/*
* Linux MegaRAID driver for SAS based RAID controllers
*
* Copyright (c) 2009-2013 LSI Corporation
* Copyright (c) 2013-2014 Avago Technologies
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* FILE: megaraid_sas_fusion.h
*
* Authors: Avago Technologies
* Manoj Jose
* Sumant Patro
* Kashyap Desai
* Sumit Saxena
*
* Send feedback to: megaraidlinux.pdl@avagotech.com
*
* Mail to: Avago Technologies, 350 West Trimble Road, Building 90,
* San Jose, California 95131
*/
#ifndef _MEGARAID_SAS_FUSION_H_
#define _MEGARAID_SAS_FUSION_H_
/* Fusion defines */
#define MEGASAS_CHAIN_FRAME_SZ_MIN 1024
#define MFI_FUSION_ENABLE_INTERRUPT_MASK (0x00000009)
#define MEGASAS_MAX_CHAIN_SHIFT 5
#define MEGASAS_MAX_CHAIN_SIZE_UNITS_MASK 0x400000
#define MEGASAS_MAX_CHAIN_SIZE_MASK 0x3E0
#define MEGASAS_256K_IO 128
#define MEGASAS_1MB_IO (MEGASAS_256K_IO * 4)
#define MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE 256
#define MEGASAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST 0xF0
#define MEGASAS_MPI2_FUNCTION_LD_IO_REQUEST 0xF1
#define MEGASAS_LOAD_BALANCE_FLAG 0x1
#define MEGASAS_DCMD_MBOX_PEND_FLAG 0x1
#define HOST_DIAG_WRITE_ENABLE 0x80
#define HOST_DIAG_RESET_ADAPTER 0x4
#define MEGASAS_FUSION_MAX_RESET_TRIES 3
#define MAX_MSIX_QUEUES_FUSION 128
#define RDPQ_MAX_INDEX_IN_ONE_CHUNK 16
#define RDPQ_MAX_CHUNK_COUNT (MAX_MSIX_QUEUES_FUSION / RDPQ_MAX_INDEX_IN_ONE_CHUNK)
/* Invader defines */
#define MPI2_TYPE_CUDA 0x2
#define MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH 0x4000
#define MR_RL_FLAGS_GRANT_DESTINATION_CPU0 0x00
#define MR_RL_FLAGS_GRANT_DESTINATION_CPU1 0x10
#define MR_RL_FLAGS_GRANT_DESTINATION_CUDA 0x80
#define MR_RL_FLAGS_SEQ_NUM_ENABLE 0x8
#define MR_RL_WRITE_THROUGH_MODE 0x00
#define MR_RL_WRITE_BACK_MODE 0x01
/* T10 PI defines */
#define MR_PROT_INFO_TYPE_CONTROLLER 0x8
#define MEGASAS_SCSI_VARIABLE_LENGTH_CMD 0x7f
#define MEGASAS_SCSI_SERVICE_ACTION_READ32 0x9
#define MEGASAS_SCSI_SERVICE_ACTION_WRITE32 0xB
#define MEGASAS_SCSI_ADDL_CDB_LEN 0x18
#define MEGASAS_RD_WR_PROTECT_CHECK_ALL 0x20
#define MEGASAS_RD_WR_PROTECT_CHECK_NONE 0x60
#define MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET (0x0000030C)
#define MPI2_REPLY_POST_HOST_INDEX_OFFSET (0x0000006C)
/*
* Raid context flags
*/
#define MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT 0x4
#define MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_MASK 0x30
enum MR_RAID_FLAGS_IO_SUB_TYPE {
MR_RAID_FLAGS_IO_SUB_TYPE_NONE = 0,
MR_RAID_FLAGS_IO_SUB_TYPE_SYSTEM_PD = 1,
MR_RAID_FLAGS_IO_SUB_TYPE_RMW_DATA = 2,
MR_RAID_FLAGS_IO_SUB_TYPE_RMW_P = 3,
MR_RAID_FLAGS_IO_SUB_TYPE_RMW_Q = 4,
MR_RAID_FLAGS_IO_SUB_TYPE_CACHE_BYPASS = 6,
MR_RAID_FLAGS_IO_SUB_TYPE_LDIO_BW_LIMIT = 7
};
/*
* Request descriptor types
*/
#define MEGASAS_REQ_DESCRIPT_FLAGS_LD_IO 0x7
#define MEGASAS_REQ_DESCRIPT_FLAGS_MFA 0x1
#define MEGASAS_REQ_DESCRIPT_FLAGS_NO_LOCK 0x2
#define MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT 1
#define MEGASAS_FP_CMD_LEN 16
#define MEGASAS_FUSION_IN_RESET 0
#define MEGASAS_FUSION_OCR_NOT_POSSIBLE 1
#define THRESHOLD_REPLY_COUNT 50
#define RAID_1_PEER_CMDS 2
#define JBOD_MAPS_COUNT 2
#define MEGASAS_REDUCE_QD_COUNT 64
#define IOC_INIT_FRAME_SIZE 4096
/*
* Raid Context structure which describes MegaRAID specific IO Parameters
* This resides at offset 0x60 where the SGL normally starts in MPT IO Frames
*/
struct RAID_CONTEXT {
#if defined(__BIG_ENDIAN_BITFIELD)
u8 nseg:4;
u8 type:4;
#else
u8 type:4;
u8 nseg:4;
#endif
u8 resvd0;
__le16 timeout_value;
u8 reg_lock_flags;
u8 resvd1;
__le16 virtual_disk_tgt_id;
__le64 reg_lock_row_lba;
__le32 reg_lock_length;
__le16 next_lmid;
u8 ex_status;
u8 status;
u8 raid_flags;
u8 num_sge;
__le16 config_seq_num;
u8 span_arm;
u8 priority;
u8 num_sge_ext;
u8 resvd2;
};
/*
* Raid Context structure which describes ventura MegaRAID specific
* IO Paramenters ,This resides at offset 0x60 where the SGL normally
* starts in MPT IO Frames
*/
struct RAID_CONTEXT_G35 {
#define RAID_CONTEXT_NSEG_MASK 0x00F0
#define RAID_CONTEXT_NSEG_SHIFT 4
#define RAID_CONTEXT_TYPE_MASK 0x000F
#define RAID_CONTEXT_TYPE_SHIFT 0
u16 nseg_type;
u16 timeout_value; /* 0x02 -0x03 */
u16 routing_flags; // 0x04 -0x05 routing flags
u16 virtual_disk_tgt_id; /* 0x06 -0x07 */
u64 reg_lock_row_lba; /* 0x08 - 0x0F */
