6db4831e98
Android 14
9930 lines
280 KiB
C
9930 lines
280 KiB
C
/*
|
|
* Copyright © 2012 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eugeni Dodonov <eugeni.dodonov@intel.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/cpufreq.h>
|
|
#include <drm/drm_plane_helper.h>
|
|
#include "i915_drv.h"
|
|
#include "intel_drv.h"
|
|
#include "../../../platform/x86/intel_ips.h"
|
|
#include <linux/module.h>
|
|
#include <drm/drm_atomic_helper.h>
|
|
|
|
/**
|
|
* DOC: RC6
|
|
*
|
|
* RC6 is a special power stage which allows the GPU to enter an very
|
|
* low-voltage mode when idle, using down to 0V while at this stage. This
|
|
* stage is entered automatically when the GPU is idle when RC6 support is
|
|
* enabled, and as soon as new workload arises GPU wakes up automatically as well.
|
|
*
|
|
* There are different RC6 modes available in Intel GPU, which differentiate
|
|
* among each other with the latency required to enter and leave RC6 and
|
|
* voltage consumed by the GPU in different states.
|
|
*
|
|
* The combination of the following flags define which states GPU is allowed
|
|
* to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
|
|
* RC6pp is deepest RC6. Their support by hardware varies according to the
|
|
* GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
|
|
* which brings the most power savings; deeper states save more power, but
|
|
* require higher latency to switch to and wake up.
|
|
*/
|
|
|
|
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (HAS_LLC(dev_priv)) {
|
|
/*
|
|
* WaCompressedResourceDisplayNewHashMode:skl,kbl
|
|
* Display WA #0390: skl,kbl
|
|
*
|
|
* Must match Sampler, Pixel Back End, and Media. See
|
|
* WaCompressedResourceSamplerPbeMediaNewHashMode.
|
|
*/
|
|
I915_WRITE(CHICKEN_PAR1_1,
|
|
I915_READ(CHICKEN_PAR1_1) |
|
|
SKL_DE_COMPRESSED_HASH_MODE);
|
|
}
|
|
|
|
/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
|
|
I915_WRITE(CHICKEN_PAR1_1,
|
|
I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
|
|
|
|
/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
|
|
I915_WRITE(GEN8_CHICKEN_DCPR_1,
|
|
I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
|
|
|
|
/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
|
|
/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
|
|
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
|
|
DISP_FBC_WM_DIS |
|
|
DISP_FBC_MEMORY_WAKE);
|
|
|
|
/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
|
|
I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
|
|
ILK_DPFC_DISABLE_DUMMY0);
|
|
|
|
if (IS_SKYLAKE(dev_priv)) {
|
|
/* WaDisableDopClockGating */
|
|
I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
|
|
& ~GEN7_DOP_CLOCK_GATE_ENABLE);
|
|
}
|
|
}
|
|
|
|
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
gen9_init_clock_gating(dev_priv);
|
|
|
|
/* WaDisableSDEUnitClockGating:bxt */
|
|
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
|
|
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/*
|
|
* FIXME:
|
|
* GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
|
|
*/
|
|
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
|
|
GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
|
|
|
|
/*
|
|
* Wa: Backlight PWM may stop in the asserted state, causing backlight
|
|
* to stay fully on.
|
|
*/
|
|
I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
|
|
PWM1_GATING_DIS | PWM2_GATING_DIS);
|
|
|
|
/*
|
|
* Lower the display internal timeout.
|
|
* This is needed to avoid any hard hangs when DSI port PLL
|
|
* is off and a MMIO access is attempted by any privilege
|
|
* application, using batch buffers or any other means.
|
|
*/
|
|
I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
|
|
}
|
|
|
|
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
gen9_init_clock_gating(dev_priv);
|
|
|
|
/*
|
|
* WaDisablePWMClockGating:glk
|
|
* Backlight PWM may stop in the asserted state, causing backlight
|
|
* to stay fully on.
|
|
*/
|
|
I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
|
|
PWM1_GATING_DIS | PWM2_GATING_DIS);
|
|
|
|
/* WaDDIIOTimeout:glk */
|
|
if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
|
|
u32 val = I915_READ(CHICKEN_MISC_2);
|
|
val &= ~(GLK_CL0_PWR_DOWN |
|
|
GLK_CL1_PWR_DOWN |
|
|
GLK_CL2_PWR_DOWN);
|
|
I915_WRITE(CHICKEN_MISC_2, val);
|
|
}
|
|
|
|
}
|
|
|
|
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 tmp;
|
|
|
|
tmp = I915_READ(CLKCFG);
|
|
|
|
switch (tmp & CLKCFG_FSB_MASK) {
|
|
case CLKCFG_FSB_533:
|
|
dev_priv->fsb_freq = 533; /* 133*4 */
|
|
break;
|
|
case CLKCFG_FSB_800:
|
|
dev_priv->fsb_freq = 800; /* 200*4 */
|
|
break;
|
|
case CLKCFG_FSB_667:
|
|
dev_priv->fsb_freq = 667; /* 167*4 */
|
|
break;
|
|
case CLKCFG_FSB_400:
|
|
dev_priv->fsb_freq = 400; /* 100*4 */
|
|
break;
|
|
}
|
|
|
|
switch (tmp & CLKCFG_MEM_MASK) {
|
|
case CLKCFG_MEM_533:
|
|
dev_priv->mem_freq = 533;
|
|
break;
|
|
case CLKCFG_MEM_667:
|
|
dev_priv->mem_freq = 667;
|
|
break;
|
|
case CLKCFG_MEM_800:
|
|
dev_priv->mem_freq = 800;
|
|
break;
|
|
}
|
|
|
|
/* detect pineview DDR3 setting */
|
|
tmp = I915_READ(CSHRDDR3CTL);
|
|
dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
|
|
}
|
|
|
|
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u16 ddrpll, csipll;
|
|
|
|
ddrpll = I915_READ16(DDRMPLL1);
|
|
csipll = I915_READ16(CSIPLL0);
|
|
|
|
switch (ddrpll & 0xff) {
|
|
case 0xc:
|
|
dev_priv->mem_freq = 800;
|
|
break;
|
|
case 0x10:
|
|
dev_priv->mem_freq = 1066;
|
|
break;
|
|
case 0x14:
|
|
dev_priv->mem_freq = 1333;
|
|
break;
|
|
case 0x18:
|
|
dev_priv->mem_freq = 1600;
|
|
break;
|
|
default:
|
|
DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
|
|
ddrpll & 0xff);
|
|
dev_priv->mem_freq = 0;
|
|
break;
|
|
}
|
|
|
|
dev_priv->ips.r_t = dev_priv->mem_freq;
|
|
|
|
switch (csipll & 0x3ff) {
|
|
case 0x00c:
|
|
dev_priv->fsb_freq = 3200;
|
|
break;
|
|
case 0x00e:
|
|
dev_priv->fsb_freq = 3733;
|
|
break;
|
|
case 0x010:
|
|
dev_priv->fsb_freq = 4266;
|
|
break;
|
|
case 0x012:
|
|
dev_priv->fsb_freq = 4800;
|
|
break;
|
|
case 0x014:
|
|
dev_priv->fsb_freq = 5333;
|
|
break;
|
|
case 0x016:
|
|
dev_priv->fsb_freq = 5866;
|
|
break;
|
|
case 0x018:
|
|
dev_priv->fsb_freq = 6400;
|
|
break;
|
|
default:
|
|
DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
|
|
csipll & 0x3ff);
|
|
dev_priv->fsb_freq = 0;
|
|
break;
|
|
}
|
|
|
|
if (dev_priv->fsb_freq == 3200) {
|
|
dev_priv->ips.c_m = 0;
|
|
} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
|
|
dev_priv->ips.c_m = 1;
|
|
} else {
|
|
dev_priv->ips.c_m = 2;
|
|
}
|
|
}
|
|
|
|
static const struct cxsr_latency cxsr_latency_table[] = {
|
|
{1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
|
|
{1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
|
|
{1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
|
|
{1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
|
|
{1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
|
|
|
|
{1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
|
|
{1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
|
|
{1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
|
|
{1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
|
|
{1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
|
|
|
|
{1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
|
|
{1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
|
|
{1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
|
|
{1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
|
|
{1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
|
|
|
|
{0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
|
|
{0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
|
|
{0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
|
|
{0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
|
|
{0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
|
|
|
|
{0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
|
|
{0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
|
|
{0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
|
|
{0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
|
|
{0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
|
|
|
|
{0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
|
|
{0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
|
|
{0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
|
|
{0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
|
|
{0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
|
|
};
|
|
|
|
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
|
|
bool is_ddr3,
|
|
int fsb,
|
|
int mem)
|
|
{
|
|
const struct cxsr_latency *latency;
|
|
int i;
|
|
|
|
if (fsb == 0 || mem == 0)
|
|
return NULL;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
|
|
latency = &cxsr_latency_table[i];
|
|
if (is_desktop == latency->is_desktop &&
|
|
is_ddr3 == latency->is_ddr3 &&
|
|
fsb == latency->fsb_freq && mem == latency->mem_freq)
|
|
return latency;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
|
|
{
|
|
u32 val;
|
|
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
|
|
if (enable)
|
|
val &= ~FORCE_DDR_HIGH_FREQ;
|
|
else
|
|
val |= FORCE_DDR_HIGH_FREQ;
|
|
val &= ~FORCE_DDR_LOW_FREQ;
|
|
val |= FORCE_DDR_FREQ_REQ_ACK;
|
|
vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
|
|
|
|
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
|
|
FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
|
|
DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
|
|
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
}
|
|
|
|
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
|
|
{
|
|
u32 val;
|
|
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
|
|
if (enable)
|
|
val |= DSP_MAXFIFO_PM5_ENABLE;
|
|
else
|
|
val &= ~DSP_MAXFIFO_PM5_ENABLE;
|
|
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
|
|
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
}
|
|
|
|
#define FW_WM(value, plane) \
|
|
(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
|
|
|
|
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
|
|
{
|
|
bool was_enabled;
|
|
u32 val;
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
|
|
I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
|
|
POSTING_READ(FW_BLC_SELF_VLV);
|
|
} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
|
|
was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
|
|
I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
|
|
POSTING_READ(FW_BLC_SELF);
|
|
} else if (IS_PINEVIEW(dev_priv)) {
|
|
val = I915_READ(DSPFW3);
|
|
was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
|
|
if (enable)
|
|
val |= PINEVIEW_SELF_REFRESH_EN;
|
|
else
|
|
val &= ~PINEVIEW_SELF_REFRESH_EN;
|
|
I915_WRITE(DSPFW3, val);
|
|
POSTING_READ(DSPFW3);
|
|
} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
|
|
was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
|
|
val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
|
|
_MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
|
|
I915_WRITE(FW_BLC_SELF, val);
|
|
POSTING_READ(FW_BLC_SELF);
|
|
} else if (IS_I915GM(dev_priv)) {
|
|
/*
|
|
* FIXME can't find a bit like this for 915G, and
|
|
* and yet it does have the related watermark in
|
|
* FW_BLC_SELF. What's going on?
