6db4831e98
Android 14
476 lines
11 KiB
C
476 lines
11 KiB
C
/*
|
|
* Based on linux/arch/arm/mm/nommu.c
|
|
*
|
|
* ARM PMSAv7 supporting functions.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/string.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cp15.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/mpu.h>
|
|
#include <asm/sections.h>
|
|
|
|
#include "mm.h"
|
|
|
|
struct region {
|
|
phys_addr_t base;
|
|
phys_addr_t size;
|
|
unsigned long subreg;
|
|
};
|
|
|
|
static struct region __initdata mem[MPU_MAX_REGIONS];
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
static struct region __initdata xip[MPU_MAX_REGIONS];
|
|
#endif
|
|
|
|
static unsigned int __initdata mpu_min_region_order;
|
|
static unsigned int __initdata mpu_max_regions;
|
|
|
|
static int __init __mpu_min_region_order(void);
|
|
static int __init __mpu_max_regions(void);
|
|
|
|
#ifndef CONFIG_CPU_V7M
|
|
|
|
#define DRBAR __ACCESS_CP15(c6, 0, c1, 0)
|
|
#define IRBAR __ACCESS_CP15(c6, 0, c1, 1)
|
|
#define DRSR __ACCESS_CP15(c6, 0, c1, 2)
|
|
#define IRSR __ACCESS_CP15(c6, 0, c1, 3)
|
|
#define DRACR __ACCESS_CP15(c6, 0, c1, 4)
|
|
#define IRACR __ACCESS_CP15(c6, 0, c1, 5)
|
|
#define RNGNR __ACCESS_CP15(c6, 0, c2, 0)
|
|
|
|
/* Region number */
|
|
static inline void rgnr_write(u32 v)
|
|
{
|
|
write_sysreg(v, RNGNR);
|
|
}
|
|
|
|
/* Data-side / unified region attributes */
|
|
|
|
/* Region access control register */
|
|
static inline void dracr_write(u32 v)
|
|
{
|
|
write_sysreg(v, DRACR);
|
|
}
|
|
|
|
/* Region size register */
|
|
static inline void drsr_write(u32 v)
|
|
{
|
|
write_sysreg(v, DRSR);
|
|
}
|
|
|
|
/* Region base address register */
|
|
static inline void drbar_write(u32 v)
|
|
{
|
|
write_sysreg(v, DRBAR);
|
|
}
|
|
|
|
static inline u32 drbar_read(void)
|
|
{
|
|
return read_sysreg(DRBAR);
|
|
}
|
|
/* Optional instruction-side region attributes */
|
|
|
|
/* I-side Region access control register */
|
|
static inline void iracr_write(u32 v)
|
|
{
|
|
write_sysreg(v, IRACR);
|
|
}
|
|
|
|
/* I-side Region size register */
|
|
static inline void irsr_write(u32 v)
|
|
{
|
|
write_sysreg(v, IRSR);
|
|
}
|
|
|
|
/* I-side Region base address register */
|
|
static inline void irbar_write(u32 v)
|
|
{
|
|
write_sysreg(v, IRBAR);
|
|
}
|
|
|
|
static inline u32 irbar_read(void)
|
|
{
|
|
return read_sysreg(IRBAR);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void rgnr_write(u32 v)
|
|
{
|
|
writel_relaxed(v, BASEADDR_V7M_SCB + PMSAv7_RNR);
|
|
}
|
|
|
|
/* Data-side / unified region attributes */
|
|
|
|
/* Region access control register */
|
|
static inline void dracr_write(u32 v)
|
|
{
|
|
u32 rsr = readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RASR) & GENMASK(15, 0);
|
|
|
|
writel_relaxed((v << 16) | rsr, BASEADDR_V7M_SCB + PMSAv7_RASR);
|
|
}
|
|
|
|
/* Region size register */
|
|
static inline void drsr_write(u32 v)
|
|
{
|
|
u32 racr = readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RASR) & GENMASK(31, 16);
|
|
|
|
writel_relaxed(v | racr, BASEADDR_V7M_SCB + PMSAv7_RASR);
|
|
}
|
|
|
|
/* Region base address register */
|
|
static inline void drbar_write(u32 v)
|
|
{
|
|
writel_relaxed(v, BASEADDR_V7M_SCB + PMSAv7_RBAR);
|
|
}
|
|