u32 reg_lock_length; /* 0x10 - 0x13 */
union {
u16 next_lmid; /* 0x14 - 0x15 */
u16 peer_smid; /* used for the raid 1/10 fp writes */
} smid;
u8 ex_status; /* 0x16 : OUT */
u8 status; /* 0x17 status */
u8 raid_flags; /* 0x18 resvd[7:6], ioSubType[5:4],
* resvd[3:1], preferredCpu[0]
*/
u8 span_arm; /* 0x1C span[7:5], arm[4:0] */
u16 config_seq_num; /* 0x1A -0x1B */
union {
/*
* Bit format:
* ---------------------------------
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
* ---------------------------------
* Byte0 | numSGE[7]- numSGE[0] |
* ---------------------------------
* Byte1 |SD | resvd | numSGE 8-11 |
* --------------------------------
*/
#define NUM_SGE_MASK_LOWER 0xFF
#define NUM_SGE_MASK_UPPER 0x0F
#define NUM_SGE_SHIFT_UPPER 8
#define STREAM_DETECT_SHIFT 7
#define STREAM_DETECT_MASK 0x80
struct {
#if defined(__BIG_ENDIAN_BITFIELD) /* 0x1C - 0x1D */
u16 stream_detected:1;
u16 reserved:3;
u16 num_sge:12;
#else
u16 num_sge:12;
u16 reserved:3;
u16 stream_detected:1;
#endif
} bits;
u8 bytes[2];
} u;
u8 resvd2[2]; /* 0x1E-0x1F */
};
#define MR_RAID_CTX_ROUTINGFLAGS_SLD_SHIFT 1
#define MR_RAID_CTX_ROUTINGFLAGS_C2D_SHIFT 2
#define MR_RAID_CTX_ROUTINGFLAGS_FWD_SHIFT 3
#define MR_RAID_CTX_ROUTINGFLAGS_SQN_SHIFT 4
#define MR_RAID_CTX_ROUTINGFLAGS_SBS_SHIFT 5
#define MR_RAID_CTX_ROUTINGFLAGS_RW_SHIFT 6
#define MR_RAID_CTX_ROUTINGFLAGS_LOG_SHIFT 7
#define MR_RAID_CTX_ROUTINGFLAGS_CPUSEL_SHIFT 8
#define MR_RAID_CTX_ROUTINGFLAGS_CPUSEL_MASK 0x0F00
#define MR_RAID_CTX_ROUTINGFLAGS_SETDIVERT_SHIFT 12
#define MR_RAID_CTX_ROUTINGFLAGS_SETDIVERT_MASK 0xF000
static inline void set_num_sge(struct RAID_CONTEXT_G35 *rctx_g35,
u16 sge_count)
{
rctx_g35->u.bytes[0] = (u8)(sge_count & NUM_SGE_MASK_LOWER);
rctx_g35->u.bytes[1] |= (u8)((sge_count >> NUM_SGE_SHIFT_UPPER)
& NUM_SGE_MASK_UPPER);
}
static inline u16 get_num_sge(struct RAID_CONTEXT_G35 *rctx_g35)
{
u16 sge_count;
sge_count = (u16)(((rctx_g35->u.bytes[1] & NUM_SGE_MASK_UPPER)
<< NUM_SGE_SHIFT_UPPER) | (rctx_g35->u.bytes[0]));
return sge_count;
}
#define SET_STREAM_DETECTED(rctx_g35) \
(rctx_g35.u.bytes[1] |= STREAM_DETECT_MASK)
#define CLEAR_STREAM_DETECTED(rctx_g35) \
(rctx_g35.u.bytes[1] &= ~(STREAM_DETECT_MASK))
static inline bool is_stream_detected(struct RAID_CONTEXT_G35 *rctx_g35)
{
return ((rctx_g35->u.bytes[1] & STREAM_DETECT_MASK));
}
union RAID_CONTEXT_UNION {
struct RAID_CONTEXT raid_context;
struct RAID_CONTEXT_G35 raid_context_g35;
};
#define RAID_CTX_SPANARM_ARM_SHIFT (0)
#define RAID_CTX_SPANARM_ARM_MASK (0x1f)
#define RAID_CTX_SPANARM_SPAN_SHIFT (5)
#define RAID_CTX_SPANARM_SPAN_MASK (0xE0)
/* number of bits per index in U32 TrackStream */
#define BITS_PER_INDEX_STREAM 4
#define INVALID_STREAM_NUM 16
#define MR_STREAM_BITMAP 0x76543210
#define STREAM_MASK ((1 << BITS_PER_INDEX_STREAM) - 1)
#define ZERO_LAST_STREAM 0x0fffffff
#define MAX_STREAMS_TRACKED 8
/*
* define region lock types
*/
enum REGION_TYPE {
REGION_TYPE_UNUSED = 0,
REGION_TYPE_SHARED_READ = 1,
REGION_TYPE_SHARED_WRITE = 2,
REGION_TYPE_EXCLUSIVE = 3,
};
/* MPI2 defines */
#define MPI2_FUNCTION_IOC_INIT (0x02) /* IOC Init */
#define MPI2_WHOINIT_HOST_DRIVER (0x04)
#define MPI2_VERSION_MAJOR (0x02)
#define MPI2_VERSION_MINOR (0x00)
#define MPI2_VERSION_MAJOR_MASK (0xFF00)
#define MPI2_VERSION_MAJOR_SHIFT (8)
#define MPI2_VERSION_MINOR_MASK (0x00FF)
#define MPI2_VERSION_MINOR_SHIFT (0)
#define MPI2_VERSION ((MPI2_VERSION_MAJOR << MPI2_VERSION_MAJOR_SHIFT) | \
MPI2_VERSION_MINOR)
#define MPI2_HEADER_VERSION_UNIT (0x10)
#define MPI2_HEADER_VERSION_DEV (0x00)
#define MPI2_HEADER_VERSION_UNIT_MASK (0xFF00)
#define MPI2_HEADER_VERSION_UNIT_SHIFT (8)
#define MPI2_HEADER_VERSION_DEV_MASK (0x00FF)
#define MPI2_HEADER_VERSION_DEV_SHIFT (0)
#define MPI2_HEADER_VERSION ((MPI2_HEADER_VERSION_UNIT << 8) | \
MPI2_HEADER_VERSION_DEV)
#define MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR (0x03)
#define MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG (0x8000)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG (0x0400)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP (0x0003)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG (0x0200)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD (0x0100)
#define MPI2_SCSIIO_EEDPFLAGS_INSERT_OP (0x0004)
