kernel_samsung_a34x-permissive/drivers/gpu/drm/i915/i915_debugfs.c
2024-04-28 15:51:13 +02:00

4921 lines
135 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/debugfs.h>
#include <linux/sort.h>
#include <linux/sched/mm.h>
#include "intel_drv.h"
#include "intel_guc_submission.h"
static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
{
return to_i915(node->minor->dev);
}
static int i915_capabilities(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const struct intel_device_info *info = INTEL_INFO(dev_priv);
struct drm_printer p = drm_seq_file_printer(m);
seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
intel_device_info_dump_flags(info, &p);
intel_device_info_dump_runtime(info, &p);
intel_driver_caps_print(&dev_priv->caps, &p);
kernel_param_lock(THIS_MODULE);
i915_params_dump(&i915_modparams, &p);
kernel_param_unlock(THIS_MODULE);
return 0;
}
static char get_active_flag(struct drm_i915_gem_object *obj)
{
return i915_gem_object_is_active(obj) ? '*' : ' ';
}
static char get_pin_flag(struct drm_i915_gem_object *obj)
{
return obj->pin_global ? 'p' : ' ';
}
static char get_tiling_flag(struct drm_i915_gem_object *obj)
{
switch (i915_gem_object_get_tiling(obj)) {
default:
case I915_TILING_NONE: return ' ';
case I915_TILING_X: return 'X';
case I915_TILING_Y: return 'Y';
}
}
static char get_global_flag(struct drm_i915_gem_object *obj)
{
return obj->userfault_count ? 'g' : ' ';
}
static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
{
return obj->mm.mapping ? 'M' : ' ';
}
static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
{
u64 size = 0;
struct i915_vma *vma;
for_each_ggtt_vma(vma, obj) {
if (drm_mm_node_allocated(&vma->node))
size += vma->node.size;
}
return size;
}
static const char *
stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
{
size_t x = 0;
switch (page_sizes) {
case 0:
return "";
case I915_GTT_PAGE_SIZE_4K:
return "4K";
case I915_GTT_PAGE_SIZE_64K:
return "64K";
case I915_GTT_PAGE_SIZE_2M:
return "2M";
default:
if (!buf)
return "M";
if (page_sizes & I915_GTT_PAGE_SIZE_2M)
x += snprintf(buf + x, len - x, "2M, ");
if (page_sizes & I915_GTT_PAGE_SIZE_64K)
x += snprintf(buf + x, len - x, "64K, ");
if (page_sizes & I915_GTT_PAGE_SIZE_4K)
x += snprintf(buf + x, len - x, "4K, ");
buf[x-2] = '\0';
return buf;
}
}
static void
describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct intel_engine_cs *engine;
struct i915_vma *vma;
unsigned int frontbuffer_bits;
int pin_count = 0;
lockdep_assert_held(&obj->base.dev->struct_mutex);
seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
&obj->base,
get_active_flag(obj),
get_pin_flag(obj),
get_tiling_flag(obj),
get_global_flag(obj),
get_pin_mapped_flag(obj),
obj->base.size / 1024,
obj->read_domains,
obj->write_domain,
i915_cache_level_str(dev_priv, obj->cache_level),
obj->mm.dirty ? " dirty" : "",
obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
if (obj->base.name)
seq_printf(m, " (name: %d)", obj->base.name);
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (i915_vma_is_pinned(vma))
pin_count++;
}
seq_printf(m, " (pinned x %d)", pin_count);
if (obj->pin_global)
seq_printf(m, " (global)");
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (!drm_mm_node_allocated(&vma->node))
continue;
seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
i915_vma_is_ggtt(vma) ? "g" : "pp",
vma->node.start, vma->node.size,
stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
if (i915_vma_is_ggtt(vma)) {
switch (vma->ggtt_view.type) {
case I915_GGTT_VIEW_NORMAL:
seq_puts(m, ", normal");
break;
case I915_GGTT_VIEW_PARTIAL:
seq_printf(m, ", partial [%08llx+%x]",
vma->ggtt_view.partial.offset << PAGE_SHIFT,
vma->ggtt_view.partial.size << PAGE_SHIFT);
break;
case I915_GGTT_VIEW_ROTATED:
seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
vma->ggtt_view.rotated.plane[0].width,
vma->ggtt_view.rotated.plane[0].height,
vma->ggtt_view.rotated.plane[0].stride,
vma->ggtt_view.rotated.plane[0].offset,
vma->ggtt_view.rotated.plane[1].width,
vma->ggtt_view.rotated.plane[1].height,
vma->ggtt_view.rotated.plane[1].stride,
vma->ggtt_view.rotated.plane[1].offset);
break;
default:
MISSING_CASE(vma->ggtt_view.type);
break;
}
}
if (vma->fence)
seq_printf(m, " , fence: %d%s",
vma->fence->id,
i915_gem_active_isset(&vma->last_fence) ? "*" : "");
seq_puts(m, ")");
}
if (obj->stolen)
seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
engine = i915_gem_object_last_write_engine(obj);
if (engine)
seq_printf(m, " (%s)", engine->name);
frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
if (frontbuffer_bits)
seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
}
static int obj_rank_by_stolen(const void *A, const void *B)
{
const struct drm_i915_gem_object *a =
*(const struct drm_i915_gem_object **)A;
const struct drm_i915_gem_object *b =
*(const struct drm_i915_gem_object **)B;
if (a->stolen->start < b->stolen->start)
return -1;
if (a->stolen->start > b->stolen->start)
return 1;
return 0;
}
static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct drm_i915_gem_object **objects;
struct drm_i915_gem_object *obj;
u64 total_obj_size, total_gtt_size;
unsigned long total, count, n;
int ret;
total = READ_ONCE(dev_priv->mm.object_count);
objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
if (!objects)
return -ENOMEM;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out;
total_obj_size = total_gtt_size = count = 0;
spin_lock(&dev_priv->mm.obj_lock);
list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
if (count == total)
break;
if (obj->stolen == NULL)
continue;
objects[count++] = obj;
total_obj_size += obj->base.size;
total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
}
list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
if (count == total)
break;
if (obj->stolen == NULL)
continue;
objects[count++] = obj;
total_obj_size += obj->base.size;
}
spin_unlock(&dev_priv->mm.obj_lock);
sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
seq_puts(m, "Stolen:\n");
for (n = 0; n < count; n++) {
seq_puts(m, " ");
describe_obj(m, objects[n]);
seq_putc(m, '\n');
}
seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
count, total_obj_size, total_gtt_size);
mutex_unlock(&dev->struct_mutex);
out:
kvfree(objects);
return ret;
}
struct file_stats {
struct drm_i915_file_private *file_priv;
unsigned long count;
u64 total, unbound;
u64 global, shared;
u64 active, inactive;
};
static int per_file_stats(int id, void *ptr, void *data)
{
struct drm_i915_gem_object *obj = ptr;
struct file_stats *stats = data;
struct i915_vma *vma;
lockdep_assert_held(&obj->base.dev->struct_mutex);
stats->count++;
stats->total += obj->base.size;
if (!obj->bind_count)
stats->unbound += obj->base.size;
if (obj->base.name || obj->base.dma_buf)
stats->shared += obj->base.size;
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (!drm_mm_node_allocated(&vma->node))
continue;
if (i915_vma_is_ggtt(vma)) {
stats->global += vma->node.size;
} else {
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
if (ppgtt->vm.file != stats->file_priv)
continue;
}
if (i915_vma_is_active(vma))
stats->active += vma->node.size;
else
stats->inactive += vma->node.size;
}
return 0;
}
#define print_file_stats(m, name, stats) do { \
if (stats.count) \
seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
name, \
stats.count, \
stats.total, \
stats.active, \
stats.inactive, \
stats.global, \
stats.shared, \
stats.unbound); \
} while (0)
static void print_batch_pool_stats(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *obj;
struct file_stats stats;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int j;
memset(&stats, 0, sizeof(stats));
for_each_engine(engine, dev_priv, id) {
for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
list_for_each_entry(obj,
&engine->batch_pool.cache_list[j],
batch_pool_link)
per_file_stats(0, obj, &stats);
}
}
print_file_stats(m, "[k]batch pool", stats);
}
static int per_file_ctx_stats(int idx, void *ptr, void *data)
{
struct i915_gem_context *ctx = ptr;
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, ctx->i915, id) {
struct intel_context *ce = to_intel_context(ctx, engine);
if (ce->state)
per_file_stats(0, ce->state->obj, data);
if (ce->ring)
per_file_stats(0, ce->ring->vma->obj, data);
}
return 0;
}
static void print_context_stats(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct file_stats stats;
struct drm_file *file;
memset(&stats, 0, sizeof(stats));
mutex_lock(&dev->struct_mutex);
if (dev_priv->kernel_context)
per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
list_for_each_entry(file, &dev->filelist, lhead) {
struct drm_i915_file_private *fpriv = file->driver_priv;
idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
}
mutex_unlock(&dev->struct_mutex);
print_file_stats(m, "[k]contexts", stats);
}
static int i915_gem_object_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
u32 count, mapped_count, purgeable_count, dpy_count, huge_count;
u64 size, mapped_size, purgeable_size, dpy_size, huge_size;
struct drm_i915_gem_object *obj;
unsigned int page_sizes = 0;
struct drm_file *file;
char buf[80];
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "%u objects, %llu bytes\n",
dev_priv->mm.object_count,
dev_priv->mm.object_memory);
size = count = 0;
mapped_size = mapped_count = 0;
purgeable_size = purgeable_count = 0;
huge_size = huge_count = 0;
spin_lock(&dev_priv->mm.obj_lock);
list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
size += obj->base.size;
++count;
if (obj->mm.madv == I915_MADV_DONTNEED) {
purgeable_size += obj->base.size;
++purgeable_count;
}
if (obj->mm.mapping) {
mapped_count++;
mapped_size += obj->base.size;
}
if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
huge_count++;
huge_size += obj->base.size;
page_sizes |= obj->mm.page_sizes.sg;
}
}
seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
size = count = dpy_size = dpy_count = 0;
list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
size += obj->base.size;
++count;
if (obj->pin_global) {
dpy_size += obj->base.size;
++dpy_count;
}
if (obj->mm.madv == I915_MADV_DONTNEED) {
purgeable_size += obj->base.size;
++purgeable_count;
}
if (obj->mm.mapping) {
mapped_count++;
mapped_size += obj->base.size;
}
if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
huge_count++;
huge_size += obj->base.size;
page_sizes |= obj->mm.page_sizes.sg;
}
}
spin_unlock(&dev_priv->mm.obj_lock);
seq_printf(m, "%u bound objects, %llu bytes\n",
count, size);
seq_printf(m, "%u purgeable objects, %llu bytes\n",
purgeable_count, purgeable_size);
seq_printf(m, "%u mapped objects, %llu bytes\n",
mapped_count, mapped_size);
seq_printf(m, "%u huge-paged objects (%s) %llu bytes\n",
huge_count,
stringify_page_sizes(page_sizes, buf, sizeof(buf)),
huge_size);
seq_printf(m, "%u display objects (globally pinned), %llu bytes\n",
dpy_count, dpy_size);
seq_printf(m, "%llu [%pa] gtt total\n",
ggtt->vm.total, &ggtt->mappable_end);
seq_printf(m, "Supported page sizes: %s\n",
stringify_page_sizes(INTEL_INFO(dev_priv)->page_sizes,
buf, sizeof(buf)));
seq_putc(m, '\n');
print_batch_pool_stats(m, dev_priv);
mutex_unlock(&dev->struct_mutex);
mutex_lock(&dev->filelist_mutex);
print_context_stats(m, dev_priv);
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct file_stats stats;
struct drm_i915_file_private *file_priv = file->driver_priv;
struct i915_request *request;
struct task_struct *task;
mutex_lock(&dev->struct_mutex);
memset(&stats, 0, sizeof(stats));
stats.file_priv = file->driver_priv;
spin_lock(&file->table_lock);
idr_for_each(&file->object_idr, per_file_stats, &stats);
spin_unlock(&file->table_lock);
/*
* Although we have a valid reference on file->pid, that does
* not guarantee that the task_struct who called get_pid() is
* still alive (e.g. get_pid(current) => fork() => exit()).
* Therefore, we need to protect this ->comm access using RCU.