|
|
static inline u32 drbar_read(void)
|
|
{
|
|
return readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RBAR);
|
|
}
|
|
|
|
/* ARMv7-M only supports a unified MPU, so I-side operations are nop */
|
|
|
|
static inline void iracr_write(u32 v) {}
|
|
static inline void irsr_write(u32 v) {}
|
|
static inline void irbar_write(u32 v) {}
|
|
static inline unsigned long irbar_read(void) {return 0;}
|
|
|
|
#endif
|
|
|
|
static bool __init try_split_region(phys_addr_t base, phys_addr_t size, struct region *region)
|
|
{
|
|
unsigned long subreg, bslots, sslots;
|
|
phys_addr_t abase = base & ~(size - 1);
|
|
phys_addr_t asize = base + size - abase;
|
|
phys_addr_t p2size = 1 << __fls(asize);
|
|
phys_addr_t bdiff, sdiff;
|
|
|
|
if (p2size != asize)
|
|
p2size *= 2;
|
|
|
|
bdiff = base - abase;
|
|
sdiff = p2size - asize;
|
|
subreg = p2size / PMSAv7_NR_SUBREGS;
|
|
|
|
if ((bdiff % subreg) || (sdiff % subreg))
|
|
return false;
|
|
|
|
bslots = bdiff / subreg;
|
|
sslots = sdiff / subreg;
|
|
|
|
if (bslots || sslots) {
|
|
int i;
|
|
|
|
if (subreg < PMSAv7_MIN_SUBREG_SIZE)
|
|
return false;
|
|
|
|
if (bslots + sslots > PMSAv7_NR_SUBREGS)
|
|
return false;
|
|
|
|
for (i = 0; i < bslots; i++)
|
|
_set_bit(i, ®ion->subreg);
|
|
|
|
for (i = 1; i <= sslots; i++)
|
|
_set_bit(PMSAv7_NR_SUBREGS - i, ®ion->subreg);
|
|
}
|
|
|
|
region->base = abase;
|
|
region->size = p2size;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int __init allocate_region(phys_addr_t base, phys_addr_t size,
|
|
unsigned int limit, struct region *regions)
|
|
{
|
|
int count = 0;
|
|
phys_addr_t diff = size;
|
|
int attempts = MPU_MAX_REGIONS;
|
|
|
|
while (diff) {
|
|
/* Try cover region as is (maybe with help of subregions) */
|
|
if (try_split_region(base, size, ®ions[count])) {
|
|
count++;
|
|
base += size;
|
|
diff -= size;
|
|
size = diff;
|
|
} else {
|
|
/*
|
|
* Maximum aligned region might overflow phys_addr_t
|
|
* if "base" is 0. Hence we keep everything below 4G
|
|
* until we take the smaller of the aligned region
|
|
* size ("asize") and rounded region size ("p2size"),
|
|
* one of which is guaranteed to be smaller than the
|
|
* maximum physical address.
|
|
*/
|
|
phys_addr_t asize = (base - 1) ^ base;
|
|
phys_addr_t p2size = (1 << __fls(diff)) - 1;
|
|
|
|
size = asize < p2size ? asize + 1 : p2size + 1;
|
|
}
|
|
|
|
if (count > limit)
|
|
break;
|
|
|
|
if (!attempts)
|
|
break;
|
|
|
|
attempts--;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* MPU initialisation functions */
|
|
void __init pmsav7_adjust_lowmem_bounds(void)
|
|
{
|
|
phys_addr_t specified_mem_size = 0, total_mem_size = 0;
|
|
struct memblock_region *reg;
|
|
bool first = true;
|
|
phys_addr_t mem_start;
|
|
phys_addr_t mem_end;
|
|
unsigned int mem_max_regions;
|
|
int num, i;
|
|
|
|
/* Free-up PMSAv7_PROBE_REGION */
|
|
mpu_min_region_order = __mpu_min_region_order();
|
|
|
|
/* How many regions are supported */
|
|
mpu_max_regions = __mpu_max_regions();
|
|
|
|
mem_max_regions = min((unsigned int)MPU_MAX_REGIONS, mpu_max_regions);
|
|
|
|
/* We need to keep one slot for background region */
|
|
mem_max_regions--;
|
|
|
|
#ifndef CONFIG_CPU_V7M
|
|
/* ... and one for vectors */
|
|
mem_max_regions--;