|
|
*/
|
|
was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
|
|
val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
|
|
_MASKED_BIT_DISABLE(INSTPM_SELF_EN);
|
|
I915_WRITE(INSTPM, val);
|
|
POSTING_READ(INSTPM);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
|
|
|
|
DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
|
|
enableddisabled(enable),
|
|
enableddisabled(was_enabled));
|
|
|
|
return was_enabled;
|
|
}
|
|
|
|
/**
|
|
* intel_set_memory_cxsr - Configure CxSR state
|
|
* @dev_priv: i915 device
|
|
* @enable: Allow vs. disallow CxSR
|
|
*
|
|
* Allow or disallow the system to enter a special CxSR
|
|
* (C-state self refresh) state. What typically happens in CxSR mode
|
|
* is that several display FIFOs may get combined into a single larger
|
|
* FIFO for a particular plane (so called max FIFO mode) to allow the
|
|
* system to defer memory fetches longer, and the memory will enter
|
|
* self refresh.
|
|
*
|
|
* Note that enabling CxSR does not guarantee that the system enter
|
|
* this special mode, nor does it guarantee that the system stays
|
|
* in that mode once entered. So this just allows/disallows the system
|
|
* to autonomously utilize the CxSR mode. Other factors such as core
|
|
* C-states will affect when/if the system actually enters/exits the
|
|
* CxSR mode.
|
|
*
|
|
* Note that on VLV/CHV this actually only controls the max FIFO mode,
|
|
* and the system is free to enter/exit memory self refresh at any time
|
|
* even when the use of CxSR has been disallowed.
|
|
*
|
|
* While the system is actually in the CxSR/max FIFO mode, some plane
|
|
* control registers will not get latched on vblank. Thus in order to
|
|
* guarantee the system will respond to changes in the plane registers
|
|
* we must always disallow CxSR prior to making changes to those registers.
|
|
* Unfortunately the system will re-evaluate the CxSR conditions at
|
|
* frame start which happens after vblank start (which is when the plane
|
|
* registers would get latched), so we can't proceed with the plane update
|
|
* during the same frame where we disallowed CxSR.
|
|
*
|
|
* Certain platforms also have a deeper HPLL SR mode. Fortunately the
|
|
* HPLL SR mode depends on CxSR itself, so we don't have to hand hold
|
|
* the hardware w.r.t. HPLL SR when writing to plane registers.
|
|
* Disallowing just CxSR is sufficient.
|
|
*/
|
|
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
|
|
{
|
|
bool ret;
|
|
|
|
mutex_lock(&dev_priv->wm.wm_mutex);
|
|
ret = _intel_set_memory_cxsr(dev_priv, enable);
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
dev_priv->wm.vlv.cxsr = enable;
|
|
else if (IS_G4X(dev_priv))
|
|
dev_priv->wm.g4x.cxsr = enable;
|
|
mutex_unlock(&dev_priv->wm.wm_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Latency for FIFO fetches is dependent on several factors:
|
|
* - memory configuration (speed, channels)
|
|
* - chipset
|
|
* - current MCH state
|
|
* It can be fairly high in some situations, so here we assume a fairly
|
|
* pessimal value. It's a tradeoff between extra memory fetches (if we
|
|
* set this value too high, the FIFO will fetch frequently to stay full)
|
|
* and power consumption (set it too low to save power and we might see
|
|
* FIFO underruns and display "flicker").
|
|
*
|
|
* A value of 5us seems to be a good balance; safe for very low end
|
|
* platforms but not overly aggressive on lower latency configs.
|
|
*/
|
|
static const int pessimal_latency_ns = 5000;
|
|
|
|
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
|
|
((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
|
|
|
|
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
|
|
enum pipe pipe = crtc->pipe;
|
|
int sprite0_start, sprite1_start;
|
|
|
|
switch (pipe) {
|
|
uint32_t dsparb, dsparb2, dsparb3;
|
|
case PIPE_A:
|
|
dsparb = I915_READ(DSPARB);
|
|
dsparb2 = I915_READ(DSPARB2);
|
|
sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
|
|
sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
|
|
break;
|
|
case PIPE_B:
|
|
dsparb = I915_READ(DSPARB);
|
|
dsparb2 = I915_READ(DSPARB2);
|
|
sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
|
|
sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
|
|
break;
|
|
case PIPE_C:
|
|
dsparb2 = I915_READ(DSPARB2);
|
|
dsparb3 = I915_READ(DSPARB3);
|
|
sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
|
|
sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
|
|
break;
|
|
default:
|
|
MISSING_CASE(pipe);
|
|
return;
|
|
}
|
|
|
|
fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
|
|
fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
|
|
fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
|
|
fifo_state->plane[PLANE_CURSOR] = 63;
|
|
}
|
|
|
|
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
|
|
enum i9xx_plane_id i9xx_plane)
|
|
{
|
|
uint32_t dsparb = I915_READ(DSPARB);
|
|
int size;
|
|
|
|
size = dsparb & 0x7f;
|
|
if (i9xx_plane == PLANE_B)
|
|
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
|
|
|
|
DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
|
|
dsparb, plane_name(i9xx_plane), size);
|
|
|
|
return size;
|
|
}
|
|
|
|
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
|
|
enum i9xx_plane_id i9xx_plane)
|
|
{
|
|
uint32_t dsparb = I915_READ(DSPARB);
|
|
int size;
|
|
|
|
size = dsparb & 0x1ff;
|
|
if (i9xx_plane == PLANE_B)
|
|
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
|
|
size >>= 1; /* Convert to cachelines */
|
|
|
|
DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
|
|
dsparb, plane_name(i9xx_plane), size);
|
|
|
|
return size;
|
|
}
|
|
|
|
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
|
|
enum i9xx_plane_id i9xx_plane)
|
|
{
|
|
uint32_t dsparb = I915_READ(DSPARB);
|
|
int size;
|
|
|
|
size = dsparb & 0x7f;
|
|
size >>= 2; /* Convert to cachelines */
|
|
|
|
DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
|
|
dsparb, plane_name(i9xx_plane), size);
|
|
|
|
return size;
|
|
}
|
|
|
|
/* Pineview has different values for various configs */
|
|
static const struct intel_watermark_params pineview_display_wm = {
|
|
.fifo_size = PINEVIEW_DISPLAY_FIFO,
|
|
.max_wm = PINEVIEW_MAX_WM,
|
|
.default_wm = PINEVIEW_DFT_WM,
|
|
.guard_size = PINEVIEW_GUARD_WM,
|
|
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
|
|
};
|
|
static const struct intel_watermark_params pineview_display_hplloff_wm = {
|
|
.fifo_size = PINEVIEW_DISPLAY_FIFO,
|
|
.max_wm = PINEVIEW_MAX_WM,
|
|
.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
|
|
.guard_size = PINEVIEW_GUARD_WM,
|
|
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
|
|
};
|
|
static const struct intel_watermark_params pineview_cursor_wm = {
|
|
.fifo_size = PINEVIEW_CURSOR_FIFO,
|
|
.max_wm = PINEVIEW_CURSOR_MAX_WM,
|
|
.default_wm = PINEVIEW_CURSOR_DFT_WM,
|
|
.guard_size = PINEVIEW_CURSOR_GUARD_WM,
|
|
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
|
|
};
|
|
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
|
|
.fifo_size = PINEVIEW_CURSOR_FIFO,
|
|
.max_wm = PINEVIEW_CURSOR_MAX_WM,
|
|
.default_wm = PINEVIEW_CURSOR_DFT_WM,
|
|
.guard_size = PINEVIEW_CURSOR_GUARD_WM,
|
|
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
|
|
};
|
|
static const struct intel_watermark_params i965_cursor_wm_info = {
|
|
.fifo_size = I965_CURSOR_FIFO,
|
|
.max_wm = I965_CURSOR_MAX_WM,
|
|
.default_wm = I965_CURSOR_DFT_WM,
|
|
.guard_size = 2,
|
|
.cacheline_size = I915_FIFO_LINE_SIZE,
|
|
};
|
|
static const struct intel_watermark_params i945_wm_info = {
|
|
.fifo_size = I945_FIFO_SIZE,
|
|
.max_wm = I915_MAX_WM,
|
|
.default_wm = 1,
|
|
.guard_size = 2,
|
|
.cacheline_size = I915_FIFO_LINE_SIZE,
|
|
};
|
|
static const struct intel_watermark_params i915_wm_info = {
|
|
.fifo_size = I915_FIFO_SIZE,
|
|
.max_wm = I915_MAX_WM,
|
|
.default_wm = 1,
|
|
.guard_size = 2,
|
|
.cacheline_size = I915_FIFO_LINE_SIZE,
|
|
};
|
|
static const struct intel_watermark_params i830_a_wm_info = {
|
|
.fifo_size = I855GM_FIFO_SIZE,
|
|
.max_wm = I915_MAX_WM,
|
|
.default_wm = 1,
|
|
.guard_size = 2,
|
|
.cacheline_size = I830_FIFO_LINE_SIZE,
|
|
};
|
|
static const struct intel_watermark_params i830_bc_wm_info = {
|
|
.fifo_size = I855GM_FIFO_SIZE,
|
|
.max_wm = I915_MAX_WM/2,
|
|
.default_wm = 1,
|
|
.guard_size = 2,
|
|
.cacheline_size = I830_FIFO_LINE_SIZE,
|
|
};
|
|
static const struct intel_watermark_params i845_wm_info = {
|
|
.fifo_size = I830_FIFO_SIZE,
|
|
.max_wm = I915_MAX_WM,
|
|
.default_wm = 1,
|
|
.guard_size = 2,
|
|
.cacheline_size = I830_FIFO_LINE_SIZE,
|
|
};
|
|
|
|
/**
|
|
* intel_wm_method1 - Method 1 / "small buffer" watermark formula
|
|
* @pixel_rate: Pipe pixel rate in kHz
|
|
* @cpp: Plane bytes per pixel
|
|
* @latency: Memory wakeup latency in 0.1us units
|
|
*
|
|
* Compute the watermark using the method 1 or "small buffer"
|
|
* formula. The caller may additonally add extra cachelines
|
|
* to account for TLB misses and clock crossings.
