// SPDX-License-Identifier: GPL-2.0 /* * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman * (C) Copyright 2007 Novell Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pci.h" #include "pcie/portdrv.h" struct pci_dynid { struct list_head node; struct pci_device_id id; }; /** * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices * @drv: target pci driver * @vendor: PCI vendor ID * @device: PCI device ID * @subvendor: PCI subvendor ID * @subdevice: PCI subdevice ID * @class: PCI class * @class_mask: PCI class mask * @driver_data: private driver data * * Adds a new dynamic pci device ID to this driver and causes the * driver to probe for all devices again. @drv must have been * registered prior to calling this function. * * CONTEXT: * Does GFP_KERNEL allocation. * * RETURNS: * 0 on success, -errno on failure. */ int pci_add_dynid(struct pci_driver *drv, unsigned int vendor, unsigned int device, unsigned int subvendor, unsigned int subdevice, unsigned int class, unsigned int class_mask, unsigned long driver_data) { struct pci_dynid *dynid; dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); if (!dynid) return -ENOMEM; dynid->id.vendor = vendor; dynid->id.device = device; dynid->id.subvendor = subvendor; dynid->id.subdevice = subdevice; dynid->id.class = class; dynid->id.class_mask = class_mask; dynid->id.driver_data = driver_data; spin_lock(&drv->dynids.lock); list_add_tail(&dynid->node, &drv->dynids.list); spin_unlock(&drv->dynids.lock); return driver_attach(&drv->driver); } EXPORT_SYMBOL_GPL(pci_add_dynid); static void pci_free_dynids(struct pci_driver *drv) { struct pci_dynid *dynid, *n; spin_lock(&drv->dynids.lock); list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { list_del(&dynid->node); kfree(dynid); } spin_unlock(&drv->dynids.lock); } /** * store_new_id - sysfs frontend to pci_add_dynid() * @driver: target device driver * @buf: buffer for scanning device ID data * @count: input size * * Allow PCI IDs to be added to an existing driver via sysfs. */ static ssize_t new_id_store(struct device_driver *driver, const char *buf, size_t count) { struct pci_driver *pdrv = to_pci_driver(driver); const struct pci_device_id *ids = pdrv->id_table; __u32 vendor, device, subvendor = PCI_ANY_ID, subdevice = PCI_ANY_ID, class = 0, class_mask = 0; unsigned long driver_data = 0; int fields = 0; int retval = 0; fields = sscanf(buf, "%x %x %x %x %x %x %lx", &vendor, &device, &subvendor, &subdevice, &class, &class_mask, &driver_data); if (fields < 2) return -EINVAL; if (fields != 7) { struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); if (!pdev) return -ENOMEM; pdev->vendor = vendor; pdev->device = device; pdev->subsystem_vendor = subvendor; pdev->subsystem_device = subdevice; pdev->class = class; if (pci_match_id(pdrv->id_table, pdev)) retval = -EEXIST; kfree(pdev); if (retval) return retval; } /* Only accept driver_data values that match an existing id_table entry */ if (ids) { retval = -EINVAL; while (ids->vendor || ids->subvendor || ids->class_mask) { if (driver_data == ids->driver_data) { retval = 0; break; } ids++; } if (retval) /* No match */ return retval; } retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, class, class_mask, driver_data); if (retval) return retval; return count; } static DRIVER_ATTR_WO(new_id); /** * store_remove_id - remove a PCI device ID from this driver * @driver: target device driver * @buf: buffer for scanning device ID data * @count: input size * * Removes a dynamic pci device ID to this driver. */ static ssize_t remove_id_store(struct device_driver *driver, const char *buf, size_t count) { struct pci_dynid *dynid, *n; struct pci_driver *pdrv = to_pci_driver(driver); __u32 vendor, device, subvendor = PCI_ANY_ID, subdevice = PCI_ANY_ID, class = 0, class_mask = 0; int fields = 0; size_t retval = -ENODEV; fields = sscanf(buf, "%x %x %x %x %x %x", &vendor, &device, &subvendor, &subdevice, &class, &class_mask); if (fields < 2) return -EINVAL; spin_lock(&pdrv->dynids.lock); list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { struct pci_device_id *id = &dynid->id; if ((id->vendor == vendor) && (id->device == device) && (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && !((id->class ^ class) & class_mask)) { list_del(&dynid->node); kfree(dynid); retval = count; break; } } spin_unlock(&pdrv->dynids.lock); return retval; } static DRIVER_ATTR_WO(remove_id); static struct attribute *pci_drv_attrs[] = { &driver_attr_new_id.attr, &driver_attr_remove_id.attr, NULL, }; ATTRIBUTE_GROUPS(pci_drv); /** * pci_match_id - See if a pci device matches a given pci_id table * @ids: array of PCI device id structures to search in * @dev: the PCI device structure to match against. * * Used by a driver to check whether a PCI device present in the * system is in its list of supported devices. Returns the matching * pci_device_id structure or %NULL if there is no match. * * Deprecated, don't use this as it will not catch any dynamic ids * that a driver might want to check for. */ const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, struct pci_dev *dev) { if (ids) { while (ids->vendor || ids->subvendor || ids->class_mask) { if (pci_match_one_device(ids, dev)) return ids; ids++; } } return NULL; } EXPORT_SYMBOL(pci_match_id); static const struct pci_device_id pci_device_id_any = { .vendor = PCI_ANY_ID, .device = PCI_ANY_ID, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }; /** * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure * @drv: the PCI driver to match against * @dev: the PCI device structure to match against * * Used by a driver to check whether a PCI device present in the * system is in its list of supported devices. Returns the matching * pci_device_id structure or %NULL if there is no match. */ static const struct pci_device_id *pci_match_device(struct pci_driver *drv, struct pci_dev *dev) { struct pci_dynid *dynid; const struct pci_device_id *found_id = NULL; /* When driver_override is set, only bind to the matching driver */ if (dev->driver_override && strcmp(dev->driver_override, drv->name)) return NULL; /* Look at the dynamic ids first, before the static ones */ spin_lock(&drv->dynids.lock); list_for_each_entry(dynid, &drv->dynids.list, node) { if (pci_match_one_device(&dynid->id, dev)) { found_id = &dynid->id; break; } } spin_unlock(&drv->dynids.lock); if (!found_id) found_id = pci_match_id(drv->id_table, dev); /* driver_override will always match, send a dummy id */ if (!found_id && dev->driver_override) found_id = &pci_device_id_any; return found_id; } struct drv_dev_and_id { struct pci_driver *drv; struct pci_dev *dev; const struct pci_device_id *id; }; static long local_pci_probe(void *_ddi) { struct drv_dev_and_id *ddi = _ddi; struct pci_dev *pci_dev = ddi->dev; struct pci_driver *pci_drv = ddi->drv; struct device *dev = &pci_dev->dev; int rc; /* * Unbound PCI devices are always put in D0, regardless of * runtime PM status. During probe, the device is set to * active and the usage count is incremented. If the driver * supports runtime PM, it should call pm_runtime_put_noidle(), * or any other runtime PM helper function decrementing the usage * count, in its probe routine and pm_runtime_get_noresume() in * its remove routine. */ pm_runtime_get_sync(dev); pci_dev->driver = pci_drv; rc = pci_drv->probe(pci_dev, ddi->id); if (!rc) return rc; if (rc < 0) { pci_dev->driver = NULL; pm_runtime_put_sync(dev); return rc; } /* * Probe function should return < 0 for failure, 0 for success * Treat values > 0 as success, but warn. */ dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); return 0; } static bool pci_physfn_is_probed(struct pci_dev *dev) { #ifdef CONFIG_PCI_IOV return dev->is_virtfn && dev->physfn->is_probed; #else return false; #endif } static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, const struct pci_device_id *id) { int error, node, cpu; struct drv_dev_and_id ddi = { drv, dev, id }; /* * Execute driver initialization on node where the device is * attached. This way the driver likely allocates its local memory * on the right node. */ node = dev_to_node(&dev->dev); dev->is_probed = 1; cpu_hotplug_disable(); /* * Prevent nesting work_on_cpu() for the case where a Virtual Function * device is probed from work_on_cpu() of the Physical device. */ if (node < 0 || node >= MAX_NUMNODES || !node_online(node) || pci_physfn_is_probed(dev)) cpu = nr_cpu_ids; else cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); if (cpu < nr_cpu_ids) error = work_on_cpu(cpu, local_pci_probe, &ddi); else error = local_pci_probe(&ddi); dev->is_probed = 0; cpu_hotplug_enable(); return error; } /** * __pci_device_probe - check if a driver wants to claim a specific PCI device * @drv: driver to call to check if it wants the PCI device * @pci_dev: PCI device being probed * * returns 0 on success, else error. * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. */ static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) { const struct pci_device_id *id; int error = 0; if (!pci_dev->driver && drv->probe) { error = -ENODEV; id = pci_match_device(drv, pci_dev); if (id) error = pci_call_probe(drv, pci_dev, id); } return error; } int __weak pcibios_alloc_irq(struct pci_dev *dev) { return 0; } void __weak pcibios_free_irq(struct pci_dev *dev) { } #ifdef CONFIG_PCI_IOV static inline bool pci_device_can_probe(struct pci_dev *pdev) { return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe || pdev->driver_override); } #else static inline bool pci_device_can_probe(struct pci_dev *pdev) { return true; } #endif static int pci_device_probe(struct device *dev) { int error; struct pci_dev *pci_dev = to_pci_dev(dev); struct pci_driver *drv = to_pci_driver(dev->driver); if (!pci_device_can_probe(pci_dev)) return -ENODEV; pci_assign_irq(pci_dev); error = pcibios_alloc_irq(pci_dev); if (error < 0) return error; pci_dev_get(pci_dev); error = __pci_device_probe(drv, pci_dev); if (error) { pcibios_free_irq(pci_dev); pci_dev_put(pci_dev); } return error; } static int pci_device_remove(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct pci_driver *drv = pci_dev->driver; if (drv) { if (drv->remove) { pm_runtime_get_sync(dev); drv->remove(pci_dev); pm_runtime_put_noidle(dev); } pcibios_free_irq(pci_dev); pci_dev->driver = NULL; pci_iov_remove(pci_dev); } /* Undo the runtime PM settings in local_pci_probe() */ pm_runtime_put_sync(dev); /* * If the device is still on, set the power state as "unknown", * since it might change by the next time we load the driver. */ if (pci_dev->current_state == PCI_D0) pci_dev->current_state = PCI_UNKNOWN; /* * We would love to complain here if pci_dev->is_enabled is set, that * the driver should have called pci_disable_device(), but the * unfortunate fact is there are too many odd BIOS and bridge setups * that don't like drivers doing that all of the time. * Oh well, we can dream of sane hardware when we sleep, no matter how * horrible the crap we have to deal with is when we are awake... */ pci_dev_put(pci_dev); return 0; } static void pci_device_shutdown(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct pci_driver *drv = pci_dev->driver; pm_runtime_resume(dev); if (drv && drv->shutdown) drv->shutdown(pci_dev); /* * If this is a kexec reboot, turn off Bus Master bit on the * device to tell it to not continue to do DMA. Don't touch * devices in D3cold or unknown states. * If it is not a kexec reboot, firmware will hit the PCI * devices with big hammer and stop their DMA any way. */ if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) pci_clear_master(pci_dev); } #ifdef CONFIG_PM /* Auxiliary functions used for system resume and run-time resume. */ /** * pci_restore_standard_config - restore standard config registers of PCI device * @pci_dev: PCI device to handle */ static int pci_restore_standard_config(struct pci_dev *pci_dev) { pci_update_current_state(pci_dev, PCI_UNKNOWN); if (pci_dev->current_state != PCI_D0) { int error = pci_set_power_state(pci_dev, PCI_D0); if (error) return error; } pci_restore_state(pci_dev); pci_pme_restore(pci_dev); return 0; } #endif #ifdef CONFIG_PM_SLEEP static void pci_pm_default_resume_early(struct pci_dev *pci_dev) { pci_power_up(pci_dev); pci_restore_state(pci_dev); pci_pme_restore(pci_dev); pci_fixup_device(pci_fixup_resume_early, pci_dev); } /* * Default "suspend" method for devices that have no driver provided suspend, * or not even a driver at all (second part). */ static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) { /* * mark its power state as "unknown", since we don't know if * e.g. the BIOS will change its device state when we suspend. */ if (pci_dev->current_state == PCI_D0) pci_dev->current_state = PCI_UNKNOWN; } /* * Default "resume" method for devices that have no driver provided resume, * or not even a driver at all (second part). */ static int pci_pm_reenable_device(struct pci_dev *pci_dev) { int retval; /* if the device was enabled before suspend, reenable */ retval = pci_reenable_device(pci_dev); /* * if the device was busmaster before the suspend, make it busmaster * again */ if (pci_dev->is_busmaster) pci_set_master(pci_dev); return retval; } static int pci_legacy_suspend(struct device *dev, pm_message_t state) { struct pci_dev *pci_dev = to_pci_dev(dev); struct pci_driver *drv = pci_dev->driver; if (drv && drv->suspend) { pci_power_t prev = pci_dev->current_state; int error; error = drv->suspend(pci_dev, state); suspend_report_result(drv->suspend, error); if (error) return error; if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 && pci_dev->current_state != PCI_UNKNOWN) { WARN_ONCE(pci_dev->current_state != prev, "PCI PM: Device state not saved by %pF\n", drv->suspend); } } pci_fixup_device(pci_fixup_suspend, pci_dev); return 0; } static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) { struct pci_dev *pci_dev = to_pci_dev(dev); struct pci_driver *drv = pci_dev->driver; if (drv && drv->suspend_late) { pci_power_t prev = pci_dev->current_state; int error; error = drv->suspend_late(pci_dev, state); suspend_report_result(drv->suspend_late, error); if (error) return error; if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 && pci_dev->current_state != PCI_UNKNOWN) { WARN_ONCE(pci_dev->current_state != prev, "PCI PM: Device state not saved by %pF\n", drv->suspend_late); goto Fixup; } } if (!pci_dev->state_saved) pci_save_state(pci_dev); pci_pm_set_unknown_state(pci_dev); Fixup: pci_fixup_device(pci_fixup_suspend_late, pci_dev); return 0; } static int pci_legacy_resume_early(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct pci_driver *drv = pci_dev->driver; return drv && drv->resume_early ? drv->resume_early(pci_dev) : 0; } static int