair; bool key_is_new; /* We first check without taking the spinlock. */ key_is_new = received_keypair == rcu_access_pointer(keypairs->next_keypair); if (likely(!key_is_new)) return false; spin_lock_bh(&keypairs->keypair_update_lock); /* After locking, we double check that things didn't change from * beneath us. */ if (unlikely(received_keypair != rcu_dereference_protected(keypairs->next_keypair, lockdep_is_held(&keypairs->keypair_update_lock)))) { spin_unlock_bh(&keypairs->keypair_update_lock); return false; } /* When we've finally received the confirmation, we slide the next * into the current, the current into the previous, and get rid of * the old previous. */ old_keypair = rcu_dereference_protected(keypairs->previous_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); rcu_assign_pointer(keypairs->previous_keypair, rcu_dereference_protected(keypairs->current_keypair, lockdep_is_held(&keypairs->keypair_update_lock))); wg_noise_keypair_put(old_keypair, true); rcu_assign_pointer(keypairs->current_keypair, received_keypair); RCU_INIT_POINTER(keypairs->next_keypair, NULL); spin_unlock_bh(&keypairs->keypair_update_lock); return true; } /* Must hold static_identity->lock */ void wg_noise_set_static_identity_private_key( struct noise_static_identity *static_identity, const u8 private_key[NOISE_PUBLIC_KEY_LEN]) { memcpy(static_identity->static_private, private_key, NOISE_PUBLIC_KEY_LEN); curve25519_clamp_secret(static_identity->static_private); static_identity->has_identity = curve25519_generate_public( static_identity->static_public, private_key); } /* This is Hugo Krawczyk's HKDF: * - https://eprint.iacr.org/2010/264.pdf * - https://tools.ietf.org/html/rfc5869 */ static void kdf(u8 *first_dst, u8 *second_dst, u8 *third_dst, const u8 *data, size_t first_len, size_t second_len, size_t third_len, size_t data_len, const u8 chaining_key[NOISE_HASH_LEN]) { u8 output[BLAKE2S_HASH_SIZE + 1]; u8 secret[BLAKE2S_HASH_SIZE]; WARN_ON(IS_ENABLED(DEBUG) && (first_len > BLAKE2S_HASH_SIZE || second_len > BLAKE2S_HASH_SIZE || third_len > BLAKE2S_HASH_SIZE || ((second_len || second_dst || third_len || third_dst) && (!first_len || !first_dst)) || ((third_len || third_dst) && (!second_len || !second_dst)))); /* Extract entropy from data into secret */ blake2s256_hmac(secret, data, chaining_key, data_len, NOISE_HASH_LEN); if (!first_dst || !first_len) goto out; /* Expand first key: key = secret, data = 0x1 */ output[0] = 1; blake2s256_hmac(output, output, secret, 1, BLAKE2S_HASH_SIZE); memcpy(first_dst, output, first_len); if (!second_dst || !second_len) goto out; /* Expand second key: key = secret, data = first-key || 0x2 */ output[BLAKE2S_HASH_SIZE] = 2; blake2s256_hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1, BLAKE2S_HASH_SIZE); memcpy(second_dst, output, second_len); if (!third_dst || !third_len) goto out; /* Expand third key: key = secret, data = second-key || 0x3 */ output[BLAKE2S_HASH_SIZE] = 3; blake2s256_hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1, BLAKE2S_HASH_SIZE); memcpy(third_dst, output, third_len); out: /* Clear sensitive data from stack */ memzero_explicit(secret, BLAKE2S_HASH_SIZE); memzero_explicit(output, BLAKE2S_HASH_SIZE + 1); } static void derive_keys(struct noise_symmetric_key *first_dst, struct noise_symmetric_key *second_dst, const u8 chaining_key[NOISE_HASH_LEN]) { u64 birthdate = ktime_get_coarse_boottime_ns(); kdf(first_dst->key, second_dst->key, NULL, NULL, NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0, chaining_key); first_dst->birthdate = second_dst->birthdate = birthdate; first_dst->is_valid = second_dst->is_valid = true; } static bool __must_check mix_dh(u8 chaining_key[NOISE_HASH_LEN], u8 key[NOISE_SYMMETRIC_KEY_LEN], const u8 private[NOISE_PUBLIC_KEY_LEN], const u8 public[NOISE_PUBLIC_KEY_LEN]) { u8 dh_calculation[NOISE_PUBLIC_KEY_LEN]; if (unlikely(!curve25519(dh_calculation, private, public))) return false; kdf(chaining_key, key, NULL, dh_calculation, NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, chaining_key); memzero_explicit(dh_calculation, NOISE_PUBLIC_KEY_LEN); return true; } static bool __must_check mix_precomputed_dh(u8 chaining_key[NOISE_HASH_LEN], u8 key[NOISE_SYMMETRIC_KEY_LEN], const u8 precomputed[NOISE_PUBLIC_KEY_LEN]) { static u8 zero_point[NOISE_PUBLIC_KEY_LEN]; if (unlikely(!crypto_memneq(precomputed, zero_point, NOISE_PUBLIC_KEY_LEN))) return false; kdf(chaining_key, key, NULL, precomputed, NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, chaining_key); return true; } static void mix_hash(u8 hash[NOISE_HASH_LEN], const u8 *src, size_t src_len) { struct blake2s_state blake; blake2s_init(&blake, NOISE_HASH_LEN); blake2s_update(&blake, hash, NOISE_HASH_LEN); blake2s_update(&blake, src, src_len); blake2s_final(&blake, hash); } static void mix_psk(u8 chaining_key[NOISE_HASH_LEN], u8 hash[NOISE_HASH_LEN], u8 key[NOISE_SYMMETRIC_KEY_LEN], const u8 psk[NOISE_SYMMETRIC_KEY_LEN]) { u8 temp_hash[NOISE_HASH_LEN]; kdf(chaining_key, temp_hash, key, psk, NOISE_HASH_LEN, NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, chaining_key); mix_hash(hash, temp_hash, NOISE_HASH_LEN); memzero_explicit(temp_hash, NOISE_HASH_LEN); } static void handshake_init(u8 chaining_key[NOISE_HASH_LEN], u8 hash[NOISE_HASH_LEN], const u8 remote_static[NOISE_PUBLIC_KEY_LEN]) { memcpy(hash, handshake_init_hash, NOISE_HASH_LEN); memcpy(chaining_key, handshake_init_chaining_key, NOISE_HASH_LEN); mix_hash(hash, remote_static, NOISE_PUBLIC_KEY_LEN); } static void message_encrypt(u8 *dst_ciphertext, const u8 *src_plaintext, size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN], u8 hash[NOISE_HASH_LEN]) { chacha20poly1305_encrypt(dst_ciphertext, src_plaintext, src_len, hash, NOISE_HASH_LEN, 0 /* Always zero for Noise_IK */, key); mix_hash(hash, dst_ciphertext, noise_encrypted_len(src_len)); } static bool message_decrypt(u8 *dst_plaintext, const u8 *src_ciphertext, size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN], u8 hash[NOISE_HASH_LEN]) { if (!chacha20poly1305_decrypt(dst_plaintext, src_ciphertext, src_len, hash, NOISE_HASH_LEN, 0 /* Always zero for Noise_IK */, key)) return false; mix_hash(hash, src_ciphertext, src_len); return true; } static void message_ephemeral(u8 ephemeral_dst[NOISE_PUBLIC_KEY_LEN], const u8 ephemeral_src[NOISE_PUBLIC_KEY_LEN], u8 chaining_key[NOISE_HASH_LEN], u8 hash[NOISE_HASH_LEN]) { if (ephemeral_dst != ephemeral_src) memcpy(ephemeral_dst, ephemeral_src, NOISE_PUBLIC_KEY_LEN); mix_hash(hash, ephemeral_src, NOISE_PUBLIC_KEY_LEN); kdf(chaining_key, NULL, NULL, ephemeral_src, NOISE_HASH_LEN, 0, 0, NOISE_PUBLIC_KEY_LEN, chaining_key); } static void tai64n_now(u8 output[NOISE_TIMESTAMP_LEN]) { struct timespec64 now; ktime_get_real_ts64(&now); /* In order to prevent