|
|
#endif
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
/* plus some regions to cover XIP ROM */
|
|
num = allocate_region(CONFIG_XIP_PHYS_ADDR, __pa(_exiprom) - CONFIG_XIP_PHYS_ADDR,
|
|
mem_max_regions, xip);
|
|
|
|
mem_max_regions -= num;
|
|
#endif
|
|
|
|
for_each_memblock(memory, reg) {
|
|
if (first) {
|
|
phys_addr_t phys_offset = PHYS_OFFSET;
|
|
|
|
/*
|
|
* Initially only use memory continuous from
|
|
* PHYS_OFFSET */
|
|
if (reg->base != phys_offset)
|
|
panic("First memory bank must be contiguous from PHYS_OFFSET");
|
|
|
|
mem_start = reg->base;
|
|
mem_end = reg->base + reg->size;
|
|
specified_mem_size = reg->size;
|
|
first = false;
|
|
} else {
|
|
/*
|
|
* memblock auto merges contiguous blocks, remove
|
|
* all blocks afterwards in one go (we can't remove
|
|
* blocks separately while iterating)
|
|
*/
|
|
pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
|
|
&mem_end, ®->base);
|
|
memblock_remove(reg->base, 0 - reg->base);
|
|
break;
|
|
}
|
|
}
|
|
|
|
memset(mem, 0, sizeof(mem));
|
|
num = allocate_region(mem_start, specified_mem_size, mem_max_regions, mem);
|
|
|
|
for (i = 0; i < num; i++) {
|
|
unsigned long subreg = mem[i].size / PMSAv7_NR_SUBREGS;
|
|
|
|
total_mem_size += mem[i].size - subreg * hweight_long(mem[i].subreg);
|
|
|
|
pr_debug("MPU: base %pa size %pa disable subregions: %*pbl\n",
|
|
&mem[i].base, &mem[i].size, PMSAv7_NR_SUBREGS, &mem[i].subreg);
|
|
}
|
|
|
|
if (total_mem_size != specified_mem_size) {
|
|
pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
|
|
&specified_mem_size, &total_mem_size);
|
|
memblock_remove(mem_start + total_mem_size,
|
|
specified_mem_size - total_mem_size);
|
|
}
|
|
}
|
|
|
|
static int __init __mpu_max_regions(void)
|
|
{
|
|
/*
|
|
* We don't support a different number of I/D side regions so if we
|
|
* have separate instruction and data memory maps then return
|
|
* whichever side has a smaller number of supported regions.
|
|
*/
|
|
u32 dregions, iregions, mpuir;
|
|
|
|
mpuir = read_cpuid_mputype();
|
|
|
|
dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
|
|
|
|
/* Check for separate d-side and i-side memory maps */
|
|
if (mpuir & MPUIR_nU)
|
|
iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
|
|
|
|
/* Use the smallest of the two maxima */
|
|
return min(dregions, iregions);
|
|
}
|
|
|
|
static int __init mpu_iside_independent(void)
|
|
{
|
|
/* MPUIR.nU specifies whether there is *not* a unified memory map */
|
|
return read_cpuid_mputype() & MPUIR_nU;
|
|
}
|
|
|
|
static int __init __mpu_min_region_order(void)
|
|
{
|
|
u32 drbar_result, irbar_result;
|
|
|
|
/* We've kept a region free for this probing */
|
|
rgnr_write(PMSAv7_PROBE_REGION);
|
|
isb();
|
|
/*
|
|
* As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
|
|
* region order
|
|
*/
|
|
drbar_write(0xFFFFFFFC);
|
|
drbar_result = irbar_result = drbar_read();
|
|
drbar_write(0x0);
|
|
/* If the MPU is non-unified, we use the larger of the two minima*/
|
|
if (mpu_iside_independent()) {
|
|
irbar_write(0xFFFFFFFC);
|
|
irbar_result = irbar_read();
|
|
irbar_write(0x0);
|
|
}
|
|
isb(); /* Ensure that MPU region operations have completed */
|
|
/* Return whichever result is larger */
|
|
|
|