*/
request = list_first_entry_or_null(&file_priv->mm.request_list,
struct i915_request,
client_link);
rcu_read_lock();
task = pid_task(request && request->gem_context->pid ?
request->gem_context->pid : file->pid,
PIDTYPE_PID);
print_file_stats(m, task ? task->comm : "<unknown>", stats);
rcu_read_unlock();
mutex_unlock(&dev->struct_mutex);
}
mutex_unlock(&dev->filelist_mutex);
return 0;
}
static int i915_gem_gtt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_i915_private *dev_priv = node_to_i915(node);
struct drm_device *dev = &dev_priv->drm;
struct drm_i915_gem_object **objects;
struct drm_i915_gem_object *obj;
u64 total_obj_size, total_gtt_size;
unsigned long nobject, n;
int count, ret;
nobject = READ_ONCE(dev_priv->mm.object_count);
objects = kvmalloc_array(nobject, sizeof(*objects), GFP_KERNEL);
if (!objects)
return -ENOMEM;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
count = 0;
spin_lock(&dev_priv->mm.obj_lock);
list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
objects[count++] = obj;
if (count == nobject)
break;
}
spin_unlock(&dev_priv->mm.obj_lock);
total_obj_size = total_gtt_size = 0;
for (n = 0; n < count; n++) {
obj = objects[n];
seq_puts(m, " ");
describe_obj(m, obj);
seq_putc(m, '\n');
total_obj_size += obj->base.size;
total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
count, total_obj_size, total_gtt_size);
kvfree(objects);
return 0;
}
static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct drm_i915_gem_object *obj;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int total = 0;
int ret, j;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
for_each_engine(engine, dev_priv, id) {
for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
int count;
count = 0;
list_for_each_entry(obj,
&engine->batch_pool.cache_list[j],
batch_pool_link)
count++;
seq_printf(m, "%s cache[%d]: %d objects\n",
engine->name, j, count);
list_for_each_entry(obj,
&engine->batch_pool.cache_list[j],
batch_pool_link) {
seq_puts(m, " ");
describe_obj(m, obj);
seq_putc(m, '\n');
}
total += count;
}
}
seq_printf(m, "total: %d\n", total);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static void gen8_display_interrupt_info(struct seq_file *m)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
int pipe;
for_each_pipe(dev_priv, pipe) {
enum intel_display_power_domain power_domain;
power_domain = POWER_DOMAIN_PIPE(pipe);
if (!intel_display_power_get_if_enabled(dev_priv,
power_domain)) {
seq_printf(m, "Pipe %c power disabled\n",
pipe_name(pipe));
continue;
}
seq_printf(m, "Pipe %c IMR:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IMR(pipe)));
seq_printf(m, "Pipe %c IIR:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IIR(pipe)));
seq_printf(m, "Pipe %c IER:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IER(pipe)));
intel_display_power_put(dev_priv, power_domain);
}
seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
I915_READ(GEN8_DE_PORT_IMR));
seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
I915_READ(GEN8_DE_PORT_IIR));
seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
I915_READ(GEN8_DE_PORT_IER));
seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
I915_READ(GEN8_DE_MISC_IMR));
seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
I915_READ(GEN8_DE_MISC_IIR));
seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
I915_READ(GEN8_DE_MISC_IER));
seq_printf(m, "PCU interrupt mask:\t%08x\n",
I915_READ(GEN8_PCU_IMR));
seq_printf(m, "PCU interrupt identity:\t%08x\n",
I915_READ(GEN8_PCU_IIR));
seq_printf(m, "PCU interrupt enable:\t%08x\n",
I915_READ(GEN8_PCU_IER));
}
static int i915_interrupt_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_engine_cs *engine;
enum intel_engine_id id;
int i, pipe;
intel_runtime_pm_get(dev_priv);
if (IS_CHERRYVIEW(dev_priv)) {
seq_printf(m, "Master Interrupt Control:\t%08x\n",
I915_READ(GEN8_MASTER_IRQ));
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(dev_priv, pipe) {
enum intel_display_power_domain power_domain;
power_domain = POWER_DOMAIN_PIPE(pipe);
if (!intel_display_power_get_if_enabled(dev_priv,
power_domain)) {
seq_printf(m, "Pipe %c power disabled\n",
pipe_name(pipe));
continue;
}
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
intel_display_power_put(dev_priv, power_domain);
}
intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
for (i = 0; i < 4; i++) {
seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IMR(i)));
seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IIR(i)));
seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
i, I915_READ(GEN8_GT_IER(i)));
}
seq_printf(m, "PCU interrupt mask:\t%08x\n",
I915_READ(GEN8_PCU_IMR));
seq_printf(m, "PCU interrupt identity:\t%08x\n",
I915_READ(GEN8_PCU_IIR));
seq_printf(m, "PCU interrupt enable:\t%08x\n",
I915_READ(GEN8_PCU_IER));
} else if (INTEL_GEN(dev_priv) >= 11) {
seq_printf(m, "Master Interrupt Control: %08x\n",
I915_READ(GEN11_GFX_MSTR_IRQ));
seq_printf(m, "Render/Copy Intr Enable: %08x\n",
I915_READ(GEN11_RENDER_COPY_INTR_ENABLE));
seq_printf(m, "VCS/VECS Intr Enable: %08x\n",
I915_READ(GEN11_VCS_VECS_INTR_ENABLE));
seq_printf(m, "GUC/SG Intr Enable:\t %08x\n",
I915_READ(GEN11_GUC_SG_INTR_ENABLE));
seq_printf(m, "GPM/WGBOXPERF Intr Enable: %08x\n",
I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE));
seq_printf(m, "Crypto Intr Enable:\t %08x\n",
I915_READ(GEN11_CRYPTO_RSVD_INTR_ENABLE));
seq_printf(m, "GUnit/CSME Intr Enable:\t %08x\n",
I915_READ(GEN11_GUNIT_CSME_INTR_ENABLE));
seq_printf(m, "Display Interrupt Control:\t%08x\n",
I915_READ(GEN11_DISPLAY_INT_CTL));
gen8_display_interrupt_info(m);
} else if (INTEL_GEN(dev_priv) >= 8) {
seq_printf(m, "Master Interrupt Control:\t%08x\n",
I915_READ(GEN8_MASTER_IRQ));
for (i = 0; i < 4; i++) {
seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IMR(i)));
seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IIR(i)));
seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
i, I915_READ(GEN8_GT_IER(i)));
}
gen8_display_interrupt_info(m);
} else if (IS_VALLEYVIEW(dev_priv)) {
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(dev_priv, pipe) {
enum intel_display_power_domain power_domain;
power_domain = POWER_DOMAIN_PIPE(pipe);
if (!intel_display_power_get_if_enabled(dev_priv,
power_domain)) {
seq_printf(m, "Pipe %c power disabled\n",
pipe_name(pipe));
continue;
}
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
intel_display_power_put(dev_priv, power_domain);
}
seq_printf(m, "Master IER:\t%08x\n",
I915_READ(VLV_MASTER_IER));
seq_printf(m, "Render IER:\t%08x\n",
I915_READ(GTIER));
seq_printf(m, "Render IIR:\t%08x\n",
I915_READ(GTIIR));
seq_printf(m, "Render IMR:\t%08x\n",
I915_READ(GTIMR));
seq_printf(m, "PM IER:\t\t%08x\n",
I915_READ(GEN6_PMIER));
seq_printf(m, "PM IIR:\t\t%08x\n",
I915_READ(GEN6_PMIIR));
seq_printf(m, "PM IMR:\t\t%08x\n",
I915_READ(GEN6_PMIMR));
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
} else if (!HAS_PCH_SPLIT(dev_priv)) {
seq_printf(m, "Interrupt enable: %08x\n",
I915_READ(IER));
seq_printf(m, "Interrupt identity: %08x\n",
I915_READ(IIR));
seq_printf(m, "Interrupt mask: %08x\n",
I915_READ(IMR));
for_each_pipe(dev_priv, pipe)
seq_printf(m, "Pipe %c stat: %08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
} else {
seq_printf(m, "North Display Interrupt enable: %08x\n",
I915_READ(DEIER));
seq_printf(m, "North Display Interrupt identity: %08x\n",
I915_READ(DEIIR));
seq_printf(m, "North Display Interrupt mask: %08x\n",
I915_READ(DEIMR));
seq_printf(m, "South Display Interrupt enable: %08x\n",
I915_READ(SDEIER));
seq_printf(m, "South Display Interrupt identity: %08x\n",
I915_READ(SDEIIR));
seq_printf(m, "South Display Interrupt mask: %08x\n",
I915_READ(SDEIMR));
seq_printf(m, "Graphics Interrupt enable: %08x\n",
I915_READ(GTIER));
seq_printf(m, "Graphics Interrupt identity: %08x\n",
I915_READ(GTIIR));
seq_printf(m, "Graphics Interrupt mask: %08x\n",
I915_READ(GTIMR));
}
if (INTEL_GEN(dev_priv) >= 11) {
seq_printf(m, "RCS Intr Mask:\t %08x\n",
I915_READ(GEN11_RCS0_RSVD_INTR_MASK));
seq_printf(m, "BCS Intr Mask:\t %08x\n",
I915_READ(GEN11_BCS_RSVD_INTR_MASK));
seq_printf(m, "VCS0/VCS1 Intr Mask:\t %08x\n",
I915_READ(GEN11_VCS0_VCS1_INTR_MASK));
seq_printf(m, "VCS2/VCS3 Intr Mask:\t %08x\n",
I915_READ(GEN11_VCS2_VCS3_INTR_MASK));
seq_printf(m, "VECS0/VECS1 Intr Mask:\t %08x\n",
I915_READ(GEN11_VECS0_VECS1_INTR_MASK));
seq_printf(m, "GUC/SG Intr Mask:\t %08x\n",
I915_READ(GEN11_GUC_SG_INTR_MASK));
seq_printf(m, "GPM/WGBOXPERF Intr Mask: %08x\n",
I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK));
seq_printf(m, "Crypto Intr Mask:\t %08x\n",
I915_READ(GEN11_CRYPTO_RSVD_INTR_MASK));
seq_printf(m, "Gunit/CSME Intr Mask:\t %08x\n",
I915_READ(GEN11_GUNIT_CSME_INTR_MASK));
} else if (INTEL_GEN(dev_priv) >= 6) {
for_each_engine(engine, dev_priv, id) {
seq_printf(m,
"Graphics Interrupt mask (%s): %08x\n",
engine->name, I915_READ_IMR(engine));
}
}
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
int i, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct i915_vma *vma = dev_priv->fence_regs[i].vma;
seq_printf(m, "Fence %d, pin count = %d, object = ",
i, dev_priv->fence_regs[i].pin_count);
if (!vma)
seq_puts(m, "unused");
else
describe_obj(m, vma->obj);
seq_putc(m, '\n');
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
size_t count, loff_t *pos)
{
struct i915_gpu_state *error = file->private_data;
struct drm_i915_error_state_buf str;
ssize_t ret;
loff_t tmp;
if (!error)
return 0;
ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
if (ret)
return ret;
ret = i915_error_state_to_str(&str, error);
if (ret)
goto out;
tmp = 0;
ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
if (ret < 0)
goto out;
*pos = str.start + ret;
out:
i915_error_state_buf_release(&str);
return ret;
}
static int gpu_state_release(struct inode *inode, struct file *file)
{
i915_gpu_state_put(file->private_data);
return 0;
}
static int i915_gpu_info_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *i915 = inode->i_private;
struct i915_gpu_state *gpu;
intel_runtime_pm_get(i915);
gpu = i915_capture_gpu_state(i915);
intel_runtime_pm_put(i915);
if (!gpu)
return -ENOMEM;
file->private_data = gpu;
return 0;
}
static const struct file_operations i915_gpu_info_fops = {
.owner = THIS_MODULE,
.open = i915_gpu_info_open,
.read = gpu_state_read,
.llseek = default_llseek,
.release = gpu_state_release,
};
static ssize_t
i915_error_state_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct i915_gpu_state *error = filp->private_data;
if (!error)
return 0;
DRM_DEBUG_DRIVER("Resetting error state\n");
i915_reset_error_state(error->i915);
return cnt;
}
static int i915_error_state_open(struct inode *inode, struct file *file)
{
file->private_data = i915_first_error_state(inode->i_private);
return 0;
}
static const struct file_operations i915_error_state_fops = {
.owner = THIS_MODULE,
.open = i915_error_state_open,
.read = gpu_state_read,
.write = i915_error_state_write,
.llseek = default_llseek,
.release = gpu_state_release,
};
#endif
static int
i915_next_seqno_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
struct drm_device *dev = &dev_priv->drm;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
intel_runtime_pm_get(dev_priv);
ret = i915_gem_set_global_seqno(dev, val);
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
NULL, i915_next_seqno_set,
"0x%llx\n");
static int i915_frequency_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_rps *rps = &dev_priv->gt_pm.rps;
int ret = 0;
intel_runtime_pm_get(dev_priv);
if (IS_GEN5(dev_priv)) {
u16 rgvswctl = I915_READ16(MEMSWCTL);
u16 rgvstat = I915_READ16(MEMSTAT_ILK);
seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
MEMSTAT_VID_SHIFT);
seq_printf(m, "Current P-state: %d\n",
(rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
u32 rpmodectl, freq_sts;
mutex_lock(&dev_priv->pcu_lock);
rpmodectl = I915_READ(GEN6_RP_CONTROL);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
seq_printf(m, "actual GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
seq_printf(m, "current GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->cur_freq));
seq_printf(m, "max GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->max_freq));
seq_printf(m, "min GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->min_freq));
seq_printf(m, "idle GPU freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->idle_freq));
seq_printf(m,
"efficient (RPe) frequency: %d MHz\n",
intel_gpu_freq(dev_priv, rps->efficient_freq));
mutex_unlock(&dev_priv->pcu_lock);
} else if (INTEL_GEN(dev_priv) >= 6) {
u32 rp_state_limits;
u32 gt_perf_status;
u32 rp_state_cap;
u32 rpmodectl, rpinclimit, rpdeclimit;
u32 rpstat, cagf, reqf;
u32 rpupei, rpcurup, rpprevup;
u32 rpdownei, rpcurdown, rpprevdown;
u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
int max_freq;
rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
if (IS_GEN9_LP(dev_priv)) {
rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
} else {
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
}
/* RPSTAT1 is in the GT power well */
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
reqf = I915_READ(GEN6_RPNSWREQ);
if (INTEL_GEN(dev_priv) >= 9)
reqf >>= 23;
else {
reqf &= ~GEN6_TURBO_DISABLE;
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
reqf >>= 24;
else
reqf >>= 25;
}
reqf = intel_gpu_freq(dev_priv, reqf);
rpmodectl = I915_READ(GEN6_RP_CONTROL);
rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
rpstat = I915_READ(GEN6_RPSTAT1);
rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
cagf = intel_gpu_freq(dev_priv,
intel_get_cagf(dev_priv, rpstat));
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
if (INTEL_GEN(dev_priv) >= 11) {
pm_ier = I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE);
pm_imr = I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK);
/*
* The equivalent to the PM ISR & IIR cannot be read
* without affecting the current state of the system
*/
pm_isr = 0;
pm_iir = 0;
} else if (INTEL_GEN(dev_priv) >= 8) {
pm_ier = I915_READ(GEN8_GT_IER(2));
pm_imr = I915_READ(GEN8_GT_IMR(2));
pm_isr = I915_READ(GEN8_GT_ISR(2));
pm_iir = I915_READ(GEN8_GT_IIR(2));
} else {
pm_ier = I915_READ(GEN6_PMIER);
pm_imr = I915_READ(GEN6_PMIMR);
pm_isr = I915_READ(GEN6_PMISR);
pm_iir = I915_READ(GEN6_PMIIR);
}
pm_mask = I915_READ(GEN6_PMINTRMSK);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
seq_printf(m, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
pm_ier, pm_imr, pm_mask);
if (INTEL_GEN(dev_priv) <= 10)
seq_printf(m, "PM ISR=0x%08x IIR=0x%08x\n",
pm_isr, pm_iir);
seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
rps->pm_intrmsk_mbz);
seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
seq_printf(m, "Render p-state ratio: %d\n",
(gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
seq_printf(m, "Render p-state VID: %d\n",
gt_perf_status & 0xff);
seq_printf(m, "Render p-state limit: %d\n",
rp_state_limits & 0xff);
seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
seq_printf(m, "CAGF: %dMHz\n", cagf);
seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
seq_printf(m, "RP CUR UP: %d (%dus)\n",
rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
seq_printf(m, "RP PREV UP: %d (%dus)\n",
rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
seq_printf(m, "Up threshold: %d%%\n",
rps->power.up_threshold);
seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
seq_printf(m, "Down threshold: %d%%\n",
rps->power.down_threshold);
max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
rp_state_cap >> 16) & 0xff;
max_freq *= (IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
intel_gpu_freq(dev_priv, max_freq));
max_freq = (rp_state_cap & 0xff00) >> 8;
max_freq *= (IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
intel_gpu_freq(dev_priv, max_freq));
max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
rp_state_cap >> 0) & 0xff;
max_freq *= (IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
intel_gpu_freq(dev_priv, max_freq));
seq_printf(m, "Max overclocked frequency: %dMHz\n",
intel_gpu_freq(dev_priv, rps->max_freq));
seq_printf(m, "Current freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->cur_freq));
seq_printf(m, "Actual freq: %d MHz\n", cagf);
seq_printf(m, "Idle freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->idle_freq));
seq_printf(m, "Min freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->min_freq));
seq_printf(m, "Boost freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->boost_freq));
seq_printf(m, "Max freq: %d MHz\n",
intel_gpu_freq(dev_priv, rps->max_freq));
seq_printf(m,
"efficient (RPe) frequency: %d MHz\n",
intel_gpu_freq(dev_priv, rps->efficient_freq));
} else {
seq_puts(m, "no P-state info available\n");
}
seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
intel_runtime_pm_put(dev_priv);
return ret;
}
static void i915_instdone_info(struct drm_i915_private *dev_priv,
struct seq_file *m,
struct intel_instdone *instdone)
{
int slice;
int subslice;
seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
instdone->instdone);
if (INTEL_GEN(dev_priv) <= 3)
return;
seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
instdone->slice_common);
if (INTEL_GEN(dev_priv) <= 6)
return;
for_each_instdone_slice_subslice(dev_priv, slice, subslice)
seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
slice, subslice, instdone->sampler[slice][subslice]);
for_each_instdone_slice_subslice(dev_priv, slice, subslice)
seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
slice, subslice, instdone->row[slice][subslice]);
}
static int i915_hangcheck_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_engine_cs *engine;
u64 acthd[I915_NUM_ENGINES];
u32 seqno[I915_NUM_ENGINES];
struct intel_instdone instdone;
enum intel_engine_id id;
if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
seq_puts(m, "Wedged\n");
if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
seq_puts(m, "Reset in progress: struct_mutex backoff\n");
if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
seq_puts(m, "Reset in progress: reset handoff to waiter\n");
if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
seq_puts(m, "Waiter holding struct mutex\n");
if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
seq_puts(m, "struct_mutex blocked for reset\n");
if (!i915_modparams.enable_hangcheck) {
seq_puts(m, "Hangcheck disabled\n");
return 0;
}
intel_runtime_pm_get(dev_priv);
for_each_engine(engine, dev_priv, id) {
acthd[id] = intel_engine_get_active_head(engine);
seqno[id] = intel_engine_get_seqno(engine);
}
intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
intel_runtime_pm_put(dev_priv);
if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
seq_printf(m, "Hangcheck active, timer fires in %dms\n",
jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
jiffies));
else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
seq_puts(m, "Hangcheck active, work pending\n");
else
seq_puts(m, "Hangcheck inactive\n");
seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
for_each_engine(engine, dev_priv, id) {
struct intel_breadcrumbs *b = &engine->breadcrumbs;
struct rb_node *rb;
seq_printf(m, "%s:\n", engine->name);
seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
engine->hangcheck.seqno, seqno[id],
intel_engine_last_submit(engine));
seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s, wedged? %s\n",
yesno(intel_engine_has_waiter(engine)),
yesno(test_bit(engine->id,
&dev_priv->gpu_error.missed_irq_rings)),
yesno(engine->hangcheck.stalled),
yesno(engine->hangcheck.wedged));
spin_lock_irq(&b->rb_lock);
for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
struct intel_wait *w = rb_entry(rb, typeof(*w), node);
seq_printf(m, "\t%s [%d] waiting for %x\n",
w->tsk->comm, w->tsk->pid, w->seqno);
}
spin_unlock_irq(&b->rb_lock);
seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
(long long)engine->hangcheck.acthd,
(long long)acthd[id]);
seq_printf(m, "\taction = %s(%d) %d ms ago\n",
hangcheck_action_to_str(engine->hangcheck.action),
engine->hangcheck.action,
jiffies_to_msecs(jiffies -
engine->hangcheck.action_timestamp));
if (engine->id == RCS) {
seq_puts(m, "\tinstdone read =\n");
i915_instdone_info(dev_priv, m, &instdone);
seq_puts(m, "\tinstdone accu =\n");
i915_instdone_info(dev_priv, m,
&engine->hangcheck.instdone);
}
}
return 0;
}
static int i915_reset_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct i915_gpu_error *error = &dev_priv->gpu_error;
struct intel_engine_cs *engine;
enum intel_engine_id id;
seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
for_each_engine(engine, dev_priv, id) {
seq_printf(m, "%s = %u\n", engine->name,
i915_reset_engine_count(error, engine));
}
return 0;
}
static int ironlake_drpc_info(struct seq_file *m)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
u32 rgvmodectl, rstdbyctl;
u16 crstandvid;
rgvmodectl = I915_READ(MEMMODECTL);
rstdbyctl = I915_READ(RSTDBYCTL);
crstandvid = I915_READ16(CRSTANDVID);
seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
seq_printf(m, "Boost freq: %d\n",
(rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
MEMMODE_BOOST_FREQ_SHIFT);
seq_printf(m, "HW control enabled: %s\n",
yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
seq_printf(m, "SW control enabled: %s\n",
yesno(rgvmodectl & MEMMODE_SWMODE_EN));
seq_printf(m, "Gated voltage change: %s\n",
yesno(rgvmodectl & MEMMODE_RCLK_GATE));
seq_printf(m, "Starting frequency: P%d\n",
(rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
seq_printf(m, "Max P-state: P%d\n",
(rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
seq_printf(m, "Render standby enabled: %s\n",
yesno(!(rstdbyctl & RCX_SW_EXIT)));
seq_puts(m, "Current RS state: ");
switch (rstdbyctl & RSX_STATUS_MASK) {
case RSX_STATUS_ON:
seq_puts(m, "on\n");
break;
case RSX_STATUS_RC1:
seq_puts(m, "RC1\n");
break;
case RSX_STATUS_RC1E:
seq_puts(m, "RC1E\n");
break;
case RSX_STATUS_RS1:
seq_puts(m, "RS1\n");
break;
case RSX_STATUS_RS2:
seq_puts(m, "RS2 (RC6)\n");
break;
case RSX_STATUS_RS3:
seq_puts(m, "RC3 (RC6+)\n");
break;
default:
seq_puts(m, "unknown\n");
break;
}
return 0;
}
static int i915_forcewake_domains(struct seq_file *m, void *data)
{
struct drm_i915_private *i915 = node_to_i915(m->private);
struct intel_uncore_forcewake_domain *fw_domain;
unsigned int tmp;
seq_printf(m, "user.bypass_count = %u\n",
i915->uncore.user_forcewake.count);
for_each_fw_domain(fw_domain, i915, tmp)
seq_printf(m, "%s.wake_count = %u\n",
intel_uncore_forcewake_domain_to_str(fw_domain->id),
READ_ONCE(fw_domain->wake_count));
return 0;
}
static void print_rc6_res(struct seq_file *m,
const char *title,
const i915_reg_t reg)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
seq_printf(m, "%s %u (%llu us)\n",
title, I915_READ(reg),
intel_rc6_residency_us(dev_priv, reg));
}
static int vlv_drpc_info(struct seq_file *m)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
u32 rcctl1, pw_status;
pw_status = I915_READ(VLV_GTLC_PW_STATUS);
rcctl1 = I915_READ(GEN6_RC_CONTROL);
seq_printf(m, "RC6 Enabled: %s\n",
yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
GEN6_RC_CTL_EI_MODE(1))));
seq_printf(m, "Render Power Well: %s\n",
(pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
seq_printf(m, "Media Power Well: %s\n",
(pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
return i915_forcewake_domains(m, NULL);
}
static int gen6_drpc_info(struct seq_file *m)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
u32 gt_core_status, rcctl1, rc6vids = 0;
u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
rcctl1 = I915_READ(GEN6_RC_CONTROL);
if (INTEL_GEN(dev_priv) >= 9) {
gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
}
if (INTEL_GEN(dev_priv) <= 7) {
mutex_lock(&dev_priv->pcu_lock);
sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
&rc6vids);
mutex_unlock(&dev_priv->pcu_lock);
}
seq_printf(m, "RC1e Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
seq_printf(m, "RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
if (INTEL_GEN(dev_priv) >= 9) {
seq_printf(m, "Render Well Gating Enabled: %s\n",
yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
seq_printf(m, "Media Well Gating Enabled: %s\n",
yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
}
seq_printf(m, "Deep RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
seq_printf(m, "Deepest RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
seq_puts(m, "Current RC state: ");
switch (gt_core_status & GEN6_RCn_MASK) {
case GEN6_RC0:
if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
seq_puts(m, "Core Power Down\n");
else
seq_puts(m, "on\n");
break;
case GEN6_RC3:
seq_puts(m, "RC3\n");
break;
case GEN6_RC6:
seq_puts(m, "RC6\n");
break;
case GEN6_RC7:
seq_puts(m, "RC7\n");
break;
default:
seq_puts(m, "Unknown\n");
break;
}
seq_printf(m, "Core Power Down: %s\n",
yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
if (INTEL_GEN(dev_priv) >= 9) {
seq_printf(m, "Render Power Well: %s\n",
(gen9_powergate_status &
GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
seq_printf(m, "Media Power Well: %s\n",
(gen9_powergate_status &
GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
}
/* Not exactly sure what this is */
print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
GEN6_GT_GFX_RC6_LOCKED);
print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
if (INTEL_GEN(dev_priv) <= 7) {
seq_printf(m, "RC6 voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
seq_printf(m, "RC6+ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
seq_printf(m, "RC6++ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
}
return i915_forcewake_domains(m, NULL);
}
static int i915_drpc_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
int err;
intel_runtime_pm_get(dev_priv);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
err = vlv_drpc_info(m);
else if (INTEL_GEN(dev_priv) >= 6)
err = gen6_drpc_info(m);
else
err = ironlake_drpc_info(m);
intel_runtime_pm_put(dev_priv);
return err;
}
static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
seq_printf(m, "FB tracking busy bits: 0x%08x\n",
dev_priv->fb_tracking.busy_bits);
seq_printf(m, "FB tracking flip bits: 0x%08x\n",
dev_priv->fb_tracking.flip_bits);
return 0;
}
static int i915_fbc_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_fbc *fbc = &dev_priv->fbc;
if (!HAS_FBC(dev_priv))
return -ENODEV;
intel_runtime_pm_get(dev_priv);
mutex_lock(&fbc->lock);
if (intel_fbc_is_active(dev_priv))
seq_puts(m, "FBC enabled\n");
else
seq_printf(m, "FBC disabled: %s\n", fbc->no_fbc_reason);
if (intel_fbc_is_active(dev_priv)) {
u32 mask;
if (INTEL_GEN(dev_priv) >= 8)
mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
else if (INTEL_GEN(dev_priv) >= 7)
mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
else if (INTEL_GEN(dev_priv) >= 5)
mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
else if (IS_G4X(dev_priv))
mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
else
mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
FBC_STAT_COMPRESSED);
seq_printf(m, "Compressing: %s\n", yesno(mask));
}
mutex_unlock(&fbc->lock);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_fbc_false_color_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
return -ENODEV;
*val = dev_priv->fbc.false_color;
return 0;
}
static int i915_fbc_false_color_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
u32 reg;
if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
return -ENODEV;
mutex_lock(&dev_priv->fbc.lock);
reg = I915_READ(ILK_DPFC_CONTROL);
dev_priv->fbc.false_color = val;
I915_WRITE(ILK_DPFC_CONTROL, val ?
(reg | FBC_CTL_FALSE_COLOR) :
(reg & ~FBC_CTL_FALSE_COLOR));
mutex_unlock(&dev_priv->fbc.lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
i915_fbc_false_color_get, i915_fbc_false_color_set,
"%llu\n");
static int i915_ips_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
if (!HAS_IPS(dev_priv))
return -ENODEV;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "Enabled by kernel parameter: %s\n",
yesno(i915_modparams.enable_ips));
if (INTEL_GEN(dev_priv) >= 8) {
seq_puts(m, "Currently: unknown\n");
} else {
if (I915_READ(IPS_CTL) & IPS_ENABLE)
seq_puts(m, "Currently: enabled\n");
else
seq_puts(m, "Currently: disabled\n");
}
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_sr_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
bool sr_enabled = false;
intel_runtime_pm_get(dev_priv);
intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
if (INTEL_GEN(dev_priv) >= 9)
/* no global SR status; inspect per-plane WM */;
else if (HAS_PCH_SPLIT(dev_priv))
sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
IS_I945G(dev_priv) || IS_I945GM(dev_priv))
sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
else if (IS_I915GM(dev_priv))
sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
else if (IS_PINEVIEW(dev_priv))
sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
intel_runtime_pm_put(dev_priv);
seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
return 0;
}
static int i915_emon_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
unsigned long temp, chipset, gfx;
int ret;
if (!IS_GEN5(dev_priv))
return -ENODEV;
intel_runtime_pm_get(dev_priv);
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
temp = i915_mch_val(dev_priv);
chipset = i915_chipset_val(dev_priv);
gfx = i915_gfx_val(dev_priv);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "GMCH temp: %ld\n", temp);
seq_printf(m, "Chipset power: %ld\n", chipset);
seq_printf(m, "GFX power: %ld\n", gfx);
seq_printf(m, "Total power: %ld\n", chipset + gfx);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_ring_freq_table(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_rps *rps = &dev_priv->gt_pm.rps;
unsigned int max_gpu_freq, min_gpu_freq;
int gpu_freq, ia_freq;
int ret;
if (!HAS_LLC(dev_priv))
return -ENODEV;
intel_runtime_pm_get(dev_priv);
ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
if (ret)
goto out;
min_gpu_freq = rps->min_freq;
max_gpu_freq = rps->max_freq;
if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
/* Convert GT frequency to 50 HZ units */
min_gpu_freq /= GEN9_FREQ_SCALER;
max_gpu_freq /= GEN9_FREQ_SCALER;
}
seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
ia_freq = gpu_freq;
sandybridge_pcode_read(dev_priv,
GEN6_PCODE_READ_MIN_FREQ_TABLE,
&ia_freq);
seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
intel_gpu_freq(dev_priv, (gpu_freq *
(IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ?