some sort of infoleak from precise timers, we * round down the nanoseconds part to the closest rounded-down power of * two to the maximum initiations per second allowed anyway by the * implementation. */ now.tv_nsec = ALIGN_DOWN(now.tv_nsec, rounddown_pow_of_two(NSEC_PER_SEC / INITIATIONS_PER_SECOND)); /* https://cr.yp.to/libtai/tai64.html */ *(__be64 *)output = cpu_to_be64(0x400000000000000aULL + now.tv_sec); *(__be32 *)(output + sizeof(__be64)) = cpu_to_be32(now.tv_nsec); } bool wg_noise_handshake_create_initiation(struct message_handshake_initiation *dst, struct noise_handshake *handshake) { u8 timestamp[NOISE_TIMESTAMP_LEN]; u8 key[NOISE_SYMMETRIC_KEY_LEN]; bool ret = false; /* We need to wait for crng _before_ taking any locks, since * curve25519_generate_secret uses get_random_bytes_wait. */ wait_for_random_bytes(); down_read(&handshake->static_identity->lock); down_write(&handshake->lock); if (unlikely(!handshake->static_identity->has_identity)) goto out; dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION); handshake_init(handshake->chaining_key, handshake->hash, handshake->remote_static); /* e */ curve25519_generate_secret(handshake->ephemeral_private); if (!curve25519_generate_public(dst->unencrypted_ephemeral, handshake->ephemeral_private)) goto out; message_ephemeral(dst->unencrypted_ephemeral, dst->unencrypted_ephemeral, handshake->chaining_key, handshake->hash); /* es */ if (!mix_dh(handshake->chaining_key, key, handshake->ephemeral_private, handshake->remote_static)) goto out; /* s */ message_encrypt(dst->encrypted_static, handshake->static_identity->static_public, NOISE_PUBLIC_KEY_LEN, key, handshake->hash); /* ss */ if (!mix_precomputed_dh(handshake->chaining_key, key, handshake->precomputed_static_static)) goto out; /* {t} */ tai64n_now(timestamp); message_encrypt(dst->encrypted_timestamp, timestamp, NOISE_TIMESTAMP_LEN, key, handshake->hash); dst->sender_index = wg_index_hashtable_insert( handshake->entry.peer->device->index_hashtable, &handshake->entry); handshake->state = HANDSHAKE_CREATED_INITIATION; ret = true; out: up_write(&handshake->lock); up_read(&handshake->static_identity->lock); memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); return ret; } struct wg_peer * wg_noise_handshake_consume_initiation(struct message_handshake_initiation *src, struct wg_device *wg) { struct wg_peer *peer = NULL, *ret_peer = NULL; struct noise_handshake *handshake; bool replay_attack, flood_attack; u8 key[NOISE_SYMMETRIC_KEY_LEN]; u8 chaining_key[NOISE_HASH_LEN]; u8 hash[NOISE_HASH_LEN]; u8 s[NOISE_PUBLIC_KEY_LEN]; u8 e[NOISE_PUBLIC_KEY_LEN]; u8 t[NOISE_TIMESTAMP_LEN]; u64 initiation_consumption; down_read(&wg->static_identity.lock); if (unlikely(!wg->static_identity.has_identity)) goto out; handshake_init(chaining_key, hash, wg->static_identity.static_public); /* e */ message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash); /* es */ if (!mix_dh(chaining_key, key, wg->static_identity.static_private, e)) goto out; /* s */ if (!message_decrypt(s, src->encrypted_static, sizeof(src->encrypted_static), key, hash)) goto out; /* Lookup which peer we're actually talking to */ peer = wg_pubkey_hashtable_lookup(wg->peer_hashtable, s); if (!peer) goto out; handshake = &peer->handshake; /* ss */ if (!mix_precomputed_dh(chaining_key, key, handshake->precomputed_static_static)) goto out; /* {t} */ if (!message_decrypt(t, src->encrypted_timestamp, sizeof(src->encrypted_timestamp), key, hash)) goto out; down_read(&handshake->lock); replay_attack = memcmp(t, handshake->latest_timestamp, NOISE_TIMESTAMP_LEN) <= 0; flood_attack = (s64)handshake->last_initiation_consumption + NSEC_PER_SEC / INITIATIONS_PER_SECOND > (s64)ktime_get_coarse_boottime_ns(); up_read(&handshake->lock); if (replay_attack || flood_attack) goto out; /* Success! Copy everything to peer */ down_write(&handshake->lock); memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN); if (memcmp(t, handshake->latest_timestamp, NOISE_TIMESTAMP_LEN) > 0) memcpy(handshake->latest_timestamp, t, NOISE_TIMESTAMP_LEN); memcpy(handshake->hash, hash, NOISE_HASH_LEN); memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN); handshake->remote_index = src->sender_index; initiation_consumption = ktime_get_coarse_boottime_ns(); if ((s64)(handshake->last_initiation_consumption - initiation_consumption) < 0) handshake->last_initiation_consumption = initiation_consumption; handshake->state = HANDSHAKE_CONSUMED_INITIATION; up_write(&handshake->lock); ret_peer = peer; out: memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); memzero_explicit(hash, NOISE_HASH_LEN); memzero_explicit(chaining_key, NOISE_HASH_LEN); up_read(&wg->static_identity.lock); if (!ret_peer) wg_peer_put(peer); return ret_peer; } bool wg_noise_handshake_create_response(struct message_handshake_response *dst, struct noise_handshake *handshake) { u8 key[NOISE_SYMMETRIC_KEY_LEN]; bool ret = false; /* We need to wait for crng _before_ taking any locks, since * curve25519_generate_secret uses get_random_bytes_wait. */ wait_for_random_bytes(); down_read(&handshake->static_identity->lock); down_write(&handshake->lock); if (handshake->state != HANDSHAKE_CONSUMED_INITIATION) goto out; dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE); dst->receiver_index = handshake->remote_index; /* e */ curve25519_generate_secret(handshake->ephemeral_private); if (!curve25519_generate_public(dst->unencrypted_ephemeral, handshake->ephemeral_private)) goto out; message_ephemeral(dst->unencrypted_ephemeral, dst->unencrypted_ephemeral, handshake->chaining_key, handshake->hash); /* ee */ if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private, handshake->remote_ephemeral)) goto out; /* se */ if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private, handshake->remote_static)) goto out; /* psk */ mix_psk(handshake->chaining_key, handshake->hash, key, handshake->preshared_key); /* {} */ message_encrypt(dst->encrypted_nothing, NULL, 0, key, handshake->hash); dst->sender_index = wg_index_hashtable_insert( handshake->entry.peer->device->index_hashtable, &handshake->entry); handshake->state = HANDSHAKE_CREATED_RESPONSE; ret = true; out: up_write(&handshake->lock); up_read(&handshake->static_identity->lock); memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); return ret; } struct wg_peer * wg_noise_handshake_consume_response(struct message_handshake_response *src, struct wg_device *wg) { enum noise_handshake_state state = HANDSHAKE_ZEROED; struct wg_peer *peer = NULL, *ret_peer = NULL; struct noise_handshake *handshake; u8 key[NOISE_SYMMETRIC_KEY_LEN]; u8 hash[NOISE_HASH_LEN]; u8 chaining_key[NOISE_HASH_LEN]; u8 e[NOISE_PUBLIC_KEY_LEN]; u8 ephemeral_private[NOISE_PUBLIC_KEY_LEN]; u8 static_private[NOISE_PUBLIC_KEY_LEN]; u8 