/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2019 MediaTek Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mtk_dramc.h" #include "dramc.h" #ifdef EMI_READY #include "mt_emi_api.h" #endif struct mem_desc { u64 start; u64 size; }; struct dram_info { u32 rank_num; struct mem_desc rank_info[4]; }; static unsigned int lp4_highest_freq; void __iomem *DRAMC_AO_CHA_BASE_ADDR; void __iomem *DRAMC_AO_CHB_BASE_ADDR; void __iomem *DRAMC_NAO_CHA_BASE_ADDR; void __iomem *DRAMC_NAO_CHB_BASE_ADDR; void __iomem *DDRPHY_AO_CHA_BASE_ADDR; void __iomem *DDRPHY_AO_CHB_BASE_ADDR; void __iomem *DDRPHY_NAO_CHA_BASE_ADDR; void __iomem *DDRPHY_NAO_CHB_BASE_ADDR; unsigned int DRAM_TYPE; #define DRAMC_TAG "[DRAMC]" #define dramc_info(format, ...) pr_info(DRAMC_TAG format, ##__VA_ARGS__) struct dram_info *g_dram_info_dummy_read, *get_dram_info; struct dram_info dram_info_dummy_read; static unsigned int dram_rank_num; static int __init dt_scan_dram_info(unsigned long node, const char *uname, int depth, void *data) { char *type = (char *)of_get_flat_dt_prop(node, "device_type", NULL); /* We are scanning "memory" nodes only */ if (type == NULL) { /* * The longtrail doesn't have a device_type on the * memory node, so look for the node called /memory@0. */ if (depth != 1 || strcmp(uname, "memory@0") != 0) return 0; } else if (strcmp(type, "memory") != 0) return 0; if (node) { get_dram_info = (struct dram_info *)of_get_flat_dt_prop(node, "orig_dram_info", NULL); g_dram_info_dummy_read = &dram_info_dummy_read; dram_rank_num = get_dram_info->rank_num; dram_info_dummy_read.rank_num = dram_rank_num; dramc_info("dram info dram rank number = %d\n", g_dram_info_dummy_read->rank_num); dram_info_dummy_read.rank_info[0].start = 0; dram_info_dummy_read.rank_info[1].start = 0; } return node; } #ifdef CONFIG_MTK_DRAMC_PASR #define __ETT__ 0 int enter_pasr_dpd_config(unsigned char segment_rank0, unsigned char segment_rank1) { unsigned int rank_pasr_segment[2]; unsigned int iRankIdx = 0, iChannelIdx = 0, cnt = 1000; unsigned int u4value_24 = 0; unsigned int u4value_64 = 0; unsigned int u4value_38 = 0; void __iomem *u4rg_24; /* CKE control */ void __iomem *u4rg_64; /* MR4 ZQCS */ void __iomem *u4rg_38; /* MIOCKCTRLOFF */ void __iomem *u4rg_5C; /* MRS */ void __iomem *u4rg_60; /* MRWEN */ void __iomem *u4rg_88; /* MRW_RESPONSE */ #if !__ETT__ unsigned long save_flags; dramc_info("PASR r0 = 0x%x r1 = 0x%x\n", (segment_rank0 & 0xFF), (segment_rank1 & 0xFF)); local_irq_save(save_flags); if (acquire_dram_ctrl() != 0) { local_irq_restore(save_flags); return -1; } /* pr_info("[DRAMC0] get SPM HW SEMAPHORE!