// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Google LLC */ #include #include #include #include #include #include "blk-crypto-internal.h" static int num_prealloc_crypt_ctxs = 128; module_param(num_prealloc_crypt_ctxs, int, 0444); MODULE_PARM_DESC(num_prealloc_crypt_ctxs, "Number of bio crypto contexts to preallocate"); static struct kmem_cache *bio_crypt_ctx_cache; static mempool_t *bio_crypt_ctx_pool; int __init bio_crypt_ctx_init(void) { size_t i; bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0); if (!bio_crypt_ctx_cache) return -ENOMEM; bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs, bio_crypt_ctx_cache); if (!bio_crypt_ctx_pool) return -ENOMEM; /* This is assumed in various places. */ BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0); /* Sanity check that no algorithm exceeds the defined limits. */ for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) { BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE); BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE); } return 0; } struct bio_crypt_ctx *bio_crypt_alloc_ctx(gfp_t gfp_mask) { struct bio_crypt_ctx *bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); if (bc) bc->hie_ext4 = false; return bc; } EXPORT_SYMBOL_GPL(bio_crypt_alloc_ctx); void bio_crypt_free_ctx(struct bio *bio) { mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool); bio->bi_crypt_context = NULL; } void bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask) { const struct bio_crypt_ctx *src_bc = src->bi_crypt_context; bio_clone_skip_dm_default_key(dst, src); /* * If a bio is fallback_crypted, then it will be decrypted when * bio_endio is called. As we only want the data to be decrypted once, * copies of the bio must not have have a crypt context. */ if (!src_bc || bio_crypt_fallback_crypted(src_bc)) return; dst->bi_crypt_context = bio_crypt_alloc_ctx(gfp_mask); *dst->bi_crypt_context = *src_bc; if (src_bc->bc_keyslot >= 0) keyslot_manager_get_slot(src_bc->bc_ksm, src_bc->bc_keyslot); } EXPORT_SYMBOL_GPL(bio_crypt_clone); bool bio_crypt_should_process(struct request *rq) { struct bio *bio = rq->bio; if (!bio || !bio->bi_crypt_context) return false; return rq->q->ksm == bio->bi_crypt_context->bc_ksm; } EXPORT_SYMBOL_GPL(bio_crypt_should_process); /* * Checks that two bio crypt contexts are compatible - i.e. that * they are mergeable except for data_unit_num continuity. */ bool bio_crypt_ctx_compatible(struct bio *b_1, struct bio *b_2) { struct bio_crypt_ctx *bc1 = b_1->bi_crypt_context; struct bio_crypt_ctx *bc2 = b_2->bi_crypt_context; if (!bc1) return !bc2; return bc2 && bc1->bc_key == bc2->bc_key; } /* * Checks that two bio crypt contexts are compatible, and also * that their data_unit_nums are continuous (and can hence be merged) * in the order b_1 followed by b_2. */ bool bio_crypt_ctx_mergeable(struct bio *b_1, unsigned int b1_bytes, struct bio *b_2) { struct bio_crypt_ctx *bc1 = b_1->bi_crypt_context; struct bio_crypt_ctx *bc2 = b_2->bi_crypt_context; if (!bio_crypt_ctx_compatible(b_1, b_2)) return false; return !bc1 || bio_crypt_dun_is_contiguous(bc1, b1_bytes, bc2->bc_dun); } void bio_crypt_ctx_release_keyslot(struct bio_crypt_ctx *bc) { keyslot_manager_put_slot(bc->bc_ksm, bc->bc_keyslot); bc->bc_ksm = NULL; bc->bc_keyslot = -1; } int bio_crypt_ctx_acquire_keyslot(struct bio_crypt_ctx *bc, struct keyslot_manager *ksm) { int slot = keyslot_manager_get_slot_for_key(ksm, bc->bc_key); if (slot < 0) return slot; bc->bc_keyslot = slot; bc->bc_ksm = ksm; return 0; }