// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 MediaTek Inc. * Authors: * Stanley Chu * Peter Wang */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MTK_AEE_FEATURE #include #endif #include #define CREATE_TRACE_POINTS #include "trace/events/ufs_mtk.h" #include "ufshcd.h" #include "ufshcd-crypto.h" #include "ufshcd-pltfrm.h" #include "ufs_quirks.h" #include "ufs-mediatek.h" #include "ufs-mediatek-dbg.h" #include "ufs-mtk-block.h" #include "unipro.h" #if defined(CONFIG_MACH_MT6781) || defined(CONFIG_MACH_MT6785) #include "mtk_clkbuf_ctl.h" #endif #if defined(CONFIG_SCSI_UFS_HPB) || defined(CONFIG_SCSI_SKHPB) #include "ufshpb.h" #endif u32 ufs_mtk_qcmd_r_cmd_cnt; u32 ufs_mtk_qcmd_w_cmd_cnt; static bool ufs_mtk_is_data_write_cmd(char cmd_op, bool isolation); static bool ufs_mtk_is_data_cmd(char cmd_op, bool isolation); #define ufs_mtk_smc(cmd, val, res) \ arm_smccc_smc(MTK_SIP_UFS_CONTROL, \ cmd, val, 0, 0, 0, 0, 0, &(res)) #define ufs_mtk_va09_pwr_ctrl(res, on) \ ufs_mtk_smc(UFS_MTK_SIP_VA09_PWR_CTRL, on, res) #define ufs_mtk_crypto_ctrl(res, enable) \ ufs_mtk_smc(UFS_MTK_SIP_CRYPTO_CTRL, enable, res) #define ufs_mtk_ref_clk_notify(on, res) \ ufs_mtk_smc(UFS_MTK_SIP_REF_CLK_NOTIFICATION, on, res) #define ufs_mtk_device_reset_ctrl(high, res) \ ufs_mtk_smc(UFS_MTK_SIP_DEVICE_RESET, high, res) #if defined(PMIC_RG_LDO_VUFS_LP_ADDR) #define ufs_mtk_vufs_set_lpm(on) \ pmic_config_interface(PMIC_RG_LDO_VUFS_LP_ADDR, \ (on), \ PMIC_RG_LDO_VUFS_LP_MASK, \ PMIC_RG_LDO_VUFS_LP_SHIFT) #else #define ufs_mtk_vufs_set_lpm(on) #endif int ufsdbg_perf_dump = 0; static struct ufs_hba *ufs_mtk_hba; static const struct ufs_mtk_host_cfg ufs_mtk_mt8183_cfg = { .quirks = UFS_MTK_HOST_QUIRK_BROKEN_AUTO_HIBERN8 #if defined(CONFIG_MACH_MT6877) | UFS_MTK_HOST_QUIRK_UFS_VCC_ALWAYS_ON #elif defined(CONFIG_MACH_MT6893) | UFS_MTK_HOST_QUIRK_UFS_HCI_PERF_HEURISTIC | UFS_MTK_HOST_QUIRK_UFS_VCC_ALWAYS_ON #endif }; static const struct of_device_id ufs_mtk_of_match[] = { { .compatible = "mediatek,mt8183-ufshci", .data = &ufs_mtk_mt8183_cfg }, {}, }; #if defined(CONFIG_MACH_MT6781) || defined(CONFIG_MACH_MT6785) extern bool clk_buf_ctrl(enum clk_buf_id id, bool onoff); #endif struct rpmb_dev *ufs_mtk_rpmb_get_raw_dev() { struct ufs_mtk_host *host = ufshcd_get_variant(ufs_mtk_hba); return host->rawdev_ufs_rpmb; } /* Read Geometry Descriptor for RPMB initialization */ static inline int ufshcd_read_geometry_desc_param(struct ufs_hba *hba, enum geometry_desc_param param_offset, u8 *param_read_buf, u32 param_size) { return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, param_offset, param_read_buf, param_size); } /* * RPMB feature */ #define SEC_PROTOCOL_UFS 0xEC #define SEC_SPECIFIC_UFS_RPMB 0x0001 #define SEC_PROTOCOL_CMD_SIZE 12 #define SEC_PROTOCOL_RETRIES 3 #define SEC_PROTOCOL_RETRIES_ON_RESET 10 #define SEC_PROTOCOL_TIMEOUT msecs_to_jiffies(30000) int ufs_mtk_rpmb_security_out(struct scsi_device *sdev, struct rpmb_frame *frames, u32 cnt) { struct scsi_sense_hdr sshdr = {0}; u32 trans_len = cnt * sizeof(struct rpmb_frame); int reset_retries = SEC_PROTOCOL_RETRIES_ON_RESET; int ret; u8 cmd[SEC_PROTOCOL_CMD_SIZE]; memset(cmd, 0, SEC_PROTOCOL_CMD_SIZE); cmd[0] = SECURITY_PROTOCOL_OUT; cmd[1] = SEC_PROTOCOL_UFS; put_unaligned_be16(SEC_SPECIFIC_UFS_RPMB, cmd + 2); cmd[4] = 0; /* inc_512 bit 7 set to 0 */ put_unaligned_be32(trans_len, cmd + 6); /* transfer length */ /* Ensure device is resumed before RPMB operation */ scsi_autopm_get_device(sdev); retry: ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, frames, trans_len, &sshdr, SEC_PROTOCOL_TIMEOUT, SEC_PROTOCOL_RETRIES, NULL); if (ret && scsi_sense_valid(&sshdr) && sshdr.sense_key == UNIT_ATTENTION) /* * Device reset might occur several times, * give it one more chance */ if (--reset_retries > 0) goto retry; if (ret) dev_err(&sdev->sdev_gendev, "%s: failed with err %0x\n", __func__, ret); if (driver_byte(ret) & DRIVER_SENSE) scsi_print_sense_hdr(sdev, "rpmb: security out", &sshdr); /* Allow device to be runtime suspended */ scsi_autopm_put_device(sdev); return ret; } int ufs_mtk_rpmb_security_in(struct scsi_device *sdev, struct rpmb_frame *frames, u32 cnt) { struct scsi_sense_hdr sshdr = {0}; u32 alloc_len = cnt * sizeof(struct rpmb_frame); int reset_retries = SEC_PROTOCOL_RETRIES_ON_RESET; int ret; u8 cmd[SEC_PROTOCOL_CMD_SIZE]; memset(cmd, 0, SEC_PROTOCOL_CMD_SIZE); cmd[0] = SECURITY_PROTOCOL_IN; cmd[1] = SEC_PROTOCOL_UFS; put_unaligned_be16(SEC_SPECIFIC_UFS_RPMB, cmd + 2); cmd[4] = 0; /* inc_512 bit 7 set to 0 */ put_unaligned_be32(alloc_len, cmd + 6); /* allocation length */ /* Ensure device is resumed before RPMB operation */ scsi_autopm_get_device(sdev); retry: ret = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, frames, alloc_len, &sshdr, SEC_PROTOCOL_TIMEOUT, SEC_PROTOCOL_RETRIES, NULL); if (ret && scsi_sense_valid(&sshdr) && sshdr.sense_key == UNIT_ATTENTION) /* * Device reset might occur several times, * give it one more chance */ if (--reset_retries > 0) goto retry; /* Allow device to be runtime suspended */ scsi_autopm_put_device(sdev); if (ret) dev_err(&sdev->sdev_gendev, "%s: failed with err %0x\n", __func__, ret); if (driver_byte(ret) & DRIVER_SENSE) scsi_print_sense_hdr(sdev, "rpmb: security in", &sshdr); return ret; } static int ufs_mtk_rpmb_cmd_seq(struct device *dev, struct rpmb_cmd *cmds, u32 ncmds) { unsigned long flags; struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct scsi_device *sdev; struct rpmb_cmd *cmd; int i; int ret; spin_lock_irqsave(hba->host->host_lock, flags); sdev = host->sdev_ufs_rpmb; if (sdev) { ret = scsi_device_get(sdev); if (!ret && !scsi_device_online(sdev)) { ret = -ENODEV; scsi_device_put(sdev); } } else { ret = -ENODEV; } spin_unlock_irqrestore(hba->host->host_lock, flags); if (ret) return ret; /* * Send all command one by one. * Use rpmb lock to