|
|
*
|
|
* This method is concerned with the short term drain rate
|
|
* of the FIFO, ie. it does not account for blanking periods
|
|
* which would effectively reduce the average drain rate across
|
|
* a longer period. The name "small" refers to the fact the
|
|
* FIFO is relatively small compared to the amount of data
|
|
* fetched.
|
|
*
|
|
* The FIFO level vs. time graph might look something like:
|
|
*
|
|
* |\ |\
|
|
* | \ | \
|
|
* __---__---__ (- plane active, _ blanking)
|
|
* -> time
|
|
*
|
|
* or perhaps like this:
|
|
*
|
|
* |\|\ |\|\
|
|
* __----__----__ (- plane active, _ blanking)
|
|
* -> time
|
|
*
|
|
* Returns:
|
|
* The watermark in bytes
|
|
*/
|
|
static unsigned int intel_wm_method1(unsigned int pixel_rate,
|
|
unsigned int cpp,
|
|
unsigned int latency)
|
|
{
|
|
uint64_t ret;
|
|
|
|
ret = (uint64_t) pixel_rate * cpp * latency;
|
|
ret = DIV_ROUND_UP_ULL(ret, 10000);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* intel_wm_method2 - Method 2 / "large buffer" watermark formula
|
|
* @pixel_rate: Pipe pixel rate in kHz
|
|
* @htotal: Pipe horizontal total
|
|
* @width: Plane width in pixels
|
|
* @cpp: Plane bytes per pixel
|
|
* @latency: Memory wakeup latency in 0.1us units
|
|
*
|
|
* Compute the watermark using the method 2 or "large buffer"
|
|
* formula. The caller may additonally add extra cachelines
|
|
* to account for TLB misses and clock crossings.
|
|
*
|
|
* This method is concerned with the long term drain rate
|
|
* of the FIFO, ie. it does account for blanking periods
|
|
* which effectively reduce the average drain rate across
|
|
* a longer period. The name "large" refers to the fact the
|
|
* FIFO is relatively large compared to the amount of data
|
|
* fetched.
|
|
*
|
|
* The FIFO level vs. time graph might look something like:
|
|
*
|
|
* |\___ |\___
|
|
* | \___ | \___
|
|
* | \ | \
|
|
* __ --__--__--__--__--__--__ (- plane active, _ blanking)
|
|
* -> time
|
|
*
|
|
* Returns:
|
|
* The watermark in bytes
|
|
*/
|
|
static unsigned int intel_wm_method2(unsigned int pixel_rate,
|
|
unsigned int htotal,
|
|
unsigned int width,
|
|
unsigned int cpp,
|
|
unsigned int latency)
|
|
{
|
|
unsigned int ret;
|
|
|
|
/*
|
|
* FIXME remove once all users are computing
|
|
* watermarks in the correct place.
|
|
*/
|
|
if (WARN_ON_ONCE(htotal == 0))
|
|
htotal = 1;
|
|
|
|
ret = (latency * pixel_rate) / (htotal * 10000);
|
|
ret = (ret + 1) * width * cpp;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* intel_calculate_wm - calculate watermark level
|
|
* @pixel_rate: pixel clock
|
|
* @wm: chip FIFO params
|
|
* @fifo_size: size of the FIFO buffer
|
|
* @cpp: bytes per pixel
|
|
* @latency_ns: memory latency for the platform
|
|
*
|
|
* Calculate the watermark level (the level at which the display plane will
|
|
* start fetching from memory again). Each chip has a different display
|
|
* FIFO size and allocation, so the caller needs to figure that out and pass
|
|
* in the correct intel_watermark_params structure.
|
|
*
|
|
* As the pixel clock runs, the FIFO will be drained at a rate that depends
|
|
* on the pixel size. When it reaches the watermark level, it'll start
|
|
* fetching FIFO line sized based chunks from memory until the FIFO fills
|
|
* past the watermark point. If the FIFO drains completely, a FIFO underrun
|
|
* will occur, and a display engine hang could result.
|
|
*/
|
|
static unsigned int intel_calculate_wm(int pixel_rate,
|
|
const struct intel_watermark_params *wm,
|
|
int fifo_size, int cpp,
|
|
unsigned int latency_ns)
|
|
{
|
|
int entries, wm_size;
|
|
|
|
/*
|
|
* Note: we need to make sure we don't overflow for various clock &
|
|
* latency values.
|
|
* clocks go from a few thousand to several hundred thousand.
|
|
* latency is usually a few thousand
|
|
*/
|
|
entries = intel_wm_method1(pixel_rate, cpp,
|
|
latency_ns / 100);
|
|
entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
|
|
wm->guard_size;
|
|
DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
|
|
|
|
wm_size = fifo_size - entries;
|
|
DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
|
|
|
|
/* Don't promote wm_size to unsigned... */
|
|
if (wm_size > wm->max_wm)
|
|
wm_size = wm->max_wm;
|
|
if (wm_size <= 0)
|
|
wm_size = wm->default_wm;
|
|
|
|
/*
|
|
* Bspec seems to indicate that the value shouldn't be lower than
|
|
* 'burst size + 1'. Certainly 830 is quite unhappy with low values.
|
|
* Lets go for 8 which is the burst size since certain platforms
|
|
* already use a hardcoded 8 (which is what the spec says should be
|
|
* done).
|
|
*/
|
|
if (wm_size <= 8)
|
|
wm_size = 8;
|
|
|
|
return wm_size;
|
|
}
|
|
|
|
static bool is_disabling(int old, int new, int threshold)
|
|
{
|
|
return old >= threshold && new < threshold;
|
|
}
|
|
|
|
static bool is_enabling(int old, int new, int threshold)
|
|
{
|
|
return old < threshold && new >= threshold;
|
|
}
|
|
|
|
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
|
|
{
|
|
return dev_priv->wm.max_level + 1;
|
|
}
|
|
|
|
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
|
|
|
|
/* FIXME check the 'enable' instead */
|
|
if (!crtc_state->base.active)
|
|
return false;
|
|
|
|
/*
|
|
* Treat cursor with fb as always visible since cursor updates
|
|
* can happen faster than the vrefresh rate, and the current
|
|
* watermark code doesn't handle that correctly. Cursor updates
|
|
* which set/clear the fb or change the cursor size are going
|
|
* to get throttled by intel_legacy_cursor_update() to work
|
|
* around this problem with the watermark code.
|
|
*/
|
|
if (plane->id == PLANE_CURSOR)
|
|
return plane_state->base.fb != NULL;
|
|
else
|
|
return plane_state->base.visible;
|
|
}
|
|
|
|
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_crtc *crtc, *enabled = NULL;
|
|
|
|
for_each_intel_crtc(&dev_priv->drm, crtc) {
|
|
if (intel_crtc_active(crtc)) {
|
|
if (enabled)
|
|
return NULL;
|
|
enabled = crtc;
|
|
}
|
|
}
|
|
|
|
return enabled;
|
|
}
|
|
|
|
static void pineview_update_wm(struct intel_crtc *unused_crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
|
|
struct intel_crtc *crtc;
|
|
const struct cxsr_latency *latency;
|
|
u32 reg;
|
|
unsigned int wm;
|
|
|
|
latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
|
|
dev_priv->is_ddr3,
|
|
dev_priv->fsb_freq,
|
|
dev_priv->mem_freq);
|
|
if (!latency) {
|
|
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
|
|
intel_set_memory_cxsr(dev_priv, false);
|
|
return;
|
|
}
|
|
|
|
crtc = single_enabled_crtc(dev_priv);
|
|
if (crtc) {
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&crtc->config->base.adjusted_mode;
|
|
const struct drm_framebuffer *fb =
|
|
crtc->base.primary->state->fb;
|
|
int cpp = fb->format->cpp[0];
|
|
int clock = adjusted_mode->crtc_clock;
|
|
|
|
/* Display SR */
|
|
wm = intel_calculate_wm(clock, &pineview_display_wm,
|
|
pineview_display_wm.fifo_size,
|
|
cpp, latency->display_sr);
|
|
reg = I915_READ(DSPFW1);
|
|
reg &= ~DSPFW_SR_MASK;
|
|
reg |= FW_WM(wm, SR);
|
|
I915_WRITE(DSPFW1, reg);
|
|
DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
|
|
|
|
/* cursor SR */
|
|
wm = intel_calculate_wm(clock, &pineview_cursor_wm,
|
|
pineview_display_wm.fifo_size,
|
|
4, latency->cursor_sr);
|
|
reg = I915_READ(DSPFW3);
|
|
reg &= ~DSPFW_CURSOR_SR_MASK;
|
|
reg |= FW_WM(wm, CURSOR_SR);
|
|
I915_WRITE(DSPFW3, reg);
|
|
|
|
/* Display HPLL off SR */
|
|
wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
|
|
pineview_display_hplloff_wm.fifo_size,
|
|
cpp, latency->display_hpll_disable);
|
|
reg = I915_READ(DSPFW3);
|
|
reg &= ~DSPFW_HPLL_SR_MASK;
|
|
reg |= FW_WM(wm, HPLL_SR);
|
|
I915_WRITE(DSPFW3, reg);
|
|
|
|
/* cursor HPLL off SR */
|
|
wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
|
|
pineview_display_hplloff_wm.fifo_size,
|
|
4, latency->cursor_hpll_disable);
|
|
reg = I915_READ(DSPFW3);
|
|
reg &= ~DSPFW_HPLL_CURSOR_MASK;
|
|
reg |= FW_WM(wm, HPLL_CURSOR);
|
|
I915_WRITE(DSPFW3, reg);
|
|
DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
|
|
|
|
intel_set_memory_cxsr(dev_priv, true);
|
|
} else {
|
|
intel_set_memory_cxsr(dev_priv, false);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Documentation says:
|
|
* "If the line size is small, the TLB fetches can get in the way of the
|
|
* data fetches, causing some lag in the pixel data return which is not
|
|
* accounted for in the above formulas. The following adjustment only
|
|
* needs to be applied if eight whole lines fit in the buffer at once.