GEN9_FREQ_SCALER : 1))),
((ia_freq >> 0) & 0xff) * 100,
((ia_freq >> 8) & 0xff) * 100);
}
mutex_unlock(&dev_priv->pcu_lock);
out:
intel_runtime_pm_put(dev_priv);
return ret;
}
static int i915_opregion(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_opregion *opregion = &dev_priv->opregion;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out;
if (opregion->header)
seq_write(m, opregion->header, OPREGION_SIZE);
mutex_unlock(&dev->struct_mutex);
out:
return 0;
}
static int i915_vbt(struct seq_file *m, void *unused)
{
struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
if (opregion->vbt)
seq_write(m, opregion->vbt, opregion->vbt_size);
return 0;
}
static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_framebuffer *fbdev_fb = NULL;
struct drm_framebuffer *drm_fb;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
#ifdef CONFIG_DRM_FBDEV_EMULATION
if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
fbdev_fb->base.width,
fbdev_fb->base.height,
fbdev_fb->base.format->depth,
fbdev_fb->base.format->cpp[0] * 8,
fbdev_fb->base.modifier,
drm_framebuffer_read_refcount(&fbdev_fb->base));
describe_obj(m, intel_fb_obj(&fbdev_fb->base));
seq_putc(m, '\n');
}
#endif
mutex_lock(&dev->mode_config.fb_lock);
drm_for_each_fb(drm_fb, dev) {
struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
if (fb == fbdev_fb)
continue;
seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
fb->base.width,
fb->base.height,
fb->base.format->depth,
fb->base.format->cpp[0] * 8,
fb->base.modifier,
drm_framebuffer_read_refcount(&fb->base));
describe_obj(m, intel_fb_obj(&fb->base));
seq_putc(m, '\n');
}
mutex_unlock(&dev->mode_config.fb_lock);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
{
seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, emit: %u)",
ring->space, ring->head, ring->tail, ring->emit);
}
static int i915_context_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_engine_cs *engine;
struct i915_gem_context *ctx;
enum intel_engine_id id;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
seq_printf(m, "HW context %u ", ctx->hw_id);
if (ctx->pid) {
struct task_struct *task;
task = get_pid_task(ctx->pid, PIDTYPE_PID);
if (task) {
seq_printf(m, "(%s [%d]) ",
task->comm, task->pid);
put_task_struct(task);
}
} else if (IS_ERR(ctx->file_priv)) {
seq_puts(m, "(deleted) ");
} else {
seq_puts(m, "(kernel) ");
}
seq_putc(m, ctx->remap_slice ? 'R' : 'r');
seq_putc(m, '\n');
for_each_engine(engine, dev_priv, id) {
struct intel_context *ce =
to_intel_context(ctx, engine);
seq_printf(m, "%s: ", engine->name);
if (ce->state)
describe_obj(m, ce->state->obj);
if (ce->ring)
describe_ctx_ring(m, ce->ring);
seq_putc(m, '\n');
}
seq_putc(m, '\n');
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static const char *swizzle_string(unsigned swizzle)
{
switch (swizzle) {
case I915_BIT_6_SWIZZLE_NONE:
return "none";
case I915_BIT_6_SWIZZLE_9:
return "bit9";
case I915_BIT_6_SWIZZLE_9_10:
return "bit9/bit10";
case I915_BIT_6_SWIZZLE_9_11:
return "bit9/bit11";
case I915_BIT_6_SWIZZLE_9_10_11:
return "bit9/bit10/bit11";
case I915_BIT_6_SWIZZLE_9_17:
return "bit9/bit17";
case I915_BIT_6_SWIZZLE_9_10_17:
return "bit9/bit10/bit17";
case I915_BIT_6_SWIZZLE_UNKNOWN:
return "unknown";
}
return "bug";
}
static int i915_swizzle_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
intel_runtime_pm_get(dev_priv);
seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_x));
seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_y));
if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
seq_printf(m, "DDC = 0x%08x\n",
I915_READ(DCC));
seq_printf(m, "DDC2 = 0x%08x\n",
I915_READ(DCC2));
seq_printf(m, "C0DRB3 = 0x%04x\n",
I915_READ16(C0DRB3));
seq_printf(m, "C1DRB3 = 0x%04x\n",
I915_READ16(C1DRB3));
} else if (INTEL_GEN(dev_priv) >= 6) {
seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
I915_READ(MAD_DIMM_C0));
seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
I915_READ(MAD_DIMM_C1));
seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
I915_READ(MAD_DIMM_C2));
seq_printf(m, "TILECTL = 0x%08x\n",
I915_READ(TILECTL));
if (INTEL_GEN(dev_priv) >= 8)
seq_printf(m, "GAMTARBMODE = 0x%08x\n",
I915_READ(GAMTARBMODE));
else
seq_printf(m, "ARB_MODE = 0x%08x\n",
I915_READ(ARB_MODE));
seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
I915_READ(DISP_ARB_CTL));
}
if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
seq_puts(m, "L-shaped memory detected\n");
intel_runtime_pm_put(dev_priv);
return 0;
}
static int per_file_ctx(int id, void *ptr, void *data)
{
struct i915_gem_context *ctx = ptr;
struct seq_file *m = data;
struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
if (!ppgtt) {
seq_printf(m, " no ppgtt for context %d\n",
ctx->user_handle);
return 0;
}
if (i915_gem_context_is_default(ctx))
seq_puts(m, " default context:\n");
else
seq_printf(m, " context %d:\n", ctx->user_handle);
ppgtt->debug_dump(ppgtt, m);
return 0;
}
static void gen8_ppgtt_info(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int i;
if (!ppgtt)
return;
for_each_engine(engine, dev_priv, id) {
seq_printf(m, "%s\n", engine->name);
for (i = 0; i < 4; i++) {
u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
pdp <<= 32;
pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
}
}
}
static void gen6_ppgtt_info(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
if (IS_GEN6(dev_priv))
seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
for_each_engine(engine, dev_priv, id) {
seq_printf(m, "%s\n", engine->name);
if (IS_GEN7(dev_priv))
seq_printf(m, "GFX_MODE: 0x%08x\n",
I915_READ(RING_MODE_GEN7(engine)));
seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE(engine)));
seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE_READ(engine)));
seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
I915_READ(RING_PP_DIR_DCLV(engine)));
}
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
seq_puts(m, "aliasing PPGTT:\n");
seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
ppgtt->debug_dump(ppgtt, m);
}
seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
}
static int i915_ppgtt_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct drm_file *file;
int ret;
mutex_lock(&dev->filelist_mutex);
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out_unlock;
intel_runtime_pm_get(dev_priv);
if (INTEL_GEN(dev_priv) >= 8)
gen8_ppgtt_info(m, dev_priv);
else if (INTEL_GEN(dev_priv) >= 6)
gen6_ppgtt_info(m, dev_priv);
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct drm_i915_file_private *file_priv = file->driver_priv;
struct task_struct *task;
task = get_pid_task(file->pid, PIDTYPE_PID);
if (!task) {
ret = -ESRCH;
goto out_rpm;
}
seq_printf(m, "\nproc: %s\n", task->comm);
put_task_struct(task);
idr_for_each(&file_priv->context_idr, per_file_ctx,
(void *)(unsigned long)m);
}
out_rpm:
intel_runtime_pm_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
out_unlock:
mutex_unlock(&dev->filelist_mutex);
return ret;
}
static int count_irq_waiters(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
int count = 0;
for_each_engine(engine, i915, id)
count += intel_engine_has_waiter(engine);
return count;
}
static const char *rps_power_to_str(unsigned int power)
{
static const char * const strings[] = {
[LOW_POWER] = "low power",
[BETWEEN] = "mixed",
[HIGH_POWER] = "high power",
};
if (power >= ARRAY_SIZE(strings) || !strings[power])
return "unknown";
return strings[power];
}
static int i915_rps_boost_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_rps *rps = &dev_priv->gt_pm.rps;
struct drm_file *file;
seq_printf(m, "RPS enabled? %d\n", rps->enabled);
seq_printf(m, "GPU busy? %s [%d requests]\n",
yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
seq_printf(m, "Boosts outstanding? %d\n",
atomic_read(&rps->num_waiters));
seq_printf(m, "Interactive? %d\n", READ_ONCE(rps->power.interactive));
seq_printf(m, "Frequency requested %d\n",
intel_gpu_freq(dev_priv, rps->cur_freq));
seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
intel_gpu_freq(dev_priv, rps->min_freq),
intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
intel_gpu_freq(dev_priv, rps->max_freq));
seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
intel_gpu_freq(dev_priv, rps->idle_freq),
intel_gpu_freq(dev_priv, rps->efficient_freq),
intel_gpu_freq(dev_priv, rps->boost_freq));
mutex_lock(&dev->filelist_mutex);
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct drm_i915_file_private *file_priv = file->driver_priv;
struct task_struct *task;
rcu_read_lock();
task = pid_task(file->pid, PIDTYPE_PID);
seq_printf(m, "%s [%d]: %d boosts\n",
task ? task->comm : "<unknown>",
task ? task->pid : -1,
atomic_read(&file_priv->rps_client.boosts));
rcu_read_unlock();
}
seq_printf(m, "Kernel (anonymous) boosts: %d\n",
atomic_read(&rps->boosts));
mutex_unlock(&dev->filelist_mutex);
if (INTEL_GEN(dev_priv) >= 6 &&
rps->enabled &&
dev_priv->gt.active_requests) {
u32 rpup, rpupei;
u32 rpdown, rpdownei;
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
rps_power_to_str(rps->power.mode));
seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
rpup && rpupei ? 100 * rpup / rpupei : 0,
rps->power.up_threshold);
seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
rps->power.down_threshold);
} else {
seq_puts(m, "\nRPS Autotuning inactive\n");
}
return 0;
}
static int i915_llc(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const bool edram = INTEL_GEN(dev_priv) > 8;
seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
intel_uncore_edram_size(dev_priv)/1024/1024);
return 0;
}
static int i915_huc_load_status_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_printer p;
if (!HAS_HUC(dev_priv))
return -ENODEV;
p = drm_seq_file_printer(m);
intel_uc_fw_dump(&dev_priv->huc.fw, &p);
intel_runtime_pm_get(dev_priv);
seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_guc_load_status_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_printer p;
u32 tmp, i;
if (!HAS_GUC(dev_priv))
return -ENODEV;
p = drm_seq_file_printer(m);
intel_uc_fw_dump(&dev_priv->guc.fw, &p);
intel_runtime_pm_get(dev_priv);
tmp = I915_READ(GUC_STATUS);
seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
seq_printf(m, "\tBootrom status = 0x%x\n",
(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
seq_printf(m, "\tuKernel status = 0x%x\n",
(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
seq_printf(m, "\tMIA Core status = 0x%x\n",
(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
seq_puts(m, "\nScratch registers:\n");
for (i = 0; i < 16; i++)
seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
intel_runtime_pm_put(dev_priv);
return 0;
}
static const char *
stringify_guc_log_type(enum guc_log_buffer_type type)
{
switch (type) {
case GUC_ISR_LOG_BUFFER:
return "ISR";
case GUC_DPC_LOG_BUFFER:
return "DPC";
case GUC_CRASH_DUMP_LOG_BUFFER:
return "CRASH";
default:
MISSING_CASE(type);
}
return "";
}
static void i915_guc_log_info(struct seq_file *m,
struct drm_i915_private *dev_priv)
{
struct intel_guc_log *log = &dev_priv->guc.log;
enum guc_log_buffer_type type;
if (!intel_guc_log_relay_enabled(log)) {
seq_puts(m, "GuC log relay disabled\n");
return;
}
seq_puts(m, "GuC logging stats:\n");
seq_printf(m, "\tRelay full count: %u\n",
log->relay.full_count);
for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
seq_printf(m, "\t%s:\tflush count %10u, overflow count %10u\n",
stringify_guc_log_type(type),
log->stats[type].flush,
log->stats[type].sampled_overflow);
}
}
static void i915_guc_client_info(struct seq_file *m,
struct drm_i915_private *dev_priv,
struct intel_guc_client *client)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
uint64_t tot = 0;
seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
client->priority, client->stage_id, client->proc_desc_offset);
seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
client->doorbell_id, client->doorbell_offset);
for_each_engine(engine, dev_priv, id) {
u64 submissions = client->submissions[id];
tot += submissions;
seq_printf(m, "\tSubmissions: %llu %s\n",
submissions, engine->name);
}
seq_printf(m, "\tTotal: %llu\n", tot);
}
static int i915_guc_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const struct intel_guc *guc = &dev_priv->guc;
if (!USES_GUC(dev_priv))
return -ENODEV;
i915_guc_log_info(m, dev_priv);
if (!USES_GUC_SUBMISSION(dev_priv))
return 0;
GEM_BUG_ON(!guc->execbuf_client);
seq_printf(m, "\nDoorbell map:\n");
seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
seq_printf(m, "Doorbell next cacheline: 0x%x\n", guc->db_cacheline);
seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
i915_guc_client_info(m, dev_priv, guc->execbuf_client);
if (guc->preempt_client) {
seq_printf(m, "\nGuC preempt client @ %p:\n",
guc->preempt_client);
i915_guc_client_info(m, dev_priv, guc->preempt_client);
}
/* Add more as required ... */
return 0;
}
static int i915_guc_stage_pool(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const struct intel_guc *guc = &dev_priv->guc;
struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
struct intel_guc_client *client = guc->execbuf_client;
unsigned int tmp;
int index;
if (!USES_GUC_SUBMISSION(dev_priv))
return -ENODEV;
for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
struct intel_engine_cs *engine;
if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
continue;
seq_printf(m, "GuC stage descriptor %u:\n", index);
seq_printf(m, "\tIndex: %u\n", desc->stage_id);
seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
seq_printf(m, "\tPriority: %d\n", desc->priority);
seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
seq_printf(m, "\tEngines used: 0x%x\n",
desc->engines_used);
seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
desc->db_trigger_phy,
desc->db_trigger_cpu,
desc->db_trigger_uk);
seq_printf(m, "\tProcess descriptor: 0x%x\n",
desc->process_desc);
seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
desc->wq_addr, desc->wq_size);
seq_putc(m, '\n');
for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
u32 guc_engine_id = engine->guc_id;
struct guc_execlist_context *lrc =
&desc->lrc[guc_engine_id];
seq_printf(m, "\t%s LRC:\n", engine->name);
seq_printf(m, "\t\tContext desc: 0x%x\n",
lrc->context_desc);
seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
seq_putc(m, '\n');
}
}
return 0;
}
static int i915_guc_log_dump(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_i915_private *dev_priv = node_to_i915(node);
bool dump_load_err = !!node->info_ent->data;
struct drm_i915_gem_object *obj = NULL;
u32 *log;
int i = 0;
if (!HAS_GUC(dev_priv))
return -ENODEV;
if (dump_load_err)
obj = dev_priv->guc.load_err_log;
else if (dev_priv->guc.log.vma)
obj = dev_priv->guc.log.vma->obj;
if (!obj)
return 0;
log = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(log)) {
DRM_DEBUG("Failed to pin object\n");
seq_puts(m, "(log data unaccessible)\n");
return PTR_ERR(log);
}
for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
*(log + i), *(log + i + 1),
*(log + i + 2), *(log + i + 3));
seq_putc(m, '\n');
i915_gem_object_unpin_map(obj);
return 0;
}
static int i915_guc_log_level_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
if (!USES_GUC(dev_priv))
return -ENODEV;
*val = intel_guc_log_get_level(&dev_priv->guc.log);
return 0;
}
static int i915_guc_log_level_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
if (!USES_GUC(dev_priv))
return -ENODEV;
return intel_guc_log_set_level(&dev_priv->guc.log, val);
}
DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_level_fops,
i915_guc_log_level_get, i915_guc_log_level_set,
"%lld\n");
static int i915_guc_log_relay_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
if (!USES_GUC(dev_priv))
return -ENODEV;
file->private_data = &dev_priv->guc.log;
return intel_guc_log_relay_open(&dev_priv->guc.log);
}
static ssize_t
i915_guc_log_relay_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct intel_guc_log *log = filp->private_data;
intel_guc_log_relay_flush(log);
return cnt;
}
static int i915_guc_log_relay_release(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
intel_guc_log_relay_close(&dev_priv->guc.log);
return 0;
}
static const struct file_operations i915_guc_log_relay_fops = {
.owner = THIS_MODULE,
.open = i915_guc_log_relay_open,
.write = i915_guc_log_relay_write,
.release = i915_guc_log_relay_release,
};
static int i915_psr_sink_status_show(struct seq_file *m, void *data)
{
u8 val;
static const char * const sink_status[] = {
"inactive",
"transition to active, capture and display",
"active, display from RFB",
"active, capture and display on sink device timings",
"transition to inactive, capture and display, timing re-sync",
"reserved",
"reserved",
"sink internal error",
};
struct drm_connector *connector = m->private;
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct intel_dp *intel_dp =
enc_to_intel_dp(&intel_attached_encoder(connector)->base);
int ret;
if (!CAN_PSR(dev_priv)) {
seq_puts(m, "PSR Unsupported\n");
return -ENODEV;
}
if (connector->status != connector_status_connected)
return -ENODEV;
ret = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val);
if (ret == 1) {
const char *str = "unknown";
val &= DP_PSR_SINK_STATE_MASK;
if (val < ARRAY_SIZE(sink_status))
str = sink_status[val];
seq_printf(m, "Sink PSR status: 0x%x [%s]\n", val, str);
} else {
return ret;
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_psr_sink_status);
static void
psr_source_status(struct drm_i915_private *dev_priv, struct seq_file *m)
{
u32 val, psr_status;
if (dev_priv->psr.psr2_enabled) {
static const char * const live_status[] = {
"IDLE",
"CAPTURE",
"CAPTURE_FS",
"SLEEP",
"BUFON_FW",
"ML_UP",
"SU_STANDBY",
"FAST_SLEEP",
"DEEP_SLEEP",
"BUF_ON",
"TG_ON"
};
psr_status = I915_READ(EDP_PSR2_STATUS);
val = (psr_status & EDP_PSR2_STATUS_STATE_MASK) >>
EDP_PSR2_STATUS_STATE_SHIFT;
if (val < ARRAY_SIZE(live_status)) {
seq_printf(m, "Source PSR status: 0x%x [%s]\n",
psr_status, live_status[val]);
return;
}
} else {
static const char * const live_status[] = {
"IDLE",
"SRDONACK",
"SRDENT",
"BUFOFF",
"BUFON",
"AUXACK",
"SRDOFFACK",
"SRDENT_ON",
};
psr_status = I915_READ(EDP_PSR_STATUS);
val = (psr_status & EDP_PSR_STATUS_STATE_MASK) >>
EDP_PSR_STATUS_STATE_SHIFT;
if (val < ARRAY_SIZE(live_status)) {
seq_printf(m, "Source PSR status: 0x%x [%s]\n",
psr_status, live_status[val]);
return;
}
}
seq_printf(m, "Source PSR status: 0x%x [%s]\n", psr_status, "unknown");
}
static int i915_edp_psr_status(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
u32 psrperf = 0;
bool enabled = false;
bool sink_support;
if (!HAS_PSR(dev_priv))
return -ENODEV;
sink_support = dev_priv->psr.sink_support;
seq_printf(m, "Sink_Support: %s\n", yesno(sink_support));
if (!sink_support)
return 0;
intel_runtime_pm_get(dev_priv);
mutex_lock(&dev_priv->psr.lock);
seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
dev_priv->psr.busy_frontbuffer_bits);
if (dev_priv->psr.psr2_enabled)
enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
else
enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
seq_printf(m, "Main link in standby mode: %s\n",
yesno(dev_priv->psr.link_standby));
seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
/*
* SKL+ Perf counter is reset to 0 everytime DC state is entered
*/
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
psrperf = I915_READ(EDP_PSR_PERF_CNT) &
EDP_PSR_PERF_CNT_MASK;
seq_printf(m, "Performance_Counter: %u\n", psrperf);
}
psr_source_status(dev_priv, m);
mutex_unlock(&dev_priv->psr.lock);
if (READ_ONCE(dev_priv->psr.debug)) {
seq_printf(m, "Last attempted entry at: %lld\n",
dev_priv->psr.last_entry_attempt);
seq_printf(m, "Last exit at: %lld\n",
dev_priv->psr.last_exit);
}
intel_runtime_pm_put(dev_priv);
return 0;
}
static int
i915_edp_psr_debug_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
if (!CAN_PSR(dev_priv))
return -ENODEV;
DRM_DEBUG_KMS("PSR debug %s\n", enableddisabled(val));
intel_runtime_pm_get(dev_priv);
intel_psr_irq_control(dev_priv, !!val);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int
i915_edp_psr_debug_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
if (!CAN_PSR(dev_priv))
return -ENODEV;
*val = READ_ONCE(dev_priv->psr.debug);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_edp_psr_debug_fops,
i915_edp_psr_debug_get, i915_edp_psr_debug_set,
"%llu\n");
static int i915_energy_uJ(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
unsigned long long power;
u32 units;
if (INTEL_GEN(dev_priv) < 6)
return -ENODEV;
intel_runtime_pm_get(dev_priv);
if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
intel_runtime_pm_put(dev_priv);
return -ENODEV;
}
units = (power & 0x1f00) >> 8;
power = I915_READ(MCH_SECP_NRG_STTS);
power = (1000000 * power) >> units; /* convert to uJ */
intel_runtime_pm_put(dev_priv);
seq_printf(m, "%llu", power);
return 0;
}
static int i915_runtime_pm_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct pci_dev *pdev = dev_priv->drm.pdev;
if (!HAS_RUNTIME_PM(dev_priv))
seq_puts(m, "Runtime power management not supported\n");
seq_printf(m, "GPU idle: %s (epoch %u)\n",
yesno(!dev_priv->gt.awake), dev_priv->gt.epoch);
seq_printf(m, "IRQs disabled: %s\n",
yesno(!intel_irqs_enabled(dev_priv)));
#ifdef CONFIG_PM
seq_printf(m, "Usage count: %d\n",
atomic_read(&dev_priv->drm.dev->power.usage_count));
#else
seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
#endif
seq_printf(m, "PCI device power state: %s [%d]\n",
pci_power_name(pdev->current_state),
pdev->current_state);
return 0;
}
static int i915_power_domain_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct i915_power_domains *power_domains = &dev_priv->power_domains;
int i;
mutex_lock(&power_domains->lock);
seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
for (i = 0; i < power_domains->power_well_count; i++) {
struct i915_power_well *power_well;
enum intel_display_power_domain power_domain;
power_well = &power_domains->power_wells[i];
seq_printf(m, "%-25s %d\n", power_well->name,
power_well->count);
for_each_power_domain(power_domain, power_well->domains)
seq_printf(m, " %-23s %d\n",
intel_display_power_domain_str(power_domain),
power_domains->domain_use_count[power_domain]);
}
mutex_unlock(&power_domains->lock);
return 0;
}
static int i915_dmc_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_csr *csr;
if (!HAS_CSR(dev_priv))
return -ENODEV;
csr = &dev_priv->csr;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
seq_printf(m, "path: %s\n", csr->fw_path);
if (!csr->dmc_payload)
goto out;
seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
CSR_VERSION_MINOR(csr->version));
if (IS_KABYLAKE(dev_priv) ||
(IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
seq_printf(m, "DC3 -> DC5 count: %d\n",
I915_READ(SKL_CSR_DC3_DC5_COUNT));
seq_printf(m, "DC5 -> DC6 count: %d\n",
I915_READ(SKL_CSR_DC5_DC6_COUNT));
} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
seq_printf(m, "DC3 -> DC5 count: %d\n",
I915_READ(BXT_CSR_DC3_DC5_COUNT));
}
out:
seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
intel_runtime_pm_put(dev_priv);
return 0;
}
static void intel_seq_print_mode(struct seq_file *m, int tabs,
struct drm_display_mode *mode)
{
int i;
for (i = 0; i < tabs; i++)
seq_putc(m, '\t');
seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
mode->base.id, mode->name,
mode->vrefresh, mode->clock,
mode->hdisplay, mode->hsync_start,
mode->hsync_end, mode->htotal,
mode->vdisplay, mode->vsync_start,
mode->vsync_end, mode->vtotal,
mode->type, mode->flags);
}
static void intel_encoder_info(struct seq_file *m,
struct intel_crtc *intel_crtc,
struct intel_encoder *intel_encoder)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct drm_crtc *crtc = &intel_crtc->base;
struct intel_connector *intel_connector;
struct drm_encoder *encoder;
encoder = &intel_encoder->base;
seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
encoder->base.id, encoder->name);
for_each_connector_on_encoder(dev, encoder, intel_connector) {
struct drm_connector *connector = &intel_connector->base;
seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
connector->base.id,
connector->name,
drm_get_connector_status_name(connector->status));
if (connector->status == connector_status_connected) {
struct drm_display_mode *mode = &crtc->mode;
seq_printf(m, ", mode:\n");
intel_seq_print_mode(m, 2, mode);
} else {
seq_putc(m, '\n');
}
}
}
static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct drm_crtc *crtc = &intel_crtc->base;
struct intel_encoder *intel_encoder;
struct drm_plane_state *plane_state = crtc->primary->state;
struct drm_framebuffer *fb = plane_state->fb;
if (fb)
seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
fb->base.id, plane_state->src_x >> 16,
plane_state->src_y >> 16, fb->width, fb->height);
else
seq_puts(m, "\tprimary plane disabled\n");
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
intel_encoder_info(m, intel_crtc, intel_encoder);
}
static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
{
struct drm_display_mode *mode = panel->fixed_mode;
seq_printf(m, "\tfixed mode:\n");
intel_seq_print_mode(m, 2, mode);
}
static void intel_dp_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
intel_panel_info(m, &intel_connector->panel);
drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
&intel_dp->aux);
}
static void intel_dp_mst_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct intel_dp_mst_encoder *intel_mst =
enc_to_mst(&intel_encoder->base);
struct intel_digital_port *intel_dig_port = intel_mst->primary;
struct intel_dp *intel_dp = &intel_dig_port->dp;
bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
intel_connector->port);
seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
}
static void intel_hdmi_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
}
static void intel_lvds_info(struct seq_file *m,
struct intel_connector *intel_connector)
{
intel_panel_info(m, &intel_connector->panel);
}
static void intel_connector_info(struct seq_file *m,
struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
struct intel_encoder *intel_encoder = intel_connector->encoder;
struct drm_display_mode *mode;
seq_printf(m, "connector %d: type %s, status: %s\n",
connector->base.id, connector->name,
drm_get_connector_status_name(connector->status));
if (connector->status == connector_status_connected) {
seq_printf(m, "\tname: %s\n", connector->display_info.name);
seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
connector->display_info.width_mm,
connector->display_info.height_mm);
seq_printf(m, "\tsubpixel order: %s\n",
drm_get_subpixel_order_name(connector->display_info.subpixel_order));
seq_printf(m, "\tCEA rev: %d\n",
connector->display_info.cea_rev);
}
if (!intel_encoder)
return;
switch (connector->connector_type) {
case DRM_MODE_CONNECTOR_DisplayPort:
case DRM_MODE_CONNECTOR_eDP:
if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
intel_dp_mst_info(m, intel_connector);
else
intel_dp_info(m, intel_connector);
break;
case DRM_MODE_CONNECTOR_LVDS:
if (intel_encoder->type == INTEL_OUTPUT_LVDS)
intel_lvds_info(m, intel_connector);
break;
case DRM_MODE_CONNECTOR_HDMIA:
if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
intel_encoder->type == INTEL_OUTPUT_DDI)
intel_hdmi_info(m, intel_connector);
break;
default:
break;
}
seq_printf(m, "\tmodes:\n");
list_for_each_entry(mode, &connector->modes, head)
intel_seq_print_mode(m, 2, mode);
}
static const char *plane_type(enum drm_plane_type type)
{
switch (type) {
case DRM_PLANE_TYPE_OVERLAY:
return "OVL";
case DRM_PLANE_TYPE_PRIMARY:
return "PRI";
case DRM_PLANE_TYPE_CURSOR:
return "CUR";
/*
* Deliberately omitting default: to generate compiler warnings
* when a new drm_plane_type gets added.