/* EEDP escape mode */
#define MPI25_SCSIIO_EEDPFLAGS_DO_NOT_DISABLE_MODE (0x0040)
#define MPI2_FUNCTION_SCSI_IO_REQUEST (0x00) /* SCSI IO */
#define MPI2_FUNCTION_SCSI_TASK_MGMT (0x01)
#define MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY (0x03)
#define MPI2_REQ_DESCRIPT_FLAGS_FP_IO (0x06)
#define MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO (0x00)
#define MPI2_SGE_FLAGS_64_BIT_ADDRESSING (0x02)
#define MPI2_SCSIIO_CONTROL_WRITE (0x01000000)
#define MPI2_SCSIIO_CONTROL_READ (0x02000000)
#define MPI2_REQ_DESCRIPT_FLAGS_TYPE_MASK (0x0E)
#define MPI2_RPY_DESCRIPT_FLAGS_UNUSED (0x0F)
#define MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS (0x00)
#define MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK (0x0F)
#define MPI2_WRSEQ_FLUSH_KEY_VALUE (0x0)
#define MPI2_WRITE_SEQUENCE_OFFSET (0x00000004)
#define MPI2_WRSEQ_1ST_KEY_VALUE (0xF)
#define MPI2_WRSEQ_2ND_KEY_VALUE (0x4)
#define MPI2_WRSEQ_3RD_KEY_VALUE (0xB)
#define MPI2_WRSEQ_4TH_KEY_VALUE (0x2)
#define MPI2_WRSEQ_5TH_KEY_VALUE (0x7)
#define MPI2_WRSEQ_6TH_KEY_VALUE (0xD)
struct MPI25_IEEE_SGE_CHAIN64 {
__le64 Address;
__le32 Length;
__le16 Reserved1;
u8 NextChainOffset;
u8 Flags;
};
struct MPI2_SGE_SIMPLE_UNION {
__le32 FlagsLength;
union {
__le32 Address32;
__le64 Address64;
} u;
};
struct MPI2_SCSI_IO_CDB_EEDP32 {
u8 CDB[20]; /* 0x00 */
__be32 PrimaryReferenceTag; /* 0x14 */
__be16 PrimaryApplicationTag; /* 0x18 */
__be16 PrimaryApplicationTagMask; /* 0x1A */
__le32 TransferLength; /* 0x1C */
};
struct MPI2_SGE_CHAIN_UNION {
__le16 Length;
u8 NextChainOffset;
u8 Flags;
union {
__le32 Address32;
__le64 Address64;
} u;
};
struct MPI2_IEEE_SGE_SIMPLE32 {
__le32 Address;
__le32 FlagsLength;
};
struct MPI2_IEEE_SGE_CHAIN32 {
__le32 Address;
__le32 FlagsLength;
};
struct MPI2_IEEE_SGE_SIMPLE64 {
__le64 Address;
__le32 Length;
__le16 Reserved1;
u8 Reserved2;
u8 Flags;
};
struct MPI2_IEEE_SGE_CHAIN64 {
__le64 Address;
__le32 Length;
__le16 Reserved1;
u8 Reserved2;
u8 Flags;
};
union MPI2_IEEE_SGE_SIMPLE_UNION {
struct MPI2_IEEE_SGE_SIMPLE32 Simple32;
struct MPI2_IEEE_SGE_SIMPLE64 Simple64;
};
union MPI2_IEEE_SGE_CHAIN_UNION {
struct MPI2_IEEE_SGE_CHAIN32 Chain32;
struct MPI2_IEEE_SGE_CHAIN64 Chain64;
};
union MPI2_SGE_IO_UNION {
struct MPI2_SGE_SIMPLE_UNION MpiSimple;
struct MPI2_SGE_CHAIN_UNION MpiChain;
union MPI2_IEEE_SGE_SIMPLE_UNION IeeeSimple;
union MPI2_IEEE_SGE_CHAIN_UNION IeeeChain;
};
union MPI2_SCSI_IO_CDB_UNION {
u8 CDB32[32];
struct MPI2_SCSI_IO_CDB_EEDP32 EEDP32;
struct MPI2_SGE_SIMPLE_UNION SGE;
};
/****************************************************************************
* SCSI Task Management messages
****************************************************************************/
/*SCSI Task Management Request Message */
struct MPI2_SCSI_TASK_MANAGE_REQUEST {
u16 DevHandle; /*0x00 */
u8 ChainOffset; /*0x02 */
u8 Function; /*0x03 */
u8 Reserved1; /*0x04 */
u8 TaskType; /*0x05 */
u8 Reserved2; /*0x06 */
u8 MsgFlags; /*0x07 */
u8 VP_ID; /*0x08 */
u8 VF_ID; /*0x09 */
u16 Reserved3; /*0x0A */
u8 LUN[8]; /*0x0C */
u32 Reserved4[7]; /*0x14 */
u16 TaskMID; /*0x30 */
u16 Reserved5; /*0x32 */
};
/*SCSI Task Management Reply Message */
struct MPI2_SCSI_TASK_MANAGE_REPLY {
u16 DevHandle; /*0x00 */
u8 MsgLength; /*0x02 */
u8 Function; /*0x03 */
u8 ResponseCode; /*0x04 */
u8 TaskType; /*0x05 */
u8 Reserved1; /*0x06 */
u8 MsgFlags; /*0x07 */
u8 VP_ID; /*0x08 */
u8 VF_ID; /*0x09 */
u16 Reserved2; /*0x0A */
u16 Reserved3; /*0x0C */
u16 IOCStatus; /*0x0E */
u32 IOCLogInfo; /*0x10 */
u32 TerminationCount; /*0x14 */
u32 ResponseInfo; /*0x18 */
};
struct MR_TM_REQUEST {
char request[128];
};
struct MR_TM_REPLY {
char reply[128];
};
/* SCSI Task Management Request Message */
struct MR_TASK_MANAGE_REQUEST {
/*To be type casted to struct MPI2_SCSI_TASK_MANAGE_REQUEST */
struct MR_TM_REQUEST TmRequest;
union {
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u32 reserved1:30;
u32 isTMForPD:1;
u32 isTMForLD:1;
#else
u32 isTMForLD:1;
u32 isTMForPD:1;
u32 reserved1:30;
#endif
u32 reserved2;
} tmReqFlags;
struct MR_TM_REPLY TMReply;
};
};
/* TaskType values */
#define MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK (0x01)
#define MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET (0x02)
#define MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET (0x03)
