/* * sec_battery_ttf.c * Samsung Mobile Battery Driver * * Copyright (C) 2019 Samsung Electronics * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "sec_battery.h" #include "sec_battery_ttf.h" #define is_ttf_thermal_zone(thermal_zone) ( \ thermal_zone == BAT_THERMAL_NORMAL || \ thermal_zone == BAT_THERMAL_COOL1 || \ thermal_zone == BAT_THERMAL_COOL2) static bool skip_ttf_event(unsigned int misc_event) { return (misc_event & BATT_MISC_EVENT_PASS_THROUGH); } static bool check_ttf_state(unsigned int capacity, int bat_sts) { return ((bat_sts == POWER_SUPPLY_STATUS_CHARGING) || (bat_sts == POWER_SUPPLY_STATUS_FULL && capacity != 100)); } static int get_cc_cv_time(struct sec_battery_info * battery, int ttf_curr, int soc, bool minimum) { struct sec_cv_slope *cv_data = battery->ttf_d->cv_data; int i, design_cap = battery->ttf_d->ttf_capacity; int cc_time = 0, cv_time = 0; int minimum_time = 0; for (i = 0; i < battery->ttf_d->cv_data_length; i++) { if (ttf_curr >= cv_data[i].fg_current) break; } i = i >= battery->ttf_d->cv_data_length ? battery->ttf_d->cv_data_length - 1 : i; if (cv_data[i].soc < soc) { for (i = 0; i < battery->ttf_d->cv_data_length; i++) { if (soc <= cv_data[i].soc) break; } cv_time = ((cv_data[i - 1].time - cv_data[i].time) * (cv_data[i].soc - soc) / (cv_data[i].soc - cv_data[i - 1].soc)) + cv_data[i].time; } else { /* CC mode || NONE */ cv_time = cv_data[i].time; cc_time = design_cap * (cv_data[i].soc - soc) / ttf_curr * 3600 / 1000; pr_debug("%s: cc_time: %d\n", __func__, cc_time); if (cc_time < 0) cc_time = 0; } pr_info("%s: cap: %d, soc: %4d, T: %6d, avg: %4d, cv soc: %4d, i: %4d, val: %d, minimum:%d\n", __func__, design_cap, soc, cv_time + cc_time, battery->current_avg, cv_data[i].soc, i, ttf_curr, minimum); if (minimum) minimum_time = 60; return ((cc_time + cv_time >= 0) ? (cc_time + cv_time + minimum_time) : minimum_time); } static int get_current_soc( char *name) { union power_supply_propval value = {0, }; value.intval = SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE; psy_do_property(name, get, POWER_SUPPLY_PROP_CAPACITY, value); return value.intval; } #define FULL_CAPACITY 850 int sec_calc_ttf(struct sec_battery_info * battery, unsigned int ttf_curr) { struct sec_cv_slope *cv_data = battery->ttf_d->cv_data; int total_time; if (!cv_data || (ttf_curr <= 0)) { pr_info("%s: no cv_data or val: %d\n", __func__, ttf_curr); return -1; } total_time = get_cc_cv_time(battery, ttf_curr, get_current_soc(battery->pdata->fuelgauge_name), true); if (battery->batt_full_capacity > 0 && battery->batt_full_capacity < 100) { pr_info("%s: time to 85 percent\n", __func__); total_time -= get_cc_cv_time(battery, ttf_curr, FULL_CAPACITY, false); } return total_time; } void sec_bat_calc_time_to_full(struct sec_battery_info * battery) { if (delayed_work_pending(&battery->ttf_d->timetofull_work)) { pr_info("%s: keep time_to_full(%5d sec)\n", __func__, battery->ttf_d->timetofull); } else if (check_ttf_state(battery->capacity, battery->status) && !battery->wc_tx_enable && !skip_ttf_event(battery->misc_event)) { int charge = 0; if (is_hv_wire_12v_type(battery->cable_type)) { charge = battery->ttf_d->ttf_hv_12v_charge_current; #if IS_ENABLED(CONFIG_WIRELESS_CHARGING) } else if (is_hv_wireless_type(battery->cable_type) || battery->cable_type == SEC_BATTERY_CABLE_PREPARE_WIRELESS_HV || battery->cable_type == SEC_BATTERY_CABLE_PREPARE_WIRELESS_20) { if (sec_bat_hv_wc_normal_mode_check(battery)) charge = battery->ttf_d->ttf_wireless_charge_current; else if ((battery->cable_type == SEC_BATTERY_CABLE_PREPARE_WIRELESS_20 && !sec_bat_get_lpmode()) || battery->cable_type == SEC_BATTERY_CABLE_HV_WIRELESS_20) charge = battery->ttf_d->ttf_predict_wc20_charge_current; else charge = battery->ttf_d->ttf_hv_wireless_charge_current; } else if (is_nv_wireless_type(battery->cable_type)) { charge = battery->ttf_d->ttf_wireless_charge_current; #endif } else if (is_hv_wire_type(battery->cable_type)) { charge = battery->ttf_d->ttf_hv_charge_current; } else if (is_pd_apdo_wire_type(battery->cable_type) || (is_pd_fpdo_wire_type(battery->cable_type) && battery->hv_pdo)) { if (battery->pd_max_charge_power > HV_CHARGER_STATUS_STANDARD4) { charge = battery->ttf_d->ttf_dc45_charge_current; } else if (battery->pd_max_charge_power > HV_CHARGER_STATUS_STANDARD3) { charge = battery->ttf_d->ttf_dc25_charge_current; } else if (battery->pd_max_charge_power <= battery->pdata->pd_charging_charge_power && battery->pdata->charging_current[battery->cable_type].fast_charging_current >= \ battery->pdata->max_charging_current) { /* same PD power with AFC */ charge = battery->ttf_d->ttf_hv_charge_current; } else { /* other PD charging */ charge = (battery->pd_max_charge_power / 5) > battery->pdata->charging_current[battery->cable_type].fast_charging_current ? battery->pdata->charging_current[battery->cable_type].fast_charging_current : (battery->pd_max_charge_power / 5); } } else { charge = (battery->max_charge_power / 5) > battery->pdata->charging_current[battery->cable_type].fast_charging_current ? battery->pdata->charging_current[battery->cable_type].fast_charging_current : (battery->max_charge_power / 5); } battery->ttf_d->timetofull = sec_calc_ttf(battery, charge); dev_info(battery->dev, "%s: T: %5d sec, passed time: %5ld, current: %d\n", __func__, battery->ttf_d->timetofull, battery->charging_passed_time, charge); } else { battery->ttf_d->timetofull = -1; } } #if IS_ENABLED(CONFIG_WIRELESS_CHARGING) void sec_bat_predict_wc20_time_to_full_current(struct sec_battery_info *battery, int info_idx) { if (info_idx < 0) battery->ttf_d->ttf_predict_wc20_charge_current = 0; else battery->ttf_d->ttf_predict_wc20_charge_current = battery->pdata->wireless_power_info[info_idx].ttf_charge_current; pr_info("%s: %dmA \n", __func__, battery->ttf_d->ttf_predict_wc20_charge_current); } EXPORT_SYMBOL_KUNIT(sec_bat_predict_wc20_time_to_full_current); #endif int sec_ttf_parse_dt(struct sec_battery_info *battery) { struct device_node *np; struct sec_ttf_data *pdata = battery->ttf_d; sec_battery_platform_data_t *bpdata = battery->pdata; int ret = 0, len = 0; const u32 *p; pdata->pdev = battery; np = of_find_node_by_name(NULL, "battery"); if (!np) { pr_info("%s: np NULL\n", __func__); return 1; } ret = of_property_read_u32(np, "battery,ttf_hv_12v_charge_current", &pdata->ttf_hv_12v_charge_current); if (ret) { pdata->ttf_hv_12v_charge_current = bpdata->charging_current[SEC_BATTERY_CABLE_12V_TA].fast_charging_current; pr_info("%s: ttf_hv_12v_charge_current is Empty, Default value %d\n", __func__, pdata->ttf_hv_12v_charge_current); } ret = of_property_read_u32(np, "battery,ttf_hv_charge_current", &pdata->ttf_hv_charge_current); if (ret) { pdata->ttf_hv_charge_current = bpdata->charging_current[SEC_BATTERY_CABLE_9V_TA].fast_charging_current; pr_info("%s: ttf_hv_charge_current is Empty, Default value %d\n", __func__, pdata->ttf_hv_charge_current); } ret = of_property_read_u32(np, "battery,ttf_hv_wireless_charge_current", &pdata->ttf_hv_wireless_charge_current); if (ret) { pdata->ttf_hv_wireless_charge_current = bpdata->charging_current[SEC_BATTERY_CABLE_HV_WIRELESS].fast_charging_current - 300; pr_info("%s: ttf_hv_wireless_charge_current is Empty, Default value %d\n", __func__, pdata->ttf_hv_wireless_charge_current); } ret = of_property_read_u32(np, "battery,ttf_hv_12v_wireless_charge_current", &pdata->ttf_hv_12v_wireless_charge_current); if (ret) { pdata->ttf_hv_12v_wireless_charge_current = bpdata->charging_current[SEC_BATTERY_CABLE_HV_WIRELESS_20].fast_charging_current - 300; pr_info("%s: ttf_hv_12v_wireless_charge_current is Empty, Default