\n"); */ #endif rank_pasr_segment[0] = segment_rank0 & 0xFF; /* for rank0 */ rank_pasr_segment[1] = segment_rank1 & 0xFF; /* for rank1 */ /* #if PASR_TEST_SCENARIO == PASR_SUPPORT_2_CHANNEL*/ #ifdef EMI_READY for (iChannelIdx = 0; iChannelIdx < get_ch_num(); iChannelIdx++) { #else for (iChannelIdx = 0; iChannelIdx < 2; iChannelIdx++) { #endif if ((DRAM_TYPE == TYPE_LPDDR4) || (DRAM_TYPE == TYPE_LPDDR4X)) { if (iChannelIdx == 0) { /*Channel-A*/ u4rg_24 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x24); u4rg_64 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x64); u4rg_38 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x38); u4rg_5C = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x5C); u4rg_60 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x60); u4rg_88 = IOMEM(DRAMC_NAO_CHA_BASE_ADDR + 0x88); } else { /*Channel-B*/ u4rg_24 = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x24); u4rg_64 = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x64); u4rg_38 = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x38); u4rg_5C = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x5C); u4rg_60 = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x60); u4rg_88 = IOMEM(DRAMC_NAO_CHB_BASE_ADDR + 0x88); } } else if (DRAM_TYPE == TYPE_LPDDR3) { if (iChannelIdx == 1) break; u4rg_24 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x24); u4rg_64 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x64); u4rg_38 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x38); u4rg_5C = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x5C); u4rg_60 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x60); u4rg_88 = IOMEM(DRAMC_NAO_CHA_BASE_ADDR + 0x88); } else { break; } u4value_64 = readl(u4rg_64); u4value_38 = readl(u4rg_38); u4value_24 = readl(u4rg_24); /* Disable MR4 => 0x64[29] = 1 */ writel(readl(u4rg_64) | 0x20000000, u4rg_64); /* Disable ZQCS => LPDDR4: 0x64[30] = 0 LPDDR3: 0x64[31] = 0 */ writel(readl(u4rg_64) & 0x3FFFFFFF, u4rg_64); #if !__ETT__ mb(); /* flush memory */ #endif udelay(2); /* DCMEN2 = 0 */ writel(readl(u4rg_38) & 0xFFFFFFFD, u4rg_38); /* PHYCLKDYNGEN = 0 */ writel(readl(u4rg_38) & 0xBFFFFFFF, u4rg_38); /* MIOCKCTRLOFF = 1 */ writel(readl(u4rg_38) | 0x04000000, u4rg_38); writel((readl(u4rg_24) & (~((0x1<<5) | (0x1<<7)))) | ((0x1<<4) | (0x1<<6)), u4rg_24); /* CKE0 CKE1 fix on no matter the setting of CKE2RANK*/ #ifdef EMI_READY for (iRankIdx = 0; iRankIdx < get_rk_num(); iRankIdx++) { #else for (iRankIdx = 0; iRankIdx < 2; iRankIdx++) { #endif writel(((iRankIdx << 24) | rank_pasr_segment[iRankIdx] | (0x00000011 << 8)), u4rg_5C); writel(readl(u4rg_60) | 0x00000001, u4rg_60); cnt = 1000; do { if (cnt-- == 0) { dramc_info("R%d PASR MRW fail!\n", (iRankIdx == 0) ? 0 : 1); #if !__ETT__ release_dram_ctrl(); local_irq_restore(save_flags); #endif return -1; } udelay(1); } while ((readl(u4rg_88) & 0x00000001) == 0x0); writel(readl(u4rg_60) & 0xfffffffe, u4rg_60); } writel(u4value_64, u4rg_64); writel(u4value_24, u4rg_24); writel(u4value_38, u4rg_38); writel(0, u4rg_5C); } #if !__ETT__ if (release_dram_ctrl() != 0) pr_warn("[DRAMC0] release SPM HW SEMAPHORE fail!