*/
}
return "unknown";
}
static const char *plane_rotation(unsigned int rotation)
{
static char buf[48];
/*
* According to doc only one DRM_MODE_ROTATE_ is allowed but this
* will print them all to visualize if the values are misused
*/
snprintf(buf, sizeof(buf),
"%s%s%s%s%s%s(0x%08x)",
(rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
(rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
(rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
(rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
(rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
(rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
rotation);
return buf;
}
static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_plane *intel_plane;
for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
struct drm_plane_state *state;
struct drm_plane *plane = &intel_plane->base;
struct drm_format_name_buf format_name;
if (!plane->state) {
seq_puts(m, "plane->state is NULL!\n");
continue;
}
state = plane->state;
if (state->fb) {
drm_get_format_name(state->fb->format->format,
&format_name);
} else {
sprintf(format_name.str, "N/A");
}
seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
plane->base.id,
plane_type(intel_plane->base.type),
state->crtc_x, state->crtc_y,
state->crtc_w, state->crtc_h,
(state->src_x >> 16),
((state->src_x & 0xffff) * 15625) >> 10,
(state->src_y >> 16),
((state->src_y & 0xffff) * 15625) >> 10,
(state->src_w >> 16),
((state->src_w & 0xffff) * 15625) >> 10,
(state->src_h >> 16),
((state->src_h & 0xffff) * 15625) >> 10,
format_name.str,
plane_rotation(state->rotation));
}
}
static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
struct intel_crtc_state *pipe_config;
int num_scalers = intel_crtc->num_scalers;
int i;
pipe_config = to_intel_crtc_state(intel_crtc->base.state);
/* Not all platformas have a scaler */
if (num_scalers) {
seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
num_scalers,
pipe_config->scaler_state.scaler_users,
pipe_config->scaler_state.scaler_id);
for (i = 0; i < num_scalers; i++) {
struct intel_scaler *sc =
&pipe_config->scaler_state.scalers[i];
seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
i, yesno(sc->in_use), sc->mode);
}
seq_puts(m, "\n");
} else {
seq_puts(m, "\tNo scalers available on this platform\n");
}
}
static int i915_display_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_crtc *crtc;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "CRTC info\n");
seq_printf(m, "---------\n");
for_each_intel_crtc(dev, crtc) {
struct intel_crtc_state *pipe_config;
drm_modeset_lock(&crtc->base.mutex, NULL);
pipe_config = to_intel_crtc_state(crtc->base.state);
seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
crtc->base.base.id, pipe_name(crtc->pipe),
yesno(pipe_config->base.active),
pipe_config->pipe_src_w, pipe_config->pipe_src_h,
yesno(pipe_config->dither), pipe_config->pipe_bpp);
if (pipe_config->base.active) {
struct intel_plane *cursor =
to_intel_plane(crtc->base.cursor);
intel_crtc_info(m, crtc);
seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
yesno(cursor->base.state->visible),
cursor->base.state->crtc_x,
cursor->base.state->crtc_y,
cursor->base.state->crtc_w,
cursor->base.state->crtc_h,
cursor->cursor.base);
intel_scaler_info(m, crtc);
intel_plane_info(m, crtc);
}
seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
yesno(!crtc->cpu_fifo_underrun_disabled),
yesno(!crtc->pch_fifo_underrun_disabled));
drm_modeset_unlock(&crtc->base.mutex);
}
seq_printf(m, "\n");
seq_printf(m, "Connector info\n");
seq_printf(m, "--------------\n");
mutex_lock(&dev->mode_config.mutex);
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter)
intel_connector_info(m, connector);
drm_connector_list_iter_end(&conn_iter);
mutex_unlock(&dev->mode_config.mutex);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_engine_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct drm_printer p;
intel_runtime_pm_get(dev_priv);
seq_printf(m, "GT awake? %s (epoch %u)\n",
yesno(dev_priv->gt.awake), dev_priv->gt.epoch);
seq_printf(m, "Global active requests: %d\n",
dev_priv->gt.active_requests);
seq_printf(m, "CS timestamp frequency: %u kHz\n",
dev_priv->info.cs_timestamp_frequency_khz);
p = drm_seq_file_printer(m);
for_each_engine(engine, dev_priv, id)
intel_engine_dump(engine, &p, "%s\n", engine->name);
intel_runtime_pm_put(dev_priv);
return 0;
}
static int i915_rcs_topology(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_printer p = drm_seq_file_printer(m);
intel_device_info_dump_topology(&INTEL_INFO(dev_priv)->sseu, &p);
return 0;
}
static int i915_shrinker_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *i915 = node_to_i915(m->private);
seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
return 0;
}
static int i915_shared_dplls_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
int i;
drm_modeset_lock_all(dev);
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->info->name,
pll->info->id);
seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
seq_printf(m, " tracked hardware state:\n");
seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
seq_printf(m, " dpll_md: 0x%08x\n",
pll->state.hw_state.dpll_md);
seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
seq_printf(m, " cfgcr0: 0x%08x\n", pll->state.hw_state.cfgcr0);
seq_printf(m, " cfgcr1: 0x%08x\n", pll->state.hw_state.cfgcr1);
seq_printf(m, " mg_refclkin_ctl: 0x%08x\n",
pll->state.hw_state.mg_refclkin_ctl);
seq_printf(m, " mg_clktop2_coreclkctl1: 0x%08x\n",
pll->state.hw_state.mg_clktop2_coreclkctl1);
seq_printf(m, " mg_clktop2_hsclkctl: 0x%08x\n",
pll->state.hw_state.mg_clktop2_hsclkctl);
seq_printf(m, " mg_pll_div0: 0x%08x\n",
pll->state.hw_state.mg_pll_div0);
seq_printf(m, " mg_pll_div1: 0x%08x\n",
pll->state.hw_state.mg_pll_div1);
seq_printf(m, " mg_pll_lf: 0x%08x\n",
pll->state.hw_state.mg_pll_lf);
seq_printf(m, " mg_pll_frac_lock: 0x%08x\n",
pll->state.hw_state.mg_pll_frac_lock);
seq_printf(m, " mg_pll_ssc: 0x%08x\n",
pll->state.hw_state.mg_pll_ssc);
seq_printf(m, " mg_pll_bias: 0x%08x\n",
pll->state.hw_state.mg_pll_bias);
seq_printf(m, " mg_pll_tdc_coldst_bias: 0x%08x\n",
pll->state.hw_state.mg_pll_tdc_coldst_bias);
}
drm_modeset_unlock_all(dev);
return 0;
}
static int i915_wa_registers(struct seq_file *m, void *unused)
{
struct i915_workarounds *wa = &node_to_i915(m->private)->workarounds;
int i;
seq_printf(m, "Workarounds applied: %d\n", wa->count);
for (i = 0; i < wa->count; ++i)
seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
wa->reg[i].addr, wa->reg[i].value, wa->reg[i].mask);
return 0;
}
static int i915_ipc_status_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
seq_printf(m, "Isochronous Priority Control: %s\n",
yesno(dev_priv->ipc_enabled));
return 0;
}
static int i915_ipc_status_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
if (!HAS_IPC(dev_priv))
return -ENODEV;
return single_open(file, i915_ipc_status_show, dev_priv);
}
static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
int ret;
bool enable;
ret = kstrtobool_from_user(ubuf, len, &enable);
if (ret < 0)
return ret;
intel_runtime_pm_get(dev_priv);
if (!dev_priv->ipc_enabled && enable)
DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
dev_priv->wm.distrust_bios_wm = true;
dev_priv->ipc_enabled = enable;
intel_enable_ipc(dev_priv);
intel_runtime_pm_put(dev_priv);
return len;
}
static const struct file_operations i915_ipc_status_fops = {
.owner = THIS_MODULE,
.open = i915_ipc_status_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = i915_ipc_status_write
};
static int i915_ddb_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct skl_ddb_allocation *ddb;
struct skl_ddb_entry *entry;
enum pipe pipe;
int plane;
if (INTEL_GEN(dev_priv) < 9)
return -ENODEV;
drm_modeset_lock_all(dev);
ddb = &dev_priv->wm.skl_hw.ddb;
seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
for_each_pipe(dev_priv, pipe) {
seq_printf(m, "Pipe %c\n", pipe_name(pipe));
for_each_universal_plane(dev_priv, pipe, plane) {
entry = &ddb->plane[pipe][plane];
seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
entry->start, entry->end,
skl_ddb_entry_size(entry));
}
entry = &ddb->plane[pipe][PLANE_CURSOR];
seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
entry->end, skl_ddb_entry_size(entry));
}
drm_modeset_unlock_all(dev);
return 0;
}
static void drrs_status_per_crtc(struct seq_file *m,
struct drm_device *dev,
struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_drrs *drrs = &dev_priv->drrs;
int vrefresh = 0;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
if (connector->state->crtc != &intel_crtc->base)
continue;
seq_printf(m, "%s:\n", connector->name);
}
drm_connector_list_iter_end(&conn_iter);
if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
seq_puts(m, "\tVBT: DRRS_type: Static");
else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
seq_puts(m, "\tVBT: DRRS_type: Seamless");
else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
seq_puts(m, "\tVBT: DRRS_type: None");
else
seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
seq_puts(m, "\n\n");
if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
struct intel_panel *panel;
mutex_lock(&drrs->mutex);
/* DRRS Supported */
seq_puts(m, "\tDRRS Supported: Yes\n");
/* disable_drrs() will make drrs->dp NULL */
if (!drrs->dp) {
seq_puts(m, "Idleness DRRS: Disabled\n");
if (dev_priv->psr.enabled)
seq_puts(m,
"\tAs PSR is enabled, DRRS is not enabled\n");
mutex_unlock(&drrs->mutex);
return;
}
panel = &drrs->dp->attached_connector->panel;
seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
drrs->busy_frontbuffer_bits);
seq_puts(m, "\n\t\t");
if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
vrefresh = panel->fixed_mode->vrefresh;
} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
vrefresh = panel->downclock_mode->vrefresh;
} else {
seq_printf(m, "DRRS_State: Unknown(%d)\n",
drrs->refresh_rate_type);
mutex_unlock(&drrs->mutex);
return;
}
seq_printf(m, "\t\tVrefresh: %d", vrefresh);
seq_puts(m, "\n\t\t");
mutex_unlock(&drrs->mutex);
} else {
/* DRRS not supported. Print the VBT parameter*/
seq_puts(m, "\tDRRS Supported : No");
}
seq_puts(m, "\n");
}
static int i915_drrs_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_crtc *intel_crtc;
int active_crtc_cnt = 0;
drm_modeset_lock_all(dev);
for_each_intel_crtc(dev, intel_crtc) {
if (intel_crtc->base.state->active) {
active_crtc_cnt++;
seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
drrs_status_per_crtc(m, dev, intel_crtc);
}
}
drm_modeset_unlock_all(dev);
if (!active_crtc_cnt)
seq_puts(m, "No active crtc found\n");
return 0;
}
static int i915_dp_mst_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_device *dev = &dev_priv->drm;
struct intel_encoder *intel_encoder;
struct intel_digital_port *intel_dig_port;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
continue;
intel_encoder = intel_attached_encoder(connector);
if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
continue;
intel_dig_port = enc_to_dig_port(&intel_encoder->base);
if (!intel_dig_port->dp.can_mst)
continue;
seq_printf(m, "MST Source Port %c\n",
port_name(intel_dig_port->base.port));
drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
}
drm_connector_list_iter_end(&conn_iter);
return 0;
}
static ssize_t i915_displayport_test_active_write(struct file *file,
const char __user *ubuf,
size_t len, loff_t *offp)
{
char *input_buffer;
int status = 0;
struct drm_device *dev;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
struct intel_dp *intel_dp;
int val = 0;
dev = ((struct seq_file *)file->private_data)->private;
if (len == 0)
return 0;
input_buffer = memdup_user_nul(ubuf, len);
if (IS_ERR(input_buffer))
return PTR_ERR(input_buffer);
DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct intel_encoder *encoder;
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
encoder = to_intel_encoder(connector->encoder);
if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
continue;
if (encoder && connector->status == connector_status_connected) {
intel_dp = enc_to_intel_dp(&encoder->base);
status = kstrtoint(input_buffer, 10, &val);
if (status < 0)
break;
DRM_DEBUG_DRIVER("Got %d for test active\n", val);
/* To prevent erroneous activation of the compliance
* testing code, only accept an actual value of 1 here
*/
if (val == 1)
intel_dp->compliance.test_active = 1;
else
intel_dp->compliance.test_active = 0;
}
}
drm_connector_list_iter_end(&conn_iter);
kfree(input_buffer);
if (status < 0)
return status;
*offp += len;
return len;
}
static int i915_displayport_test_active_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