prevent other rpmb read/write threads cut in line. * Use mutex not spin lock because in/out function might sleep. */ down(&host->rpmb_sem); for (ret = 0, i = 0; i < ncmds && !ret; i++) { cmd = &cmds[i]; if (cmd->flags & RPMB_F_WRITE) ret = ufs_mtk_rpmb_security_out(sdev, cmd->frames, cmd->nframes); else ret = ufs_mtk_rpmb_security_in(sdev, cmd->frames, cmd->nframes); } up(&host->rpmb_sem); scsi_device_put(sdev); return ret; } static struct rpmb_ops ufs_mtk_rpmb_dev_ops = { .cmd_seq = ufs_mtk_rpmb_cmd_seq, .type = RPMB_TYPE_UFS, }; void ufs_mtk_rpmb_add(struct ufs_hba *hba, struct scsi_device *sdev_rpmb) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct rpmb_dev *rdev; u8 rw_size; int ret; host->sdev_ufs_rpmb = sdev_rpmb; ret = ufshcd_read_geometry_desc_param(hba, GEOMETRY_DESC_PARAM_RPMB_RW_SIZE, &rw_size, sizeof(rw_size)); if (ret) { dev_warn(hba->dev, "%s: cannot get rpmb rw limit %d\n", dev_name(hba->dev), ret); /* fallback to singel frame write */ rw_size = 1; } if (hba->dev_quirks & UFS_DEVICE_QUIRK_LIMITED_RPMB_MAX_RW_SIZE) { if (rw_size > 8) rw_size = 8; } dev_info(hba->dev, "rpmb rw_size: %d\n", rw_size); ufs_mtk_rpmb_dev_ops.reliable_wr_cnt = rw_size; /* MTK PATCH: Add handling for scsi_device_get */ if (unlikely(scsi_device_get(host->sdev_ufs_rpmb))) goto out_put_dev; rdev = rpmb_dev_register(hba->dev, &ufs_mtk_rpmb_dev_ops); if (IS_ERR(rdev)) { dev_warn(hba->dev, "%s: cannot register to rpmb %ld\n", dev_name(hba->dev), PTR_ERR(rdev)); goto out_put_dev; } /* * MTK PATCH: Preserve rpmb_dev to globals for connection of legacy * rpmb ioctl solution. */ host->rawdev_ufs_rpmb = rdev; /* * Initialize rpmb semaphore. */ sema_init(&host->rpmb_sem, 1); return; out_put_dev: scsi_device_put(host->sdev_ufs_rpmb); host->sdev_ufs_rpmb = NULL; host->rawdev_ufs_rpmb = NULL; } void ufs_mtk_rpmb_remove(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); unsigned long flags; if (!host->sdev_ufs_rpmb || !hba->host) return; rpmb_dev_unregister(hba->dev); /* * MTK Bug Fix: * * To prevent calling schedule() with preemption disabled, * spin_lock_irqsave shall be behind rpmb_dev_unregister(). */ spin_lock_irqsave(hba->host->host_lock, flags); scsi_device_put(host->sdev_ufs_rpmb); host->sdev_ufs_rpmb = NULL; host->rawdev_ufs_rpmb = NULL; spin_unlock_irqrestore(hba->host->host_lock, flags); } void ufs_mtk_rpmb_quiesce(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); if (host->sdev_ufs_rpmb) scsi_device_quiesce(host->sdev_ufs_rpmb); } /** * ufs_mtk_ioctl_rpmb - perform user rpmb read/write request * @hba: per-adapter instance * @buf_user: user space buffer for ioctl rpmb_cmd data * @return: 0 for success negative error code otherwise * * Expected/Submitted buffer structure is struct rpmb_cmd. * It will read/write data to rpmb */ int ufs_mtk_ioctl_rpmb(struct ufs_hba *hba, const void __user *buf_user) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct rpmb_cmd cmd[3]; struct rpmb_frame *frame_buf = NULL; struct rpmb_frame *frames = NULL; int size = 0; int nframes = 0; unsigned long flags; struct scsi_device *sdev; int ret; int i; /* Get scsi device */ spin_lock_irqsave(hba->host->host_lock, flags); sdev = host->sdev_ufs_rpmb; if (sdev) { ret = scsi_device_get(sdev); if (!ret && !scsi_device_online(sdev)) { ret = -ENODEV; scsi_device_put(sdev); } } else { ret = -ENODEV; } spin_unlock_irqrestore(hba->host->host_lock, flags); if (ret) { dev_info(hba->dev, "%s: failed get rpmb device, ret %d\n", __func__, ret); goto out; } /* Get cmd params from user buffer */ ret = copy_from_user((void *) cmd, buf_user, sizeof(struct rpmb_cmd) * 3); if (ret) { dev_info(hba->dev, "%s: failed copying cmd buffer from user, ret %d\n", __func__, ret); goto out_put; } /* Check number of rpmb frames */ for (i = 0; i < 3; i++) { ret = (int)rpmb_get_rw_size(ufs_mtk_rpmb_get_raw_dev()); if (cmd[i].nframes > ret) { dev_info(hba->dev, "%s: number of rpmb frames %u exceeds limit %d\n", __func__, cmd[i].nframes, ret); ret = -EINVAL; goto out_put; } } /* Prepaer frame buffer */ for (i = 0; i < 3; i++) nframes += cmd[i].nframes; frame_buf = kcalloc(nframes, sizeof(struct rpmb_frame), GFP_KERNEL); if (!frame_buf) { ret = -ENOMEM; goto out_put; } frames = frame_buf; /* * Send all command one by one. * Use rpmb lock to prevent other rpmb read/write threads cut in line. * Use mutex not spin lock because in/out function might sleep. */ down(&host->rpmb_sem); for (i = 0; i < 3; i++) { if (cmd[i].nframes == 0) break; /* Get frames from user buffer */ size = sizeof(struct rpmb_frame) * cmd[i].nframes; ret = copy_from_user((void *) frames, cmd[i].frames, size); if (ret) { dev_err(hba->dev, "%s: failed from user, ret %d\n", __func__, ret); break; } /* Do rpmb in out */ if (cmd[i].flags & RPMB_F_WRITE) { ret = ufs_mtk_rpmb_security_out(sdev, frames, cmd[i].nframes); if (ret) { dev_err(hba->dev, "%s: failed rpmb out, err %d\n", __func__, ret); break; } } else { ret = ufs_mtk_rpmb_security_in(sdev, frames, cmd[i].nframes); if (ret) { dev_err(hba->dev, "%s: failed rpmb in, err %d\n", __func__, ret); break; } /* Copy frames to user buffer */ ret = copy_to_user((void *) cmd[i].frames, frames, size); if (ret) { dev_err(hba->dev, "%s: failed to user, err %d\n", __func__, ret); break; } } frames += cmd[i].nframes; } up(&host->rpmb_sem); kfree(frame_buf); out_put: scsi_device_put(sdev); out: return ret; } bool ufs_mtk_has_broken_auto_hibern8(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); return (ufshcd_is_auto_hibern8_supported(hba) && hba->ahit && host->cfg && (host->cfg->quirks & UFS_MTK_HOST_QUIRK_BROKEN_AUTO_HIBERN8)); } bool ufs_mtk_get_unipro_lpm(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); return host->unipro_lpm; } static void ufs_mtk_parse_dt(struct ufs_mtk_host *host) { struct ufs_hba *hba = host->hba; struct device *dev = hba->dev; int ret; u32 tmp; /* * Parse reference clock control setting * SW mode: 0 (use external function to control ref-clk) * Half-HW mode: 1 (use ufshci register to control ref-clk, * but cannot turn off) * HW mode: 2 (use ufshci register to control ref-clk) */ ret = of_property_read_u32(dev->of_node, "mediatek,refclk_ctrl", &host->refclk_ctrl); if (ret) { dev_dbg(hba->dev, "%s: failed to read mediatek,refclk_ctrl, ret=%d\n", __func__, ret); host->refclk_ctrl = REF_CLK_SW_MODE; } /* get and enable va09 regulator */ host->reg_va09 = regulator_get(hba->dev, "va09"); if (!host->reg_va09) { dev_info(hba->dev, "%s: failed to get va09!