pci_legacy_resume(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct pci_driver *drv = pci_dev->driver; pci_fixup_device(pci_fixup_resume, pci_dev); return drv && drv->resume ? drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); } /* Auxiliary functions used by the new power management framework */ static void pci_pm_default_resume(struct pci_dev *pci_dev) { pci_fixup_device(pci_fixup_resume, pci_dev); pci_enable_wake(pci_dev, PCI_D0, false); } static void pci_pm_default_suspend(struct pci_dev *pci_dev) { /* Disable non-bridge devices without PM support */ if (!pci_has_subordinate(pci_dev)) pci_disable_enabled_device(pci_dev); } static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) { struct pci_driver *drv = pci_dev->driver; bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume || drv->resume_early); /* * Legacy PM support is used by default, so warn if the new framework is * supported as well. Drivers are supposed to support either the * former, or the latter, but not both at the same time. */ WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", drv->name, pci_dev->vendor, pci_dev->device); return ret; } /* New power management framework */ static int pci_pm_prepare(struct device *dev) { struct device_driver *drv = dev->driver; if (drv && drv->pm && drv->pm->prepare) { int error = drv->pm->prepare(dev); if (error < 0) return error; if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE)) return 0; } return pci_dev_keep_suspended(to_pci_dev(dev)); } static void pci_pm_complete(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); pci_dev_complete_resume(pci_dev); pm_generic_complete(dev); /* Resume device if platform firmware has put it in reset-power-on */ if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) { pci_power_t pre_sleep_state = pci_dev->current_state; pci_update_current_state(pci_dev, pci_dev->current_state); if (pci_dev->current_state < pre_sleep_state) pm_request_resume(dev); } } #else /* !CONFIG_PM_SLEEP */ #define pci_pm_prepare NULL #define pci_pm_complete NULL #endif /* !CONFIG_PM_SLEEP */ #ifdef CONFIG_SUSPEND static void pcie_pme_root_status_cleanup(struct pci_dev *pci_dev) { /* * Some BIOSes forget to clear Root PME Status bits after system * wakeup, which breaks ACPI-based runtime wakeup on PCI Express. * Clear those bits now just in case (shouldn't hurt). */ if (pci_is_pcie(pci_dev) && (pci_pcie_type(pci_dev) == PCI_EXP_TYPE_ROOT_PORT || pci_pcie_type(pci_dev) == PCI_EXP_TYPE_RC_EC)) pcie_clear_root_pme_status(pci_dev); } static int pci_pm_suspend(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; if (pci_has_legacy_pm_support(pci_dev)) return pci_legacy_suspend(dev, PMSG_SUSPEND); if (!pm) { pci_pm_default_suspend(pci_dev); return 0; } /* * PCI devices suspended at run time may need to be resumed at this * point, because in general it may be necessary to reconfigure them for * system suspend. Namely, if the device is expected to wake up the * system from the sleep state, it may have to be reconfigured for this * purpose, or if the device is not expected to wake up the system from * the sleep state, it should be prevented from signaling wakeup events * going forward. * * Also if the driver of the device does not indicate that its system * suspend callbacks can cope with runtime-suspended devices, it is * better to resume the device from runtime suspend here. */ if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || !pci_dev_keep_suspended(pci_dev)) { pm_runtime_resume(dev); pci_dev->state_saved = false; } if (pm->suspend) { pci_power_t prev = pci_dev->current_state; int error; error = pm->suspend(dev); suspend_report_result(pm->suspend, error); if (error) return error; if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 && pci_dev->current_state != PCI_UNKNOWN) { WARN_ONCE(pci_dev->current_state != prev, "PCI PM: State of device not saved by %pF\n", pm->suspend); } } return 0; } static int pci_pm_suspend_late(struct device *dev) { if (dev_pm_smart_suspend_and_suspended(dev)) return 0; pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev)); return pm_generic_suspend_late(dev); } static int pci_pm_suspend_noirq(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; if (dev_pm_smart_suspend_and_suspended(dev)) { dev->power.may_skip_resume = true; return 0; } if (pci_has_legacy_pm_support(pci_dev)) return pci_legacy_suspend_late(dev, PMSG_SUSPEND); if (!pm) { pci_save_state(pci_dev); goto Fixup; } if (pm->suspend_noirq) { pci_power_t prev = pci_dev->current_state; int error; error = pm->suspend_noirq(dev); suspend_report_result(pm->suspend_noirq, error); if (error) return error; if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 && pci_dev->current_state != PCI_UNKNOWN) { WARN_ONCE(pci_dev->current_state != prev, "PCI PM: State of device not saved by %pF\n", pm->suspend_noirq); goto Fixup; } } /* if d3hot is not supported bail out */ if (pci_dev->no_d3hot) return 0; if (!pci_dev->state_saved) { pci_save_state(pci_dev); if (pci_power_manageable(pci_dev)) pci_prepare_to_sleep(pci_dev); } dev_dbg(dev, "PCI PM: Suspend power state: %s\n", pci_power_name(pci_dev->current_state)); pci_pm_set_unknown_state(pci_dev); /* * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's * PCI COMMAND register isn't 0, the BIOS assumes that the controller * hasn't been quiesced and tries to turn it off. If the controller * is already in D3, this can hang or cause memory corruption. * * Since the value of the COMMAND register doesn't matter once the * device has been suspended, we can safely set it to 0 here. */ if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) pci_write_config_word(pci_dev, PCI_COMMAND, 0); Fixup: pci_fixup_device(pci_fixup_suspend_late, pci_dev); /* * If the target system sleep state is suspend-to-idle, it is sufficient * to check whether or not the device's wakeup settings are good for * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause * pci_pm_complete() to take care of fixing up the device's state * anyway, if need be. */ dev->power.may_skip_resume = device_may_wakeup(dev) || !device_can_wakeup(dev); return 0; } static int pci_pm_resume_noirq(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct device_driver *drv = dev->driver; int error = 0; if (dev_pm_may_skip_resume(dev)) return 0; /* * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend * during system suspend, so update their runtime PM status to "active" * as they are going to be put into D0 shortly. */ if (dev_pm_smart_suspend_and_suspended(dev)) pm_runtime_set_active(dev); if (!pci_dev->no_d3hot) pci_pm_default_resume_early(pci_dev); if (pci_has_legacy_pm_support(pci_dev)) return pci_legacy_resume_early(dev); pcie_pme_root_status_cleanup(pci_dev); if (drv && drv->pm && drv->pm->resume_noirq) error = drv->pm->resume_noirq(dev); return error; } static int pci_pm_resume(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; int error = 0; /* * This is necessary for the suspend error path in which resume is * called without restoring the standard config registers of the device. */ if (pci_dev->state_saved) pci_restore_standard_config(pci_dev); if (pci_has_legacy_pm_support(pci_dev)) return pci_legacy_resume(dev); pci_pm_default_resume(pci_dev); if (pm) { if (pm->resume) error = pm->resume(dev); } else { pci_pm_reenable_device(pci_dev); } return error; } #else /* !CONFIG_SUSPEND */ #define pci_pm_suspend NULL #define pci_pm_suspend_late NULL #define pci_pm_suspend_noirq NULL #define pci_pm_resume NULL #define pci_pm_resume_noirq NULL #endif /* !CONFIG_SUSPEND */ #ifdef CONFIG_HIBERNATE_CALLBACKS /* * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing * a hibernate transition */ struct dev_pm_ops __weak pcibios_pm_ops; static int pci_pm_freeze(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; if (pci_has_legacy_pm_support(pci_dev)) return pci_legacy_suspend(dev, PMSG_FREEZE); if (!pm) { pci_pm_default_suspend(pci_dev); return 0; } /* * Resume all runtime-suspended devices before creating a snapshot * image of system memory, because the restore kernel generally cannot * be expected to always handle them consistently and they need to be * put into the runtime-active metastate during system resume anyway, * so it is better to ensure that the state saved in the image will be * always consistent with that. */ pm_runtime_resume(dev); pci_dev->state_saved = false; if (pm->freeze) { int error; error = pm->freeze(dev); suspend_report_result(pm->freeze, error); if (error) return error; } return 0; } static int pci_pm_freeze_late(struct device *dev) { if (dev_pm_smart_suspend_and_suspended(dev)) return 0; return pm_generic_freeze_late(dev); } static int pci_pm_freeze_noirq(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct device_driver *drv = dev->driver; if (dev_pm_smart_suspend_and_suspended(dev)) return 0; if (pci_has_legacy_pm_support(pci_dev)) return pci_legacy_suspend_late(dev, PMSG_FREEZE); if (drv && drv->pm && drv->pm->freeze_noirq) { int error; error = drv->pm->freeze_noirq(dev); suspend_report_result(drv->pm->freeze_noirq, error); if (error) return error; } if (!pci_dev->state_saved) pci_save_state(pci_dev); pci_pm_set_unknown_state(pci_dev); if (pcibios_pm_ops.freeze_noirq) return pcibios_pm_ops.freeze_noirq(dev); return 0; } static int pci_pm_thaw_noirq(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct device_driver *drv = dev->driver; int error = 0; /* * If the device is in runtime suspend, the code below may not work * correctly with it, so skip that code and make the PM core skip all of * the subsequent "thaw" callbacks for the device. */ if (dev_pm_smart_suspend_and_suspended(dev)) { dev_pm_skip_next_resume_phases(dev); return 0; } if (pcibios_pm_ops.thaw_noirq) { error = pcibios_pm_ops.thaw_noirq(dev); if (error) return error; } /* * Both the legacy ->resume_early() and the new