struct drm_device *dev = &dev_priv->drm;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
struct intel_dp *intel_dp;
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct intel_encoder *encoder;
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
encoder = to_intel_encoder(connector->encoder);
if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
continue;
if (encoder && connector->status == connector_status_connected) {
intel_dp = enc_to_intel_dp(&encoder->base);
if (intel_dp->compliance.test_active)
seq_puts(m, "1");
else
seq_puts(m, "0");
} else
seq_puts(m, "0");
}
drm_connector_list_iter_end(&conn_iter);
return 0;
}
static int i915_displayport_test_active_open(struct inode *inode,
struct file *file)
{
return single_open(file, i915_displayport_test_active_show,
inode->i_private);
}
static const struct file_operations i915_displayport_test_active_fops = {
.owner = THIS_MODULE,
.open = i915_displayport_test_active_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = i915_displayport_test_active_write
};
static int i915_displayport_test_data_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
struct drm_device *dev = &dev_priv->drm;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
struct intel_dp *intel_dp;
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct intel_encoder *encoder;
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
encoder = to_intel_encoder(connector->encoder);
if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
continue;
if (encoder && connector->status == connector_status_connected) {
intel_dp = enc_to_intel_dp(&encoder->base);
if (intel_dp->compliance.test_type ==
DP_TEST_LINK_EDID_READ)
seq_printf(m, "%lx",
intel_dp->compliance.test_data.edid);
else if (intel_dp->compliance.test_type ==
DP_TEST_LINK_VIDEO_PATTERN) {
seq_printf(m, "hdisplay: %d\n",
intel_dp->compliance.test_data.hdisplay);
seq_printf(m, "vdisplay: %d\n",
intel_dp->compliance.test_data.vdisplay);
seq_printf(m, "bpc: %u\n",
intel_dp->compliance.test_data.bpc);
}
} else
seq_puts(m, "0");
}
drm_connector_list_iter_end(&conn_iter);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_data);
static int i915_displayport_test_type_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
struct drm_device *dev = &dev_priv->drm;
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
struct intel_dp *intel_dp;
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct intel_encoder *encoder;
if (connector->connector_type !=
DRM_MODE_CONNECTOR_DisplayPort)
continue;
encoder = to_intel_encoder(connector->encoder);
if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
continue;
if (encoder && connector->status == connector_status_connected) {
intel_dp = enc_to_intel_dp(&encoder->base);
seq_printf(m, "%02lx", intel_dp->compliance.test_type);
} else
seq_puts(m, "0");
}
drm_connector_list_iter_end(&conn_iter);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_type);
static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
{
struct drm_i915_private *dev_priv = m->private;
struct drm_device *dev = &dev_priv->drm;
int level;
int num_levels;
if (IS_CHERRYVIEW(dev_priv))
num_levels = 3;
else if (IS_VALLEYVIEW(dev_priv))
num_levels = 1;
else if (IS_G4X(dev_priv))
num_levels = 3;
else
num_levels = ilk_wm_max_level(dev_priv) + 1;
drm_modeset_lock_all(dev);
for (level = 0; level < num_levels; level++) {
unsigned int latency = wm[level];
/*
* - WM1+ latency values in 0.5us units
* - latencies are in us on gen9/vlv/chv
*/
if (INTEL_GEN(dev_priv) >= 9 ||
IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv) ||
IS_G4X(dev_priv))
latency *= 10;
else if (level > 0)
latency *= 5;
seq_printf(m, "WM%d %u (%u.%u usec)\n",
level, wm[level], latency / 10, latency % 10);
}
drm_modeset_unlock_all(dev);
}
static int pri_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
const uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.pri_latency;
wm_latency_show(m, latencies);
return 0;
}
static int spr_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
const uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.spr_latency;
wm_latency_show(m, latencies);
return 0;
}
static int cur_wm_latency_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
const uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.cur_latency;
wm_latency_show(m, latencies);
return 0;
}
static int pri_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
return -ENODEV;
return single_open(file, pri_wm_latency_show, dev_priv);
}
static int spr_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
if (HAS_GMCH_DISPLAY(dev_priv))
return -ENODEV;
return single_open(file, spr_wm_latency_show, dev_priv);
}
static int cur_wm_latency_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *dev_priv = inode->i_private;
if (HAS_GMCH_DISPLAY(dev_priv))
return -ENODEV;
return single_open(file, cur_wm_latency_show, dev_priv);
}
static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp, uint16_t wm[8])
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
struct drm_device *dev = &dev_priv->drm;
uint16_t new[8] = { 0 };
int num_levels;
int level;
int ret;
char tmp[32];
if (IS_CHERRYVIEW(dev_priv))
num_levels = 3;
else if (IS_VALLEYVIEW(dev_priv))
num_levels = 1;
else if (IS_G4X(dev_priv))
num_levels = 3;
else
num_levels = ilk_wm_max_level(dev_priv) + 1;
if (len >= sizeof(tmp))
return -EINVAL;
if (copy_from_user(tmp, ubuf, len))
return -EFAULT;
tmp[len] = '\0';
ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
&new[0], &new[1], &new[2], &new[3],
&new[4], &new[5], &new[6], &new[7]);
if (ret != num_levels)
return -EINVAL;
drm_modeset_lock_all(dev);
for (level = 0; level < num_levels; level++)
wm[level] = new[level];
drm_modeset_unlock_all(dev);
return len;
}
static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.pri_latency;
return wm_latency_write(file, ubuf, len, offp, latencies);
}
static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.spr_latency;
return wm_latency_write(file, ubuf, len, offp, latencies);
}
static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
uint16_t *latencies;
if (INTEL_GEN(dev_priv) >= 9)
latencies = dev_priv->wm.skl_latency;
else
latencies = dev_priv->wm.cur_latency;
return wm_latency_write(file, ubuf, len, offp, latencies);
}
static const struct file_operations i915_pri_wm_latency_fops = {
.owner = THIS_MODULE,
.open = pri_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = pri_wm_latency_write
};
static const struct file_operations i915_spr_wm_latency_fops = {
.owner = THIS_MODULE,
.open = spr_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = spr_wm_latency_write
};
static const struct file_operations i915_cur_wm_latency_fops = {
.owner = THIS_MODULE,
.open = cur_wm_latency_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = cur_wm_latency_write
};
static int
i915_wedged_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
*val = i915_terminally_wedged(&dev_priv->gpu_error);
return 0;
}
static int
i915_wedged_set(void *data, u64 val)
{
struct drm_i915_private *i915 = data;
struct intel_engine_cs *engine;
unsigned int tmp;
/*
* There is no safeguard against this debugfs entry colliding
* with the hangcheck calling same i915_handle_error() in
* parallel, causing an explosion. For now we assume that the
* test harness is responsible enough not to inject gpu hangs
* while it is writing to 'i915_wedged'
*/
if (i915_reset_backoff(&i915->gpu_error))
return -EAGAIN;
for_each_engine_masked(engine, i915, val, tmp) {
engine->hangcheck.seqno = intel_engine_get_seqno(engine);
engine->hangcheck.stalled = true;
}
i915_handle_error(i915, val, I915_ERROR_CAPTURE,
"Manually set wedged engine mask = %llx", val);
wait_on_bit(&i915->gpu_error.flags,
I915_RESET_HANDOFF,
TASK_UNINTERRUPTIBLE);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
i915_wedged_get, i915_wedged_set,
"%llu\n");
static int
fault_irq_set(struct drm_i915_private *i915,
unsigned long *irq,
unsigned long val)
{
int err;
err = mutex_lock_interruptible(&i915->drm.struct_mutex);
if (err)
return err;
err = i915_gem_wait_for_idle(i915,
I915_WAIT_LOCKED |
I915_WAIT_INTERRUPTIBLE,
MAX_SCHEDULE_TIMEOUT);
if (err)
goto err_unlock;
*irq = val;
mutex_unlock(&i915->drm.struct_mutex);
/* Flush idle worker to disarm irq */
drain_delayed_work(&i915->gt.idle_work);
return 0;
err_unlock:
mutex_unlock(&i915->drm.struct_mutex);
return err;
}
static int
i915_ring_missed_irq_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
*val = dev_priv->gpu_error.missed_irq_rings;
return 0;
}
static int
i915_ring_missed_irq_set(void *data, u64 val)
{
struct drm_i915_private *i915 = data;
return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
i915_ring_missed_irq_get, i915_ring_missed_irq_set,
"0x%08llx\n");
static int
i915_ring_test_irq_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
*val = dev_priv->gpu_error.test_irq_rings;
return 0;
}
static int
i915_ring_test_irq_set(void *data, u64 val)
{
struct drm_i915_private *i915 = data;
val &= INTEL_INFO(i915)->ring_mask;
DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
i915_ring_test_irq_get, i915_ring_test_irq_set,
"0x%08llx\n");
#define DROP_UNBOUND BIT(0)
#define DROP_BOUND BIT(1)
#define DROP_RETIRE BIT(2)
#define DROP_ACTIVE BIT(3)
#define DROP_FREED BIT(4)
#define DROP_SHRINK_ALL BIT(5)
#define DROP_IDLE BIT(6)
#define DROP_ALL (DROP_UNBOUND | \
DROP_BOUND | \
DROP_RETIRE | \
DROP_ACTIVE | \
DROP_FREED | \
DROP_SHRINK_ALL |\
DROP_IDLE)
static int
i915_drop_caches_get(void *data, u64 *val)
{
*val = DROP_ALL;
return 0;
}
static int
i915_drop_caches_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
struct drm_device *dev = &dev_priv->drm;
int ret = 0;
DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
val, val & DROP_ALL);
/* No need to check and wait for gpu resets, only libdrm auto-restarts
* on ioctls on -EAGAIN. */
if (val & (DROP_ACTIVE | DROP_RETIRE)) {
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
if (val & DROP_ACTIVE)
ret = i915_gem_wait_for_idle(dev_priv,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_LOCKED,
MAX_SCHEDULE_TIMEOUT);
if (val & DROP_RETIRE)
i915_retire_requests(dev_priv);
mutex_unlock(&dev->struct_mutex);
}
fs_reclaim_acquire(GFP_KERNEL);
if (val & DROP_BOUND)
i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
if (val & DROP_UNBOUND)
i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
if (val & DROP_SHRINK_ALL)
i915_gem_shrink_all(dev_priv);
fs_reclaim_release(GFP_KERNEL);
if (val & DROP_IDLE) {
do {
if (READ_ONCE(dev_priv->gt.active_requests))
flush_delayed_work(&dev_priv->gt.retire_work);
drain_delayed_work(&dev_priv->gt.idle_work);
} while (READ_ONCE(dev_priv->gt.awake));
}
if (val & DROP_FREED)
i915_gem_drain_freed_objects(dev_priv);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
i915_drop_caches_get, i915_drop_caches_set,
"0x%08llx\n");
static int
i915_cache_sharing_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
u32 snpcr;
if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
return -ENODEV;
intel_runtime_pm_get(dev_priv);
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
intel_runtime_pm_put(dev_priv);
*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
return 0;
}
static int
i915_cache_sharing_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
u32 snpcr;
if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
return -ENODEV;
if (val > 3)
return -EINVAL;
intel_runtime_pm_get(dev_priv);
DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
/* Update the cache sharing policy here as well */
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
intel_runtime_pm_put(dev_priv);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
i915_cache_sharing_get, i915_cache_sharing_set,
"%llu\n");
static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
#define SS_MAX 2
const int ss_max = SS_MAX;
u32 sig1[SS_MAX], sig2[SS_MAX];
int ss;
sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
for (ss = 0; ss < ss_max; ss++) {
unsigned int eu_cnt;
if (sig1[ss] & CHV_SS_PG_ENABLE)
/* skip disabled subslice */
continue;
sseu->slice_mask = BIT(0);
sseu->subslice_mask[0] |= BIT(ss);
eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice, eu_cnt);
}
#undef SS_MAX
}
static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
#define SS_MAX 6
const struct intel_device_info *info = INTEL_INFO(dev_priv);
u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
int s, ss;
for (s = 0; s < info->sseu.max_slices; s++) {
/*
* FIXME: Valid SS Mask respects the spec and read
* only valid bits for those registers, excluding reserverd
* although this seems wrong because it would leave many
* subslices without ACK.