value %d\n", __func__, pdata->ttf_hv_12v_wireless_charge_current); } ret = of_property_read_u32(np, "battery,ttf_wireless_charge_current", &pdata->ttf_wireless_charge_current); if (ret) { pdata->ttf_wireless_charge_current = bpdata->charging_current[SEC_BATTERY_CABLE_WIRELESS].input_current_limit; pr_info("%s: ttf_wireless_charge_current is Empty, Default value %d\n", __func__, pdata->ttf_wireless_charge_current); } ret = of_property_read_u32(np, "battery,ttf_dc25_charge_current", &pdata->ttf_dc25_charge_current); if (ret) { pdata->ttf_dc25_charge_current = bpdata->charging_current[SEC_BATTERY_CABLE_9V_TA].fast_charging_current; pr_info("%s: ttf_dc25_charge_current is Empty, Default value %d\n", __func__, pdata->ttf_dc25_charge_current); } ret = of_property_read_u32(np, "battery,ttf_dc45_charge_current", &pdata->ttf_dc45_charge_current); if (ret) { pdata->ttf_dc45_charge_current = pdata->ttf_dc25_charge_current; pr_info("%s: ttf_dc45_charge_current is Empty, Default value %d \n", __func__, pdata->ttf_dc45_charge_current); } ret = of_property_read_u32(np, "battery,ttf_capacity", &pdata->ttf_capacity); if (ret < 0) { pr_err("%s error reading capacity_calculation_type %d\n", __func__, ret); pdata->ttf_capacity = bpdata->battery_full_capacity; } p = of_get_property(np, "battery,cv_data", &len); if (p) { pdata->cv_data = kzalloc(len, GFP_KERNEL); pdata->cv_data_length = len / sizeof(struct sec_cv_slope); pr_err("%s: len= %ld, length= %d, %d\n", __func__, sizeof(int) * len, len, pdata->cv_data_length); ret = of_property_read_u32_array(np, "battery,cv_data", (u32 *)pdata->cv_data, len / sizeof(u32)); if (ret) { pr_err("%s: failed to read battery->cv_data: %d\n", __func__, ret); kfree(pdata->cv_data); pdata->cv_data = NULL; } } else { pr_err("%s: there is not cv_data\n", __func__); } return 0; } void sec_bat_time_to_full_work(struct work_struct *work) { struct sec_ttf_data *dev = container_of(work, struct sec_ttf_data, timetofull_work.work); struct sec_battery_info *battery = dev->pdev; union power_supply_propval value = {0, }; psy_do_property(battery->pdata->charger_name, get, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, value); battery->current_max = value.intval; value.intval = SEC_BATTERY_CURRENT_MA; psy_do_property(battery->pdata->fuelgauge_name, get, POWER_SUPPLY_PROP_CURRENT_NOW, value); battery->current_now = value.intval; value.intval = SEC_BATTERY_CURRENT_MA; psy_do_property(battery->pdata->fuelgauge_name, get, POWER_SUPPLY_PROP_CURRENT_AVG, value); battery->current_avg = value.intval; sec_bat_calc_time_to_full(battery); dev_info(battery->dev, "%s:\n",__func__); if (battery->voltage_now > 0) battery->voltage_now--; power_supply_changed(battery->psy_bat); } void ttf_work_start(struct sec_battery_info *battery) { if (sec_bat_get_lpmode()) { cancel_delayed_work(&battery->ttf_d->timetofull_work); if (battery->current_event & SEC_BAT_CURRENT_EVENT_AFC) { int work_delay = 0; if (!is_wireless_type(battery->cable_type)) { work_delay = battery->pdata->pre_afc_work_delay; } else { work_delay = battery->pdata->pre_wc_afc_work_delay; } queue_delayed_work(battery->monitor_wqueue, &battery->ttf_d->timetofull_work, msecs_to_jiffies(work_delay)); } } } int ttf_display(unsigned int capacity, int bat_sts, int thermal_zone, int time) { if (capacity == 100) return 0; if (check_ttf_state(capacity, bat_sts) && is_ttf_thermal_zone(thermal_zone)) return time; return 0; } EXPORT_SYMBOL_KUNIT(ttf_display); void ttf_init(struct sec_battery_info *battery) { battery->ttf_d = kzalloc(sizeof(struct sec_ttf_data), GFP_KERNEL); if (!battery->ttf_d) { pr_err("Failed to allocate memory\n"); } sec_ttf_parse_dt(battery); battery->ttf_d->timetofull = -1; INIT_DELAYED_WORK(&battery->ttf_d->timetofull_work, sec_bat_time_to_full_work); } EXPORT_SYMBOL_KUNIT(ttf_init);