#define MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET (0x05)
#define MPI2_SCSITASKMGMT_TASKTYPE_CLEAR_TASK_SET (0x06)
#define MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK (0x07)
#define MPI2_SCSITASKMGMT_TASKTYPE_CLR_ACA (0x08)
#define MPI2_SCSITASKMGMT_TASKTYPE_QRY_TASK_SET (0x09)
#define MPI2_SCSITASKMGMT_TASKTYPE_QRY_ASYNC_EVENT (0x0A)
/* ResponseCode values */
#define MPI2_SCSITASKMGMT_RSP_TM_COMPLETE (0x00)
#define MPI2_SCSITASKMGMT_RSP_INVALID_FRAME (0x02)
#define MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED (0x04)
#define MPI2_SCSITASKMGMT_RSP_TM_FAILED (0x05)
#define MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED (0x08)
#define MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN (0x09)
#define MPI2_SCSITASKMGMT_RSP_TM_OVERLAPPED_TAG (0x0A)
#define MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC (0x80)
/*
* RAID SCSI IO Request Message
* Total SGE count will be one less than _MPI2_SCSI_IO_REQUEST
*/
struct MPI2_RAID_SCSI_IO_REQUEST {
__le16 DevHandle; /* 0x00 */
u8 ChainOffset; /* 0x02 */
u8 Function; /* 0x03 */
__le16 Reserved1; /* 0x04 */
u8 Reserved2; /* 0x06 */
u8 MsgFlags; /* 0x07 */
u8 VP_ID; /* 0x08 */
u8 VF_ID; /* 0x09 */
__le16 Reserved3; /* 0x0A */
__le32 SenseBufferLowAddress; /* 0x0C */
__le16 SGLFlags; /* 0x10 */
u8 SenseBufferLength; /* 0x12 */
u8 Reserved4; /* 0x13 */
u8 SGLOffset0; /* 0x14 */
u8 SGLOffset1; /* 0x15 */
u8 SGLOffset2; /* 0x16 */
u8 SGLOffset3; /* 0x17 */
__le32 SkipCount; /* 0x18 */
__le32 DataLength; /* 0x1C */
__le32 BidirectionalDataLength; /* 0x20 */
__le16 IoFlags; /* 0x24 */
__le16 EEDPFlags; /* 0x26 */
__le32 EEDPBlockSize; /* 0x28 */
__le32 SecondaryReferenceTag; /* 0x2C */
__le16 SecondaryApplicationTag; /* 0x30 */
__le16 ApplicationTagTranslationMask; /* 0x32 */
u8 LUN[8]; /* 0x34 */
__le32 Control; /* 0x3C */
union MPI2_SCSI_IO_CDB_UNION CDB; /* 0x40 */
union RAID_CONTEXT_UNION RaidContext; /* 0x60 */
union MPI2_SGE_IO_UNION SGL; /* 0x80 */
};
/*
* MPT RAID MFA IO Descriptor.
*/
struct MEGASAS_RAID_MFA_IO_REQUEST_DESCRIPTOR {
u32 RequestFlags:8;
u32 MessageAddress1:24;
u32 MessageAddress2;
};
/* Default Request Descriptor */
struct MPI2_DEFAULT_REQUEST_DESCRIPTOR {
u8 RequestFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
__le16 SMID; /* 0x02 */
__le16 LMID; /* 0x04 */
__le16 DescriptorTypeDependent; /* 0x06 */
};
/* High Priority Request Descriptor */
struct MPI2_HIGH_PRIORITY_REQUEST_DESCRIPTOR {
u8 RequestFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
__le16 SMID; /* 0x02 */
__le16 LMID; /* 0x04 */
__le16 Reserved1; /* 0x06 */
};
/* SCSI IO Request Descriptor */
struct MPI2_SCSI_IO_REQUEST_DESCRIPTOR {
u8 RequestFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
__le16 SMID; /* 0x02 */
__le16 LMID; /* 0x04 */
__le16 DevHandle; /* 0x06 */
};
/* SCSI Target Request Descriptor */
struct MPI2_SCSI_TARGET_REQUEST_DESCRIPTOR {
u8 RequestFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
__le16 SMID; /* 0x02 */
__le16 LMID; /* 0x04 */
__le16 IoIndex; /* 0x06 */
};
/* RAID Accelerator Request Descriptor */
struct MPI2_RAID_ACCEL_REQUEST_DESCRIPTOR {
u8 RequestFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
__le16 SMID; /* 0x02 */
__le16 LMID; /* 0x04 */
__le16 Reserved; /* 0x06 */
};
/* union of Request Descriptors */
union MEGASAS_REQUEST_DESCRIPTOR_UNION {
struct MPI2_DEFAULT_REQUEST_DESCRIPTOR Default;
struct MPI2_HIGH_PRIORITY_REQUEST_DESCRIPTOR HighPriority;
struct MPI2_SCSI_IO_REQUEST_DESCRIPTOR SCSIIO;
struct MPI2_SCSI_TARGET_REQUEST_DESCRIPTOR SCSITarget;
struct MPI2_RAID_ACCEL_REQUEST_DESCRIPTOR RAIDAccelerator;
struct MEGASAS_RAID_MFA_IO_REQUEST_DESCRIPTOR MFAIo;
union {
struct {
__le32 low;
__le32 high;
} u;
__le64 Words;
};
};
/* Default Reply Descriptor */
struct MPI2_DEFAULT_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
__le16 DescriptorTypeDependent1; /* 0x02 */
__le32 DescriptorTypeDependent2; /* 0x04 */
};
/* Address Reply Descriptor */
struct MPI2_ADDRESS_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
__le16 SMID; /* 0x02 */
__le32 ReplyFrameAddress; /* 0x04 */
};
/* SCSI IO Success Reply Descriptor */
struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
__le16 SMID; /* 0x02 */
__le16 TaskTag; /* 0x04 */
__le16 Reserved1; /* 0x06 */
};