*/
s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
GEN10_PGCTL_VALID_SS_MASK(s);
eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < info->sseu.max_slices; s++) {
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
sseu->slice_mask |= BIT(s);
sseu->subslice_mask[s] = info->sseu.subslice_mask[s];
for (ss = 0; ss < info->sseu.max_subslices; ss++) {
unsigned int eu_cnt;
if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
eu_mask[ss % 2]);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice,
eu_cnt);
}
}
#undef SS_MAX
}
static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
#define SS_MAX 3
const struct intel_device_info *info = INTEL_INFO(dev_priv);
u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
int s, ss;
for (s = 0; s < info->sseu.max_slices; s++) {
s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < info->sseu.max_slices; s++) {
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
sseu->slice_mask |= BIT(s);
if (IS_GEN9_BC(dev_priv))
sseu->subslice_mask[s] =
INTEL_INFO(dev_priv)->sseu.subslice_mask[s];
for (ss = 0; ss < info->sseu.max_subslices; ss++) {
unsigned int eu_cnt;
if (IS_GEN9_LP(dev_priv)) {
if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
sseu->subslice_mask[s] |= BIT(ss);
}
eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
eu_mask[ss%2]);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice,
eu_cnt);
}
}
#undef SS_MAX
}
static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
int s;
sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
if (sseu->slice_mask) {
sseu->eu_per_subslice =
INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
for (s = 0; s < fls(sseu->slice_mask); s++) {
sseu->subslice_mask[s] =
INTEL_INFO(dev_priv)->sseu.subslice_mask[s];
}
sseu->eu_total = sseu->eu_per_subslice *
sseu_subslice_total(sseu);
/* subtract fused off EU(s) from enabled slice(s) */
for (s = 0; s < fls(sseu->slice_mask); s++) {
u8 subslice_7eu =
INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
sseu->eu_total -= hweight8(subslice_7eu);
}
}
}
static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
const struct sseu_dev_info *sseu)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const char *type = is_available_info ? "Available" : "Enabled";
int s;
seq_printf(m, " %s Slice Mask: %04x\n", type,
sseu->slice_mask);
seq_printf(m, " %s Slice Total: %u\n", type,
hweight8(sseu->slice_mask));
seq_printf(m, " %s Subslice Total: %u\n", type,
sseu_subslice_total(sseu));
for (s = 0; s < fls(sseu->slice_mask); s++) {
seq_printf(m, " %s Slice%i subslices: %u\n", type,
s, hweight8(sseu->subslice_mask[s]));
}
seq_printf(m, " %s EU Total: %u\n", type,
sseu->eu_total);
seq_printf(m, " %s EU Per Subslice: %u\n", type,
sseu->eu_per_subslice);
if (!is_available_info)
return;
seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
if (HAS_POOLED_EU(dev_priv))
seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
seq_printf(m, " Has Slice Power Gating: %s\n",
yesno(sseu->has_slice_pg));
seq_printf(m, " Has Subslice Power Gating: %s\n",
yesno(sseu->has_subslice_pg));
seq_printf(m, " Has EU Power Gating: %s\n",
yesno(sseu->has_eu_pg));
}
static int i915_sseu_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct sseu_dev_info sseu;
if (INTEL_GEN(dev_priv) < 8)
return -ENODEV;
seq_puts(m, "SSEU Device Info\n");
i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
seq_puts(m, "SSEU Device Status\n");
memset(&sseu, 0, sizeof(sseu));
sseu.max_slices = INTEL_INFO(dev_priv)->sseu.max_slices;
sseu.max_subslices = INTEL_INFO(dev_priv)->sseu.max_subslices;
sseu.max_eus_per_subslice =
INTEL_INFO(dev_priv)->sseu.max_eus_per_subslice;
intel_runtime_pm_get(dev_priv);
if (IS_CHERRYVIEW(dev_priv)) {
cherryview_sseu_device_status(dev_priv, &sseu);
} else if (IS_BROADWELL(dev_priv)) {
broadwell_sseu_device_status(dev_priv, &sseu);
} else if (IS_GEN9(dev_priv)) {
gen9_sseu_device_status(dev_priv, &sseu);
} else if (INTEL_GEN(dev_priv) >= 10) {
gen10_sseu_device_status(dev_priv, &sseu);
}
intel_runtime_pm_put(dev_priv);
i915_print_sseu_info(m, false, &sseu);
return 0;
}
static int i915_forcewake_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *i915 = inode->i_private;
if (INTEL_GEN(i915) < 6)
return 0;
intel_runtime_pm_get(i915);
intel_uncore_forcewake_user_get(i915);
return 0;
}
static int i915_forcewake_release(struct inode *inode, struct file *file)
{
struct drm_i915_private *i915 = inode->i_private;
if (INTEL_GEN(i915) < 6)
return 0;
intel_uncore_forcewake_user_put(i915);
intel_runtime_pm_put(i915);
return 0;
}
static const struct file_operations i915_forcewake_fops = {
.owner = THIS_MODULE,
.open = i915_forcewake_open,
.release = i915_forcewake_release,
};
static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = m->private;
struct i915_hotplug *hotplug = &dev_priv->hotplug;
seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
seq_printf(m, "Detected: %s\n",
yesno(delayed_work_pending(&hotplug->reenable_work)));
return 0;
}
static ssize_t i915_hpd_storm_ctl_write(struct file *file,
const char __user *ubuf, size_t len,
loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_i915_private *dev_priv = m->private;
struct i915_hotplug *hotplug = &dev_priv->hotplug;
unsigned int new_threshold;
int i;
char *newline;
char tmp[16];
if (len >= sizeof(tmp))
return -EINVAL;
if (copy_from_user(tmp, ubuf, len))
return -EFAULT;
tmp[len] = '\0';
/* Strip newline, if any */
newline = strchr(tmp, '\n');
if (newline)
*newline = '\0';
if (strcmp(tmp, "reset") == 0)
new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
else if (kstrtouint(tmp, 10, &new_threshold) != 0)
return -EINVAL;
if (new_threshold > 0)
DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
new_threshold);
else
DRM_DEBUG_KMS("Disabling HPD storm detection\n");
spin_lock_irq(&dev_priv->irq_lock);
hotplug->hpd_storm_threshold = new_threshold;
/* Reset the HPD storm stats so we don't accidentally trigger a storm */
for_each_hpd_pin(i)
hotplug->stats[i].count = 0;
spin_unlock_irq(&dev_priv->irq_lock);
/* Re-enable hpd immediately if we were in an irq storm */
flush_delayed_work(&dev_priv->hotplug.reenable_work);
return len;
}
static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
{
return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
}
static const struct file_operations i915_hpd_storm_ctl_fops = {
.owner = THIS_MODULE,
.open = i915_hpd_storm_ctl_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = i915_hpd_storm_ctl_write
};
static int i915_drrs_ctl_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
struct drm_device *dev = &dev_priv->drm;
struct intel_crtc *intel_crtc;
struct intel_encoder *encoder;
struct intel_dp *intel_dp;
if (INTEL_GEN(dev_priv) < 7)
return -ENODEV;
drm_modeset_lock_all(dev);
for_each_intel_crtc(dev, intel_crtc) {
if (!intel_crtc->base.state->active ||
!intel_crtc->config->has_drrs)
continue;
for_each_encoder_on_crtc(dev, &intel_crtc->base, encoder) {
if (encoder->type != INTEL_OUTPUT_EDP)
continue;
DRM_DEBUG_DRIVER("Manually %sabling DRRS. %llu\n",
val ? "en" : "dis", val);
intel_dp = enc_to_intel_dp(&encoder->base);
if (val)
intel_edp_drrs_enable(intel_dp,
intel_crtc->config);
else
intel_edp_drrs_disable(intel_dp,
intel_crtc->config);
}
}
drm_modeset_unlock_all(dev);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_drrs_ctl_fops, NULL, i915_drrs_ctl_set, "%llu\n");
static ssize_t
i915_fifo_underrun_reset_write(struct file *filp,
const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
struct drm_i915_private *dev_priv = filp->private_data;
struct intel_crtc *intel_crtc;
struct drm_device *dev = &dev_priv->drm;
int ret;
bool reset;
ret = kstrtobool_from_user(ubuf, cnt, &reset);
if (ret)
return ret;
if (!reset)
return cnt;
for_each_intel_crtc(dev, intel_crtc) {
struct drm_crtc_commit *commit;
struct intel_crtc_state *crtc_state;
ret = drm_modeset_lock_single_interruptible(&intel_crtc->base.mutex);
if (ret)
return ret;
crtc_state = to_intel_crtc_state(intel_crtc->base.state);
commit = crtc_state->base.commit;
if (commit) {
ret = wait_for_completion_interruptible(&commit->hw_done);
if (!ret)
ret = wait_for_completion_interruptible(&commit->flip_done);
}
if (!ret && crtc_state->base.active) {
DRM_DEBUG_KMS("Re-arming FIFO underruns on pipe %c\n",
pipe_name(intel_crtc->pipe));
intel_crtc_arm_fifo_underrun(intel_crtc, crtc_state);
}
drm_modeset_unlock(&intel_crtc->base.mutex);
if (ret)
return ret;
}
ret = intel_fbc_reset_underrun(dev_priv);
if (ret)
return ret;
return cnt;
}
static const struct file_operations i915_fifo_underrun_reset_ops = {
.owner = THIS_MODULE,
.open = simple_open,
.write = i915_fifo_underrun_reset_write,
.llseek = default_llseek,
};
static const struct drm_info_list i915_debugfs_list[] = {
{"i915_capabilities", i915_capabilities, 0},
{"i915_gem_objects", i915_gem_object_info, 0},
{"i915_gem_gtt", i915_gem_gtt_info, 0},
{"i915_gem_stolen", i915_gem_stolen_list_info },
{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
{"i915_gem_interrupt", i915_interrupt_info, 0},
{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
{"i915_guc_info", i915_guc_info, 0},
{"i915_guc_load_status", i915_guc_load_status_info, 0},
{"i915_guc_log_dump", i915_guc_log_dump, 0},
{"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
{"i915_guc_stage_pool", i915_guc_stage_pool, 0},
{"i915_huc_load_status", i915_huc_load_status_info, 0},
{"i915_frequency_info", i915_frequency_info, 0},
{"i915_hangcheck_info", i915_hangcheck_info, 0},
{"i915_reset_info", i915_reset_info, 0},
{"i915_drpc_info", i915_drpc_info, 0},
{"i915_emon_status", i915_emon_status, 0},
{"i915_ring_freq_table", i915_ring_freq_table, 0},
{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
{"i915_fbc_status", i915_fbc_status, 0},
{"i915_ips_status", i915_ips_status, 0},
{"i915_sr_status", i915_sr_status, 0},
{"i915_opregion", i915_opregion, 0},
{"i915_vbt", i915_vbt, 0},
{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
{"i915_context_status", i915_context_status, 0},
{"i915_forcewake_domains", i915_forcewake_domains, 0},
{"i915_swizzle_info", i915_swizzle_info, 0},
{"i915_ppgtt_info", i915_ppgtt_info, 0},
{"i915_llc", i915_llc, 0},
{"i915_edp_psr_status", i915_edp_psr_status, 0},
{"i915_energy_uJ", i915_energy_uJ, 0},
{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
{"i915_power_domain_info", i915_power_domain_info, 0},
{"i915_dmc_info", i915_dmc_info, 0},
{"i915_display_info", i915_display_info, 0},
{"i915_engine_info", i915_engine_info, 0},
{"i915_rcs_topology", i915_rcs_topology, 0},
{"i915_shrinker_info", i915_shrinker_info, 0},
{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
{"i915_dp_mst_info", i915_dp_mst_info, 0},
{"i915_wa_registers", i915_wa_registers, 0},
{"i915_ddb_info", i915_ddb_info, 0},
{"i915_sseu_status", i915_sseu_status, 0},
{"i915_drrs_status", i915_drrs_status, 0},
{"i915_rps_boost_info", i915_rps_boost_info, 0},
};
#define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
static const struct i915_debugfs_files {
const char *name;
const struct file_operations *fops;
} i915_debugfs_files[] = {
{"i915_wedged", &i915_wedged_fops},
{"i915_cache_sharing", &i915_cache_sharing_fops},
{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
{"i915_ring_test_irq", &i915_ring_test_irq_fops},
{"i915_gem_drop_caches", &i915_drop_caches_fops},
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
{"i915_error_state", &i915_error_state_fops},
{"i915_gpu_info", &i915_gpu_info_fops},
#endif
{"i915_fifo_underrun_reset", &i915_fifo_underrun_reset_ops},
{"i915_next_seqno", &i915_next_seqno_fops},
{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
{"i915_fbc_false_color", &i915_fbc_false_color_fops},
{"i915_dp_test_data", &i915_displayport_test_data_fops},
{"i915_dp_test_type", &i915_displayport_test_type_fops},
{"i915_dp_test_active", &i915_displayport_test_active_fops},
{"i915_guc_log_level", &i915_guc_log_level_fops},
{"i915_guc_log_relay", &i915_guc_log_relay_fops},
{"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
{"i915_ipc_status", &i915_ipc_status_fops},
{"i915_drrs_ctl", &i915_drrs_ctl_fops},
{"i915_edp_psr_debug", &i915_edp_psr_debug_fops}
};
int i915_debugfs_register(struct drm_i915_private *dev_priv)
{
struct drm_minor *minor = dev_priv->drm.primary;
struct dentry *ent;
int i;
ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
minor->debugfs_root, to_i915(minor->dev),
&i915_forcewake_fops);
if (!ent)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
ent = debugfs_create_file(i915_debugfs_files[i].name,
S_IRUGO | S_IWUSR,
minor->debugfs_root,
to_i915(minor->dev),
i915_debugfs_files[i].fops);
if (!ent)
return -ENOMEM;
}
return drm_debugfs_create_files(i915_debugfs_list,
I915_DEBUGFS_ENTRIES,
minor->debugfs_root, minor);
}
struct dpcd_block {
/* DPCD dump start address. */
unsigned int offset;
/* DPCD dump end address, inclusive. If unset, .size will be used. */
unsigned int end;
/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
size_t size;
/* Only valid for eDP. */
bool edp;
};
static const struct dpcd_block i915_dpcd_debug[] = {
{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
{ .offset = DP_SET_POWER },
{ .offset = DP_EDP_DPCD_REV },
{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
};
static int i915_dpcd_show(struct seq_file *m, void *data)
{
struct drm_connector *connector = m->private;
struct intel_dp *intel_dp =
enc_to_intel_dp(&intel_attached_encoder(connector)->base);
uint8_t buf[16];
ssize_t err;
int i;
if (connector->status != connector_status_connected)
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
const struct dpcd_block *b = &i915_dpcd_debug[i];
size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
if (b->edp &&
connector->connector_type != DRM_MODE_CONNECTOR_eDP)
continue;
/* low tech for now */
if (WARN_ON(size > sizeof(buf)))
continue;
err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
if (err <= 0) {
DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
size, b->offset, err);
continue;
}
seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_dpcd);
static int i915_panel_show(struct seq_file *m, void *data)
{
struct drm_connector *connector = m->private;
struct intel_dp *intel_dp =
enc_to_intel_dp(&intel_attached_encoder(connector)->base);
if (connector->status != connector_status_connected)
return -ENODEV;
seq_printf(m, "Panel power up delay: %d\n",
intel_dp->panel_power_up_delay);
seq_printf(m, "Panel power down delay: %d\n",
intel_dp->panel_power_down_delay);
seq_printf(m, "Backlight on delay: %d\n",
intel_dp->backlight_on_delay);
seq_printf(m, "Backlight off delay: %d\n",
intel_dp->backlight_off_delay);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_panel);
/**
* i915_debugfs_connector_add - add i915 specific connector debugfs files
* @connector: pointer to a registered drm_connector
*
* Cleanup will be done by drm_connector_unregister() through a call to
* drm_debugfs_connector_remove().
*
* Returns 0 on success, negative error codes on error.
*/
int i915_debugfs_connector_add(struct drm_connector *connector)
{
struct dentry *root = connector->debugfs_entry;
/* The connector must have been registered beforehands. */
if (!root)
return -ENODEV;
if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
connector->connector_type == DRM_MODE_CONNECTOR_eDP)
debugfs_create_file("i915_dpcd", S_IRUGO, root,
connector, &i915_dpcd_fops);
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
debugfs_create_file("i915_panel_timings", S_IRUGO, root,
connector, &i915_panel_fops);
debugfs_create_file("i915_psr_sink_status", S_IRUGO, root,
connector, &i915_psr_sink_status_fops);
}
return 0;
}