// SPDX-License-Identifier: GPL-2.0 /* * thermal.c - Generic Thermal Management Sysfs support. * * Copyright (C) 2008 Intel Corp * Copyright (C) 2008 Zhang Rui * Copyright (C) 2008 Sujith Thomas */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #include "thermal_core.h" #include "thermal_hwmon.h" #if IS_ENABLED(CONFIG_SEC_THERMAL_LOG) /* cooling device state */ static struct delayed_work cdev_print_work; #endif MODULE_AUTHOR("Zhang Rui"); MODULE_DESCRIPTION("Generic thermal management sysfs support"); MODULE_LICENSE("GPL v2"); static DEFINE_IDA(thermal_tz_ida); static DEFINE_IDA(thermal_cdev_ida); static LIST_HEAD(thermal_tz_list); static LIST_HEAD(thermal_cdev_list); static LIST_HEAD(thermal_governor_list); static DEFINE_MUTEX(thermal_list_lock); static DEFINE_MUTEX(thermal_governor_lock); static DEFINE_MUTEX(poweroff_lock); static atomic_t in_suspend; static bool power_off_triggered; static struct thermal_governor *def_governor; /* * Governor section: set of functions to handle thermal governors * * Functions to help in the life cycle of thermal governors within * the thermal core and by the thermal governor code. */ static struct thermal_governor *__find_governor(const char *name) { struct thermal_governor *pos; if (!name || !name[0]) return def_governor; list_for_each_entry(pos, &thermal_governor_list, governor_list) if (!strncasecmp(name, pos->name, THERMAL_NAME_LENGTH)) return pos; return NULL; } /** * bind_previous_governor() - bind the previous governor of the thermal zone * @tz: a valid pointer to a struct thermal_zone_device * @failed_gov_name: the name of the governor that failed to register * * Register the previous governor of the thermal zone after a new * governor has failed to be bound. */ static void bind_previous_governor(struct thermal_zone_device *tz, const char *failed_gov_name) { if (tz->governor && tz->governor->bind_to_tz) { if (tz->governor->bind_to_tz(tz)) { dev_err(&tz->device, "governor %s failed to bind and the previous one (%s) failed to bind again, thermal zone %s has no governor\n", failed_gov_name, tz->governor->name, tz->type); tz->governor = NULL; } } } /** * thermal_set_governor() - Switch to another governor * @tz: a valid pointer to a struct thermal_zone_device * @new_gov: pointer to the new governor * * Change the governor of thermal zone @tz. * * Return: 0 on success, an error if the new governor's bind_to_tz() failed. */ static int thermal_set_governor(struct thermal_zone_device *tz, struct thermal_governor *new_gov) { int ret = 0; if (tz->governor && tz->governor->unbind_from_tz) tz->governor->unbind_from_tz(tz); if (new_gov && new_gov->bind_to_tz) { ret = new_gov->bind_to_tz(tz); if (ret) { bind_previous_governor(tz, new_gov->name); return ret; } } tz->governor = new_gov; return ret; } int thermal_register_governor(struct thermal_governor *governor) { int err; const char *name; struct thermal_zone_device *pos; if (!governor) return -EINVAL; mutex_lock(&thermal_governor_lock); err = -EBUSY; if (!__find_governor(governor->name)) { bool match_default; err = 0; list_add(&governor->governor_list, &thermal_governor_list); match_default = !strncmp(governor->name, DEFAULT_THERMAL_GOVERNOR, THERMAL_NAME_LENGTH); if (!def_governor && match_default) def_governor = governor; } mutex_lock(&thermal_list_lock); list_for_each_entry(pos, &thermal_tz_list, node) { /* * only thermal zones with specified tz->tzp->governor_name * may run with tz->govenor unset */ if (pos->governor) continue; name = pos->tzp->governor_name; if (!strncasecmp(name, governor->name, THERMAL_NAME_LENGTH)) { int ret; ret = thermal_set_governor(pos, governor); if (ret) dev_err(&pos->device, "Failed to set governor %s for thermal zone %s: %d\n", governor->name, pos->type, ret); } } mutex_unlock(&thermal_list_lock); mutex_unlock(&thermal_governor_lock); return err; } void thermal_unregister_governor(struct thermal_governor *governor) { struct thermal_zone_device *pos; if (!governor) return; mutex_lock(&thermal_governor_lock); if (!__find_governor(governor->name)) goto exit; mutex_lock(&thermal_list_lock); list_for_each_entry(pos, &thermal_tz_list, node) { if (!strncasecmp(pos->governor->name, governor->name, THERMAL_NAME_LENGTH)) thermal_set_governor(pos, NULL); } mutex_unlock(&thermal_list_lock); list_del(&governor->governor_list); exit: mutex_unlock(&thermal_governor_lock); } int thermal_zone_device_set_policy(struct thermal_zone_device *tz, char *policy) { struct thermal_governor *gov; int ret = -EINVAL; mutex_lock(&thermal_governor_lock); mutex_lock(&tz->lock); gov = __find_governor(strim(policy)); if (!gov) goto exit; ret = thermal_set_governor(tz, gov); exit: mutex_unlock(&tz->lock); mutex_unlock(&thermal_governor_lock); return ret; } int thermal_build_list_of_policies(char *buf) { struct thermal_governor *pos; ssize_t count = 0; ssize_t size = PAGE_SIZE; mutex_lock(&thermal_governor_lock); list_for_each_entry(pos, &thermal_governor_list, governor_list) { size = PAGE_SIZE - count; count += scnprintf(buf + count, size, "%s ", pos->name); } count += scnprintf(buf + count, size, "\n"); mutex_unlock(&thermal_governor_lock); return count; } static int __init thermal_register_governors(void) { int result; result = thermal_gov_backward_compatible_register(); if (result) return result; result = thermal_gov_step_wise_register(); if (result) return result; result = thermal_gov_fair_share_register(); if (result) return result; result = thermal_gov_bang_bang_register(); if (result) return result; result = thermal_gov_user_space_register(); if (result) return result; return thermal_gov_power_allocator_register(); } static void thermal_unregister_governors(void) { thermal_gov_backward_compatible_unregister(); thermal_gov_step_wise_unregister(); thermal_gov_fair_share_unregister(); thermal_gov_bang_bang_unregister(); thermal_gov_user_space_unregister(); thermal_gov_power_allocator_unregister(); } /* * Zone update section: main control loop applied to each zone while monitoring * * in polling mode. The monitoring is done using a workqueue. * Same update may be done on a zone by calling thermal_zone_device_update(). * * An update means: * - Non-critical trips will invoke the governor responsible for that zone; * - Hot trips will produce a notification to userspace; * - Critical trip point will cause a system shutdown. */ static void thermal_zone_device_set_polling(struct thermal_zone_device *tz, int delay) { if (delay > 1000) mod_delayed_work(system_freezable_wq, &tz->poll_queue, round_jiffies(msecs_to_jiffies(delay))); else if (delay) mod_delayed_work(system_freezable_wq, &tz->poll_queue, msecs_to_jiffies(delay)); else cancel_delayed_work(&tz->poll_queue); } static void monitor_thermal_zone(struct thermal_zone_device *tz) { mutex_lock(&tz->lock); if (tz->passive) thermal_zone_device_set_polling(tz, tz->passive_delay); else if (tz->polling_delay) thermal_zone_device_set_polling(tz, tz->polling_delay); else thermal_zone_device_set_polling(tz, 0); mutex_unlock(&tz->lock); } static void handle_non_critical_trips(struct thermal_zone_device *tz, int trip, enum thermal_trip_type trip_type) { tz->governor ? tz->governor->throttle(tz, trip) : def_governor->throttle(tz, trip); } /** * thermal_emergency_poweroff_func - emergency poweroff work after a known delay * @work: work_struct associated with the emergency poweroff function * * This function is called in very critical situations to force * a kernel poweroff after a configurable timeout value. */ static void thermal_emergency_poweroff_func(struct work_struct *work) { /* * We have reached here after the emergency thermal shutdown * Waiting period has expired. This means orderly_poweroff has * not been able to shut off the system for some reason. * Try to shut down the system immediately using kernel_power_off * if populated */ WARN(1, "Attempting kernel_power_off: Temperature too high\n"); kernel_power_off(); /* * Worst of the worst case trigger emergency restart */ WARN(1, "Attempting emergency_restart: Temperature too high\n"); emergency_restart(); } static DECLARE_DELAYED_WORK(thermal_emergency_poweroff_work, thermal_emergency_poweroff_func); /** * thermal_emergency_poweroff - Trigger an emergency system poweroff * * This may be called from any critical situation to trigger a system shutdown * after a known period of time. By default this is not scheduled. */ static void thermal_emergency_poweroff(void) { int poweroff_delay_ms = CONFIG_THERMAL_EMERGENCY_POWEROFF_DELAY_MS; /* * poweroff_delay_ms must be a carefully profiled positive value. * Its a must for thermal_emergency_poweroff_work to be scheduled */ if (poweroff_delay_ms <= 0) return; schedule_delayed_work(&thermal_emergency_poweroff_work, msecs_to_jiffies(poweroff_delay_ms)); } static void handle_critical_trips(struct thermal_zone_device *tz, int trip, enum thermal_trip_type trip_type) { int trip_temp; tz->ops->get_trip_temp(tz, trip, &trip_temp); /* If we have not crossed the trip_temp, we do not care. */ if (trip_temp <= 0 || tz->temperature < trip_temp) return; trace_thermal_zone_trip(tz, trip, trip_type); if (tz->ops->notify) tz->ops->notify(tz, trip, trip_type); if (trip_type == THERMAL_TRIP_CRITICAL) { dev_emerg(&tz->device, "critical temperature reached (%d C), shutting down\n", tz->temperature / 1000); mutex_lock(&poweroff_lock); if (!power_off_triggered) { /* * Queue a backup emergency shutdown in the event of * orderly_poweroff failure */ thermal_emergency_poweroff(); orderly_poweroff(true); power_off_triggered = true; } mutex_unlock(&poweroff_lock); } } static void handle_thermal_trip(struct thermal_zone_device *tz, int trip) { enum thermal_trip_type type; /* Ignore disabled trip points */ if (test_bit(trip, &tz->trips_disabled)) return; tz->ops->get_trip_type(tz, trip, &type); if (type == THERMAL_TRIP_CRITICAL || type == THERMAL_TRIP_HOT) handle_critical_trips(tz, trip, type); else handle_non_critical_trips(tz, trip, type); /* * Alright, we handled this trip successfully. * So, start monitoring again. */ monitor_thermal_zone(tz); } static void store_temperature(struct thermal_zone_device *tz, int temp) { mutex_lock(&tz->lock); tz->last_temperature = tz->temperature; tz->temperature = temp; mutex_unlock(&tz->lock); trace_thermal_temperature(tz); if (tz->last_temperature == THERMAL_TEMP_INVALID || tz->last_temperature == THERMAL_TEMP_INVALID_LOW) dev_dbg(&tz->device, "last_temperature N/A, current_temperature=%d\n", tz->temperature); else dev_dbg(&tz->device, "last_temperature=%d, current_temperature=%d\n", tz->last_temperature, tz->temperature); } static void update_temperature(struct thermal_zone_device *tz) { int temp, ret; ret = thermal_zone_get_temp(tz, &temp); if (ret) { if (ret != -EAGAIN) dev_warn(&tz->device, "failed to read out thermal zone (%d)\n", ret); return; } store_temperature(tz, temp); } static void thermal_zone_device_init(struct thermal_zone_device *tz) { struct thermal_instance *pos; tz->temperature = THERMAL_TEMP_INVALID; list_for_each_entry(pos, &tz->thermal_instances, tz_node) pos->initialized = false; } static void thermal_zone_device_reset(struct thermal_zone_device *tz) { tz->passive = 0; thermal_zone_device_init(tz); } void thermal_zone_device_update_temp(struct thermal_zone_device *tz, enum thermal_notify_event event, int temp) { int count; if (!tz || !tz->ops) return; if (atomic_read(&in_suspend) && (!tz->ops->is_wakeable || !