\n", __func__); } tmp = 0; ret = of_property_read_u32(dev->of_node, "mediatek,vreg_vufs_lpm", &tmp); if (ret) host->vreg_lpm_supported = FALSE; else host->vreg_lpm_supported = tmp ? TRUE : FALSE; if (of_property_read_bool(dev->of_node, "mediatek,ufs-qos")) { host->qos_allowed = true; host->qos_enabled = true; } } void ufs_mtk_cfg_unipro_cg(struct ufs_hba *hba, bool enable) { u32 tmp = 0; if (enable) { ufshcd_dme_get(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), &tmp); tmp = tmp | (1 << RX_SYMBOL_CLK_GATE_EN) | (1 << SYS_CLK_GATE_EN) | (1 << TX_CLK_GATE_EN); ufshcd_dme_set(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), tmp); ufshcd_dme_get(hba, UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), &tmp); tmp = tmp & ~(1 << TX_SYMBOL_CLK_REQ_FORCE); ufshcd_dme_set(hba, UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), tmp); } else { ufshcd_dme_get(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), &tmp); tmp = tmp & ~((1 << RX_SYMBOL_CLK_GATE_EN) | (1 << SYS_CLK_GATE_EN) | (1 << TX_CLK_GATE_EN)); ufshcd_dme_set(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), tmp); ufshcd_dme_get(hba, UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), &tmp); tmp = tmp | (1 << TX_SYMBOL_CLK_REQ_FORCE); ufshcd_dme_set(hba, UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), tmp); } } static void ufs_mtk_crypto_enable(struct ufs_hba *hba) { struct arm_smccc_res res; ufs_mtk_crypto_ctrl(res, 1); if (res.a0) { dev_info(hba->dev, "%s: crypto enable failed, err: %lu\n", __func__, res.a0); } } static void ufs_mtk_host_reset(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); reset_control_assert(host->hci_reset); reset_control_assert(host->crypto_reset); reset_control_assert(host->unipro_reset); usleep_range(100, 110); reset_control_deassert(host->unipro_reset); reset_control_deassert(host->crypto_reset); reset_control_deassert(host->hci_reset); } static int ufs_mtk_init_reset_control(struct ufs_hba *hba, struct reset_control **rc, char *str) { *rc = devm_reset_control_get(hba->dev, str); if (IS_ERR(*rc)) { dev_info(hba->dev, "Failed to get %s: %d\n", str, PTR_ERR(*rc)); *rc = NULL; return PTR_ERR(*rc); } return 0; } static void ufs_mtk_init_reset(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); ufs_mtk_init_reset_control(hba, &host->hci_reset, "hci_rst"); ufs_mtk_init_reset_control(hba, &host->unipro_reset, "unipro_rst"); ufs_mtk_init_reset_control(hba, &host->crypto_reset, "crypto_rst"); } static int ufs_mtk_hce_enable_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); if (status == PRE_CHANGE) { if (host->unipro_lpm) { hba->hba_enable_delay_us = 0; } else { hba->hba_enable_delay_us = 600; ufs_mtk_host_reset(hba); } if (ufshcd_hba_is_crypto_supported(hba)) ufs_mtk_crypto_enable(hba); } return 0; } static void ufs_mtk_pm_qos(struct ufs_hba *hba, bool qos_en) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); if (host && host->pm_qos_init) { if (qos_en) pm_qos_update_request( &host->req_cpu_dma_latency, 0); else pm_qos_update_request( &host->req_cpu_dma_latency, PM_QOS_DEFAULT_VALUE); } } static int ufs_mtk_bind_mphy(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct device *dev = hba->dev; struct device_node *np = dev->of_node; int err = 0; host->mphy = devm_of_phy_get_by_index(dev, np, 0); if (IS_ERR(host->mphy)) { err = PTR_ERR(host->mphy); if (err == -EPROBE_DEFER) dev_info(dev, "%s: ufs mphy hasn't probed yet. err = %d\n", __func__, err); else if (err == -ENODEV) { dev_info(dev, "%s: ufs mphy is no dev. err = %d\n", __func__, err); /* * Allow unbound mphy because not every platform needs specific * mphy control */ err = 0; } else { dev_info(dev, "%s: ufs mphy get failed. err = %d\n", __func__, err); } host->mphy = NULL; } else { dev_info(dev, "%s: ufs mphy is found.\n", __func__); } return err; } static int ufs_mtk_setup_ref_clk(struct ufs_hba *hba, bool on) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct arm_smccc_res res; ktime_t timeout, time_checked; u32 value; if (host->ref_clk_enabled == on) return 0; if (on) { #if defined(CONFIG_MACH_MT6781) || defined(CONFIG_MACH_MT6785) clk_buf_ctrl(CLK_BUF_UFS, on); #else ufs_mtk_ref_clk_notify(on, res); #endif ufshcd_delay_us(host->ref_clk_ungating_wait_us, 10); } /* This is HW and Half-HW flow, SW flow should ignore */ if (host->refclk_ctrl == REF_CLK_SW_MODE) goto out; /* Half-HW mode cannot turn off ref-clk, release xoufs spm req only */ if (host->refclk_ctrl == REF_CLK_HALF_HW_MODE) { ufshcd_writel(hba, REFCLK_RELEASE, REG_UFS_REFCLK_CTRL); goto out; } /* * REG_UFS_REFCLK_CTRL[0] is xoufs_req_s * REG_UFS_REFCLK_CTRL[1] is xoufs_ack_s * xoufs_req_s is used for XOUFS Clock request to SPM * SW sets xoufs_ack_s to trigger Clock Request for XOUFS, and * check xoufs_ack_s set for clock avialable. * SW clears xoufs_ack_s to trigger Clock Release for XOUFS, and * check xoufs_ack_s clear for clock off. */ if (on) ufshcd_writel(hba, REFCLK_REQUEST, REG_UFS_REFCLK_CTRL); else ufshcd_writel(hba, REFCLK_RELEASE, REG_UFS_REFCLK_CTRL); /* Wait for ack */ timeout = ktime_add_us(ktime_get(), REFCLK_REQ_TIMEOUT_US); do { time_checked = ktime_get(); value = ufshcd_readl(hba, REG_UFS_REFCLK_CTRL); /* Wait until ack bit equals to req bit */ if (((value & REFCLK_ACK) >> 