|
|
* The WM is adjusted upwards by the difference between the FIFO size
|
|
* and the size of 8 whole lines. This adjustment is always performed
|
|
* in the actual pixel depth regardless of whether FBC is enabled or not."
|
|
*/
|
|
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
|
|
{
|
|
int tlb_miss = fifo_size * 64 - width * cpp * 8;
|
|
|
|
return max(0, tlb_miss);
|
|
}
|
|
|
|
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
|
|
const struct g4x_wm_values *wm)
|
|
{
|
|
enum pipe pipe;
|
|
|
|
for_each_pipe(dev_priv, pipe)
|
|
trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
|
|
|
|
I915_WRITE(DSPFW1,
|
|
FW_WM(wm->sr.plane, SR) |
|
|
FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
|
|
FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
|
|
FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
|
|
I915_WRITE(DSPFW2,
|
|
(wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
|
|
FW_WM(wm->sr.fbc, FBC_SR) |
|
|
FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
|
|
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
|
|
FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
|
|
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
|
|
I915_WRITE(DSPFW3,
|
|
(wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
|
|
FW_WM(wm->sr.cursor, CURSOR_SR) |
|
|
FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
|
|
FW_WM(wm->hpll.plane, HPLL_SR));
|
|
|
|
POSTING_READ(DSPFW1);
|
|
}
|
|
|
|
#define FW_WM_VLV(value, plane) \
|
|
(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
|
|
|
|
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
|
|
const struct vlv_wm_values *wm)
|
|
{
|
|
enum pipe pipe;
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
|
|
|
|
I915_WRITE(VLV_DDL(pipe),
|
|
(wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
|
|
(wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
|
|
(wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
|
|
(wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
|
|
}
|
|
|
|
/*
|
|
* Zero the (unused) WM1 watermarks, and also clear all the
|
|
* high order bits so that there are no out of bounds values
|
|
* present in the registers during the reprogramming.
|
|
*/
|
|
I915_WRITE(DSPHOWM, 0);
|
|
I915_WRITE(DSPHOWM1, 0);
|
|
I915_WRITE(DSPFW4, 0);
|
|
I915_WRITE(DSPFW5, 0);
|
|
I915_WRITE(DSPFW6, 0);
|
|
|
|
I915_WRITE(DSPFW1,
|
|
FW_WM(wm->sr.plane, SR) |
|
|
FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
|
|
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
|
|
FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
|
|
I915_WRITE(DSPFW2,
|
|
FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
|
|
FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
|
|
FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
|
|
I915_WRITE(DSPFW3,
|
|
FW_WM(wm->sr.cursor, CURSOR_SR));
|
|
|
|
if (IS_CHERRYVIEW(dev_priv)) {
|
|
I915_WRITE(DSPFW7_CHV,
|
|
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
|
|
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
|
|
I915_WRITE(DSPFW8_CHV,
|
|
FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
|
|
FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
|
|
I915_WRITE(DSPFW9_CHV,
|
|
FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
|
|
FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
|
|
I915_WRITE(DSPHOWM,
|
|
FW_WM(wm->sr.plane >> 9, SR_HI) |
|
|
FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
|
|
FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
|
|
FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
|
|
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
|
|
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
|
|
FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
|
|
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
|
|
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
|
|
FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
|
|
} else {
|
|
I915_WRITE(DSPFW7,
|
|
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
|
|
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
|
|
I915_WRITE(DSPHOWM,
|
|
FW_WM(wm->sr.plane >> 9, SR_HI) |
|
|
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
|
|
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
|
|
FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
|
|
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
|
|
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
|
|
FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
|
|
}
|
|
|
|
POSTING_READ(DSPFW1);
|
|
}
|
|
|
|
#undef FW_WM_VLV
|
|
|
|
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* all latencies in usec */
|
|
dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
|
|
dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
|
|
dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
|
|
|
|
dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
|
|
}
|
|
|
|
static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
|
|
{
|
|
/*
|
|
* DSPCNTR[13] supposedly controls whether the
|
|
* primary plane can use the FIFO space otherwise
|
|
* reserved for the sprite plane. It's not 100% clear
|
|
* what the actual FIFO size is, but it looks like we
|
|
* can happily set both primary and sprite watermarks
|
|
* up to 127 cachelines. So that would seem to mean
|
|
* that either DSPCNTR[13] doesn't do anything, or that
|
|
* the total FIFO is >= 256 cachelines in size. Either
|
|
* way, we don't seem to have to worry about this
|
|
* repartitioning as the maximum watermark value the
|
|
* register can hold for each plane is lower than the
|
|
* minimum FIFO size.
|
|
*/
|
|
switch (plane_id) {
|
|
case PLANE_CURSOR:
|
|
return 63;
|
|
case PLANE_PRIMARY:
|
|
return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
|
|
case PLANE_SPRITE0:
|
|
return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
|
|
default:
|
|
MISSING_CASE(plane_id);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int g4x_fbc_fifo_size(int level)
|
|
{
|
|
switch (level) {
|
|
case G4X_WM_LEVEL_SR:
|
|
return 7;
|
|
case G4X_WM_LEVEL_HPLL:
|
|
return 15;
|
|
default:
|
|
MISSING_CASE(level);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *plane_state,
|
|
int level)
|
|
{
|
|
struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
|
|
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&crtc_state->base.adjusted_mode;
|
|
unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
|
|
unsigned int clock, htotal, cpp, width, wm;
|
|
|
|
if (latency == 0)
|
|
return USHRT_MAX;
|
|
|
|
if (!intel_wm_plane_visible(crtc_state, plane_state))
|
|
return 0;
|
|
|
|
/*
|
|
* Not 100% sure which way ELK should go here as the
|
|
* spec only says CL/CTG should assume 32bpp and BW
|
|
* doesn't need to. But as these things followed the
|
|
* mobile vs. desktop lines on gen3 as well, let's
|
|
* assume ELK doesn't need this.
|
|
*
|
|
* The spec also fails to list such a restriction for
|
|
* the HPLL watermark, which seems a little strange.
|
|
* Let's use 32bpp for the HPLL watermark as well.
|
|
*/
|
|
if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
|
|
level != G4X_WM_LEVEL_NORMAL)
|
|
cpp = 4;
|
|
else
|
|
cpp = plane_state->base.fb->format->cpp[0];
|
|
|
|
clock = adjusted_mode->crtc_clock;
|
|
htotal = adjusted_mode->crtc_htotal;
|
|
|
|
if (plane->id == PLANE_CURSOR)
|
|
width = plane_state->base.crtc_w;
|
|
else
|
|
width = drm_rect_width(&plane_state->base.dst);
|
|
|
|
if (plane->id == PLANE_CURSOR) {
|
|
wm = intel_wm_method2(clock, htotal, width, cpp, latency);
|
|
} else if (plane->id == PLANE_PRIMARY &&
|
|
level == G4X_WM_LEVEL_NORMAL) {
|
|
wm = intel_wm_method1(clock, cpp, latency);
|
|
} else {
|
|
unsigned int small, large;
|
|
|
|
small = intel_wm_method1(clock, cpp, latency);
|
|
large = intel_wm_method2(clock, htotal, width, cpp, latency);
|
|
|
|
wm = min(small, large);
|
|
}
|
|
|
|
wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
|
|
width, cpp);
|
|
|
|
wm = DIV_ROUND_UP(wm, 64) + 2;
|
|
|
|
return min_t(unsigned int, wm, USHRT_MAX);
|
|
}
|
|
|
|
static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
|
|
int level, enum plane_id plane_id, u16 value)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
bool dirty = false;
|
|
|
|
for (; level < intel_wm_num_levels(dev_priv); level++) {
|
|
struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
|
|
|
|
dirty |= raw->plane[plane_id] != value;
|
|
raw->plane[plane_id] = value;
|
|
}
|
|
|
|
return dirty;
|
|
}
|
|
|
|
static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
|
|
int level, u16 value)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
bool dirty = false;
|
|
|
|
/* NORMAL level doesn't have an FBC watermark */
|
|
level = max(level, G4X_WM_LEVEL_SR);
|
|
|
|
for (; level < intel_wm_num_levels(dev_priv); level++) {
|
|
struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
|
|
|
|
dirty |= raw->fbc != value;
|
|
raw->fbc = value;
|
|
}
|
|
|
|
return dirty;
|
|
}
|
|
|
|
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
|
|
const struct intel_plane_state *pstate,
|
|
uint32_t pri_val);
|
|
|
|
static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
|
|
int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
|
|
enum plane_id plane_id = plane->id;
|
|
bool dirty = false;
|
|
int level;
|
|
|
|
if (!intel_wm_plane_visible(crtc_state, plane_state)) {
|
|
dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
|
|
if (plane_id == PLANE_PRIMARY)
|
|
dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
|
|
goto out;
|
|
}
|
|
|
|
for (level = 0; level < num_levels; level++) {
|
|
struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
|
|
int wm, max_wm;
|
|
|
|
wm = g4x_compute_wm(crtc_state, plane_state, level);
|
|
max_wm = g4x_plane_fifo_size(plane_id, level);
|
|
|
|
if (wm > max_wm)
|
|
break;
|
|
|
|
dirty |= raw->plane[plane_id] != wm;
|
|
raw->plane[plane_id] = wm;
|
|
|
|
if (plane_id != PLANE_PRIMARY ||
|
|
level == G4X_WM_LEVEL_NORMAL)
|
|
continue;
|
|
|
|
wm = ilk_compute_fbc_wm(crtc_state, plane_state,
|
|
raw->plane[plane_id]);
|
|
max_wm = g4x_fbc_fifo_size(level);
|
|
|
|
/*
|
|
* FBC wm is not mandatory as we
|
|
* can always just disable its use.