(tz->ops->is_wakeable(tz)))) return; store_temperature(tz, temp); thermal_zone_set_trips(tz); tz->notify_event = event; for (count = 0; count < tz->trips; count++) handle_thermal_trip(tz, count); } void thermal_zone_device_update(struct thermal_zone_device *tz, enum thermal_notify_event event) { int count; if (!tz || !tz->ops) return; if (atomic_read(&in_suspend) && (!tz->ops->is_wakeable || !(tz->ops->is_wakeable(tz)))) return; if (!tz->ops->get_temp) return; update_temperature(tz); thermal_zone_set_trips(tz); tz->notify_event = event; for (count = 0; count < tz->trips; count++) handle_thermal_trip(tz, count); } EXPORT_SYMBOL_GPL(thermal_zone_device_update); /** * thermal_notify_framework - Sensor drivers use this API to notify framework * @tz: thermal zone device * @trip: indicates which trip point has been crossed * * This function handles the trip events from sensor drivers. It starts * throttling the cooling devices according to the policy configured. * For CRITICAL and HOT trip points, this notifies the respective drivers, * and does actual throttling for other trip points i.e ACTIVE and PASSIVE. * The throttling policy is based on the configured platform data; if no * platform data is provided, this uses the step_wise throttling policy. */ void thermal_notify_framework(struct thermal_zone_device *tz, int trip) { handle_thermal_trip(tz, trip); } EXPORT_SYMBOL_GPL(thermal_notify_framework); static void thermal_zone_device_check(struct work_struct *work) { struct thermal_zone_device *tz = container_of(work, struct thermal_zone_device, poll_queue.work); thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED); } /* * Power actor section: interface to power actors to estimate power * * Set of functions used to interact to cooling devices that know * how to estimate their devices power consumption. */ /** * power_actor_get_max_power() - get the maximum power that a cdev can consume * @cdev: pointer to &thermal_cooling_device * @tz: a valid thermal zone device pointer * @max_power: pointer in which to store the maximum power * * Calculate the maximum power consumption in milliwats that the * cooling device can currently consume and store it in @max_power. * * Return: 0 on success, -EINVAL if @cdev doesn't support the * power_actor API or -E* on other error. */ int power_actor_get_max_power(struct thermal_cooling_device *cdev, struct thermal_zone_device *tz, u32 *max_power) { if (!cdev_is_power_actor(cdev)) return -EINVAL; return cdev->ops->state2power(cdev, tz, 0, max_power); } /** * power_actor_get_min_power() - get the mainimum power that a cdev can consume * @cdev: pointer to &thermal_cooling_device * @tz: a valid thermal zone device pointer * @min_power: pointer in which to store the minimum power * * Calculate the minimum power consumption in milliwatts that the * cooling device can currently consume and store it in @min_power. * * Return: 0 on success, -EINVAL if @cdev doesn't support the * power_actor API or -E* on other error. */ int power_actor_get_min_power(struct thermal_cooling_device *cdev, struct thermal_zone_device *tz, u32 *min_power) { unsigned long max_state; int ret; if (!cdev_is_power_actor(cdev)) return -EINVAL; ret = cdev->ops->get_max_state(cdev, &max_state); if (ret) return ret; return cdev->ops->state2power(cdev, tz, max_state, min_power); } /** * power_actor_set_power() - limit the maximum power a cooling device consumes * @cdev: pointer to &thermal_cooling_device * @instance: thermal instance to update * @power: the power in milliwatts * * Set the cooling device to consume at most @power milliwatts. The limit is * expected to be a cap at the maximum power consumption. * * Return: 0 on success, -EINVAL if the cooling device does not * implement the power actor API or -E* for other failures. */ int power_actor_set_power(struct thermal_cooling_device *cdev, struct thermal_instance *instance, u32 power) { unsigned long state; int ret; if (!cdev_is_power_actor(cdev)) return -EINVAL; ret = cdev->ops->power2state(cdev, instance->tz, power, &state); if (ret) return ret; instance->target = state; mutex_lock(&cdev->lock); cdev->updated = false; mutex_unlock(&cdev->lock); thermal_cdev_update(cdev); return 0; } void thermal_zone_device_rebind_exception(struct thermal_zone_device *tz, const char *cdev_type, size_t size) { struct thermal_cooling_device *cdev = NULL; mutex_lock(&thermal_list_lock); list_for_each_entry(cdev, &thermal_cdev_list, node) { /* skip non matching cdevs */ if (strncmp(cdev_type, cdev->type, size)) continue; /* re binding the exception matching the type pattern */ thermal_zone_bind_cooling_device(tz, THERMAL_TRIPS_NONE, cdev, THERMAL_NO_LIMIT, THERMAL_NO_LIMIT, THERMAL_WEIGHT_DEFAULT); } mutex_unlock(&thermal_list_lock); } void thermal_zone_device_unbind_exception(struct thermal_zone_device *tz, const char *cdev_type, size_t size) { struct thermal_cooling_device *cdev = NULL; mutex_lock(&thermal_list_lock); list_for_each_entry(cdev, &thermal_cdev_list, node) { /* skip non matching cdevs */ if (strncmp(cdev_type, cdev->type, size)) continue; /* unbinding the exception matching the type pattern */ thermal_zone_unbind_cooling_device(tz, THERMAL_TRIPS_NONE, cdev); } mutex_unlock(&thermal_list_lock); } /* * Device management section: cooling devices, zones devices, and binding * * Set of functions provided by the thermal core for: * - cooling devices lifecycle: registration, unregistration, * binding, and unbinding. * - thermal zone devices lifecycle: registration, unregistration, * binding, and unbinding. */ /** * thermal_zone_bind_cooling_device() - bind a cooling device to a thermal zone * @tz: pointer to struct thermal_zone_device * @trip: indicates which trip point the cooling devices is * associated with in this thermal zone. * @cdev: pointer to struct thermal_cooling_device * @upper: the Maximum cooling state for this trip point. * THERMAL_NO_LIMIT means no upper limit, * and the cooling device can be in max_state. * @lower: the Minimum cooling state can be used for this trip point. * THERMAL_NO_LIMIT means no lower limit, * and the cooling device can be in cooling state 0. * @weight: The weight of the cooling device to be bound to the * thermal zone. Use THERMAL_WEIGHT_DEFAULT for the * default value * * This interface function bind a thermal cooling device to the certain trip * point of a thermal zone device. * This function is usually called in the thermal zone device .bind callback. * * Return: 0 on success, the proper error value otherwise. */ int thermal_zone_bind_cooling_device(struct thermal_zone_device *tz, int trip, struct thermal_cooling_device *cdev, unsigned long upper, unsigned long lower, unsigned int weight) { struct thermal_instance *dev; struct thermal_instance *pos; struct thermal_zone_device *pos1; struct thermal_cooling_device *pos2; unsigned long max_state; int result, ret; if (trip >= tz->trips || (trip < 0 && trip != THERMAL_TRIPS_NONE)) return -EINVAL; list_for_each_entry(pos1, &thermal_tz_list, node) { if (pos1 == tz) break; } list_for_each_entry(pos2, &thermal_cdev_list, node) { if (pos2 == cdev) break; } if (tz != pos1 || cdev != pos2) return -EINVAL; ret = cdev->ops->get_max_state(cdev, &max_state); if (ret) return ret; /* lower default 0, upper default max_state */ lower = lower == THERMAL_NO_LIMIT ? 0 : lower; upper = upper == THERMAL_NO_LIMIT ? max_state : upper; if (lower > upper || upper > max_state) return -EINVAL; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->tz = tz; dev->cdev = cdev; dev->trip = trip; dev->upper = upper; dev->lower = lower; dev->target = THERMAL_NO_TARGET; dev->weight = weight; result = ida_simple_get(&tz->ida, 0, 0, GFP_KERNEL); if (result < 0) goto free_mem; dev->id = result; sprintf(dev->name, "cdev%d", dev->id); result = sysfs_create_link(&tz->device.kobj, &cdev->device.kobj, dev->name); if (result) goto release_ida; sprintf(dev->attr_name, "cdev%d_trip_point", dev->id); sysfs_attr_init(&dev->attr.attr); dev->attr.attr.name = dev->attr_name; dev->attr.attr.mode = 0644; dev->attr.show = trip_point_show; dev->attr.store = trip_point_store; result = device_create_file(&tz->device, &dev->attr); if (result) goto remove_symbol_link; sprintf(dev->weight_attr_name, "cdev%d_weight", dev->id); sysfs_attr_init(&dev->weight_attr.attr); dev->weight_attr.attr.name = dev->weight_attr_name; dev->weight_attr.attr.mode = S_IWUSR | S_IRUGO; dev->weight_attr.show = weight_show; dev->weight_attr.store = weight_store; result = device_create_file(&tz->device, &dev->weight_attr); if (result) goto remove_trip_file; mutex_lock(&tz->lock); mutex_lock(&cdev->lock); list_for_each_entry(pos, &tz->thermal_instances, tz_node) if (pos->tz == tz && pos->trip == trip && pos->cdev == cdev) { result = -EEXIST; break; } if (!result) { list_add_tail(&dev->tz_node, &tz->thermal_instances); list_add_tail(&dev->cdev_node, &cdev->thermal_instances); atomic_set(&tz->need_update, 1); } mutex_unlock(&cdev->lock); mutex_unlock(&tz->lock); if (!result) return 0; device_remove_file(&tz->device, &dev->weight_attr); remove_trip_file: device_remove_file(&tz->device, &dev->attr); remove_symbol_link: sysfs_remove_link(&tz->device.kobj, dev->name); release_ida: ida_simple_remove(&tz->ida, dev->id); free_mem: kfree(dev); return result; } EXPORT_SYMBOL_GPL(thermal_zone_bind_cooling_device); /** * thermal_zone_unbind_cooling_device() - unbind a cooling device from a * thermal zone. * @tz: pointer to a struct thermal_zone_device. * @trip: indicates which trip point the cooling devices is * associated with in this thermal zone. * @cdev: pointer to a struct thermal_cooling_device. * * This interface function unbind a thermal cooling device from the certain * trip point of a thermal zone device. * This function is usually called in the thermal zone device .unbind callback. * * Return: 0 on success, the proper error value otherwise. */ int thermal_zone_unbind_cooling_device(struct thermal_zone_device *tz, int trip, struct thermal_cooling_device *cdev) { struct thermal_instance *pos, *next; mutex_lock(&tz->lock); mutex_lock(&cdev->lock); list_for_each_entry_safe(pos, next, &tz->thermal_instances, tz_node) { if (pos->tz == tz && pos->trip == trip && pos->cdev == cdev) { list_del(&pos->tz_node); list_del(&pos->cdev_node); mutex_unlock(&cdev->lock); mutex_unlock(&tz->lock); goto