pm->thaw_noirq() * callbacks assume the device has been returned to D0 and its * config state has been restored. * * In addition, pci_restore_state() restores MSI-X state in MMIO * space, which requires the device to be in D0, so return it to D0 * in case the driver's "freeze" callbacks put it into a low-power * state. */ pci_set_power_state(pci_dev, PCI_D0); pci_restore_state(pci_dev); if (pci_has_legacy_pm_support(pci_dev)) return pci_legacy_resume_early(dev); if (drv && drv->pm && drv->pm->thaw_noirq) error = drv->pm->thaw_noirq(dev); return error; } static int pci_pm_thaw(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; int error = 0; if (pci_has_legacy_pm_support(pci_dev)) return pci_legacy_resume(dev); if (pm) { if (pm->thaw) error = pm->thaw(dev); } else { pci_pm_reenable_device(pci_dev); } pci_dev->state_saved = false; return error; } static int pci_pm_poweroff(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; if (pci_has_legacy_pm_support(pci_dev)) return pci_legacy_suspend(dev, PMSG_HIBERNATE); if (!pm) { pci_pm_default_suspend(pci_dev); return 0; } /* The reason to do that is the same as in pci_pm_suspend(). */ if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || !pci_dev_keep_suspended(pci_dev)) pm_runtime_resume(dev); pci_dev->state_saved = false; if (pm->poweroff) { int error; error = pm->poweroff(dev); suspend_report_result(pm->poweroff, error); if (error) return error; } return 0; } static int pci_pm_poweroff_late(struct device *dev) { if (dev_pm_smart_suspend_and_suspended(dev)) return 0; pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev)); return pm_generic_poweroff_late(dev); } static int pci_pm_poweroff_noirq(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct device_driver *drv = dev->driver; if (dev_pm_smart_suspend_and_suspended(dev)) return 0; if (pci_has_legacy_pm_support(to_pci_dev(dev))) return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); if (!drv || !drv->pm) { pci_fixup_device(pci_fixup_suspend_late, pci_dev); return 0; } if (drv->pm->poweroff_noirq) { int error; error = drv->pm->poweroff_noirq(dev); suspend_report_result(drv->pm->poweroff_noirq, error); if (error) return error; } if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) pci_prepare_to_sleep(pci_dev); /* * The reason for doing this here is the same as for the analogous code * in pci_pm_suspend_noirq(). */ if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) pci_write_config_word(pci_dev, PCI_COMMAND, 0); pci_fixup_device(pci_fixup_suspend_late, pci_dev); if (pcibios_pm_ops.poweroff_noirq) return pcibios_pm_ops.poweroff_noirq(dev); return 0; } static int pci_pm_restore_noirq(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct device_driver *drv = dev->driver; int error = 0; /* This is analogous to the pci_pm_resume_noirq() case. */ if (dev_pm_smart_suspend_and_suspended(dev)) pm_runtime_set_active(dev); if (pcibios_pm_ops.restore_noirq) { error = pcibios_pm_ops.restore_noirq(dev); if (error) return error; } pci_pm_default_resume_early(pci_dev); if (pci_has_legacy_pm_support(pci_dev)) return pci_legacy_resume_early(dev); if (drv && drv->pm && drv->pm->restore_noirq) error = drv->pm->restore_noirq(dev); return error; } static int pci_pm_restore(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; int error = 0; /* * This is necessary for the hibernation error path in which restore is * called without restoring the standard config registers of the device. */ if (pci_dev->state_saved) pci_restore_standard_config(pci_dev); if (pci_has_legacy_pm_support(pci_dev)) return pci_legacy_resume(dev); pci_pm_default_resume(pci_dev); if (pm) { if (pm->restore) error = pm->restore(dev); } else { pci_pm_reenable_device(pci_dev); } return error; } #else /* !CONFIG_HIBERNATE_CALLBACKS */ #define pci_pm_freeze NULL #define pci_pm_freeze_late NULL #define pci_pm_freeze_noirq NULL #define pci_pm_thaw NULL #define pci_pm_thaw_noirq NULL #define pci_pm_poweroff NULL #define pci_pm_poweroff_late NULL #define pci_pm_poweroff_noirq NULL #define pci_pm_restore NULL #define pci_pm_restore_noirq NULL #endif /* !CONFIG_HIBERNATE_CALLBACKS */ #ifdef CONFIG_PM static int pci_pm_runtime_suspend(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; pci_power_t prev = pci_dev->current_state; int error; /* * If pci_dev->driver is not set (unbound), we leave the device in D0, * but it may go to D3cold when the bridge above it runtime suspends. * Save its config space in case that happens. */ if (!pci_dev->driver) { pci_save_state(pci_dev); return 0; } pci_dev->state_saved = false; if (pm && pm->runtime_suspend) { error = pm->runtime_suspend(dev); /* * -EBUSY and -EAGAIN is used to request the runtime PM core * to schedule a new suspend, so log the event only with debug * log level. */ if (error == -EBUSY || error == -EAGAIN) { dev_dbg(dev, "can't suspend now (%pf returned %d)\n", pm->runtime_suspend, error); return error; } else