|
|
*/
|
|
if (wm > max_wm)
|
|
wm = USHRT_MAX;
|
|
|
|
dirty |= raw->fbc != wm;
|
|
raw->fbc = wm;
|
|
}
|
|
|
|
/* mark watermarks as invalid */
|
|
dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
|
|
|
|
if (plane_id == PLANE_PRIMARY)
|
|
dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
|
|
|
|
out:
|
|
if (dirty) {
|
|
DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
|
|
plane->base.name,
|
|
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
|
|
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
|
|
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
|
|
|
|
if (plane_id == PLANE_PRIMARY)
|
|
DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
|
|
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
|
|
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
|
|
}
|
|
|
|
return dirty;
|
|
}
|
|
|
|
static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
|
|
enum plane_id plane_id, int level)
|
|
{
|
|
const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
|
|
|
|
return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
|
|
}
|
|
|
|
static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
|
|
int level)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
|
|
if (level > dev_priv->wm.max_level)
|
|
return false;
|
|
|
|
return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
|
|
g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
|
|
g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
|
|
}
|
|
|
|
/* mark all levels starting from 'level' as invalid */
|
|
static void g4x_invalidate_wms(struct intel_crtc *crtc,
|
|
struct g4x_wm_state *wm_state, int level)
|
|
{
|
|
if (level <= G4X_WM_LEVEL_NORMAL) {
|
|
enum plane_id plane_id;
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id)
|
|
wm_state->wm.plane[plane_id] = USHRT_MAX;
|
|
}
|
|
|
|
if (level <= G4X_WM_LEVEL_SR) {
|
|
wm_state->cxsr = false;
|
|
wm_state->sr.cursor = USHRT_MAX;
|
|
wm_state->sr.plane = USHRT_MAX;
|
|
wm_state->sr.fbc = USHRT_MAX;
|
|
}
|
|
|
|
if (level <= G4X_WM_LEVEL_HPLL) {
|
|
wm_state->hpll_en = false;
|
|
wm_state->hpll.cursor = USHRT_MAX;
|
|
wm_state->hpll.plane = USHRT_MAX;
|
|
wm_state->hpll.fbc = USHRT_MAX;
|
|
}
|
|
}
|
|
|
|
static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct intel_atomic_state *state =
|
|
to_intel_atomic_state(crtc_state->base.state);
|
|
struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
|
|
int num_active_planes = hweight32(crtc_state->active_planes &
|
|
~BIT(PLANE_CURSOR));
|
|
const struct g4x_pipe_wm *raw;
|
|
const struct intel_plane_state *old_plane_state;
|
|
const struct intel_plane_state *new_plane_state;
|
|
struct intel_plane *plane;
|
|
enum plane_id plane_id;
|
|
int i, level;
|
|
unsigned int dirty = 0;
|
|
|
|
for_each_oldnew_intel_plane_in_state(state, plane,
|
|
old_plane_state,
|
|
new_plane_state, i) {
|
|
if (new_plane_state->base.crtc != &crtc->base &&
|
|
old_plane_state->base.crtc != &crtc->base)
|
|
continue;
|
|
|
|
if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
|
|
dirty |= BIT(plane->id);
|
|
}
|
|
|
|
if (!dirty)
|
|
return 0;
|
|
|
|
level = G4X_WM_LEVEL_NORMAL;
|
|
if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
|
|
goto out;
|
|
|
|
raw = &crtc_state->wm.g4x.raw[level];
|
|
for_each_plane_id_on_crtc(crtc, plane_id)
|
|
wm_state->wm.plane[plane_id] = raw->plane[plane_id];
|
|
|
|
level = G4X_WM_LEVEL_SR;
|
|
|
|
if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
|
|
goto out;
|
|
|
|
raw = &crtc_state->wm.g4x.raw[level];
|
|
wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
|
|
wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
|
|
wm_state->sr.fbc = raw->fbc;
|
|
|
|
wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
|
|
|
|
level = G4X_WM_LEVEL_HPLL;
|
|
|
|
if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
|
|
goto out;
|
|
|
|
raw = &crtc_state->wm.g4x.raw[level];
|
|
wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
|
|
wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
|
|
wm_state->hpll.fbc = raw->fbc;
|
|
|
|
wm_state->hpll_en = wm_state->cxsr;
|
|
|
|
level++;
|
|
|
|
out:
|
|
if (level == G4X_WM_LEVEL_NORMAL)
|
|
return -EINVAL;
|
|
|
|
/* invalidate the higher levels */
|
|
g4x_invalidate_wms(crtc, wm_state, level);
|
|
|
|
/*
|
|
* Determine if the FBC watermark(s) can be used. IF
|
|
* this isn't the case we prefer to disable the FBC
|
|
( watermark(s) rather than disable the SR/HPLL
|
|
* level(s) entirely.
|
|
*/
|
|
wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
|
|
|
|
if (level >= G4X_WM_LEVEL_SR &&
|
|
wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
|
|
wm_state->fbc_en = false;
|
|
else if (level >= G4X_WM_LEVEL_HPLL &&
|
|
wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
|
|
wm_state->fbc_en = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int g4x_compute_intermediate_wm(struct drm_device *dev,
|
|
struct intel_crtc *crtc,
|
|
struct intel_crtc_state *new_crtc_state)
|
|
{
|
|
struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
|
|
const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
|
|
struct intel_atomic_state *intel_state =
|
|
to_intel_atomic_state(new_crtc_state->base.state);
|
|
const struct intel_crtc_state *old_crtc_state =
|
|
intel_atomic_get_old_crtc_state(intel_state, crtc);
|
|
const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
|
|
enum plane_id plane_id;
|
|
|
|
if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
|
|
*intermediate = *optimal;
|
|
|
|
intermediate->cxsr = false;
|
|
intermediate->hpll_en = false;
|
|
goto out;
|
|
}
|
|
|
|
intermediate->cxsr = optimal->cxsr && active->cxsr &&
|
|
!new_crtc_state->disable_cxsr;
|
|
intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
|
|
!new_crtc_state->disable_cxsr;
|
|
intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id) {
|
|
intermediate->wm.plane[plane_id] =
|
|
max(optimal->wm.plane[plane_id],
|
|
active->wm.plane[plane_id]);
|
|
|
|
WARN_ON(intermediate->wm.plane[plane_id] >
|
|
g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
|
|
}
|
|
|
|
intermediate->sr.plane = max(optimal->sr.plane,
|
|
active->sr.plane);
|
|
intermediate->sr.cursor = max(optimal->sr.cursor,
|
|
active->sr.cursor);
|
|
intermediate->sr.fbc = max(optimal->sr.fbc,
|
|
active->sr.fbc);
|
|
|
|
intermediate->hpll.plane = max(optimal->hpll.plane,
|
|
active->hpll.plane);
|
|
intermediate->hpll.cursor = max(optimal->hpll.cursor,
|
|
active->hpll.cursor);
|
|
intermediate->hpll.fbc = max(optimal->hpll.fbc,
|
|
active->hpll.fbc);
|
|
|
|
WARN_ON((intermediate->sr.plane >
|
|
g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
|
|
intermediate->sr.cursor >
|
|
g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
|
|
intermediate->cxsr);
|
|
WARN_ON((intermediate->sr.plane >
|
|
g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
|
|
intermediate->sr.cursor >
|
|
g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
|
|
intermediate->hpll_en);
|
|
|
|
WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
|
|
intermediate->fbc_en && intermediate->cxsr);
|
|
WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
|
|
intermediate->fbc_en && intermediate->hpll_en);
|
|
|
|
out:
|
|
/*
|
|
* If our intermediate WM are identical to the final WM, then we can
|
|
* omit the post-vblank programming; only update if it's different.