unbind; } } mutex_unlock(&cdev->lock); mutex_unlock(&tz->lock); return -ENODEV; unbind: device_remove_file(&tz->device, &pos->weight_attr); device_remove_file(&tz->device, &pos->attr); sysfs_remove_link(&tz->device.kobj, pos->name); ida_simple_remove(&tz->ida, pos->id); kfree(pos); return 0; } EXPORT_SYMBOL_GPL(thermal_zone_unbind_cooling_device); static void thermal_release(struct device *dev) { struct thermal_zone_device *tz; struct thermal_cooling_device *cdev; if (!strncmp(dev_name(dev), "thermal_zone", sizeof("thermal_zone") - 1)) { tz = to_thermal_zone(dev); thermal_zone_destroy_device_groups(tz); kfree(tz); } else if (!strncmp(dev_name(dev), "cooling_device", sizeof("cooling_device") - 1)) { cdev = to_cooling_device(dev); kfree(cdev); } } static struct class thermal_class = { .name = "thermal", .dev_release = thermal_release, }; static inline void print_bind_err_msg(struct thermal_zone_device *tz, struct thermal_cooling_device *cdev, int ret) { dev_err(&tz->device, "binding zone %s with cdev %s failed:%d\n", tz->type, cdev->type, ret); } static void __bind(struct thermal_zone_device *tz, int mask, struct thermal_cooling_device *cdev, unsigned long *limits, unsigned int weight) { int i, ret; for (i = 0; i < tz->trips; i++) { if (mask & (1 << i)) { unsigned long upper, lower; upper = THERMAL_NO_LIMIT; lower = THERMAL_NO_LIMIT; if (limits) { lower = limits[i * 2]; upper = limits[i * 2 + 1]; } ret = thermal_zone_bind_cooling_device(tz, i, cdev, upper, lower, weight); if (ret) print_bind_err_msg(tz, cdev, ret); } } } static void bind_cdev(struct thermal_cooling_device *cdev) { int i, ret; const struct thermal_zone_params *tzp; struct thermal_zone_device *pos = NULL; mutex_lock(&thermal_list_lock); list_for_each_entry(pos, &thermal_tz_list, node) { if (!pos->tzp && !pos->ops->bind) continue; if (pos->ops->bind) { ret = pos->ops->bind(pos, cdev); if (ret) print_bind_err_msg(pos, cdev, ret); continue; } tzp = pos->tzp; if (!tzp || !tzp->tbp) continue; for (i = 0; i < tzp->num_tbps; i++) { if (tzp->tbp[i].cdev || !tzp->tbp[i].match) continue; if (tzp->tbp[i].match(pos, cdev)) continue; tzp->tbp[i].cdev = cdev; __bind(pos, tzp->tbp[i].trip_mask, cdev, tzp->tbp[i].binding_limits, tzp->tbp[i].weight); } } mutex_unlock(&thermal_list_lock); } /** * __thermal_cooling_device_register() - register a new thermal cooling device * @np: a pointer to a device tree node. * @type: the thermal cooling device type. * @devdata: device private data. * @ops: standard thermal cooling devices callbacks. * * This interface function adds a new thermal cooling device (fan/processor/...) * to /sys/class/thermal/ folder as cooling_device[0-*]. It tries to bind itself * to all the thermal zone devices registered at the same time. * It also gives the opportunity to link the cooling device to a device tree * node, so that it can be bound to a thermal zone created out of device tree. * * Return: a pointer to the created struct thermal_cooling_device or an * ERR_PTR. Caller must check return value with IS_ERR*() helpers. */ static struct thermal_cooling_device * __thermal_cooling_device_register(struct device_node *np, const char *type, void *devdata, const struct thermal_cooling_device_ops *ops) { struct thermal_cooling_device *cdev; struct thermal_zone_device *pos = NULL; int result; if (type && strlen(type) >= THERMAL_NAME_LENGTH) return ERR_PTR(-EINVAL); if (!ops || !ops->get_max_state || !ops->get_cur_state || !ops->set_cur_state) return ERR_PTR(-EINVAL); cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); if (!cdev) return ERR_PTR(-ENOMEM); result = ida_simple_get(&thermal_cdev_ida, 0, 0, GFP_KERNEL); if (result < 0) { kfree(cdev); return ERR_PTR(result); } cdev->id = result; strlcpy(cdev->type, type ? : "", sizeof(cdev->type)); mutex_init(&cdev->lock); INIT_LIST_HEAD(&cdev->thermal_instances); cdev->np = np; cdev->ops = ops; cdev->updated = false; cdev->device.class = &thermal_class; cdev->devdata = devdata; thermal_cooling_device_setup_sysfs(cdev); dev_set_name(&cdev->device, "cooling_device%d", cdev->id); result = device_register(&cdev->device); if (result) { ida_simple_remove(&thermal_cdev_ida, cdev->id); kfree(cdev); return ERR_PTR(result); } pr_info("register cooling_device%d-%s\n", cdev->id, cdev->type); /* Add 'this' new cdev to the global cdev list */ mutex_lock(&thermal_list_lock); list_add(&cdev->node, &thermal_cdev_list); mutex_unlock(&thermal_list_lock); /* Update binding information for 'this' new cdev */ bind_cdev(cdev); mutex_lock(&thermal_list_lock); list_for_each_entry(pos, &thermal_tz_list, node) if (atomic_cmpxchg(&pos->need_update, 1, 0)) thermal_zone_device_update(pos, THERMAL_EVENT_UNSPECIFIED); mutex_unlock(&thermal_list_lock); return cdev; } /** * thermal_cooling_device_register() - register a new thermal cooling device * @type: the thermal cooling device type. * @devdata: device private data. * @ops: standard thermal cooling devices callbacks. * * This interface function adds a new thermal cooling device (fan/processor/...) * to /sys/class/thermal/ folder as cooling_device[0-*]. It tries to bind itself * to all the thermal zone devices registered at the same time. * * Return: a pointer to the created struct thermal_cooling_device or an * ERR_PTR. Caller must check return value with IS_ERR*() helpers. */ struct thermal_cooling_device * thermal_cooling_device_register(const char *type, void *devdata, const struct