\n"); /* pr_info("[DRAMC0] release SPM HW SEMAPHORE success!\n"); */ local_irq_restore(save_flags); #endif return 0; } int exit_pasr_dpd_config(void) { int ret; ret = enter_pasr_dpd_config(0, 0); return ret; } #else int enter_pasr_dpd_config( unsigned char segment_rank0, unsigned char segment_rank1) { return 0; } int exit_pasr_dpd_config(void) { return 0; } #endif #define MEM_TEST_SIZE 0x2000 #define PATTERN1 0x5A5A5A5A #define PATTERN2 0xA5A5A5A5 int Binning_DRAM_complex_mem_test(void) { unsigned char *MEM8_BASE; unsigned short *MEM16_BASE; unsigned int *MEM32_BASE; unsigned int *MEM_BASE; unsigned long mem_ptr; unsigned char pattern8; unsigned short pattern16; unsigned int i, j, size, pattern32; unsigned int value; unsigned int len = MEM_TEST_SIZE; void *ptr; int ret = 1; ptr = vmalloc(MEM_TEST_SIZE); if (!ptr) { /*dramc_info("fail to vmalloc\n");*/ /*ASSERT(0);*/ ret = -24; goto fail; } MEM8_BASE = (unsigned char *)ptr; MEM16_BASE = (unsigned short *)ptr; MEM32_BASE = (unsigned int *)ptr; MEM_BASE = (unsigned int *)ptr; /* dramc_info("Test DRAM start address 0x%lx\n", (unsigned long)ptr); */ dramc_info("Test DRAM start address %p\n", ptr); dramc_info("Test DRAM SIZE 0x%x\n", MEM_TEST_SIZE); size = len >> 2; /* === Verify the tied bits (tied high) === */ for (i = 0; i < size; i++) MEM32_BASE[i] = 0; for (i = 0; i < size; i++) { if (MEM32_BASE[i] != 0) { /* return -1; */ ret = -1; goto fail; } else MEM32_BASE[i] = 0xffffffff; } /* === Verify the tied bits (tied low) === */ for (i = 0; i < size; i++) { if (MEM32_BASE[i] != 0xffffffff) { /* return -2; */ ret = -2; goto fail; } else MEM32_BASE[i] = 0x00; } /* === Verify pattern 1 (0x00~0xff) === */ pattern8 = 0x00; for (i = 0; i < len; i++) MEM8_BASE[i] = pattern8++; pattern8 = 0x00; for (i = 0; i < len; i++) { if (MEM8_BASE[i] != pattern8++) { /* return -3; */ ret = -3; goto fail; } } /* === Verify pattern 2 (0x00~0xff) === */ pattern8 = 0x00; for (i = j = 0; i < len; i += 2, j++) { if (MEM8_BASE[i] == pattern8) MEM16_BASE[j] = pattern8; if (MEM16_BASE[j] != pattern8) { /* return -4; */ ret = -4; goto fail; } pattern8 += 2; } /* === Verify pattern 3 (0x00~0xffff) === */ pattern16 = 0x00; for (i = 0; i < (len >> 1); i++) MEM16_BASE[i] = pattern16++; pattern16 = 0x00; for (i = 0; i < (len >> 1); i++) { if (MEM16_BASE[i] != pattern16++) { /* return -5; */ ret = -5; goto fail; } } /* === Verify pattern 4 (0x00~0xffffffff) === */ pattern32 = 0x00; for (i = 0; i < (len >> 2); i++) MEM32_BASE[i] = pattern32++; pattern32 = 0x00; for (i = 0; i < (len >> 2); i++) { if (MEM32_BASE[i] != pattern32++) { /* return -6; */ ret = -6; goto fail; } } /* === Pattern 5: Filling memory range with 0x44332211 === */ for (i = 0; i < size; i++) MEM32_BASE[i] = 0x44332211; /* === Read Check then Fill Memory with a5a5a5a5 Pattern === */ for (i = 0; i < size; i++) { if (MEM32_BASE[i] != 