/* TargetAssist Success Reply Descriptor */
struct MPI2_TARGETASSIST_SUCCESS_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
__le16 SMID; /* 0x02 */
u8 SequenceNumber; /* 0x04 */
u8 Reserved1; /* 0x05 */
__le16 IoIndex; /* 0x06 */
};
/* Target Command Buffer Reply Descriptor */
struct MPI2_TARGET_COMMAND_BUFFER_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u8 VP_ID; /* 0x02 */
u8 Flags; /* 0x03 */
__le16 InitiatorDevHandle; /* 0x04 */
__le16 IoIndex; /* 0x06 */
};
/* RAID Accelerator Success Reply Descriptor */
struct MPI2_RAID_ACCELERATOR_SUCCESS_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
__le16 SMID; /* 0x02 */
__le32 Reserved; /* 0x04 */
};
/* union of Reply Descriptors */
union MPI2_REPLY_DESCRIPTORS_UNION {
struct MPI2_DEFAULT_REPLY_DESCRIPTOR Default;
struct MPI2_ADDRESS_REPLY_DESCRIPTOR AddressReply;
struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR SCSIIOSuccess;
struct MPI2_TARGETASSIST_SUCCESS_REPLY_DESCRIPTOR TargetAssistSuccess;
struct MPI2_TARGET_COMMAND_BUFFER_REPLY_DESCRIPTOR TargetCommandBuffer;
struct MPI2_RAID_ACCELERATOR_SUCCESS_REPLY_DESCRIPTOR
RAIDAcceleratorSuccess;
__le64 Words;
};
/* IOCInit Request message */
struct MPI2_IOC_INIT_REQUEST {
u8 WhoInit; /* 0x00 */
u8 Reserved1; /* 0x01 */
u8 ChainOffset; /* 0x02 */
u8 Function; /* 0x03 */
__le16 Reserved2; /* 0x04 */
u8 Reserved3; /* 0x06 */
u8 MsgFlags; /* 0x07 */
u8 VP_ID; /* 0x08 */
u8 VF_ID; /* 0x09 */
__le16 Reserved4; /* 0x0A */
__le16 MsgVersion; /* 0x0C */
__le16 HeaderVersion; /* 0x0E */
u32 Reserved5; /* 0x10 */
__le16 Reserved6; /* 0x14 */
u8 HostPageSize; /* 0x16 */
u8 HostMSIxVectors; /* 0x17 */
__le16 Reserved8; /* 0x18 */
__le16 SystemRequestFrameSize; /* 0x1A */
__le16 ReplyDescriptorPostQueueDepth; /* 0x1C */
__le16 ReplyFreeQueueDepth; /* 0x1E */
__le32 SenseBufferAddressHigh; /* 0x20 */
__le32 SystemReplyAddressHigh; /* 0x24 */
__le64 SystemRequestFrameBaseAddress; /* 0x28 */
__le64 ReplyDescriptorPostQueueAddress;/* 0x30 */
__le64 ReplyFreeQueueAddress; /* 0x38 */
__le64 TimeStamp; /* 0x40 */
};
/* mrpriv defines */
#define MR_PD_INVALID 0xFFFF
#define MR_DEVHANDLE_INVALID 0xFFFF
#define MAX_SPAN_DEPTH 8
#define MAX_QUAD_DEPTH MAX_SPAN_DEPTH
#define MAX_RAIDMAP_SPAN_DEPTH (MAX_SPAN_DEPTH)
#define MAX_ROW_SIZE 32
#define MAX_RAIDMAP_ROW_SIZE (MAX_ROW_SIZE)
#define MAX_LOGICAL_DRIVES 64
#define MAX_LOGICAL_DRIVES_EXT 256
#define MAX_LOGICAL_DRIVES_DYN 512
#define MAX_RAIDMAP_LOGICAL_DRIVES (MAX_LOGICAL_DRIVES)
#define MAX_RAIDMAP_VIEWS (MAX_LOGICAL_DRIVES)
#define MAX_ARRAYS 128
#define MAX_RAIDMAP_ARRAYS (MAX_ARRAYS)
#define MAX_ARRAYS_EXT 256
#define MAX_API_ARRAYS_EXT (MAX_ARRAYS_EXT)
#define MAX_API_ARRAYS_DYN 512
#define MAX_PHYSICAL_DEVICES 256
#define MAX_RAIDMAP_PHYSICAL_DEVICES (MAX_PHYSICAL_DEVICES)
#define MAX_RAIDMAP_PHYSICAL_DEVICES_DYN 512
#define MR_DCMD_LD_MAP_GET_INFO 0x0300e101
#define MR_DCMD_SYSTEM_PD_MAP_GET_INFO 0x0200e102
#define MR_DCMD_DRV_GET_TARGET_PROP 0x0200e103
#define MR_DCMD_CTRL_SHARED_HOST_MEM_ALLOC 0x010e8485 /* SR-IOV HB alloc*/
#define MR_DCMD_LD_VF_MAP_GET_ALL_LDS_111 0x03200200
#define MR_DCMD_LD_VF_MAP_GET_ALL_LDS 0x03150200
struct MR_DEV_HANDLE_INFO {
__le16 curDevHdl;
u8 validHandles;
u8 interfaceType;
__le16 devHandle[2];
};
struct MR_ARRAY_INFO {
__le16 pd[MAX_RAIDMAP_ROW_SIZE];
};
struct MR_QUAD_ELEMENT {
__le64 logStart;
__le64 logEnd;
__le64 offsetInSpan;
__le32 diff;
__le32 reserved1;
};
struct MR_SPAN_INFO {
__le32 noElements;
__le32 reserved1;
struct MR_QUAD_ELEMENT quad[MAX_RAIDMAP_SPAN_DEPTH];
};
struct MR_LD_SPAN {
__le64 startBlk;
__le64 numBlks;
__le16 arrayRef;
u8 spanRowSize;
u8 spanRowDataSize;
u8 reserved[4];
};
struct MR_SPAN_BLOCK_INFO {
__le64 num_rows;
struct MR_LD_SPAN span;
struct MR_SPAN_INFO block_span_info;
};
#define MR_RAID_CTX_CPUSEL_0 0
#define MR_RAID_CTX_CPUSEL_1 1
#define MR_RAID_CTX_CPUSEL_2 2
#define MR_RAID_CTX_CPUSEL_3 3
#define MR_RAID_CTX_CPUSEL_FCFS 0xF
struct MR_CPU_AFFINITY_MASK {
union {
struct {
#ifndef MFI_BIG_ENDIAN
u8 hw_path:1;
u8 cpu0:1;
u8 cpu1:1;
u8 cpu2:1;
u8 cpu3:1;
u8 reserved:3;
#else
u8 reserved:3;
u8 cpu3:1;
u8 cpu2:1;
u8 cpu1:1;
u8 cpu0:1;
u8 hw_path:1;
#endif
};
u8 core_mask;
};
};
struct MR_IO_AFFINITY {
union {
struct {
struct MR_CPU_AFFINITY_MASK pdRead;