thermal_cooling_device_ops *ops) { return __thermal_cooling_device_register(NULL, type, devdata, ops); } EXPORT_SYMBOL_GPL(thermal_cooling_device_register); /** * thermal_of_cooling_device_register() - register an OF thermal cooling device * @np: a pointer to a device tree node. * @type: the thermal cooling device type. * @devdata: device private data. * @ops: standard thermal cooling devices callbacks. * * This function will register a cooling device with device tree node reference. * This interface function adds a new thermal cooling device (fan/processor/...) * to /sys/class/thermal/ folder as cooling_device[0-*]. It tries to bind itself * to all the thermal zone devices registered at the same time. * * Return: a pointer to the created struct thermal_cooling_device or an * ERR_PTR. Caller must check return value with IS_ERR*() helpers. */ struct thermal_cooling_device * thermal_of_cooling_device_register(struct device_node *np, const char *type, void *devdata, const struct thermal_cooling_device_ops *ops) { return __thermal_cooling_device_register(np, type, devdata, ops); } EXPORT_SYMBOL_GPL(thermal_of_cooling_device_register); static void __unbind(struct thermal_zone_device *tz, int mask, struct thermal_cooling_device *cdev) { int i; for (i = 0; i < tz->trips; i++) if (mask & (1 << i)) thermal_zone_unbind_cooling_device(tz, i, cdev); } /** * thermal_cooling_device_unregister - removes a thermal cooling device * @cdev: the thermal cooling device to remove. * * thermal_cooling_device_unregister() must be called when a registered * thermal cooling device is no longer needed. */ void thermal_cooling_device_unregister(struct thermal_cooling_device *cdev) { int i; const struct thermal_zone_params *tzp; struct thermal_zone_device *tz; struct thermal_cooling_device *pos = NULL; if (!cdev) return; mutex_lock(&thermal_list_lock); list_for_each_entry(pos, &thermal_cdev_list, node) if (pos == cdev) break; if (pos != cdev) { /* thermal cooling device not found */ mutex_unlock(&thermal_list_lock); return; } list_del(&cdev->node); /* Unbind all thermal zones associated with 'this' cdev */ list_for_each_entry(tz, &thermal_tz_list, node) { if (tz->ops->unbind) { tz->ops->unbind(tz, cdev); continue; } if (!tz->tzp || !tz->tzp->tbp) continue; tzp = tz->tzp; for (i = 0; i < tzp->num_tbps; i++) { if (tzp->tbp[i].cdev == cdev) { __unbind(tz, tzp->tbp[i].trip_mask, cdev); tzp->tbp[i].cdev = NULL; } } } mutex_unlock(&thermal_list_lock); ida_simple_remove(&thermal_cdev_ida, cdev->id); device_del(&cdev->device); thermal_cooling_device_destroy_sysfs(cdev); put_device(&cdev->device); } EXPORT_SYMBOL_GPL(thermal_cooling_device_unregister); static void bind_tz(struct thermal_zone_device *tz) { int i, ret; struct thermal_cooling_device *pos = NULL; const struct thermal_zone_params *tzp = tz->tzp; if (!tzp && !tz->ops->bind) return; mutex_lock(&thermal_list_lock); /* If there is ops->bind, try to use ops->bind */ if (tz->ops->bind) { list_for_each_entry(pos, &thermal_cdev_list, node) { ret = tz->ops->bind(tz, pos); if (ret) print_bind_err_msg(tz, pos, ret); } goto exit; } if (!tzp || !tzp->tbp) goto exit; list_for_each_entry(pos, &thermal_cdev_list, node) { for (i = 0; i < tzp->num_tbps; i++) { if (tzp->tbp[i].cdev || !tzp->tbp[i].match) continue; if (tzp->tbp[i].match(tz, pos)) continue; tzp->tbp[i].cdev = pos; __bind(tz, tzp->tbp[i].trip_mask, pos, tzp->tbp[i].binding_limits, tzp->tbp[i].weight); } } exit: mutex_unlock(&thermal_list_lock); } /** * thermal_zone_device_register() - register a new thermal zone device * @type: the thermal zone device type * @trips: the number of trip points the thermal zone support * @mask: a bit string indicating the writeablility of trip points * @devdata: private device data * @ops: standard thermal zone device callbacks * @tzp: thermal zone platform parameters * @passive_delay: number of milliseconds to wait between polls when * performing passive cooling * @polling_delay: number of milliseconds to wait between polls when checking * whether trip points have been crossed (0 for interrupt * driven systems) * * This interface function adds a new thermal zone device (sensor) to * /sys/class/thermal folder as thermal_zone[0-*]. It tries to bind all the * thermal cooling devices registered at the same time. * thermal_zone_device_unregister() must be called when the device is no * longer needed. The passive cooling depends on the .get_trend() return value. * * Return: a pointer to the created struct thermal_zone_device or an * in case of error, an ERR_PTR. Caller must check return value with * IS_ERR*() helpers. */ struct thermal_zone_device * thermal_zone_device_register(const char *type, int trips, int mask, void *devdata, struct thermal_zone_device_ops *ops, struct thermal_zone_params *tzp, int passive_delay, int polling_delay) { struct thermal_zone_device *tz; enum thermal_trip_type trip_type; int trip_temp; int result; int count; struct thermal_governor *governor; if (!type || strlen(type) == 0) return ERR_PTR(-EINVAL); if (type && strlen(type) >= THERMAL_NAME_LENGTH) return ERR_PTR(-EINVAL); if (trips > THERMAL_MAX_TRIPS || trips < 0 || mask >> trips) return ERR_PTR(-EINVAL); if (!ops) return ERR_PTR(-EINVAL); if (trips > 0 && (!ops->get_trip_type || !ops->get_trip_temp)) return ERR_PTR(-EINVAL); tz = kzalloc(sizeof(*tz), GFP_KERNEL); if (!tz) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&tz->thermal_instances); ida_init(&tz->ida); mutex_init(&tz->lock); result = ida_simple_get(&thermal_tz_ida, 0, 0, GFP_KERNEL); if (result < 0) goto free_tz; tz->id = result; strlcpy(tz->type, type, sizeof(tz->type)); tz->ops = ops; tz->tzp = tzp; tz->device.class = &thermal_class; tz->devdata = devdata; tz->trips = trips; tz->passive_delay = passive_delay; tz->polling_delay = polling_delay; /* sys I/F */ /* Add nodes that are always present via .groups */ result = thermal_zone_create_device_groups(tz, mask); if (result) goto remove_id; /* A new thermal zone needs to be updated anyway. */ atomic_set(&tz->need_update, 1); dev_set_name(&tz->device, "thermal_zone%d", tz->id); result = device_register(&tz->device); if (result) goto remove_device_groups; for (count = 0; count < trips; count++) { if (tz->ops->get_trip_type(tz, count, &trip_type)) set_bit(count, &tz->trips_disabled); if (tz->ops->get_trip_temp(tz, count, &trip_temp)) set_bit(count, &tz->trips_disabled); /* Check for bogus trip points */ if (trip_temp == 0) set_bit(count, &tz->trips_disabled); } /* Update 'this' zone's governor information */ mutex_lock(&thermal_governor_lock); if (tz->tzp) governor = __find_governor(tz->tzp->governor_name); else governor = def_governor; result = thermal_set_governor(tz, governor); if (result) { mutex_unlock(&thermal_governor_lock); goto unregister; } mutex_unlock(&thermal_governor_lock); if (!tz->tzp || !tz->tzp->no_hwmon) { result = thermal_add_hwmon_sysfs(tz); if (result) goto unregister; } INIT_DELAYED_WORK(&tz->poll_queue, thermal_zone_device_check); mutex_lock(&thermal_list_lock); list_add_tail(&tz->node, &thermal_tz_list); mutex_unlock(&thermal_list_lock); /* Bind cooling devices for this zone */ bind_tz(tz); thermal_zone_device_reset(tz); /* Update the new thermal zone and mark it as already updated. */ if (atomic_cmpxchg(&tz->need_update, 1, 0)) thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED); return tz; unregister: ida_simple_remove(&thermal_tz_ida, tz->id); device_unregister(&tz->device); return ERR_PTR(result); remove_device_groups: thermal_zone_destroy_device_groups(tz); remove_id: ida_simple_remove(&thermal_tz_ida, tz->id); free_tz: kfree(tz); return ERR_PTR(result); } EXPORT_SYMBOL_GPL(thermal_zone_device_register); /** * thermal_device_unregister - removes the registered thermal zone device * @tz: the thermal zone device to remove */ void thermal_zone_device_unregister(struct thermal_zone_device *tz) { int i; const struct thermal_zone_params *tzp; struct thermal_cooling_device *cdev; struct thermal_zone_device *pos = NULL; if (!tz) return; tzp = tz->tzp; mutex_lock(&thermal_list_lock); list_for_each_entry(pos, &thermal_tz_list, node) if (pos == tz) break; if (pos != tz) { /* thermal zone device not found */ mutex_unlock(&thermal_list_lock); return; } /* force stop pending/running delayed work */ cancel_delayed_work_sync(&(tz->poll_queue)); list_del(&tz->node); /* Unbind all cdevs associated with 'this' thermal zone */ list_for_each_entry(cdev, &thermal_cdev_list, node) { if (tz->ops->unbind) { tz->ops->unbind(tz, cdev); continue; } if (!tzp || !tzp->tbp) break; for (i = 0; i < tzp->num_tbps; i++) { if (tzp->tbp[i].cdev == cdev) { __unbind(tz, tzp->tbp[i].trip_mask, cdev); tzp->tbp[i].cdev = NULL; } } } mutex_unlock(&thermal_list_lock); cancel_delayed_work_sync(&tz->poll_queue); thermal_set_governor(tz, NULL); thermal_remove_hwmon_sysfs(tz); ida_simple_remove(&thermal_tz_ida, tz->id); ida_destroy(&tz->ida); mutex_destroy(&tz->lock); device_unregister(&tz->device); } EXPORT_SYMBOL_GPL(thermal_zone_device_unregister); /** * thermal_zone_get_zone_by_name() - search for a zone and returns its ref * @name: thermal zone name to fetch the temperature * * When only one zone is found with the passed name, returns a reference to it. * * Return: On success returns a reference to an unique thermal zone with * matching name equals to @name, an ERR_PTR otherwise (-EINVAL for invalid * paramenters, -ENODEV for not found and -EEXIST for multiple matches). */ struct thermal_zone_device *thermal_zone_get_zone_by_name(const char *name) { struct thermal_zone_device *pos = NULL, *ref = ERR_PTR(-EINVAL); unsigned int found = 0; if (!name) goto exit; mutex_lock(&thermal_list_lock); list_for_each_entry(pos, &thermal_tz_list, node) if (!strncasecmp(name, pos->type, THERMAL_NAME_LENGTH)) { found++; ref = pos; } mutex_unlock(&thermal_list_lock); /* nothing has been found, thus an error code for it */ if (found == 0) ref = ERR_PTR(-ENODEV); else if (found > 1) /* Success only when an unique zone is found */ ref = ERR_PTR(-EEXIST); exit: return ref; } EXPORT_SYMBOL_GPL(thermal_zone_get_zone_by_name); /** * thermal_zone_get_cdev_by_name() - search for a cooling device and returns * its ref. * @name: thermal cdev name to fetch the temperature * * When only one cdev is found with the passed name, returns a reference to it. * * Return: On success returns a reference to an unique thermal cooling device * with matching name equals to @name, an ERR_PTR otherwise (-EINVAL for * invalid paramenters, -ENODEV for not found and -EEXIST for multiple matches). */ struct thermal_cooling_device *thermal_zone_get_cdev_by_name(const char *name) { struct thermal_cooling_device *pos = NULL, *ref = ERR_PTR(-EINVAL); unsigned int found = 0; if (!name) return ref; mutex_lock(&thermal_list_lock); list_for_each_entry(pos, &thermal_cdev_list, node) if (!strncasecmp(name, pos->type, THERMAL_NAME_LENGTH)) { found++; ref = pos; } mutex_unlock(&thermal_list_lock); /* nothing has been found, thus an error code for it */ if (found == 0) return ERR_PTR(-ENODEV); if (found > 1) return ERR_PTR(-EEXIST); return ref; } EXPORT_SYMBOL_GPL(thermal_zone_get_cdev_by_name); #ifdef CONFIG_NET static const struct genl_multicast_group thermal_event_mcgrps[] = { { .name = THERMAL_GENL_MCAST_GROUP_NAME, }, }; static struct genl_family thermal_event_genl_family __ro_after_init = { .module = THIS_MODULE, .name = THERMAL_GENL_FAMILY_NAME, .version = THERMAL_GENL_VERSION, .maxattr = THERMAL_GENL_ATTR_MAX, .mcgrps = thermal_event_mcgrps, .n_mcgrps = ARRAY_SIZE(thermal_event_mcgrps), }; int thermal_generate_netlink_event(struct thermal_zone_device *tz, enum events event) { struct sk_buff *skb; struct nlattr *attr; struct thermal_genl_event *thermal_event; void *msg_header; int size; int result; static unsigned int thermal_event_seqnum; if (!tz) return -EINVAL; /* allocate memory */ size = nla_total_size(sizeof(struct thermal_genl_event)) + nla_total_size(0); skb = genlmsg_new(size, GFP_ATOMIC); if (!skb) return -ENOMEM; /* add the genetlink message header */ msg_header = genlmsg_put(skb, 0, thermal_event_seqnum++, &thermal_event_genl_family, 0, THERMAL_GENL_CMD_EVENT); if (!msg_header) { nlmsg_free(skb); return -ENOMEM; } /* fill the data */ attr = nla_reserve(skb, THERMAL_GENL_ATTR_EVENT, sizeof(struct thermal_genl_event)); if (!attr) { nlmsg_free(skb); return -EINVAL; } thermal_event = nla_data(attr); if (!thermal_event) { nlmsg_free(skb); return -EINVAL; } memset(thermal_event, 0, sizeof(struct thermal_genl_event)); thermal_event->orig = tz->id; thermal_event->event = event; /* send multicast genetlink message */ genlmsg_end(skb, msg_header); result = genlmsg_multicast(&thermal_event_genl_family, skb, 0, 0, GFP_ATOMIC); if (result) dev_err(&tz->device, "Failed to send netlink event:%d", result); return result; } EXPORT_SYMBOL_GPL(thermal_generate_netlink_event); static int __init genetlink_init(void) { return genl_register_family(&thermal_event_genl_family); } static void genetlink_exit(void) { genl_unregister_family(&thermal_event_genl_family); } #else /* !CONFIG_NET */ static inline int genetlink_init(void) { return 0; } static inline void genetlink_exit(void) {} #endif /* !CONFIG_NET */ #if IS_ENABLED(CONFIG_SEC_THERMAL_LOG) #define BUF_SIZE SZ_1K static void __ref cdev_print(struct work_struct *work) { struct thermal_cooling_device *cdev; unsigned long cur_state = 0; int added = 0, ret = 0; char buffer[BUF_SIZE] = { 0, }; mutex_lock(&thermal_list_lock); list_for_each_entry(cdev, &thermal_cdev_list, node) { if (cdev->ops->get_cur_state) cdev->ops->get_cur_state(cdev, &cur_state); if (cur_state) { ret = snprintf(buffer + added, sizeof(buffer) - added, "[%s:%ld]", cdev->type, cur_state); added += ret; if (added >= BUF_SIZE) break; } } mutex_unlock(&thermal_list_lock); pr_info("thermal: cdev%s\n", buffer); schedule_delayed_work(&cdev_print_work, HZ * 5); } #endif static int thermal_pm_notify(struct notifier_block *nb, unsigned long mode, void *_unused) { struct thermal_zone_device *tz; switch (mode) { case PM_HIBERNATION_PREPARE: case PM_RESTORE_PREPARE: case PM_SUSPEND_PREPARE: #if IS_ENABLED(CONFIG_SEC_THERMAL_LOG) cancel_delayed_work(&cdev_print_work); #endif atomic_set(&in_suspend, 1); break; case PM_POST_HIBERNATION: case PM_POST_RESTORE: case PM_POST_SUSPEND: mutex_lock(&thermal_list_lock); atomic_set(&in_suspend, 0); list_for_each_entry(tz, &thermal_tz_list, node) { if (tz->ops && tz->ops->is_wakeable && tz->ops->is_wakeable(tz)) continue; thermal_zone_device_init(tz); thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED); } mutex_unlock(&thermal_list_lock); #if IS_ENABLED(CONFIG_SEC_THERMAL_LOG) schedule_delayed_work(&cdev_print_work, 0); #endif break; default: break; } return 0; } static struct notifier_block thermal_pm_nb = { .notifier_call = thermal_pm_notify, }; static int __init thermal_init(void) { int result; mutex_init(&poweroff_lock); result = thermal_register_governors(); if (result) goto error; result = class_register(&thermal_class); if (result) goto unregister_governors; result = genetlink_init(); if (result) goto unregister_class; result = of_parse_thermal_zones(); if (result) goto exit_netlink; result = register_pm_notifier(&thermal_pm_nb); if (result) pr_warn("Thermal: Can not register suspend notifier, return %d\n", result); #if IS_ENABLED(CONFIG_SEC_THERMAL_LOG) INIT_DELAYED_WORK(&cdev_print_work, cdev_print); schedule_delayed_work(&cdev_print_work, 0); /* SS THERMAL LOGGING */ ss_thermal_log_init(); #endif return 0; exit_netlink: genetlink_exit(); unregister_class: class_unregister(&thermal_class); unregister_governors: thermal_unregister_governors(); error: ida_destroy(&thermal_tz_ida); ida_destroy(&thermal_cdev_ida); mutex_destroy(&thermal_list_lock); mutex_destroy(&thermal_governor_lock); mutex_destroy(&poweroff_lock); return result; } static void __exit thermal_exit(void) { #if IS_ENABLED(CONFIG_SEC_THERMAL_LOG) cancel_delayed_work(&cdev_print_work); #endif unregister_pm_notifier(&thermal_pm_nb); of_thermal_destroy_zones(); genetlink_exit(); class_unregister(&thermal_class); thermal_unregister_governors(); ida_destroy(&thermal_tz_ida); ida_destroy(&thermal_cdev_ida); mutex_destroy(&thermal_list_lock); mutex_destroy(&thermal_governor_lock); } fs_initcall(thermal_init); module_exit(thermal_exit);