0x44332211) { /* return -7; */ ret = -7; goto fail; } else { MEM32_BASE[i] = 0xa5a5a5a5; } } /* === Read Check then Fill Memory with */ /* 00 Byte Pattern at offset 0h === */ for (i = 0; i < size; i++) { if (MEM32_BASE[i] != 0xa5a5a5a5) { /* return -8; */ ret = -8; goto fail; } else { MEM8_BASE[i * 4] = 0x00; } } /* === Read Check then Fill Memory with */ /* 00 Byte Pattern at offset 2h === */ for (i = 0; i < size; i++) { if (MEM32_BASE[i] != 0xa5a5a500) { /* return -9; */ ret = -9; goto fail; } else { MEM8_BASE[i * 4 + 2] = 0x00; } } /* === Read Check then Fill Memory with */ /* 00 Byte Pattern at offset 1h === */ for (i = 0; i < size; i++) { if (MEM32_BASE[i] != 0xa500a500) { /* return -10; */ ret = -10; goto fail; } else { MEM8_BASE[i * 4 + 1] = 0x00; } } /* === Read Check then Fill Memory with */ /* 00 Byte Pattern at offset 3h === */ for (i = 0; i < size; i++) { if (MEM32_BASE[i] != 0xa5000000) { /* return -11; */ ret = -11; goto fail; } else { MEM8_BASE[i * 4 + 3] = 0x00; } } /* === Read Check then Fill Memory with ffff */ /* Word Pattern at offset 1h == */ for (i = 0; i < size; i++) { if (MEM32_BASE[i] != 0x00000000) { /* return -12; */ ret = -12; goto fail; } else { MEM16_BASE[i * 2 + 1] = 0xffff; } } /* === Read Check then Fill Memory with ffff */ /* Word Pattern at offset 0h == */ for (i = 0; i < size; i++) { if (MEM32_BASE[i] != 0xffff0000) { /* return -13; */ ret = -13; goto fail; } else { MEM16_BASE[i * 2] = 0xffff; } } /*=== Read Check === */ for (i = 0; i < size; i++) { if (MEM32_BASE[i] != 0xffffffff) { /* return -14; */ ret = -14; goto fail; } } /************************************************ * Additional verification ************************************************/ /* === stage 1 => write 0 === */ for (i = 0; i < size; i++) MEM_BASE[i] = PATTERN1; /* === stage 2 => read 0, write 0xF === */ for (i = 0; i < size; i++) { value = MEM_BASE[i]; if (value != PATTERN1) { /* return -15; */ ret = -15; goto fail; } MEM_BASE[i] = PATTERN2; } /* === stage 3 => read 0xF, write 0 === */ for (i = 0; i < size; i++) { value = MEM_BASE[i]; if (value != PATTERN2) { /* return -16; */ ret = -16; goto fail; } MEM_BASE[i] = PATTERN1; } /* === stage 4 => read 0, write 0xF === */ for (i = 0; i < size; i++) { value = MEM_BASE[i]; if (value != PATTERN1) { /* return -17; */ ret = -17; goto fail; } MEM_BASE[i] = PATTERN2; } /* === stage 5 => read 0xF, write 0 === */ for (i = 0; i < size; i++) { value = MEM_BASE[i]; if (value != PATTERN2) { /* return -18; */ ret = -18; goto fail; } MEM_BASE[i] = PATTERN1; } /* === stage 6 => read 0 === */ for (i = 0; i < size; i++) { value = MEM_BASE[i]; if (value != PATTERN1) { /* return -19; */ ret = -19; goto fail; } } /* === 1/2/4-byte combination test === */ mem_ptr = (unsigned long)MEM_BASE; while (mem_ptr < ((unsigned long)MEM_BASE + (size << 2))) { *((unsigned char *)mem_ptr) = 0x78; mem_ptr += 