if (error) { dev_err(dev, "can't suspend (%pf returned %d)\n", pm->runtime_suspend, error); return error; } } pci_fixup_device(pci_fixup_suspend, pci_dev); if (pm && pm->runtime_suspend && !pci_dev->state_saved && pci_dev->current_state != PCI_D0 && pci_dev->current_state != PCI_UNKNOWN) { WARN_ONCE(pci_dev->current_state != prev, "PCI PM: State of device not saved by %pF\n", pm->runtime_suspend); return 0; } /* if d3hot is not supported bail out */ if (pci_dev->no_d3hot) return 0; if (!pci_dev->state_saved) { pci_save_state(pci_dev); pci_finish_runtime_suspend(pci_dev); } return 0; } static int pci_pm_runtime_resume(struct device *dev) { int rc = 0; struct pci_dev *pci_dev = to_pci_dev(dev); const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; /* we skipped d3hot processing so skip re-init */ if (pci_dev->no_d3hot) goto skip_restore; /* * Restoring config space is necessary even if the device is not bound * to a driver because although we left it in D0, it may have gone to * D3cold when the bridge above it runtime suspended. */ pci_restore_standard_config(pci_dev); if (!pci_dev->driver) return 0; pci_fixup_device(pci_fixup_resume_early, pci_dev); pci_enable_wake(pci_dev, PCI_D0, false); pci_fixup_device(pci_fixup_resume, pci_dev); skip_restore: if (pm && pm->runtime_resume) rc = pm->runtime_resume(dev); pci_dev->runtime_d3cold = false; return rc; } static int pci_pm_runtime_idle(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; int ret = 0; /* * If pci_dev->driver is not set (unbound), the device should * always remain in D0 regardless of the runtime PM status */ if (!pci_dev->driver) return 0; if (!pm) return -ENOSYS; if (pm->runtime_idle) ret = pm->runtime_idle(dev); return ret; } static const struct dev_pm_ops pci_dev_pm_ops = { .prepare = pci_pm_prepare, .complete = pci_pm_complete, .suspend = pci_pm_suspend, .suspend_late = pci_pm_suspend_late, .resume = pci_pm_resume, .freeze = pci_pm_freeze, .freeze_late = pci_pm_freeze_late, .thaw = pci_pm_thaw, .poweroff = pci_pm_poweroff, .poweroff_late = pci_pm_poweroff_late, .restore = pci_pm_restore, .suspend_noirq = pci_pm_suspend_noirq, .resume_noirq = pci_pm_resume_noirq, .freeze_noirq = pci_pm_freeze_noirq, .thaw_noirq = pci_pm_thaw_noirq, .poweroff_noirq = pci_pm_poweroff_noirq, .restore_noirq = pci_pm_restore_noirq, .runtime_suspend = pci_pm_runtime_suspend, .runtime_resume = pci_pm_runtime_resume, .runtime_idle = pci_pm_runtime_idle, }; #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) #else /* !CONFIG_PM */ #define pci_pm_runtime_suspend NULL #define pci_pm_runtime_resume NULL #define pci_pm_runtime_idle NULL #define PCI_PM_OPS_PTR NULL #endif /* !CONFIG_PM */ /** * __pci_register_driver - register a new pci driver * @drv: the driver structure to register * @owner: owner module of drv * @mod_name: module name string * * Adds the driver structure to the list of registered drivers. * Returns a negative value on error, otherwise 0. * If no error occurred, the driver remains registered even if * no device was claimed during registration. */ int __pci_register_driver(struct pci_driver *drv, struct module *owner, const char *mod_name) { /* initialize common driver fields */ drv->driver.name = drv->name; drv->driver.bus = &pci_bus_type; drv->driver.owner = owner; drv->driver.mod_name = mod_name; drv->driver.groups = drv->groups; spin_lock_init(&drv->dynids.lock); INIT_LIST_HEAD(&drv->dynids.list); /* register with core */ return driver_register(&drv->driver); } EXPORT_SYMBOL(__pci_register_driver); /** * pci_unregister_driver - unregister a pci driver * @drv: the driver structure to unregister * * Deletes the driver structure from the list of registered PCI drivers, * gives it a chance to clean up by calling its remove() function for * each device it was responsible for, and marks those devices as * driverless. */ void pci_unregister_driver(struct pci_driver *drv) { driver_unregister(&drv->driver); pci_free_dynids(drv); } EXPORT_SYMBOL(pci_unregister_driver); static struct pci_driver pci_compat_driver = { .name = "compat" }; /** * pci_dev_driver - get the pci_driver of a device * @dev: the device to query * * Returns the appropriate pci_driver structure or %NULL if there is no * registered driver for the device. */ struct pci_driver *pci_dev_driver(const struct pci_dev *dev) { if (dev->driver) return dev->driver; else { int i; for (i = 0; i <= PCI_ROM_RESOURCE; i++) if (dev->resource[i].flags & IORESOURCE_BUSY) return &pci_compat_driver; } return NULL; } EXPORT_SYMBOL(pci_dev_driver); /** * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure * @dev: the PCI device structure to match against * @drv: the device driver to search for matching PCI device id structures * * Used by a driver to check whether a PCI device present in the * system is in its list of supported devices. Returns the matching * pci_device_id structure or %NULL if there is no