struct MR_CPU_AFFINITY_MASK pdWrite;
struct MR_CPU_AFFINITY_MASK ldRead;
struct MR_CPU_AFFINITY_MASK ldWrite;
};
u32 word;
};
u8 maxCores; /* Total cores + HW Path in ROC */
u8 reserved[3];
};
struct MR_LD_RAID {
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u32 reserved4:2;
u32 fp_cache_bypass_capable:1;
u32 fp_rmw_capable:1;
u32 disable_coalescing:1;
u32 fpBypassRegionLock:1;
u32 tmCapable:1;
u32 fpNonRWCapable:1;
u32 fpReadAcrossStripe:1;
u32 fpWriteAcrossStripe:1;
u32 fpReadCapable:1;
u32 fpWriteCapable:1;
u32 encryptionType:8;
u32 pdPiMode:4;
u32 ldPiMode:4;
u32 reserved5:2;
u32 ra_capable:1;
u32 fpCapable:1;
#else
u32 fpCapable:1;
u32 ra_capable:1;
u32 reserved5:2;
u32 ldPiMode:4;
u32 pdPiMode:4;
u32 encryptionType:8;
u32 fpWriteCapable:1;
u32 fpReadCapable:1;
u32 fpWriteAcrossStripe:1;
u32 fpReadAcrossStripe:1;
u32 fpNonRWCapable:1;
u32 tmCapable:1;
u32 fpBypassRegionLock:1;
u32 disable_coalescing:1;
u32 fp_rmw_capable:1;
u32 fp_cache_bypass_capable:1;
u32 reserved4:2;
#endif
} capability;
__le32 reserved6;
__le64 size;
u8 spanDepth;
u8 level;
u8 stripeShift;
u8 rowSize;
u8 rowDataSize;
u8 writeMode;
u8 PRL;
u8 SRL;
__le16 targetId;
u8 ldState;
u8 regTypeReqOnWrite;
u8 modFactor;
u8 regTypeReqOnRead;
__le16 seqNum;
struct {
u32 ldSyncRequired:1;
u32 reserved:31;
} flags;
u8 LUN[8]; /* 0x24 8 byte LUN field used for SCSI IO's */
u8 fpIoTimeoutForLd;/*0x2C timeout value used by driver in FP IO*/
/* Ox2D This LD accept priority boost of this type */
u8 ld_accept_priority_type;
u8 reserved2[2]; /* 0x2E - 0x2F */
/* 0x30 - 0x33, Logical block size for the LD */
u32 logical_block_length;
struct {
#ifndef MFI_BIG_ENDIAN
/* 0x34, P_I_EXPONENT from READ CAPACITY 16 */
u32 ld_pi_exp:4;
/* 0x34, LOGICAL BLOCKS PER PHYSICAL
* BLOCK EXPONENT from READ CAPACITY 16
*/
u32 ld_logical_block_exp:4;
u32 reserved1:24; /* 0x34 */
#else
u32 reserved1:24; /* 0x34 */
/* 0x34, LOGICAL BLOCKS PER PHYSICAL
* BLOCK EXPONENT from READ CAPACITY 16
*/
u32 ld_logical_block_exp:4;
/* 0x34, P_I_EXPONENT from READ CAPACITY 16 */
u32 ld_pi_exp:4;
#endif
}; /* 0x34 - 0x37 */
/* 0x38 - 0x3f, This will determine which
* core will process LD IO and PD IO.
*/
struct MR_IO_AFFINITY cpuAffinity;
/* Bit definiations are specified by MR_IO_AFFINITY */
u8 reserved3[0x80 - 0x40]; /* 0x40 - 0x7f */
};
struct MR_LD_SPAN_MAP {
struct MR_LD_RAID ldRaid;
u8 dataArmMap[MAX_RAIDMAP_ROW_SIZE];
struct MR_SPAN_BLOCK_INFO spanBlock[MAX_RAIDMAP_SPAN_DEPTH];
};
struct MR_FW_RAID_MAP {
__le32 totalSize;
union {
struct {
__le32 maxLd;
__le32 maxSpanDepth;
__le32 maxRowSize;
__le32 maxPdCount;
__le32 maxArrays;
} validationInfo;
__le32 version[5];
};
__le32 ldCount;
__le32 Reserved1;
u8 ldTgtIdToLd[MAX_RAIDMAP_LOGICAL_DRIVES+
MAX_RAIDMAP_VIEWS];
u8 fpPdIoTimeoutSec;
u8 reserved2[7];
struct MR_ARRAY_INFO arMapInfo[MAX_RAIDMAP_ARRAYS];
struct MR_DEV_HANDLE_INFO devHndlInfo[MAX_RAIDMAP_PHYSICAL_DEVICES];
struct MR_LD_SPAN_MAP ldSpanMap[1];
};
struct IO_REQUEST_INFO {
u64 ldStartBlock;
u32 numBlocks;
u16 ldTgtId;
u8 isRead;
__le16 devHandle;
u8 pd_interface;
u64 pdBlock;
u8 fpOkForIo;
u8 IoforUnevenSpan;
u8 start_span;
u8 do_fp_rlbypass;
u64 start_row;
u8 span_arm; /* span[7:5], arm[4:0] */
u8 pd_after_lb;
u16 r1_alt_dev_handle; /* raid 1/10 only */
bool ra_capable;
};
struct MR_LD_TARGET_SYNC {
u8 targetId;
u8 reserved;
__le16 seqNum;
};
/*
* RAID Map descriptor Types.
* Each element should uniquely idetify one data structure in the RAID map
*/
enum MR_RAID_MAP_DESC_TYPE {
/* MR_DEV_HANDLE_INFO data */
RAID_MAP_DESC_TYPE_DEVHDL_INFO = 0x0,
/* target to Ld num Index map */
RAID_MAP_DESC_TYPE_TGTID_INFO = 0x1,
/* MR_ARRAY_INFO data */
RAID_MAP_DESC_TYPE_ARRAY_INFO = 0x2,
/* MR_LD_SPAN_MAP data */
RAID_MAP_DESC_TYPE_SPAN_INFO = 0x3,
RAID_MAP_DESC_TYPE_COUNT,
};
/*
* This table defines the offset, size and num elements of each descriptor
* type in the RAID Map buffer
*/
struct MR_RAID_MAP_DESC_TABLE {
/* Raid map descriptor type */
u32 raid_map_desc_type;
/* Offset into the RAID map buffer where
* descriptor data is saved
*/
u32 raid_map_desc_offset;
/* total size of the
* descriptor buffer
*/
u32 raid_map_desc_buffer_size;
/* Number of elements contained in the
* descriptor buffer
*/
u32 raid_map_desc_elements;
};
/*
* Dynamic Raid Map Structure.