1; *((unsigned char *)mem_ptr) = 0x56; mem_ptr += 1; *((unsigned short *)mem_ptr) = 0x1234; mem_ptr += 2; *((unsigned int *)mem_ptr) = 0x12345678; mem_ptr += 4; *((unsigned short *)mem_ptr) = 0x5678; mem_ptr += 2; *((unsigned char *)mem_ptr) = 0x34; mem_ptr += 1; *((unsigned char *)mem_ptr) = 0x12; mem_ptr += 1; *((unsigned int *)mem_ptr) = 0x12345678; mem_ptr += 4; *((unsigned char *)mem_ptr) = 0x78; mem_ptr += 1; *((unsigned char *)mem_ptr) = 0x56; mem_ptr += 1; *((unsigned short *)mem_ptr) = 0x1234; mem_ptr += 2; *((unsigned int *)mem_ptr) = 0x12345678; mem_ptr += 4; *((unsigned short *)mem_ptr) = 0x5678; mem_ptr += 2; *((unsigned char *)mem_ptr) = 0x34; mem_ptr += 1; *((unsigned char *)mem_ptr) = 0x12; mem_ptr += 1; *((unsigned int *)mem_ptr) = 0x12345678; mem_ptr += 4; } for (i = 0; i < size; i++) { value = MEM_BASE[i]; if (value != 0x12345678) { /* return -20; */ ret = -20; goto fail; } } /* === Verify pattern 1 (0x00~0xff) === */ pattern8 = 0x00; MEM8_BASE[0] = pattern8; for (i = 0; i < size * 4; i++) { unsigned char waddr8, raddr8; waddr8 = i + 1; raddr8 = i; if (i < size * 4 - 1) MEM8_BASE[waddr8] = pattern8 + 1; if (MEM8_BASE[raddr8] != pattern8) { /* return -21; */ ret = -21; goto fail; } pattern8++; } /* === Verify pattern 2 (0x00~0xffff) === */ pattern16 = 0x00; MEM16_BASE[0] = pattern16; for (i = 0; i < size * 2; i++) { if (i < size * 2 - 1) MEM16_BASE[i + 1] = pattern16 + 1; if (MEM16_BASE[i] != pattern16) { /* return -22; */ ret = -22; goto fail; } pattern16++; } /* === Verify pattern 3 (0x00~0xffffffff) === */ pattern32 = 0x00; MEM32_BASE[0] = pattern32; for (i = 0; i < size; i++) { if (i < size - 1) MEM32_BASE[i + 1] = pattern32 + 1; if (MEM32_BASE[i] != pattern32) { /* return -23; */ ret = -23; goto fail; } pattern32++; } dramc_info("complex R/W mem test pass\n"); fail: vfree(ptr); return ret; } unsigned int lpDram_Register_Read(unsigned int Reg_base, unsigned int Offset) { if ((Reg_base == DRAMC_NAO_CHA) && (Offset < 0x1000)) return readl(IOMEM(DRAMC_NAO_CHA_BASE_ADDR + Offset)); else if ((Reg_base == DRAMC_NAO_CHB) && (Offset < 0x1000)) return readl(IOMEM(DRAMC_NAO_CHB_BASE_ADDR + Offset)); else if ((Reg_base == DRAMC_AO_CHA) && (Offset < 0x2000)) return readl(IOMEM(DRAMC_AO_CHA_BASE_ADDR + Offset)); else if ((Reg_base == DRAMC_AO_CHB) && (Offset < 0x2000)) return readl(IOMEM(DRAMC_AO_CHB_BASE_ADDR + Offset)); else if ((Reg_base == PHY_NAO_CHA) && (Offset < 0x1000)) return readl(IOMEM(DDRPHY_NAO_CHA_BASE_ADDR + Offset)); else if ((Reg_base == PHY_NAO_CHB) && (Offset < 0x1000)) return readl(IOMEM(DDRPHY_NAO_CHB_BASE_ADDR + Offset)); else if ((Reg_base == PHY_AO_CHA) && (Offset < 0x2000)) return readl(IOMEM(DDRPHY_AO_CHA_BASE_ADDR + Offset)); else if ((Reg_base == PHY_AO_CHB) && (Offset < 0x2000)) return readl(IOMEM(DDRPHY_AO_CHB_BASE_ADDR + Offset)); else return 0; } EXPORT_SYMBOL(lpDram_Register_Read); unsigned