match. */ static int pci_bus_match(struct device *dev, struct device_driver *drv) { struct pci_dev *pci_dev = to_pci_dev(dev); struct pci_driver *pci_drv; const struct pci_device_id *found_id; if (!pci_dev->match_driver) return 0; pci_drv = to_pci_driver(drv); found_id = pci_match_device(pci_drv, pci_dev); if (found_id) return 1; return 0; } /** * pci_dev_get - increments the reference count of the pci device structure * @dev: the device being referenced * * Each live reference to a device should be refcounted. * * Drivers for PCI devices should normally record such references in * their probe() methods, when they bind to a device, and release * them by calling pci_dev_put(), in their disconnect() methods. * * A pointer to the device with the incremented reference counter is returned. */ struct pci_dev *pci_dev_get(struct pci_dev *dev) { if (dev) get_device(&dev->dev); return dev; } EXPORT_SYMBOL(pci_dev_get); /** * pci_dev_put - release a use of the pci device structure * @dev: device that's been disconnected * * Must be called when a user of a device is finished with it. When the last * user of the device calls this function, the memory of the device is freed. */ void pci_dev_put(struct pci_dev *dev) { if (dev) put_device(&dev->dev); } EXPORT_SYMBOL(pci_dev_put); static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) { struct pci_dev *pdev; if (!dev) return -ENODEV; pdev = to_pci_dev(dev); if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) return -ENOMEM; if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) return -ENOMEM; if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, pdev->subsystem_device)) return -ENOMEM; if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) return -ENOMEM; if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device, (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), (u8)(pdev->class))) return -ENOMEM; return 0; } #if defined(CONFIG_PCIEPORTBUS) || defined(CONFIG_EEH) /** * pci_uevent_ers - emit a uevent during recovery path of PCI device * @pdev: PCI device undergoing error recovery * @err_type: type of error event */ void pci_uevent_ers(struct pci_dev *pdev, enum pci_ers_result err_type) { int idx = 0; char *envp[3]; switch (err_type) { case PCI_ERS_RESULT_NONE: case PCI_ERS_RESULT_CAN_RECOVER: envp[idx++] = "ERROR_EVENT=BEGIN_RECOVERY"; envp[idx++] = "DEVICE_ONLINE=0"; break; case PCI_ERS_RESULT_RECOVERED: envp[idx++] = "ERROR_EVENT=SUCCESSFUL_RECOVERY"; envp[idx++] = "DEVICE_ONLINE=1"; break; case PCI_ERS_RESULT_DISCONNECT: envp[idx++] = "ERROR_EVENT=FAILED_RECOVERY"; envp[idx++] = "DEVICE_ONLINE=0"; break; default: break; } if (idx > 0) { envp[idx++] = NULL; kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, envp); } } #endif static int pci_bus_num_vf(struct device *dev) { return pci_num_vf(to_pci_dev(dev)); } /** * pci_dma_configure - Setup DMA configuration * @dev: ptr to dev structure * * Function to update PCI devices's DMA configuration using the same * info from the OF node or ACPI node of host bridge's parent (if any). */ static int pci_dma_configure(struct device *dev) { struct device *bridge; int ret = 0; bridge = pci_get_host_bridge_device(to_pci_dev(dev)); if (IS_ENABLED(CONFIG_OF) && bridge->parent && bridge->parent->of_node) { ret = of_dma_configure(dev, bridge->parent->of_node, true); } else if (has_acpi_companion(bridge)) { struct acpi_device *adev = to_acpi_device_node(bridge->fwnode); enum dev_dma_attr attr = acpi_get_dma_attr(adev); if (attr != DEV_DMA_NOT_SUPPORTED) ret = acpi_dma_configure(dev, attr); } pci_put_host_bridge_device(bridge); return ret; } struct bus_type pci_bus_type = { .name = "pci", .match = pci_bus_match, .uevent = pci_uevent, .probe = pci_device_probe, .remove = pci_device_remove, .shutdown = pci_device_shutdown, .dev_groups = pci_dev_groups, .bus_groups = pci_bus_groups, .drv_groups = pci_drv_groups, .pm = PCI_PM_OPS_PTR, .num_vf = pci_bus_num_vf, .dma_configure = pci_dma_configure, }; EXPORT_SYMBOL(pci_bus_type); #ifdef CONFIG_PCIEPORTBUS static int pcie_port_bus_match(struct device *dev, struct device_driver *drv) { struct pcie_device *pciedev; struct pcie_port_service_driver *driver; if (drv->bus != &pcie_port_bus_type || dev->bus != &pcie_port_bus_type) return 0; pciedev = to_pcie_device(dev); driver = to_service_driver(drv); if (driver->service != pciedev->service) return 0; if (driver->port_type != PCIE_ANY_PORT && driver->port_type != pci_pcie_type(pciedev->port)) return 0; return 1; } struct bus_type pcie_port_bus_type = { .name = "pci_express", .match = pcie_port_bus_match, }; EXPORT_SYMBOL_GPL(pcie_port_bus_type); #endif static int __init pci_driver_init(void) { int ret; ret = bus_register(&pci_bus_type); if (ret) return ret; #ifdef CONFIG_PCIEPORTBUS ret = bus_register(&pcie_port_bus_type); if (ret) return ret; #endif dma_debug_add_bus(&pci_bus_type); return 0; } postcore_initcall(pci_driver_init);