1) == (value & REFCLK_REQUEST)) goto out; usleep_range(100, 200); } while (ktime_before(time_checked, timeout)); dev_err(hba->dev, "missing ack of refclk req, reg: 0x%x\n", value); ufs_mtk_ref_clk_notify(host->ref_clk_enabled, res); return -ETIMEDOUT; out: host->ref_clk_enabled = on; if (!on) { ufshcd_delay_us(host->ref_clk_gating_wait_us, 10); #if defined(CONFIG_MACH_MT6781) || defined(CONFIG_MACH_MT6785) clk_buf_ctrl(CLK_BUF_UFS, on); #else ufs_mtk_ref_clk_notify(on, res); #endif } return 0; } static void ufs_mtk_setup_ref_clk_wait_us(struct ufs_hba *hba, u16 gating_us, u16 ungating_us) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); if (hba->dev_info.clk_gating_wait_us) { host->ref_clk_gating_wait_us = hba->dev_info.clk_gating_wait_us; } else { host->ref_clk_gating_wait_us = gating_us; } host->ref_clk_ungating_wait_us = ungating_us; } int ufs_mtk_wait_link_state(struct ufs_hba *hba, u32 state, unsigned long max_wait_ms) { ktime_t timeout, time_checked; u32 val; timeout = ktime_add_ms(ktime_get(), max_wait_ms); do { time_checked = ktime_get(); ufshcd_writel(hba, 0x20, REG_UFS_DEBUG_SEL); val = ufshcd_readl(hba, REG_UFS_PROBE); val = val >> 28; if (val == state) return 0; /* Sleep for max. 200us */ usleep_range(100, 200); } while (ktime_before(time_checked, timeout)); if (val == state) return 0; return -ETIMEDOUT; } static int ufs_mtk_mphy_power_on(struct ufs_hba *hba, bool on) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct phy *mphy = host->mphy; struct arm_smccc_res res; int ret = 0; if (!mphy || !(on ^ host->mphy_powered_on)) return 0; if (on) { if (host->reg_va09) { ret = regulator_enable(host->reg_va09); if (ret < 0) goto out; /* wait 200 us to stablize VA09 */ usleep_range(200, 210); ufs_mtk_va09_pwr_ctrl(res, 1); } phy_power_on(mphy); } else { phy_power_off(mphy); if (host->reg_va09) { ufs_mtk_va09_pwr_ctrl(res, 0); ret = regulator_disable(host->reg_va09); if (ret < 0) goto out; } } out: if (ret) { dev_info(hba->dev, "failed to %s va09: %d\n", on ? "enable" : "disable", ret); } else { host->mphy_powered_on = on; } return ret; } static void ufs_mtk_get_controller_version(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); int ret, ver = 0; if (host->hw_ver.major) return; /* Set default (minimum) version anyway */ host->hw_ver.major = 2; ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_LOCALVERINFO), &ver); if (!ret) { if (ver >= UFS_UNIPRO_VER_1_8) host->hw_ver.major = 3; } } static int ufs_mtk_host_clk_get(struct device *dev, const char *name, struct clk **clk_out) { struct clk *clk; int err = 0; clk = devm_clk_get(dev, name); if (IS_ERR(clk)) err = PTR_ERR(clk); else *clk_out = clk; return err; } static bool ufs_mtk_is_data_write_cmd(char cmd_op, bool isolation) { if (cmd_op == WRITE_10 || cmd_op == WRITE_16 || cmd_op == WRITE_6) return true; if (isolation) { if ((cmd_op == WRITE_BUFFER) || (cmd_op == UNMAP) || (cmd_op == FORMAT_UNIT) || (cmd_op == SECURITY_PROTOCOL_OUT)) return true; } #if defined(CONFIG_SCSI_UFS_HPB) || defined(CONFIG_SCSI_SKHPB) /* All data out operation need check */ if (isolation) { if (cmd_op == UFSHPB_WRITE_BUFFER) return true; } #endif return false; } static bool ufs_mtk_is_data_cmd(char cmd_op, bool isolation) { if (cmd_op == WRITE_10 || cmd_op == READ_10 || cmd_op == WRITE_16 || cmd_op == READ_16 || cmd_op == WRITE_6 || cmd_op == READ_6) return true; if (isolation) { if ((cmd_op == WRITE_BUFFER) || (cmd_op == UNMAP) || (cmd_op == FORMAT_UNIT) || (cmd_op == SECURITY_PROTOCOL_OUT)) return true; } #if defined(CONFIG_SCSI_UFS_HPB) || defined(CONFIG_SCSI_SKHPB) if (cmd_op == UFSHPB_READ_BUFFER || cmd_op == UFSHPB_WRITE_BUFFER) return true; #endif return false; } int ufs_mtk_perf_heurisic_if_allow_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd) { if (!(hba->quirks & UFS_MTK_HOST_QUIRK_UFS_HCI_PERF_HEURISTIC)) return 0; /* Check rw commands only and allow all other commands. */ if (ufs_mtk_is_data_cmd(cmd->cmnd[0], true)) { if (!hba->ufs_mtk_qcmd_r_cmd_cnt && !hba->ufs_mtk_qcmd_w_cmd_cnt) { /* Case: no on-going r or w commands. */ if (ufs_mtk_is_data_write_cmd(cmd->cmnd[0], true)) hba->ufs_mtk_qcmd_w_cmd_cnt++; else hba->ufs_mtk_qcmd_r_cmd_cnt++; } else { if (ufs_mtk_is_data_write_cmd(cmd->cmnd[0], true)) { if (hba->ufs_mtk_qcmd_r_cmd_cnt) return 1; hba->ufs_mtk_qcmd_w_cmd_cnt++; } else { if (hba->ufs_mtk_qcmd_w_cmd_cnt) return 1; hba->ufs_mtk_qcmd_r_cmd_cnt++; } } } return 0; } void ufs_mtk_perf_heurisic_req_done(struct ufs_hba *hba, struct scsi_cmnd *cmd) { if (!(hba->quirks & UFS_MTK_HOST_QUIRK_UFS_HCI_PERF_HEURISTIC)) return; if (ufs_mtk_is_data_cmd(cmd->cmnd[0], true)) { if (ufs_mtk_is_data_write_cmd(cmd->cmnd[0], true)) hba->ufs_mtk_qcmd_w_cmd_cnt--; else hba->ufs_mtk_qcmd_r_cmd_cnt--; } } bool ufs_mtk_perf_is_supported(struct ufs_mtk_host *host) { if (!host->crypto_clk_mux || !host->crypto_parent_clk_normal || !host->crypto_parent_clk_perf || !host->req_vcore || host->crypto_vcore_opp < 0) return false; else return true; } int ufs_mtk_perf_setup_req(struct ufs_mtk_host *host, bool perf) { int err = 0; err = clk_prepare_enable(host->crypto_clk_mux); if (err) { dev_info(host->hba->dev, "%s: clk_prepare_enable(): %d\n", __func__, err); goto out; } if (perf) { mtk_pm_qos_update_request(host->req_vcore, host->crypto_vcore_opp); err = clk_set_parent(host->crypto_clk_mux, host->crypto_parent_clk_perf); } else { err = clk_set_parent(host->crypto_clk_mux, host->crypto_parent_clk_normal); mtk_pm_qos_update_request(host->req_vcore, MTK_PM_QOS_VCORE_OPP_DEFAULT_VALUE); } if (err) dev_info(host->hba->dev, "%s: clk_set_parent(): %d\n", __func__, err); clk_disable_unprepare(host->crypto_clk_mux); out: ufs_mtk_dbg_add_trace(dev_name(host->hba->dev), "perf_mode", perf, 0, (u32) err, 0, 0, 0, 0, 0); return err; } int ufs_mtk_perf_setup_crypto_clk(struct ufs_mtk_host *host, bool perf) { int