int get_dram_data_rate(void) { unsigned int u4PllIdx, u4ShuLevel, u4SDM_PCW, u4PREDIV, u4POSDIV; unsigned int u4CKDIV4, u4VCOFreq, u4DataRate = 0; unsigned int pcw_ofs[2] = { 0xd9c, 0xd94 }; unsigned int prepost_ofs[2] = { 0xda8, 0xda0 }; int channels; channels = get_emi_ch_num(); u4ShuLevel = get_shuffle_status(); /* only CHA have this bit */ u4PllIdx = readl( IOMEM(DDRPHY_AO_CHA_BASE_ADDR + 0x510)) >> 31 & 0x00000001; u4SDM_PCW = readl( IOMEM(DDRPHY_AO_CHA_BASE_ADDR + pcw_ofs[u4PllIdx] + (0x500 * u4ShuLevel))) >> 16; u4PREDIV = (readl( IOMEM(DDRPHY_AO_CHA_BASE_ADDR + prepost_ofs[u4PllIdx] + (0x500 * u4ShuLevel))) & 0x000c0000) >> 18; u4POSDIV = readl( IOMEM(DDRPHY_AO_CHA_BASE_ADDR + prepost_ofs[u4PllIdx] + (0x500 * u4ShuLevel))) & 0x00000007; u4CKDIV4 = (readl( IOMEM(DDRPHY_AO_CHA_BASE_ADDR + 0xd18 + (0x500 * u4ShuLevel))) & 0x08000000) >> 27; u4VCOFreq = ((52>>u4PREDIV)*(u4SDM_PCW>>8))>>u4POSDIV; u4DataRate = u4VCOFreq>>u4CKDIV4; /* *dramc_info("PCW=0x%X, u4PREDIV=%d, u4POSDIV=%d," * " CKDIV4=%d, DataRate=%d\n", * u4SDM_PCW, u4PREDIV, u4POSDIV, u4CKDIV4, u4DataRate); */ if (DRAM_TYPE == TYPE_LPDDR3) { if (u4DataRate == 1859) u4DataRate = 1866; else if (u4DataRate == 1599) u4DataRate = 1600; else if (u4DataRate == 1534) u4DataRate = 1534; else if (u4DataRate == 1196) u4DataRate = 1200; else u4DataRate = 0; } else if ((DRAM_TYPE == TYPE_LPDDR4) || (DRAM_TYPE == TYPE_LPDDR4X)) { if (u4DataRate == 3588) u4DataRate = 3600; else if (u4DataRate == 3198) u4DataRate = 3200; else if (u4DataRate == 2392) u4DataRate = 2400; else if (u4DataRate == 1599) u4DataRate = 1600; else if (u4DataRate == 1534) u4DataRate = 1534; else u4DataRate = 0; } else u4DataRate = 0; return u4DataRate; } EXPORT_SYMBOL(get_dram_data_rate); unsigned int get_shuffle_status(void) { return (readl(PDEF_DRAMC0_CHA_REG_0E4) & 0x6) >> 1; /* HPM = 0, LPM = 1, ULPM = 2; */ } int get_ddr_type(void) { return DRAM_TYPE; } EXPORT_SYMBOL(get_ddr_type); unsigned char get_ddr_mr(unsigned int index) { return (unsigned char)get_dram_mr(index); } EXPORT_SYMBOL(get_ddr_mr); int get_emi_ch_num(void) { #ifdef EMI_READY return get_ch_num(); #else return 0; #endif } EXPORT_SYMBOL(get_emi_ch_num); int dram_steps_freq(unsigned int step) { int freq = -1; /* step here means ddr shuffle */ switch (step) { case 0: if (DRAM_TYPE == TYPE_LPDDR3) freq = 1866; else if (DRAM_TYPE == TYPE_LPDDR4X) freq = 3600; else if (DRAM_TYPE == TYPE_LPDDR4) freq = lp4_highest_freq; break; case 1: if (DRAM_TYPE == TYPE_LPDDR3) freq = 1534; else if ((DRAM_TYPE == TYPE_LPDDR4) || (DRAM_TYPE == TYPE_LPDDR4X)) freq = 2400; break; case 2: if (DRAM_TYPE == TYPE_LPDDR3) freq = 1200; else if ((DRAM_TYPE == TYPE_LPDDR4) || (DRAM_TYPE == TYPE_LPDDR4X)) freq = 1534; break; default: return -1; } return freq; } EXPORT_SYMBOL(dram_steps_freq); static ssize_t complex_mem_test_show(struct device_driver *driver, char *buf) { int ret; ret = Binning_DRAM_complex_mem_test(); if (ret > 0) return snprintf(buf, PAGE_SIZE, "MEM Test all pass\n"); else return snprintf(buf, PAGE_SIZE, "MEM TEST failed %d\n", ret); } static ssize_t complex_mem_test_store(struct device_driver *driver, const char *buf, size_t count) { /*snprintf(buf, "do nothing\n");*/ return count; } static ssize_t read_dram_data_rate_show(struct device_driver *driver, char *buf) { return snprintf(buf, PAGE_SIZE, "DRAM data rate = %d\n", get_dram_data_rate()); } static ssize_t read_dram_data_rate_store(struct device_driver *driver, const char *buf, size_t count) { return count; } #define DRIVER_ATTR(_name, _mode, _show, _store) \ struct driver_attribute driver_attr_##_name = \ __ATTR(_name, _mode, _show, _store) static DRIVER_ATTR(emi_clk_mem_test, 0664, complex_mem_test_show, complex_mem_test_store); static DRIVER_ATTR(read_dram_data_rate, 0664, read_dram_data_rate_show, read_dram_data_rate_store); static int dram_probe(struct platform_device *pdev) { int ret = 0; unsigned int i; struct resource *res; void __iomem *base_temp[8]; struct device_node *node = NULL; pr_debug("[DRAMC] module probe.\n"); for (i = 0; i < (sizeof(base_temp) / sizeof(*base_temp)); i++) { res = platform_get_resource(pdev, IORESOURCE_MEM, i); base_temp[i] = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base_temp[i])) { dramc_info("unable to map %d base\n", i); return -EINVAL; } } DRAMC_AO_CHA_BASE_ADDR = base_temp[0]; DRAMC_AO_CHB_BASE_ADDR = base_temp[1]; DRAMC_NAO_CHA_BASE_ADDR = base_temp[2]; DRAMC_NAO_CHB_BASE_ADDR = base_temp[3]; DDRPHY_AO_CHA_BASE_ADDR = base_temp[4]; DDRPHY_AO_CHB_BASE_ADDR = base_temp[5]; DDRPHY_NAO_CHA_BASE_ADDR = base_temp[6]; DDRPHY_NAO_CHB_BASE_ADDR = base_temp[7]; dramc_info("get DRAMC_AO_CHA_BASE_ADDR @ %p\n", DRAMC_AO_CHA_BASE_ADDR); dramc_info("get DRAMC_AO_CHB_BASE_ADDR @ %p\n", DRAMC_AO_CHB_BASE_ADDR); dramc_info("get DDRPHY_AO_CHA_BASE_ADDR @ %p\n", DDRPHY_AO_CHA_BASE_ADDR); dramc_info("get DDRPHY_AO_CHB_BASE_ADDR @ %p\n", DDRPHY_AO_CHB_BASE_ADDR); dramc_info("get DRAMC_NAO_CHA_BASE_ADDR @ %p\n", DRAMC_NAO_CHA_BASE_ADDR); dramc_info("get DRAMC_NAO_CHB_BASE_ADDR @ %p\n", DRAMC_NAO_CHB_BASE_ADDR); dramc_info("get DDRPHY_NAO_CHA_BASE_ADDR @ %p\n", DDRPHY_NAO_CHA_BASE_ADDR); dramc_info("get DDRPHY_NAO_CHB_BASE_ADDR @ %p\n", DDRPHY_NAO_CHB_BASE_ADDR); node = of_find_compatible_node(NULL, NULL, "mediatek,sleep"); if (node) { SLEEP_BASE_ADDR = of_iomap(node, 0); dramc_info("get SLEEP_BASE_ADDR @ %p\n", SLEEP_BASE_ADDR); } else { dramc_info("can't find SLEEP_BASE_ADDR compatible node\n"); return -1; } #ifdef EMI_READY DRAM_TYPE = get_dram_type(); #else DRAM_TYPE = TYPE_LPDDR4X; #endif dramc_info("dram type =%d\n", DRAM_TYPE); if (!DRAM_TYPE) { dramc_info("dram type error !!