|
|
*/
|
|
if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
|
|
new_crtc_state->wm.need_postvbl_update = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void g4x_merge_wm(struct drm_i915_private *dev_priv,
|
|
struct g4x_wm_values *wm)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
int num_active_crtcs = 0;
|
|
|
|
wm->cxsr = true;
|
|
wm->hpll_en = true;
|
|
wm->fbc_en = true;
|
|
|
|
for_each_intel_crtc(&dev_priv->drm, crtc) {
|
|
const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
|
|
|
|
if (!crtc->active)
|
|
continue;
|
|
|
|
if (!wm_state->cxsr)
|
|
wm->cxsr = false;
|
|
if (!wm_state->hpll_en)
|
|
wm->hpll_en = false;
|
|
if (!wm_state->fbc_en)
|
|
wm->fbc_en = false;
|
|
|
|
num_active_crtcs++;
|
|
}
|
|
|
|
if (num_active_crtcs != 1) {
|
|
wm->cxsr = false;
|
|
wm->hpll_en = false;
|
|
wm->fbc_en = false;
|
|
}
|
|
|
|
for_each_intel_crtc(&dev_priv->drm, crtc) {
|
|
const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
wm->pipe[pipe] = wm_state->wm;
|
|
if (crtc->active && wm->cxsr)
|
|
wm->sr = wm_state->sr;
|
|
if (crtc->active && wm->hpll_en)
|
|
wm->hpll = wm_state->hpll;
|
|
}
|
|
}
|
|
|
|
static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
|
|
struct g4x_wm_values new_wm = {};
|
|
|
|
g4x_merge_wm(dev_priv, &new_wm);
|
|
|
|
if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
|
|
return;
|
|
|
|
if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
|
|
_intel_set_memory_cxsr(dev_priv, false);
|
|
|
|
g4x_write_wm_values(dev_priv, &new_wm);
|
|
|
|
if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
|
|
_intel_set_memory_cxsr(dev_priv, true);
|
|
|
|
*old_wm = new_wm;
|
|
}
|
|
|
|
static void g4x_initial_watermarks(struct intel_atomic_state *state,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
|
|
mutex_lock(&dev_priv->wm.wm_mutex);
|
|
crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
|
|
g4x_program_watermarks(dev_priv);
|
|
mutex_unlock(&dev_priv->wm.wm_mutex);
|
|
}
|
|
|
|
static void g4x_optimize_watermarks(struct intel_atomic_state *state,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
|
|
if (!crtc_state->wm.need_postvbl_update)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->wm.wm_mutex);
|
|
intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
|
|
g4x_program_watermarks(dev_priv);
|
|
mutex_unlock(&dev_priv->wm.wm_mutex);
|
|
}
|
|
|
|
/* latency must be in 0.1us units. */
|
|
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
|
|
unsigned int htotal,
|
|
unsigned int width,
|
|
unsigned int cpp,
|
|
unsigned int latency)
|
|
{
|
|
unsigned int ret;
|
|
|
|
ret = intel_wm_method2(pixel_rate, htotal,
|
|
width, cpp, latency);
|
|
ret = DIV_ROUND_UP(ret, 64);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* all latencies in usec */
|
|
dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
|
|
|
|
dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
|
|
|
|
if (IS_CHERRYVIEW(dev_priv)) {
|
|
dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
|
|
dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
|
|
|
|
dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
|
|
}
|
|
}
|
|
|
|
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *plane_state,
|
|
int level)
|
|
{
|
|
struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
|
|
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&crtc_state->base.adjusted_mode;
|
|
unsigned int clock, htotal, cpp, width, wm;
|
|
|
|
if (dev_priv->wm.pri_latency[level] == 0)
|
|
return USHRT_MAX;
|
|
|
|
if (!intel_wm_plane_visible(crtc_state, plane_state))
|
|
return 0;
|
|
|
|
cpp = plane_state->base.fb->format->cpp[0];
|
|
clock = adjusted_mode->crtc_clock;
|
|
htotal = adjusted_mode->crtc_htotal;
|
|
width = crtc_state->pipe_src_w;
|
|
|
|
if (plane->id == PLANE_CURSOR) {
|
|
/*
|
|
* FIXME the formula gives values that are
|
|
* too big for the cursor FIFO, and hence we
|
|
* would never be able to use cursors. For
|
|
* now just hardcode the watermark.
|
|
*/
|
|
wm = 63;
|
|
} else {
|
|
wm = vlv_wm_method2(clock, htotal, width, cpp,
|
|
dev_priv->wm.pri_latency[level] * 10);
|
|
}
|
|
|
|
return min_t(unsigned int, wm, USHRT_MAX);
|
|
}
|
|
|
|
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
|
|
{
|
|
return (active_planes & (BIT(PLANE_SPRITE0) |
|
|
BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
|
|
}
|
|
|
|
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
const struct g4x_pipe_wm *raw =
|
|
&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
|
|
struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
|
|
unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
|
|
int num_active_planes = hweight32(active_planes);
|
|
const int fifo_size = 511;
|
|
int fifo_extra, fifo_left = fifo_size;
|
|
int sprite0_fifo_extra = 0;
|
|
unsigned int total_rate;
|
|
enum plane_id plane_id;
|
|
|
|
/*
|
|
* When enabling sprite0 after sprite1 has already been enabled
|
|
* we tend to get an underrun unless sprite0 already has some
|
|
* FIFO space allcoated. Hence we always allocate at least one
|
|
* cacheline for sprite0 whenever sprite1 is enabled.
|
|
*
|
|
* All other plane enable sequences appear immune to this problem.
|
|
*/
|
|
if (vlv_need_sprite0_fifo_workaround(active_planes))
|
|
sprite0_fifo_extra = 1;
|
|
|
|
total_rate = raw->plane[PLANE_PRIMARY] +
|
|
raw->plane[PLANE_SPRITE0] +
|
|
raw->plane[PLANE_SPRITE1] +
|
|
sprite0_fifo_extra;
|
|
|
|
if (total_rate > fifo_size)
|
|
return -EINVAL;
|
|
|
|
if (total_rate == 0)
|
|
total_rate = 1;
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id) {
|
|
unsigned int rate;
|
|
|
|
if ((active_planes & BIT(plane_id)) == 0) {
|
|
fifo_state->plane[plane_id] = 0;
|
|
continue;
|
|
}
|
|
|
|
rate = raw->plane[plane_id];
|
|
fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
|
|
fifo_left -= fifo_state->plane[plane_id];
|
|
}
|
|
|
|
fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
|
|
fifo_left -= sprite0_fifo_extra;
|
|
|
|
fifo_state->plane[PLANE_CURSOR] = 63;
|
|
|
|
fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
|
|
|
|
/* spread the remainder evenly */
|
|
for_each_plane_id_on_crtc(crtc, plane_id) {
|
|
int plane_extra;
|
|
|
|
if (fifo_left == 0)
|
|
break;
|
|
|
|
if ((active_planes & BIT(plane_id)) == 0)
|
|
continue;
|
|
|
|
plane_extra = min(fifo_extra, fifo_left);
|
|
fifo_state->plane[plane_id] += plane_extra;
|
|
fifo_left -= plane_extra;
|
|
}
|
|
|
|
WARN_ON(active_planes != 0 && fifo_left != 0);
|
|
|
|
/* give it all to the first plane if none are active */
|
|
if (active_planes == 0) {
|
|
WARN_ON(fifo_left != fifo_size);
|
|
fifo_state->plane[PLANE_PRIMARY] = fifo_left;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* mark all levels starting from 'level' as invalid */
|
|
static void vlv_invalidate_wms(struct intel_crtc *crtc,
|
|
struct vlv_wm_state *wm_state, int level)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
|
|
for (; level < intel_wm_num_levels(dev_priv); level++) {
|
|
enum plane_id plane_id;
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id)
|
|
wm_state->wm[level].plane[plane_id] = USHRT_MAX;
|
|
|
|
wm_state->sr[level].cursor = USHRT_MAX;
|
|
wm_state->sr[level].plane = USHRT_MAX;
|
|
}
|
|
}
|
|
|
|
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
|
|
{
|
|
if (wm > fifo_size)
|
|
return USHRT_MAX;
|
|
else
|
|
return fifo_size - wm;
|
|
}
|
|
|
|
/*
|
|
* Starting from 'level' set all higher
|
|
* levels to 'value' in the "raw" watermarks.
|
|
*/
|
|
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
|
|
int level, enum plane_id plane_id, u16 value)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
int num_levels = intel_wm_num_levels(dev_priv);
|
|
bool dirty = false;
|
|
|
|
for (; level < num_levels; level++) {
|
|
struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
|
|
|
|
dirty |= raw->plane[plane_id] != value;
|
|
raw->plane[plane_id] = value;
|
|
}
|
|
|
|
return dirty;
|
|
}
|
|
|
|
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
|
|
enum plane_id plane_id = plane->id;
|
|
int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
|
|
int level;
|
|
bool dirty = false;
|
|
|
|
if (!intel_wm_plane_visible(crtc_state, plane_state)) {
|
|
dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
|
|
goto out;
|
|
}
|
|
|
|
for (level = 0; level < num_levels; level++) {
|
|
struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
|
|
int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
|
|
int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
|
|
|
|
if (wm > max_wm)
|
|
break;
|
|
|
|
dirty |= raw->plane[plane_id] != wm;
|
|
raw->plane[plane_id] = wm;
|
|
}
|
|
|
|
/* mark all higher levels as invalid */
|
|
dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
|
|
|
|
out:
|
|
if (dirty)
|
|
DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
|
|
plane->base.name,
|
|
crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
|
|
crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
|
|
crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
|
|
|
|
return dirty;
|
|
}
|
|
|
|
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
|
|
enum plane_id plane_id, int level)
|
|
{
|
|
const struct g4x_pipe_wm *raw =
|
|
&crtc_state->wm.vlv.raw[level];
|
|
const struct vlv_fifo_state *fifo_state =
|
|
&crtc_state->wm.vlv.fifo_state;
|
|
|
|
return raw->plane[plane_id] <= fifo_state->plane[plane_id];
|
|
}
|
|
|
|
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
|
|
{
|
|
return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
|
|
vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
|
|
vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
|
|
vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
|
|
}
|
|
|
|
static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
struct intel_atomic_state *state =
|
|
to_intel_atomic_state(crtc_state->base.state);
|
|
struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
|
|
const struct vlv_fifo_state *fifo_state =
|
|
&crtc_state->wm.vlv.fifo_state;
|
|
int num_active_planes = hweight32(crtc_state->active_planes &
|
|
~BIT(PLANE_CURSOR));
|
|
bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
|
|
const struct intel_plane_state *old_plane_state;
|
|
const struct intel_plane_state *new_plane_state;
|
|
struct intel_plane *plane;
|
|
enum plane_id plane_id;
|
|
int level, ret, i;
|
|
unsigned int dirty = 0;
|
|
|
|
for_each_oldnew_intel_plane_in_state(state, plane,
|
|
old_plane_state,
|
|
new_plane_state, i) {
|
|
if (new_plane_state->base.crtc != &crtc->base &&
|
|
old_plane_state->base.crtc != &crtc->base)
|
|
continue;
|
|
|
|
if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
|
|
dirty |= BIT(plane->id);
|
|
}
|
|
|
|
/*
|
|
* DSPARB registers may have been reset due to the
|
|
* power well being turned off. Make sure we restore
|
|
* them to a consistent state even if no primary/sprite
|
|
* planes are initially active.
|
|
*/
|
|
if (needs_modeset)
|
|
crtc_state->fifo_changed = true;
|
|
|
|
if (!dirty)
|
|
return 0;
|
|
|
|
/* cursor changes don't warrant a FIFO recompute */
|
|
if (dirty & ~BIT(PLANE_CURSOR)) {
|
|
const struct intel_crtc_state *old_crtc_state =
|
|
intel_atomic_get_old_crtc_state(state, crtc);
|
|
const struct vlv_fifo_state *old_fifo_state =
|
|
&old_crtc_state->wm.vlv.fifo_state;
|
|
|
|
ret = vlv_compute_fifo(crtc_state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (needs_modeset ||
|
|
memcmp(old_fifo_state, fifo_state,
|
|
sizeof(*fifo_state)) != 0)
|
|
crtc_state->fifo_changed = true;
|
|
}
|
|
|
|
/* initially allow all levels */
|
|
wm_state->num_levels = intel_wm_num_levels(dev_priv);
|
|
/*
|
|
* Note that enabling cxsr with no primary/sprite planes
|
|
* enabled can wedge the pipe. Hence we only allow cxsr
|
|
* with exactly one enabled primary/sprite plane.