preshared_key[NOISE_SYMMETRIC_KEY_LEN]; down_read(&wg->static_identity.lock); if (unlikely(!wg->static_identity.has_identity)) goto out; handshake = (struct noise_handshake *)wg_index_hashtable_lookup( wg->index_hashtable, INDEX_HASHTABLE_HANDSHAKE, src->receiver_index, &peer); if (unlikely(!handshake)) goto out; down_read(&handshake->lock); state = handshake->state; memcpy(hash, handshake->hash, NOISE_HASH_LEN); memcpy(chaining_key, handshake->chaining_key, NOISE_HASH_LEN); memcpy(ephemeral_private, handshake->ephemeral_private, NOISE_PUBLIC_KEY_LEN); memcpy(preshared_key, handshake->preshared_key, NOISE_SYMMETRIC_KEY_LEN); up_read(&handshake->lock); if (state != HANDSHAKE_CREATED_INITIATION) goto fail; /* e */ message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash); /* ee */ if (!mix_dh(chaining_key, NULL, ephemeral_private, e)) goto fail; /* se */ if (!mix_dh(chaining_key, NULL, wg->static_identity.static_private, e)) goto fail; /* psk */ mix_psk(chaining_key, hash, key, preshared_key); /* {} */ if (!message_decrypt(NULL, src->encrypted_nothing, sizeof(src->encrypted_nothing), key, hash)) goto fail; /* Success! Copy everything to peer */ down_write(&handshake->lock); /* It's important to check that the state is still the same, while we * have an exclusive lock. */ if (handshake->state != state) { up_write(&handshake->lock); goto fail; } memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN); memcpy(handshake->hash, hash, NOISE_HASH_LEN); memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN); handshake->remote_index = src->sender_index; handshake->state = HANDSHAKE_CONSUMED_RESPONSE; up_write(&handshake->lock); ret_peer = peer; goto out; fail: wg_peer_put(peer); out: memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); memzero_explicit(hash, NOISE_HASH_LEN); memzero_explicit(chaining_key, NOISE_HASH_LEN); memzero_explicit(ephemeral_private, NOISE_PUBLIC_KEY_LEN); memzero_explicit(static_private, NOISE_PUBLIC_KEY_LEN); memzero_explicit(preshared_key, NOISE_SYMMETRIC_KEY_LEN); up_read(&wg->static_identity.lock); return ret_peer; } bool wg_noise_handshake_begin_session(struct noise_handshake *handshake, struct noise_keypairs *keypairs) { struct noise_keypair *new_keypair; bool ret = false; down_write(&handshake->lock); if (handshake->state != HANDSHAKE_CREATED_RESPONSE && handshake->state != HANDSHAKE_CONSUMED_RESPONSE) goto out; new_keypair = keypair_create(handshake->entry.peer); if (!new_keypair) goto out; new_keypair->i_am_the_initiator = handshake->state == HANDSHAKE_CONSUMED_RESPONSE; new_keypair->remote_index = handshake->remote_index; if (new_keypair->i_am_the_initiator) derive_keys(&new_keypair->sending, &new_keypair->receiving, handshake->chaining_key); else derive_keys(&new_keypair->receiving, &new_keypair->sending, handshake->chaining_key); handshake_zero(handshake); rcu_read_lock_bh(); if (likely(!READ_ONCE(container_of(handshake, struct wg_peer, handshake)->is_dead))) { add_new_keypair(keypairs, new_keypair); net_dbg_ratelimited("%s: Keypair %llu created for peer %llu\n", handshake->entry.peer->device->dev->name, new_keypair->internal_id, handshake->entry.peer->internal_id); ret = wg_index_hashtable_replace( handshake->entry.peer->device->index_hashtable, &handshake->entry, &new_keypair->entry); } else { kzfree(new_keypair); } rcu_read_unlock_bh(); out: up_write(&handshake->lock); return ret; }