\n"); return -1; } dramc_info("Dram Data Rate = %d\n", get_dram_data_rate()); dramc_info("shuffle_status = %d\n", get_shuffle_status()); if (DRAM_TYPE == TYPE_LPDDR4) lp4_highest_freq = get_dram_data_rate(); else lp4_highest_freq = 0; ret = driver_create_file(pdev->dev.driver, &driver_attr_emi_clk_mem_test); if (ret) { dramc_info("fail to create emi_clk_mem_test sysfs files\n"); return ret; } ret = driver_create_file(pdev->dev.driver, &driver_attr_read_dram_data_rate); if (ret) { dramc_info("fail to create read_dram_data_rate sysfs files\n"); return ret; } return 0; } static int dram_remove(struct platform_device *dev) { return 0; } #ifdef CONFIG_OF static const struct of_device_id dram_of_ids[] = { {.compatible = "mediatek,dramc",}, {} }; #endif static struct platform_driver dram_test_drv = { .probe = dram_probe, .remove = dram_remove, .driver = { .name = "emi_clk_test", .owner = THIS_MODULE, #ifdef CONFIG_OF .of_match_table = dram_of_ids, #endif }, }; /* int __init dram_test_init(void) */ static int __init dram_test_init(void) { int ret = 0; ret = platform_driver_register(&dram_test_drv); if (ret) { dramc_info("init fail, ret 0x%x\n", ret); return ret; } if (of_scan_flat_dt(dt_scan_dram_info, NULL) > 0) { dramc_info("find dt_scan_dram_info\n"); } else { dramc_info("can't find dt_scan_dram_info\n"); return -1; } return ret; } static void __exit dram_test_exit(void) { platform_driver_unregister(&dram_test_drv); } postcore_initcall(dram_test_init); module_exit(dram_test_exit); void *mt_dramc_chn_base_get(int channel) { switch (channel) { case 0: return DRAMC_AO_CHA_BASE_ADDR; case 1: return DRAMC_AO_CHB_BASE_ADDR; default: return NULL; } } EXPORT_SYMBOL(mt_dramc_chn_base_get); void *mt_dramc_nao_chn_base_get(int channel) { switch (channel) { case 0: return DRAMC_NAO_CHA_BASE_ADDR; case 1: return DRAMC_NAO_CHB_BASE_ADDR; default: return NULL; } } EXPORT_SYMBOL(mt_dramc_nao_chn_base_get); void *mt_ddrphy_chn_base_get(int channel) { switch (channel) { case 0: return DDRPHY_AO_CHA_BASE_ADDR; case 1: return DDRPHY_AO_CHB_BASE_ADDR; default: return NULL; } } EXPORT_SYMBOL(mt_ddrphy_chn_base_get); void *mt_ddrphy_nao_chn_base_get(int channel) { switch (channel) { case 0: return DDRPHY_NAO_CHA_BASE_ADDR; case 1: return DDRPHY_NAO_CHB_BASE_ADDR; default: return NULL; } } EXPORT_SYMBOL(mt_ddrphy_nao_chn_base_get); unsigned int mt_dramc_chn_get(unsigned int emi_cona) { switch ((emi_cona >> 8) & 0x3) { case 0: return 1; case 1: return 2; default: dramc_info("invalid channel num (emi_cona = 0x%x)\n", emi_cona); } return 0; } unsigned int mt_dramc_chp_get(unsigned int emi_cona) { unsigned int chp; chp = (emi_cona >> 2) & 0x3; return chp + 7; } phys_addr_t mt_dramc_rankbase_get(unsigned int rank) { if (!get_dram_info) return 0; if (rank >= get_dram_info->rank_num) return 0; return get_dram_info->rank_info[rank].start; } unsigned int mt_dramc_ta_support_ranks(void) { return dram_rank_num; } MODULE_DESCRIPTION("MediaTek DRAMC Driver v0.1");