|
|
*/
|
|
wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
|
|
|
|
for (level = 0; level < wm_state->num_levels; level++) {
|
|
const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
|
|
const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
|
|
|
|
if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
|
|
break;
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id) {
|
|
wm_state->wm[level].plane[plane_id] =
|
|
vlv_invert_wm_value(raw->plane[plane_id],
|
|
fifo_state->plane[plane_id]);
|
|
}
|
|
|
|
wm_state->sr[level].plane =
|
|
vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
|
|
raw->plane[PLANE_SPRITE0],
|
|
raw->plane[PLANE_SPRITE1]),
|
|
sr_fifo_size);
|
|
|
|
wm_state->sr[level].cursor =
|
|
vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
|
|
63);
|
|
}
|
|
|
|
if (level == 0)
|
|
return -EINVAL;
|
|
|
|
/* limit to only levels we can actually handle */
|
|
wm_state->num_levels = level;
|
|
|
|
/* invalidate the higher levels */
|
|
vlv_invalidate_wms(crtc, wm_state, level);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define VLV_FIFO(plane, value) \
|
|
(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
|
|
|
|
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
const struct vlv_fifo_state *fifo_state =
|
|
&crtc_state->wm.vlv.fifo_state;
|
|
int sprite0_start, sprite1_start, fifo_size;
|
|
|
|
if (!crtc_state->fifo_changed)
|
|
return;
|
|
|
|
sprite0_start = fifo_state->plane[PLANE_PRIMARY];
|
|
sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
|
|
fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
|
|
|
|
WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
|
|
WARN_ON(fifo_size != 511);
|
|
|
|
trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
|
|
|
|
/*
|
|
* uncore.lock serves a double purpose here. It allows us to
|
|
* use the less expensive I915_{READ,WRITE}_FW() functions, and
|
|
* it protects the DSPARB registers from getting clobbered by
|
|
* parallel updates from multiple pipes.
|
|
*
|
|
* intel_pipe_update_start() has already disabled interrupts
|
|
* for us, so a plain spin_lock() is sufficient here.
|
|
*/
|
|
spin_lock(&dev_priv->uncore.lock);
|
|
|
|
switch (crtc->pipe) {
|
|
uint32_t dsparb, dsparb2, dsparb3;
|
|
case PIPE_A:
|
|
dsparb = I915_READ_FW(DSPARB);
|
|
dsparb2 = I915_READ_FW(DSPARB2);
|
|
|
|
dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
|
|
VLV_FIFO(SPRITEB, 0xff));
|
|
dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
|
|
VLV_FIFO(SPRITEB, sprite1_start));
|
|
|
|
dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
|
|
VLV_FIFO(SPRITEB_HI, 0x1));
|
|
dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
|
|
VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
|
|
|
|
I915_WRITE_FW(DSPARB, dsparb);
|
|
I915_WRITE_FW(DSPARB2, dsparb2);
|
|
break;
|
|
case PIPE_B:
|
|
dsparb = I915_READ_FW(DSPARB);
|
|
dsparb2 = I915_READ_FW(DSPARB2);
|
|
|
|
dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
|
|
VLV_FIFO(SPRITED, 0xff));
|
|
dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
|
|
VLV_FIFO(SPRITED, sprite1_start));
|
|
|
|
dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
|
|
VLV_FIFO(SPRITED_HI, 0xff));
|
|
dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
|
|
VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
|
|
|
|
I915_WRITE_FW(DSPARB, dsparb);
|
|
I915_WRITE_FW(DSPARB2, dsparb2);
|
|
break;
|
|
case PIPE_C:
|
|
dsparb3 = I915_READ_FW(DSPARB3);
|
|
dsparb2 = I915_READ_FW(DSPARB2);
|
|
|
|
dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
|
|
VLV_FIFO(SPRITEF, 0xff));
|
|
dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
|
|
VLV_FIFO(SPRITEF, sprite1_start));
|
|
|
|
dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
|
|
VLV_FIFO(SPRITEF_HI, 0xff));
|
|
dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
|
|
VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
|
|
|
|
I915_WRITE_FW(DSPARB3, dsparb3);
|
|
I915_WRITE_FW(DSPARB2, dsparb2);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
POSTING_READ_FW(DSPARB);
|
|
|
|
spin_unlock(&dev_priv->uncore.lock);
|
|
}
|
|
|
|
#undef VLV_FIFO
|
|
|
|
static int vlv_compute_intermediate_wm(struct drm_device *dev,
|
|
struct intel_crtc *crtc,
|
|
struct intel_crtc_state *new_crtc_state)
|
|
{
|
|
struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
|
|
const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
|
|
struct intel_atomic_state *intel_state =
|
|
to_intel_atomic_state(new_crtc_state->base.state);
|
|
const struct intel_crtc_state *old_crtc_state =
|
|
intel_atomic_get_old_crtc_state(intel_state, crtc);
|
|
const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
|
|
int level;
|
|
|
|
if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
|
|
*intermediate = *optimal;
|
|
|
|
intermediate->cxsr = false;
|
|
goto out;
|
|
}
|
|
|
|
intermediate->num_levels = min(optimal->num_levels, active->num_levels);
|
|
intermediate->cxsr = optimal->cxsr && active->cxsr &&
|
|
!new_crtc_state->disable_cxsr;
|
|
|
|
for (level = 0; level < intermediate->num_levels; level++) {
|
|
enum plane_id plane_id;
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id) {
|
|
intermediate->wm[level].plane[plane_id] =
|
|
min(optimal->wm[level].plane[plane_id],
|
|
active->wm[level].plane[plane_id]);
|
|
}
|
|
|
|
intermediate->sr[level].plane = min(optimal->sr[level].plane,
|
|
active->sr[level].plane);
|
|
intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
|
|
active->sr[level].cursor);
|
|
}
|
|
|
|
vlv_invalidate_wms(crtc, intermediate, level);
|
|
|
|
out:
|
|
/*
|
|
* If our intermediate WM are identical to the final WM, then we can
|
|
* omit the post-vblank programming; only update if it's different.
|
|
*/
|
|
if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
|
|
new_crtc_state->wm.need_postvbl_update = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
|
|
struct vlv_wm_values *wm)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
int num_active_crtcs = 0;
|
|
|
|
wm->level = dev_priv->wm.max_level;
|
|
wm->cxsr = true;
|
|
|
|
for_each_intel_crtc(&dev_priv->drm, crtc) {
|
|
const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
|
|
|
|
if (!crtc->active)
|
|
continue;
|
|
|
|
if (!wm_state->cxsr)
|
|
wm->cxsr = false;
|
|
|
|
num_active_crtcs++;
|
|
wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
|
|
}
|
|
|
|
if (num_active_crtcs != 1)
|
|
wm->cxsr = false;
|
|
|
|
if (num_active_crtcs > 1)
|
|
wm->level = VLV_WM_LEVEL_PM2;
|
|
|
|
for_each_intel_crtc(&dev_priv->drm, crtc) {
|
|
const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
wm->pipe[pipe] = wm_state->wm[wm->level];
|
|
if (crtc->active && wm->cxsr)
|
|
wm->sr = wm_state->sr[wm->level];
|
|
|
|
wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
|
|
wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
|
|
wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
|
|
wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
|
|
}
|
|
}
|
|
|
|
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
|
|
struct vlv_wm_values new_wm = {};
|
|
|
|
vlv_merge_wm(dev_priv, &new_wm);
|
|
|
|
if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
|
|
return;
|
|
|
|
if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
|
|
chv_set_memory_dvfs(dev_priv, false);
|
|
|
|
if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
|
|
chv_set_memory_pm5(dev_priv, false);
|
|
|
|
if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
|
|
_intel_set_memory_cxsr(dev_priv, false);
|
|
|
|
vlv_write_wm_values(dev_priv, &new_wm);
|
|
|
|
if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
|
|
_intel_set_memory_cxsr(dev_priv, true);
|
|
|
|
if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
|
|
chv_set_memory_pm5(dev_priv, true);
|
|
|
|
if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
|
|
chv_set_memory_dvfs(dev_priv, true);
|
|
|
|
*old_wm = new_wm;
|
|
}
|
|
|
|
static void vlv_initial_watermarks(struct intel_atomic_state *state,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
|
|
mutex_lock(&dev_priv->wm.wm_mutex);
|
|
crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
|
|
vlv_program_watermarks(dev_priv);
|
|
mutex_unlock(&dev_priv->wm.wm_mutex);
|
|
}
|
|
|
|
static void vlv_optimize_watermarks(struct intel_atomic_state *state,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
|
|
if (!crtc_state->wm.need_postvbl_update)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->wm.wm_mutex);
|
|
intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
|
|
vlv_program_watermarks(dev_priv);
|
|
mutex_unlock(&dev_priv->wm.wm_mutex);
|
|
}
|
|
|
|
static void i965_update_wm(struct intel_crtc *unused_crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
|
|
struct intel_crtc *crtc;
|
|
int srwm = 1;
|
|
int cursor_sr = 16;
|
|
bool cxsr_enabled;
|
|
|
|
/* Calc sr entries for one plane configs */
|
|
crtc = single_enabled_crtc(dev_priv);
|
|