*/
struct MR_FW_RAID_MAP_DYNAMIC {
u32 raid_map_size; /* total size of RAID Map structure */
u32 desc_table_offset;/* Offset of desc table into RAID map*/
u32 desc_table_size; /* Total Size of desc table */
/* Total Number of elements in the desc table */
u32 desc_table_num_elements;
u64 reserved1;
u32 reserved2[3]; /*future use */
/* timeout value used by driver in FP IOs */
u8 fp_pd_io_timeout_sec;
u8 reserved3[3];
/* when this seqNum increments, driver needs to
* release RMW buffers asap
*/
u32 rmw_fp_seq_num;
u16 ld_count; /* count of lds. */
u16 ar_count; /* count of arrays */
u16 span_count; /* count of spans */
u16 reserved4[3];
/*
* The below structure of pointers is only to be used by the driver.
* This is added in the ,API to reduce the amount of code changes
* needed in the driver to support dynamic RAID map Firmware should
* not update these pointers while preparing the raid map
*/
union {
struct {
struct MR_DEV_HANDLE_INFO *dev_hndl_info;
u16 *ld_tgt_id_to_ld;
struct MR_ARRAY_INFO *ar_map_info;
struct MR_LD_SPAN_MAP *ld_span_map;
};
u64 ptr_structure_size[RAID_MAP_DESC_TYPE_COUNT];
};
/*
* RAID Map descriptor table defines the layout of data in the RAID Map.
* The size of the descriptor table itself could change.
*/
/* Variable Size descriptor Table. */
struct MR_RAID_MAP_DESC_TABLE
raid_map_desc_table[RAID_MAP_DESC_TYPE_COUNT];
/* Variable Size buffer containing all data */
u32 raid_map_desc_data[1];
}; /* Dynamicaly sized RAID MAp structure */
#define IEEE_SGE_FLAGS_ADDR_MASK (0x03)
#define IEEE_SGE_FLAGS_SYSTEM_ADDR (0x00)
#define IEEE_SGE_FLAGS_IOCDDR_ADDR (0x01)
#define IEEE_SGE_FLAGS_IOCPLB_ADDR (0x02)
#define IEEE_SGE_FLAGS_IOCPLBNTA_ADDR (0x03)
#define IEEE_SGE_FLAGS_CHAIN_ELEMENT (0x80)
#define IEEE_SGE_FLAGS_END_OF_LIST (0x40)
#define MPI2_SGE_FLAGS_SHIFT (0x02)
#define IEEE_SGE_FLAGS_FORMAT_MASK (0xC0)
#define IEEE_SGE_FLAGS_FORMAT_IEEE (0x00)
#define IEEE_SGE_FLAGS_FORMAT_NVME (0x02)
#define MPI26_IEEE_SGE_FLAGS_NSF_MASK (0x1C)
#define MPI26_IEEE_SGE_FLAGS_NSF_MPI_IEEE (0x00)
#define MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP (0x08)
#define MPI26_IEEE_SGE_FLAGS_NSF_NVME_SGL (0x10)
struct megasas_register_set;
struct megasas_instance;
union desc_word {
u64 word;
struct {
u32 low;
u32 high;
} u;
};
struct megasas_cmd_fusion {
struct MPI2_RAID_SCSI_IO_REQUEST *io_request;
dma_addr_t io_request_phys_addr;
union MPI2_SGE_IO_UNION *sg_frame;
dma_addr_t sg_frame_phys_addr;
u8 *sense;
dma_addr_t sense_phys_addr;
struct list_head list;
struct scsi_cmnd *scmd;
struct megasas_instance *instance;
u8 retry_for_fw_reset;
union MEGASAS_REQUEST_DESCRIPTOR_UNION *request_desc;
/*
* Context for a MFI frame.
* Used to get the mfi cmd from list when a MFI cmd is completed
*/
u32 sync_cmd_idx;
u32 index;
u8 pd_r1_lb;
struct completion done;
u8 pd_interface;
u16 r1_alt_dev_handle; /* raid 1/10 only*/
bool cmd_completed; /* raid 1/10 fp writes status holder */
};
struct LD_LOAD_BALANCE_INFO {
u8 loadBalanceFlag;
u8 reserved1;
atomic_t scsi_pending_cmds[MAX_PHYSICAL_DEVICES];
u64 last_accessed_block[MAX_PHYSICAL_DEVICES];
};
/* SPAN_SET is info caclulated from span info from Raid map per LD */
typedef struct _LD_SPAN_SET {
u64 log_start_lba;
u64 log_end_lba;
u64 span_row_start;
u64 span_row_end;
u64 data_strip_start;
u64 data_strip_end;
u64 data_row_start;
u64 data_row_end;
u8 strip_offset[MAX_SPAN_DEPTH];
u32 span_row_data_width;
u32 diff;
u32 reserved[2];
} LD_SPAN_SET, *PLD_SPAN_SET;
typedef struct LOG_BLOCK_SPAN_INFO {
LD_SPAN_SET span_set[MAX_SPAN_DEPTH];
} LD_SPAN_INFO, *PLD_SPAN_INFO;
struct MR_FW_RAID_MAP_ALL {
struct MR_FW_RAID_MAP raidMap;
struct MR_LD_SPAN_MAP ldSpanMap[MAX_LOGICAL_DRIVES - 1];
} __attribute__ ((packed));
struct MR_DRV_RAID_MAP {
/* total size of this structure, including this field.
* This feild will be manupulated by driver for ext raid map,
* else pick the value from firmware raid map.
*/
__le32 totalSize;
union {
struct {
__le32 maxLd;
__le32 maxSpanDepth;
__le32 maxRowSize;
__le32 maxPdCount;
__le32 maxArrays;
} validationInfo;
__le32 version[5];
};
/* timeout value used by driver in FP IOs*/
u8 fpPdIoTimeoutSec;
u8 reserved2[7];
__le16 ldCount;
__le16 arCount;
__le16 spanCount;
__le16 reserve3;
struct MR_DEV_HANDLE_INFO
devHndlInfo[MAX_RAIDMAP_PHYSICAL_DEVICES_DYN];
u16 ldTgtIdToLd[MAX_LOGICAL_DRIVES_DYN];
struct MR_ARRAY_INFO arMapInfo[MAX_API_ARRAYS_DYN];
struct MR_LD_SPAN_MAP ldSpanMap[1];
};
/* Driver raid map size is same as raid map ext
* MR_DRV_RAID_MAP_ALL is created to sync with old raid.
* And it is mainly for code re-use purpose.