return __ffs(max(drbar_result, irbar_result));
|
|
}
|
|
|
|
static int __init mpu_setup_region(unsigned int number, phys_addr_t start,
|
|
unsigned int size_order, unsigned int properties,
|
|
unsigned int subregions, bool need_flush)
|
|
{
|
|
u32 size_data;
|
|
|
|
/* We kept a region free for probing resolution of MPU regions*/
|
|
if (number > mpu_max_regions
|
|
|| number >= MPU_MAX_REGIONS)
|
|
return -ENOENT;
|
|
|
|
if (size_order > 32)
|
|
return -ENOMEM;
|
|
|
|
if (size_order < mpu_min_region_order)
|
|
return -ENOMEM;
|
|
|
|
/* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */
|
|
size_data = ((size_order - 1) << PMSAv7_RSR_SZ) | 1 << PMSAv7_RSR_EN;
|
|
size_data |= subregions << PMSAv7_RSR_SD;
|
|
|
|
if (need_flush)
|
|
flush_cache_all();
|
|
|
|
dsb(); /* Ensure all previous data accesses occur with old mappings */
|
|
rgnr_write(number);
|
|
isb();
|
|
drbar_write(start);
|
|
dracr_write(properties);
|
|
isb(); /* Propagate properties before enabling region */
|
|
drsr_write(size_data);
|
|
|
|
/* Check for independent I-side registers */
|
|
if (mpu_iside_independent()) {
|
|
irbar_write(start);
|
|
iracr_write(properties);
|
|
isb();
|
|
irsr_write(size_data);
|
|
}
|
|
isb();
|
|
|
|
/* Store region info (we treat i/d side the same, so only store d) */
|
|
mpu_rgn_info.rgns[number].dracr = properties;
|
|
mpu_rgn_info.rgns[number].drbar = start;
|
|
mpu_rgn_info.rgns[number].drsr = size_data;
|
|
|
|
mpu_rgn_info.used++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up default MPU regions, doing nothing if there is no MPU
|
|
*/
|
|
void __init pmsav7_setup(void)
|
|
{
|
|
int i, region = 0, err = 0;
|
|
|
|
/* Setup MPU (order is important) */
|
|
|
|
/* Background */
|
|
err |= mpu_setup_region(region++, 0, 32,
|
|
PMSAv7_ACR_XN | PMSAv7_RGN_STRONGLY_ORDERED | PMSAv7_AP_PL1RW_PL0RW,
|
|
0, false);
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
/* ROM */
|
|
for (i = 0; i < ARRAY_SIZE(xip); i++) {
|
|
/*
|
|
* In case we overwrite RAM region we set earlier in
|
|
* head-nommu.S (which is cachable) all subsequent
|
|
* data access till we setup RAM bellow would be done
|
|
* with BG region (which is uncachable), thus we need
|
|
* to clean and invalidate cache.
|
|
*/
|
|
bool need_flush = region == PMSAv7_RAM_REGION;
|
|
|
|
if (!xip[i].size)
|
|
continue;
|
|
|
|
err |= mpu_setup_region(region++, xip[i].base, ilog2(xip[i].size),
|
|
PMSAv7_AP_PL1RO_PL0NA | PMSAv7_RGN_NORMAL,
|
|
xip[i].subreg, need_flush);
|
|
}
|
|
#endif
|
|
|
|
/* RAM */
|
|
for (i = 0; i < ARRAY_SIZE(mem); i++) {
|
|
if (!mem[i].size)
|
|
continue;
|
|
|
|
err |= mpu_setup_region(region++, mem[i].base, ilog2(mem[i].size),
|
|
PMSAv7_AP_PL1RW_PL0RW | PMSAv7_RGN_NORMAL,
|
|
mem[i].subreg, false);
|
|
}
|
|
|
|
/* Vectors */
|
|
#ifndef CONFIG_CPU_V7M
|
|
err |= mpu_setup_region(region++, vectors_base, ilog2(2 * PAGE_SIZE),
|
|
PMSAv7_AP_PL1RW_PL0NA | PMSAv7_RGN_NORMAL,
|
|
0, false);
|
|
#endif
|
|
if (err) {
|
|
panic("MPU region initialization failure! %d", err);
|
|
} else {
|
|
pr_info("Using ARMv7 PMSA Compliant MPU. "
|
|
"Region independence: %s, Used %d of %d regions\n",
|
|
mpu_iside_independent() ? "Yes" : "No",
|
|
mpu_rgn_info.used, mpu_max_regions);
|
|
}
|
|
}
|