err = 0; bool rpm_resumed = false; bool clk_prepared = false; if (!ufs_mtk_perf_is_supported(host)) { dev_info(host->hba->dev, "%s: perf mode is unsupported\n", __func__); err = -ENOTSUPP; goto out; } /* runtime resume shall be prior to blocking requests */ pm_runtime_get_sync(host->hba->dev); rpm_resumed = true; /* * reuse clk scaling preparation function to wait until all * on-going commands are done, and then block future commands */ err = ufshcd_clock_scaling_prepare(host->hba); if (err) { dev_info(host->hba->dev, "%s: ufshcd_clock_scaling_prepare(): %d\n", __func__, err); goto out; } clk_prepared = true; err = ufs_mtk_perf_setup_req(host, perf); out: /* * add event before any possible incoming commands * by unblocking requests in ufshcd_clock_scaling_unprepare() */ dev_info(host->hba->dev, "perf mode: request %s %s\n", perf ? "enable" : "disable", err ? "failed" : "ok"); if (clk_prepared) ufshcd_clock_scaling_unprepare(host->hba); if (rpm_resumed) pm_runtime_put_sync(host->hba->dev); return err; } int ufs_mtk_perf_setup(struct ufs_mtk_host *host, bool perf) { int err = 0; if (!ufs_mtk_perf_is_supported(host) || (host->perf_mode != PERF_AUTO)) { /* return without error */ return 0; } err = ufs_mtk_perf_setup_req(host, perf); if (!err) host->perf_enable = perf; else dev_info(host->hba->dev, "%s: %s perf mode fail %d\n", __func__, perf ? "enable":"disable", err); return err; } static int ufs_mtk_perf_init_crypto(struct ufs_hba *hba) { int err = 0; struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct device_node *np = hba->dev->of_node; err = ufs_mtk_host_clk_get(hba->dev, "ufs-vendor-crypto-clk-mux", &host->crypto_clk_mux); if (err) { dev_info(hba->dev, "%s: failed to get ufs-vendor-crypto-clk-mux, err: %d", __func__, err); goto out; } err = ufs_mtk_host_clk_get(hba->dev, "ufs-vendor-crypto-normal-parent-clk", &host->crypto_parent_clk_normal); if (err) { dev_info(hba->dev, "%s: failed to get ufs-vendor-crypto-normal-parent-clk, err: %d", __func__, err); goto out; } err = ufs_mtk_host_clk_get(hba->dev, "ufs-vendor-crypto-perf-parent-clk", &host->crypto_parent_clk_perf); if (err) { dev_info(hba->dev, "%s: failed to get ufs-vendor-crypto-perf-parent-clk, err: %d", __func__, err); goto out; } err = of_property_read_s32(np, "mediatek,perf-crypto-vcore", &host->crypto_vcore_opp); if (err) { dev_info(hba->dev, "%s: failed to get mediatek,perf-crypto-vcore", __func__); host->crypto_vcore_opp = -1; goto out; } /* init VCORE QOS */ host->req_vcore = devm_kzalloc(hba->dev, sizeof(*host->req_vcore), GFP_KERNEL); if (!host->req_vcore) { err = -ENOMEM; goto out; } mtk_pm_qos_add_request(host->req_vcore, MTK_PM_QOS_VCORE_OPP, MTK_PM_QOS_VCORE_OPP_DEFAULT_VALUE); out: if (!err) host->perf_mode = PERF_AUTO; else host->perf_mode = PERF_FORCE_DISABLE; return err; } /** * ufs_mtk_setup_clocks - enables/disable clocks * @hba: host controller instance * @on: If true, enable clocks else disable them. * @status: PRE_CHANGE or POST_CHANGE notify * * Returns 0 on success, non-zero on failure. */ static int ufs_mtk_setup_clocks(struct ufs_hba *hba, bool on, enum ufs_notify_change_status status) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct phy *mphy; int ret = 0; /* * In case ufs_mtk_init() is not yet done, simply ignore. * This ufs_mtk_setup_clocks() shall be called from * ufs_mtk_init() after init is done. */ if (!host) return 0; mphy = host->mphy; if (!on && status == PRE_CHANGE) { /* * Gate ref-clk and poweroff mphy if link state is in OFF * or Hibern8 by either ufshcd_link_state_transition() or * Auto-Hibern8. */ if (!ufshcd_is_link_active(hba) || (!ufshcd_can_hibern8_during_gating(hba) && ufshcd_is_auto_hibern8_enabled(hba))) { ret = ufs_mtk_wait_link_state(hba, VS_LINK_HIBERN8, 15); if (!ret) { ret = ufs_mtk_perf_setup(host, false); if (ret) goto out; ufs_mtk_pm_qos(hba, on); ufs_mtk_setup_ref_clk(hba, on); phy_power_off(mphy); } } if (host && host->qos_enabled) ufs_mtk_biolog_clk_gating(true); } else if (on && status == POST_CHANGE) { phy_power_on(mphy); ufs_mtk_setup_ref_clk(hba, on); ufs_mtk_pm_qos(hba, on); ufs_mtk_perf_setup(host, true); if (host && host->qos_enabled) ufs_mtk_biolog_clk_gating(false); } out: return ret; } /** * ufs_mtk_init - find other essential mmio bases * @hba: host controller instance * * Binds PHY with controller and powers up PHY enabling clocks * and regulators. * * Returns -EPROBE_DEFER if binding fails, returns negative error * on phy power up failure and returns zero on success. */ static int ufs_mtk_init(struct ufs_hba *hba) { const struct of_device_id *id; struct device *dev = hba->dev; struct ufs_mtk_host *host; int err = 0; struct platform_device *pdev; host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) { err = -ENOMEM; dev_info(dev, "%s: no memory for mtk ufs host\n", __func__); goto out; } ufs_mtk_hba = hba; host->hba = hba; ufshcd_set_variant(hba, host); /* Get host quirks */ id = of_match_device(ufs_mtk_of_match, dev); if (!id) { err = -EINVAL; goto out; } if (id->data) { host->cfg = (struct ufs_mtk_host_cfg *)id->data; if (host->cfg->quirks & UFS_MTK_HOST_QUIRK_BROKEN_AUTO_HIBERN8) host->auto_hibern_enabled = true; } /* Rename device to unify device path for booting storage device. */ device_rename(hba->dev, "bootdevice"); /* * fix uaf(use afer free) issue: modify pdev->name, * device_rename will free pdev->name */ pdev = to_platform_device(hba->dev); pdev->name = pdev->dev.kobj.name; err = ufs_mtk_bind_mphy(hba); if (err) goto out_variant_clear; ufs_mtk_init_reset(hba); ufs_mtk_parse_dt(host); /* Enable runtime autosuspend */ hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND; /* Enable clock-gating */ hba->caps |= UFSHCD_CAP_CLK_GATING; /* Allow auto bkops to enabled during runtime suspend */ /* Need to fix VCCQ2 issue first */ /* hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND; */ /* * ufshcd_vops_init() is invoked after * ufshcd_setup_clock(true) in ufshcd_hba_init() thus * phy clock setup is skipped. * * Enable phy power and clocks specifically here. */ ufs_mtk_mphy_power_on(hba, true); ufs_mtk_setup_clocks(hba, true, POST_CHANGE); ufs_mtk_perf_init_crypto(hba); pm_qos_add_request(&host->req_cpu_dma_latency, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); host->pm_qos_init = true; ufs_mtk_biolog_init(host->qos_allowed); ufsdbg_register(hba->dev); goto out; out_variant_clear: ufshcd_set_variant(hba, NULL); out: return err; } /** * ufs_mtk_exit - release resource * @hba: host controller instance */ void ufs_mtk_exit(struct ufs_hba *hba) { struct ufs_mtk_host *host; host = ufshcd_get_variant(hba); if (host && host->pm_qos_init) { /* remove pm_qos when exit */ mtk_pm_qos_remove_request(host->req_vcore); pm_qos_remove_request(&host->req_cpu_dma_latency); host->pm_qos_init = false; } /* prevent pointer is used after hba is freed */ ufs_mtk_hba = NULL; } void ufs_mtk_wait_idle_state(struct ufs_hba *hba, unsigned long retry_ms) { u64 timeout, time_checked; u32 val, sm; bool wait_idle; timeout = sched_clock() + retry_ms * 1000000UL; /* wait a specific time after check base */ udelay(10); wait_idle = false; do { time_checked = sched_clock(); ufshcd_writel(hba, 0x20, REG_UFS_MTK_DEBUG_SEL); val = ufshcd_readl(hba, REG_UFS_MTK_PROBE); sm = val & 0x1f; /* * if state is in H8 enter and H8 enter confirm * wait until return to idle state. */ if ((sm >= 0x8) && (sm <= 0xd)) { wait_idle = true; udelay(50); continue; } else if (!wait_idle) break; if (wait_idle && (sm == 0x1)) break; } while (time_checked < timeout); if (wait_idle && sm != 1) dev_info(hba->dev, "wait idle tmo: 0x%x\n", val); } static void _ufs_mtk_auto_hibern8_update(struct ufs_hba *hba, bool enable) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); /* * To prevent dummy "enable" while multiple slots are finished in * the same loop in __ufshcd_transfer_req_compl(). */ if (enable && host->auto_hibern_enabled) return; ufshcd_writel(hba, (enable) ? hba->ahit : 0, REG_AUTO_HIBERNATE_IDLE_TIMER); host->auto_hibern_enabled = enable; /* wait host return to idle state when ah8 off */ if (!enable) ufs_mtk_wait_idle_state(hba, 5); } static void ufs_mtk_auto_hibern8_update(struct ufs_hba *hba, bool enable) { unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); _ufs_mtk_auto_hibern8_update(hba, enable); spin_unlock_irqrestore(hba->host->host_lock, flags); } static int ufs_mtk_pre_pwr_change(struct ufs_hba *hba, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct ufs_dev_params host_cap; u32 adapt_val; int ret; if (ufs_mtk_has_broken_auto_hibern8(hba)) ufs_mtk_auto_hibern8_update(hba, false); host_cap.tx_lanes = UFS_MTK_LIMIT_NUM_LANES_TX; host_cap.rx_lanes = UFS_MTK_LIMIT_NUM_LANES_RX; host_cap.hs_rx_gear = UFS_MTK_LIMIT_HSGEAR_RX; host_cap.hs_tx_gear = UFS_MTK_LIMIT_HSGEAR_TX; host_cap.pwm_rx_gear = UFS_MTK_LIMIT_PWMGEAR_RX; host_cap.pwm_tx_gear = UFS_MTK_LIMIT_PWMGEAR_TX; host_cap.rx_pwr_pwm = UFS_MTK_LIMIT_RX_PWR_PWM; host_cap.tx_pwr_pwm = UFS_MTK_LIMIT_TX_PWR_PWM; host_cap.rx_pwr_hs = UFS_MTK_LIMIT_RX_PWR_HS; host_cap.tx_pwr_hs = UFS_MTK_LIMIT_TX_PWR_HS; host_cap.hs_rate = UFS_MTK_LIMIT_HS_RATE; host_cap.desired_working_mode = UFS_MTK_LIMIT_DESIRED_MODE; ret = ufshcd_get_pwr_dev_param(&host_cap, dev_max_params, dev_req_params); if (ret) { pr_info("%s: failed to determine capabilities\n", __func__); } if (host->hw_ver.major >= 3) { if (dev_req_params->gear_tx == UFS_HS_G4) adapt_val = PA_INITIAL_ADAPT; else adapt_val = PA_NO_ADAPT; #ifndef CONFIG_MACH_MT6877 // TODO: temporary disable the action to avoid boot fail for MT6877 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXHSADAPTTYPE), adapt_val); #endif } return ret; } static int ufs_mtk_pwr_change_notify(struct ufs_hba *hba, enum ufs_notify_change_status stage, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { int ret = 0; switch (stage) { case PRE_CHANGE: ret = ufs_mtk_pre_pwr_change(hba, dev_max_params, dev_req_params); break; case POST_CHANGE: break; default: ret = -EINVAL; break; } return ret; } static int ufs_mtk_unipro_set_pm(struct ufs_hba *hba, bool lpm) { int ret; struct ufs_mtk_host *host = ufshcd_get_variant(hba); ret = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VS_UNIPROPOWERDOWNCONTROL, 0), lpm); if (!ret || !lpm) { /* * Forcibly set as non-LPM mode if UIC commands is failed * to use default hba_enable_delay_us value for re-enabling * the host. */ host->unipro_lpm = lpm; } return ret; } static int ufs_mtk_pre_link(struct ufs_hba *hba) { int ret; u32 tmp; ufs_mtk_get_controller_version(hba); ret = ufs_mtk_unipro_set_pm(hba, false); if (ret) return ret; /* * Setting PA_Local_TX_LCC_Enable to 0 before link startup * to make sure that both host and device TX LCC are disabled * once link startup is completed. */ ret = ufshcd_disable_host_tx_lcc(hba); if (ret) return ret; /* disable deep stall */ ret = ufshcd_dme_get(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), &tmp); if (ret) return ret; tmp &= ~(1 << 6); ret = ufshcd_dme_set(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), tmp); return ret; } static void ufs_mtk_setup_clk_gating(struct ufs_hba *hba) { unsigned long flags; u32 delay; if (ufshcd_is_clkgating_allowed(hba)) { if (ufshcd_is_auto_hibern8_supported(hba) && hba->ahit) delay = FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, hba->ahit) + 5; else delay = 15; spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_gating.delay_ms = delay; spin_unlock_irqrestore(hba->host->host_lock, flags); } } static int ufs_mtk_post_link(struct ufs_hba *hba) { /* enable unipro clock gating feature */ ufs_mtk_cfg_unipro_cg(hba, true); /* configure auto-hibern8 timer to 10 ms */ if (ufshcd_is_auto_hibern8_supported(hba)) { ufshcd_auto_hibern8_update(hba, FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 10) | FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3)); } ufs_mtk_setup_clk_gating(hba); return 0; } static int ufs_mtk_link_startup_notify(struct ufs_hba *hba, enum ufs_notify_change_status stage) { int ret = 0; switch (stage) { case PRE_CHANGE: ret = ufs_mtk_pre_link(hba); break; case POST_CHANGE: ret = ufs_mtk_post_link(hba); break; default: ret = -EINVAL; break; } return ret; } static void ufs_mtk_device_reset(struct ufs_hba *hba) { struct arm_smccc_res res; /* disable hba before device reset */ ufshcd_hba_stop(hba, true); ufs_mtk_device_reset_ctrl(0, res); /* * The reset signal is active low. UFS devices shall detect * more than or equal to 1us of positive or negative RST_n * pulse width. * * To be on safe side, keep the reset low for at least 10us. */ usleep_range(10, 15); ufs_mtk_device_reset_ctrl(1, res); /* Some devices may need time to respond to rst_n */ usleep_range(10000, 15000); dev_info(hba->dev, "device reset done\n"); } static int ufs_mtk_link_set_hpm(struct ufs_hba *hba) { int err; err = ufshcd_hba_enable(hba); if (err) goto out; err = ufs_mtk_unipro_set_pm(hba, false); if (err) goto out; err = ufshcd_uic_hibern8_exit(hba); if (!err) ufshcd_set_link_active(hba); else goto out; err = ufshcd_make_hba_operational(hba); out: if (err) ufshcd_print_info(hba, UFS_INFO_HOST_STATE | UFS_INFO_HOST_REGS | UFS_INFO_PWR); return err; } static int ufs_mtk_link_set_lpm(struct ufs_hba *hba) { int err; err = ufs_mtk_unipro_set_pm(hba, true); if (err) { ufshcd_print_info(hba, UFS_INFO_HOST_STATE | UFS_INFO_HOST_REGS | UFS_INFO_PWR); /* Resume UniPro state for following error recovery */ ufs_mtk_unipro_set_pm(hba, false); return err; } return 0; } static void ufs_mtk_vreg_set_lpm(struct ufs_hba *hba, bool lpm) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); if (lpm & !hba->vreg_info.vcc->enabled) { if (hba->vreg_info.vccq2) regulator_set_mode(hba->vreg_info.vccq2->reg, REGULATOR_MODE_IDLE); else if (host->vreg_lpm_supported) ufs_mtk_vufs_set_lpm(1); } else if (!lpm) { if (hba->vreg_info.vccq2) regulator_set_mode(hba->vreg_info.vccq2->reg, REGULATOR_MODE_NORMAL); else if (host->vreg_lpm_supported) ufs_mtk_vufs_set_lpm(0); } } static int ufs_mtk_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) { int err; struct arm_smccc_res res; if (ufshcd_is_link_hibern8(hba)) { err = ufs_mtk_link_set_lpm(hba); if (err) goto fail; } if (!ufshcd_is_link_active(hba)) { /* * Make sure no error will be returned to prevent * ufshcd_suspend() re-enabling regulators while vreg is still * in low-power mode. */ ufs_mtk_vreg_set_lpm(hba, true); err = ufs_mtk_mphy_power_on(hba, false); if (err) goto fail; } if (ufshcd_is_link_off(hba)) ufs_mtk_device_reset_ctrl(0, res); return 0; fail: /* * Set link as off state enforcedly to trigger * ufshcd_host_reset_and_restore() in ufshcd_suspend() * for completed host reset. */ ufshcd_set_link_off(hba); return -EAGAIN; } static int ufs_mtk_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) { int err; err = ufs_mtk_mphy_power_on(hba, true); if (err) goto fail; ufs_mtk_vreg_set_lpm(hba, false); if (ufshcd_is_link_hibern8(hba)) { err = ufs_mtk_link_set_hpm(hba); if (err) goto fail; } return 0; fail: return ufshcd_link_recovery(hba); } static void ufs_mtk_dbg_register_dump(struct ufs_hba *hba) { ufshcd_dump_regs(hba, REG_UFS_REFCLK_CTRL, 0x4, "Ref-Clk Ctrl "); ufshcd_dump_regs(hba, REG_UFS_EXTREG, 0x4, "Ext Reg "); ufshcd_dump_regs(hba, REG_UFS_MPHYCTRL, REG_UFS_REJECT_MON - REG_UFS_MPHYCTRL + 4, "MPHY Ctrl "); /* Direct debugging information to REG_MTK_PROBE */ ufshcd_writel(hba, 0x20, REG_UFS_DEBUG_SEL); ufshcd_dump_regs(hba, REG_UFS_PROBE, 0x4, "Debug Probe "); } static int ufs_mtk_apply_dev_quirks(struct ufs_hba *hba) { struct ufs_dev_info *dev_info = &hba->dev_info; u16 mid = dev_info->wmanufacturerid; if (mid == UFS_VENDOR_SAMSUNG) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 6); /* * Decide waiting time before gating reference clock and * after ungating reference clock according to vendors' * requirements. */ if (mid == UFS_VENDOR_SAMSUNG) ufs_mtk_setup_ref_clk_wait_us(hba, 1, 32); else if (mid == UFS_VENDOR_SKHYNIX) ufs_mtk_setup_ref_clk_wait_us(hba, 30, 30); else if (mid == UFS_VENDOR_TOSHIBA) ufs_mtk_setup_ref_clk_wait_us(hba, 100, 32); return 0; } static void ufs_mtk_abort_handler(struct ufs_hba *hba, int tag, char *file, int line) { #ifdef CONFIG_MTK_AEE_FEATURE u8 cmd = 0; if (hba->lrb[tag].cmd) cmd = hba->lrb[tag].cmd->cmnd[0]; cmd_hist_disable(); ufs_mediatek_dbg_dump(); aee_kernel_warning_api(file, line, DB_OPT_FS_IO_LOG, "[UFS] Command Timeout", "Command 0x%x timeout, %s:%d", cmd, file, line); cmd_hist_enable(); #endif } static void ufs_mtk_handle_broken_auto_hibern8(struct ufs_hba *hba, unsigned long out_reqs, bool enable) { /* * Always allow "disable" and allow "enable" in non-PM scenario * only. For PM scenario, auto-hibern8 will be enabled by core * driver, e.g., ufshcd_resume(). */ if (!out_reqs && !hba->outstanding_tasks && (!enable || (enable && !hba->pm_op_in_progress))) _ufs_mtk_auto_hibern8_update(hba, enable); } static void ufs_mtk_event_notify(struct ufs_hba *hba, enum ufs_event_type evt, void *data) { static bool skip_first_dev_reset = true; unsigned int val = *(u32 *)data; /* Ignore the first device reset during initialization */ if ((hba->lanes_per_direction == 2) && (evt == UFS_EVT_DEV_RESET) && skip_first_dev_reset) { skip_first_dev_reset = false; return; } if ((evt == UFS_EVT_SUSPEND_ERR && val == -EAGAIN) || (evt == UFS_EVT_PERF_WARN)) return; trace_ufs_mtk_event(evt, val); } static void ufs_mtk_setup_xfer_req(struct ufs_hba *hba, int tag, bool is_scsi_cmd) { struct ufshcd_lrb *lrbp; struct scsi_cmnd *cmd; if (is_scsi_cmd) { lrbp = &hba->lrb[tag]; cmd = lrbp->cmd; if (!ufs_mtk_is_data_cmd(cmd->cmnd[0], false)) return; ufs_mtk_biolog_send_command(tag, cmd); ufs_mtk_biolog_check(hba->outstanding_reqs | (1 << tag)); } if (!ufs_mtk_has_broken_auto_hibern8(hba)) return; ufs_mtk_handle_broken_auto_hibern8(hba, hba->outstanding_reqs, false); } static void ufs_mtk_compl_xfer_req(struct ufs_hba *hba, int tag, unsigned long completed_reqs, bool is_scsi_cmd) { struct ufshcd_lrb *lrbp; struct scsi_cmnd *cmd; unsigned long req_mask; if (is_scsi_cmd) { lrbp = &hba->lrb[tag]; cmd = lrbp->cmd; if (!ufs_mtk_is_data_cmd(cmd->cmnd[0], false)) return; req_mask = hba->outstanding_reqs & ~(1 << tag); ufs_mtk_biolog_transfer_req_compl(tag, req_mask); ufs_mtk_biolog_check(req_mask); } if (!ufs_mtk_has_broken_auto_hibern8(hba)) return; ufs_mtk_handle_broken_auto_hibern8(hba, hba->outstanding_reqs ^ completed_reqs, true); } static void ufs_mtk_setup_task_mgmt(struct ufs_hba *hba, int tag, u8 tm_function) { if (!ufs_mtk_has_broken_auto_hibern8(hba)) return; ufs_mtk_handle_broken_auto_hibern8(hba, hba->outstanding_reqs, false); } static void ufs_mtk_compl_task_mgmt(struct ufs_hba *hba, int tag, int err) { if (!ufs_mtk_has_broken_auto_hibern8(hba)) return; ufs_mtk_handle_broken_auto_hibern8(hba, hba->outstanding_reqs, true); } static void ufs_mtk_hibern8_notify(struct ufs_hba *hba, enum uic_cmd_dme cmd, enum ufs_notify_change_status status) { int ret; if (!ufs_mtk_has_broken_auto_hibern8(hba)) return; if (cmd == UIC_CMD_DME_HIBER_ENTER && status == PRE_CHANGE) { ufs_mtk_auto_hibern8_update(hba, false); ret = ufs_mtk_wait_link_state(hba, VS_LINK_UP, 100); if (ret) ufshcd_link_recovery(hba); } } static bool ufs_mtk_has_vcc_always_on(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); return (host && host->cfg && (host->cfg->quirks & UFS_MTK_HOST_QUIRK_UFS_VCC_ALWAYS_ON)); } static bool ufs_mtk_has_ufshci_perf_heuristic(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); return (host && host->cfg && (host->cfg->quirks & UFS_MTK_HOST_QUIRK_UFS_HCI_PERF_HEURISTIC)); } /** * struct ufs_hba_mtk_vops - UFS MTK specific variant operations * * The variant operations configure the necessary controller and PHY * handshake during initialization. */ static struct ufs_hba_variant_ops ufs_hba_mtk_vops = { .name = "mediatek.ufshci", .init = ufs_mtk_init, .exit = ufs_mtk_exit, .setup_clocks = ufs_mtk_setup_clocks, .hce_enable_notify = ufs_mtk_hce_enable_notify, .link_startup_notify = ufs_mtk_link_startup_notify, .pwr_change_notify = ufs_mtk_pwr_change_notify, .setup_xfer_req = ufs_mtk_setup_xfer_req, .compl_xfer_req = ufs_mtk_compl_xfer_req, .setup_task_mgmt = ufs_mtk_setup_task_mgmt, .compl_task_mgmt = ufs_mtk_compl_task_mgmt, .hibern8_notify = ufs_mtk_hibern8_notify, .apply_dev_quirks = ufs_mtk_apply_dev_quirks, .suspend = ufs_mtk_suspend, .resume = ufs_mtk_resume, .dbg_register_dump = ufs_mtk_dbg_register_dump, .device_reset = ufs_mtk_device_reset, .abort_handler = ufs_mtk_abort_handler, .event_notify = ufs_mtk_event_notify, .has_vcc_always_on = ufs_mtk_has_vcc_always_on, .has_ufshci_perf_heuristic = ufs_mtk_has_ufshci_perf_heuristic, }; struct tag_bootmode { u32 size; u32 tag; u32 bootmode; u32 boottype; }; unsigned int ufs_mtk_get_boot_type(void) { struct tag_bootmode *tags = NULL; struct device_node *node = NULL; unsigned long size = 0; int ret = BOOTDEV_UFS; node = of_find_node_by_path("/chosen"); if (!node) node = of_find_node_by_path("/chosen@0"); if (node) { tags = (struct tag_bootmode *)of_get_property(node, "atag,boot", (int *)&size); } else pr_notice("[%s] of_chosen not found\n", __func__); if (tags) { ret = tags->boottype; if ((ret > 2) || (ret < 0)) ret = BOOTDEV_SDMMC; } else { pr_notice("[%s] 'atag,boot' is not found\n", __func__); } return ret; } /** * ufs_mtk_probe - probe routine of the driver * @pdev: pointer to Platform device handle * * Return zero for success and non-zero for failure */ static int ufs_mtk_probe(struct platform_device *pdev) { int err; int boot_type; struct device *dev = &pdev->dev; /* Add get_boot_type check and return ENODEV if not ufs boot */ boot_type = ufs_mtk_get_boot_type(); if (boot_type != BOOTDEV_UFS) return -ENODEV; /* perform generic probe */ err = ufshcd_pltfrm_init(pdev, &ufs_hba_mtk_vops); if (err) dev_info(dev, "probe failed %d\n", err); return err; } struct ufs_hba *ufs_mtk_get_hba(void) { return ufs_mtk_hba; } EXPORT_SYMBOL_GPL(ufs_mtk_get_hba); /** * ufs_mtk_remove - set driver_data of the device to NULL * @pdev: pointer to platform device handle * * Always return 0 */ static int ufs_mtk_remove(struct platform_device *pdev) { struct ufs_hba *hba = platform_get_drvdata(pdev); pm_runtime_get_sync(&(pdev)->dev); ufshcd_remove(hba); ufs_mtk_biolog_exit(); return 0; } int ufs_mtk_pltfrm_suspend(struct device *dev) { int ret; struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_mtk_host *host = ufshcd_get_variant(hba); if (down_trylock(&host->rpmb_sem)) return -EBUSY; ret = ufshcd_pltfrm_suspend(dev); if (ret) up(&host->rpmb_sem); return ret; } int ufs_mtk_pltfrm_resume(struct device *dev) { int ret; struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_mtk_host *host = ufshcd_get_variant(hba); ret = ufshcd_pltfrm_resume(dev); if (!ret) up(&host->rpmb_sem); return ret; } static const struct dev_pm_ops ufs_mtk_pm_ops = { .suspend = ufs_mtk_pltfrm_suspend, .resume = ufs_mtk_pltfrm_resume, .runtime_suspend = ufshcd_pltfrm_runtime_suspend, .runtime_resume = ufshcd_pltfrm_runtime_resume, .runtime_idle = ufshcd_pltfrm_runtime_idle, }; static struct platform_driver ufs_mtk_pltform = { .probe = ufs_mtk_probe, .remove = ufs_mtk_remove, .shutdown = ufshcd_pltfrm_shutdown, .driver = { .name = "ufshcd-mtk", .pm = &ufs_mtk_pm_ops, .of_match_table = ufs_mtk_of_match, }, }; MODULE_AUTHOR("Stanley Chu "); MODULE_AUTHOR("Peter Wang "); MODULE_DESCRIPTION("MediaTek UFS Host Driver"); MODULE_LICENSE("GPL v2"); module_platform_driver(ufs_mtk_pltform);