*/
struct MR_DRV_RAID_MAP_ALL {
struct MR_DRV_RAID_MAP raidMap;
struct MR_LD_SPAN_MAP ldSpanMap[MAX_LOGICAL_DRIVES_DYN - 1];
} __packed;
struct MR_FW_RAID_MAP_EXT {
/* Not usred in new map */
u32 reserved;
union {
struct {
u32 maxLd;
u32 maxSpanDepth;
u32 maxRowSize;
u32 maxPdCount;
u32 maxArrays;
} validationInfo;
u32 version[5];
};
u8 fpPdIoTimeoutSec;
u8 reserved2[7];
__le16 ldCount;
__le16 arCount;
__le16 spanCount;
__le16 reserve3;
struct MR_DEV_HANDLE_INFO devHndlInfo[MAX_RAIDMAP_PHYSICAL_DEVICES];
u8 ldTgtIdToLd[MAX_LOGICAL_DRIVES_EXT];
struct MR_ARRAY_INFO arMapInfo[MAX_API_ARRAYS_EXT];
struct MR_LD_SPAN_MAP ldSpanMap[MAX_LOGICAL_DRIVES_EXT];
};
/*
* * define MR_PD_CFG_SEQ structure for system PDs
* */
struct MR_PD_CFG_SEQ {
u16 seqNum;
u16 devHandle;
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u8 reserved:7;
u8 tmCapable:1;
#else
u8 tmCapable:1;
u8 reserved:7;
#endif
} capability;
u8 reserved;
u16 pd_target_id;
} __packed;
struct MR_PD_CFG_SEQ_NUM_SYNC {
__le32 size;
__le32 count;
struct MR_PD_CFG_SEQ seq[1];
} __packed;
/* stream detection */
struct STREAM_DETECT {
u64 next_seq_lba; /* next LBA to match sequential access */
struct megasas_cmd_fusion *first_cmd_fusion; /* first cmd in group */
struct megasas_cmd_fusion *last_cmd_fusion; /* last cmd in group */
u32 count_cmds_in_stream; /* count of host commands in this stream */
u16 num_sges_in_group; /* total number of SGEs in grouped IOs */
u8 is_read; /* SCSI OpCode for this stream */
u8 group_depth; /* total number of host commands in group */
/* TRUE if cannot add any more commands to this group */
bool group_flush;
u8 reserved[7]; /* pad to 64-bit alignment */
};
struct LD_STREAM_DETECT {
bool write_back; /* TRUE if WB, FALSE if WT */
bool fp_write_enabled;
bool members_ssds;
bool fp_cache_bypass_capable;
u32 mru_bit_map; /* bitmap used to track MRU and LRU stream indicies */
/* this is the array of stream detect structures (one per stream) */
struct STREAM_DETECT stream_track[MAX_STREAMS_TRACKED];
};
struct MPI2_IOC_INIT_RDPQ_ARRAY_ENTRY {
u64 RDPQBaseAddress;
u32 Reserved1;
u32 Reserved2;
};
struct rdpq_alloc_detail {
struct dma_pool *dma_pool_ptr;
dma_addr_t pool_entry_phys;
union MPI2_REPLY_DESCRIPTORS_UNION *pool_entry_virt;
};
struct fusion_context {
struct megasas_cmd_fusion **cmd_list;
dma_addr_t req_frames_desc_phys;
u8 *req_frames_desc;
struct dma_pool *io_request_frames_pool;
dma_addr_t io_request_frames_phys;
u8 *io_request_frames;
struct dma_pool *sg_dma_pool;
struct dma_pool *sense_dma_pool;
u8 *sense;
dma_addr_t sense_phys_addr;
dma_addr_t reply_frames_desc_phys[MAX_MSIX_QUEUES_FUSION];
union MPI2_REPLY_DESCRIPTORS_UNION *reply_frames_desc[MAX_MSIX_QUEUES_FUSION];
struct rdpq_alloc_detail rdpq_tracker[RDPQ_MAX_CHUNK_COUNT];
struct dma_pool *reply_frames_desc_pool;
struct dma_pool *reply_frames_desc_pool_align;
u16 last_reply_idx[MAX_MSIX_QUEUES_FUSION];
u32 reply_q_depth;
u32 request_alloc_sz;
u32 reply_alloc_sz;
u32 io_frames_alloc_sz;
struct MPI2_IOC_INIT_RDPQ_ARRAY_ENTRY *rdpq_virt;
dma_addr_t rdpq_phys;
u16 max_sge_in_main_msg;
u16 max_sge_in_chain;
u8 chain_offset_io_request;
u8 chain_offset_mfi_pthru;
struct MR_FW_RAID_MAP_DYNAMIC *ld_map[2];
dma_addr_t ld_map_phys[2];
/*Non dma-able memory. Driver local copy.*/
struct MR_DRV_RAID_MAP_ALL *ld_drv_map[2];
u32 max_map_sz;
u32 current_map_sz;
u32 old_map_sz;
u32 new_map_sz;
u32 drv_map_sz;
u32 drv_map_pages;
struct MR_PD_CFG_SEQ_NUM_SYNC *pd_seq_sync[JBOD_MAPS_COUNT];
dma_addr_t pd_seq_phys[JBOD_MAPS_COUNT];
u8 fast_path_io;
struct LD_LOAD_BALANCE_INFO *load_balance_info;
u32 load_balance_info_pages;
LD_SPAN_INFO *log_to_span;
u32 log_to_span_pages;
struct LD_STREAM_DETECT **stream_detect_by_ld;
dma_addr_t ioc_init_request_phys;
struct MPI2_IOC_INIT_REQUEST *ioc_init_request;
struct megasas_cmd *ioc_init_cmd;
};
union desc_value {
__le64 word;
struct {
__le32 low;
__le32 high;
} u;
};
enum CMD_RET_VALUES {
REFIRE_CMD = 1,
COMPLETE_CMD = 2,
RETURN_CMD = 3,
};
void megasas_free_cmds_fusion(struct megasas_instance *instance);
int megasas_ioc_init_fusion(struct megasas_instance *instance);
u8 megasas_get_map_info(struct megasas_instance *instance);
int megasas_sync_map_info(struct megasas_instance *instance);
void megasas_release_fusion(struct megasas_instance *instance);
void megasas_reset_reply_desc(struct megasas_instance *instance);
int megasas_check_mpio_paths(struct megasas_instance *instance,
struct scsi_cmnd *scmd);
void megasas_fusion_ocr_wq(struct work_struct *work);
#endif /* _MEGARAID_SAS_FUSION_H_ */