if (crtc) {
|
|
/* self-refresh has much higher latency */
|
|
static const int sr_latency_ns = 12000;
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&crtc->config->base.adjusted_mode;
|
|
const struct drm_framebuffer *fb =
|
|
crtc->base.primary->state->fb;
|
|
int clock = adjusted_mode->crtc_clock;
|
|
int htotal = adjusted_mode->crtc_htotal;
|
|
int hdisplay = crtc->config->pipe_src_w;
|
|
int cpp = fb->format->cpp[0];
|
|
int entries;
|
|
|
|
entries = intel_wm_method2(clock, htotal,
|
|
hdisplay, cpp, sr_latency_ns / 100);
|
|
entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
|
|
srwm = I965_FIFO_SIZE - entries;
|
|
if (srwm < 0)
|
|
srwm = 1;
|
|
srwm &= 0x1ff;
|
|
DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
|
|
entries, srwm);
|
|
|
|
entries = intel_wm_method2(clock, htotal,
|
|
crtc->base.cursor->state->crtc_w, 4,
|
|
sr_latency_ns / 100);
|
|
entries = DIV_ROUND_UP(entries,
|
|
i965_cursor_wm_info.cacheline_size) +
|
|
i965_cursor_wm_info.guard_size;
|
|
|
|
cursor_sr = i965_cursor_wm_info.fifo_size - entries;
|
|
if (cursor_sr > i965_cursor_wm_info.max_wm)
|
|
cursor_sr = i965_cursor_wm_info.max_wm;
|
|
|
|
DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
|
|
"cursor %d\n", srwm, cursor_sr);
|
|
|
|
cxsr_enabled = true;
|
|
} else {
|
|
cxsr_enabled = false;
|
|
/* Turn off self refresh if both pipes are enabled */
|
|
intel_set_memory_cxsr(dev_priv, false);
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
|
|
srwm);
|
|
|
|
/* 965 has limitations... */
|
|
I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
|
|
FW_WM(8, CURSORB) |
|
|
FW_WM(8, PLANEB) |
|
|
FW_WM(8, PLANEA));
|
|
I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
|
|
FW_WM(8, PLANEC_OLD));
|
|
/* update cursor SR watermark */
|
|
I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
|
|
|
|
if (cxsr_enabled)
|
|
intel_set_memory_cxsr(dev_priv, true);
|
|
}
|
|
|
|
#undef FW_WM
|
|
|
|
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
|
|
const struct intel_watermark_params *wm_info;
|
|
uint32_t fwater_lo;
|
|
uint32_t fwater_hi;
|
|
int cwm, srwm = 1;
|
|
int fifo_size;
|
|
int planea_wm, planeb_wm;
|
|
struct intel_crtc *crtc, *enabled = NULL;
|
|
|
|
if (IS_I945GM(dev_priv))
|
|
wm_info = &i945_wm_info;
|
|
else if (!IS_GEN2(dev_priv))
|
|
wm_info = &i915_wm_info;
|
|
else
|
|
wm_info = &i830_a_wm_info;
|
|
|
|
fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
|
|
crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
|
|
if (intel_crtc_active(crtc)) {
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&crtc->config->base.adjusted_mode;
|
|
const struct drm_framebuffer *fb =
|
|
crtc->base.primary->state->fb;
|
|
int cpp;
|
|
|
|
if (IS_GEN2(dev_priv))
|
|
cpp = 4;
|
|
else
|
|
cpp = fb->format->cpp[0];
|
|
|
|
planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
|
|
wm_info, fifo_size, cpp,
|
|
pessimal_latency_ns);
|
|
enabled = crtc;
|
|
} else {
|
|
planea_wm = fifo_size - wm_info->guard_size;
|
|
if (planea_wm > (long)wm_info->max_wm)
|
|
planea_wm = wm_info->max_wm;
|
|
}
|
|
|
|
if (IS_GEN2(dev_priv))
|
|
wm_info = &i830_bc_wm_info;
|
|
|
|
fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
|
|
crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
|
|
if (intel_crtc_active(crtc)) {
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&crtc->config->base.adjusted_mode;
|
|
const struct drm_framebuffer *fb =
|
|
crtc->base.primary->state->fb;
|
|
int cpp;
|
|
|
|
if (IS_GEN2(dev_priv))
|
|
cpp = 4;
|
|
else
|
|
cpp = fb->format->cpp[0];
|
|
|
|
planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
|
|
wm_info, fifo_size, cpp,
|
|
pessimal_latency_ns);
|
|
if (enabled == NULL)
|
|
enabled = crtc;
|
|
else
|
|
enabled = NULL;
|
|
} else {
|
|
planeb_wm = fifo_size - wm_info->guard_size;
|
|
if (planeb_wm > (long)wm_info->max_wm)
|
|
planeb_wm = wm_info->max_wm;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
|
|
|
|
if (IS_I915GM(dev_priv) && enabled) {
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = intel_fb_obj(enabled->base.primary->state->fb);
|
|
|
|
/* self-refresh seems busted with untiled */
|
|
if (!i915_gem_object_is_tiled(obj))
|
|
enabled = NULL;
|
|
}
|
|
|
|
/*
|
|
* Overlay gets an aggressive default since video jitter is bad.
|
|
*/
|
|
cwm = 2;
|
|
|
|
/* Play safe and disable self-refresh before adjusting watermarks. */
|
|
intel_set_memory_cxsr(dev_priv, false);
|
|
|
|
/* Calc sr entries for one plane configs */
|
|
if (HAS_FW_BLC(dev_priv) && enabled) {
|
|
/* self-refresh has much higher latency */
|
|
static const int sr_latency_ns = 6000;
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&enabled->config->base.adjusted_mode;
|
|
const struct drm_framebuffer *fb =
|
|
enabled->base.primary->state->fb;
|
|
int clock = adjusted_mode->crtc_clock;
|
|
int htotal = adjusted_mode->crtc_htotal;
|
|
int hdisplay = enabled->config->pipe_src_w;
|
|
int cpp;
|
|
int entries;
|
|
|
|
if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
|
|
cpp = 4;
|
|
else
|
|
cpp = fb->format->cpp[0];
|
|
|
|
entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
|
|
sr_latency_ns / 100);
|
|
entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
|
|
DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
|
|
srwm = wm_info->fifo_size - entries;
|
|
if (srwm < 0)
|
|
srwm = 1;
|
|
|
|
if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
|
|
I915_WRITE(FW_BLC_SELF,
|
|
FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
|
|
else
|
|
I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
|
|
planea_wm, planeb_wm, cwm, srwm);
|
|
|
|
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
|
|
fwater_hi = (cwm & 0x1f);
|
|
|
|
/* Set request length to 8 cachelines per fetch */
|
|
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
|
|
fwater_hi = fwater_hi | (1 << 8);
|
|
|
|
I915_WRITE(FW_BLC, fwater_lo);
|
|
I915_WRITE(FW_BLC2, fwater_hi);
|
|
|
|
if (enabled)
|
|
intel_set_memory_cxsr(dev_priv, true);
|
|
}
|
|
|
|
static void i845_update_wm(struct intel_crtc *unused_crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
|
|
struct intel_crtc *crtc;
|
|
const struct drm_display_mode *adjusted_mode;
|
|
uint32_t fwater_lo;
|
|
int planea_wm;
|
|
|
|
crtc = single_enabled_crtc(dev_priv);
|
|
if (crtc == NULL)
|
|
return;
|
|
|
|
adjusted_mode = &crtc->config->base.adjusted_mode;
|
|
planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
|
|
&i845_wm_info,
|
|
dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
|
|
4, pessimal_latency_ns);
|
|
fwater_lo = I915_READ(FW_BLC) & ~0xfff;
|
|
fwater_lo |= (3<<8) | planea_wm;
|
|
|
|
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
|
|
|
|
I915_WRITE(FW_BLC, fwater_lo);
|
|
}
|
|
|
|
/* latency must be in 0.1us units. */
|
|
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
|
|
unsigned int cpp,
|
|
unsigned int latency)
|
|
{
|
|
unsigned int ret;
|
|
|
|
ret = intel_wm_method1(pixel_rate, cpp, latency);
|
|
ret = DIV_ROUND_UP(ret, 64) + 2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* latency must be in 0.1us units. */
|
|
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
|
|
unsigned int htotal,
|
|
unsigned int width,
|
|
unsigned int cpp,
|
|
unsigned int latency)
|
|
{
|
|
unsigned int ret;
|
|
|
|
ret = intel_wm_method2(pixel_rate, htotal,
|
|
width, cpp, latency);
|
|
ret = DIV_ROUND_UP(ret, 64) + 2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
|
|
uint8_t cpp)
|
|
{
|
|
/*
|
|
* Neither of these should be possible since this function shouldn't be
|
|
* called if the CRTC is off or the plane is invisible. But let's be
|
|
* extra paranoid to avoid a potential divide-by-zero if we screw up
|
|
* elsewhere in the driver.
|
|
*/
|
|
if (WARN_ON(!cpp))
|
|
return 0;
|
|
if (WARN_ON(!horiz_pixels))
|
|
return 0;
|
|
|
|
return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
|
|
}
|
|
|
|
struct ilk_wm_maximums {
|
|
uint16_t pri;
|
|
uint16_t spr;
|
|
uint16_t cur;
|
|
uint16_t fbc;
|
|
};
|
|
|
|
/*
|
|
* For both WM_PIPE and WM_LP.
|
|
* mem_value must be in 0.1us units.
|
|
*/
|
|
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
|
|
const struct intel_plane_state *pstate,
|
|
uint32_t mem_value,
|
|
bool is_lp)
|
|
{
|
|
uint32_t method1, method2;
|
|
int cpp;
|
|
|
|
if (mem_value == 0)
|
|
return U32_MAX;
|
|
|
|
if (!intel_wm_plane_visible(cstate, pstate))
|
|
return 0;
|
|
|
|
cpp = pstate->base.fb->format->cpp[0];
|
|
|
|
method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
|
|
|
|
if (!is_lp)
|
|
return method1;
|
|
|
|
method2 = ilk_wm_method2(cstate->pixel_rate,
|
|
cstate->base.adjusted_mode.crtc_htotal,
|
|
drm_rect_width(&pstate->base.dst),
|
|
cpp, mem_value);
|
|
|
|
return min(method1, method2);
|
|
}
|
|
|
|
/*
|
|
* For both WM_PIPE and WM_LP.
|
|
* mem_value must be in 0.1us units.
|
|
*/
|
|
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
|
|
const struct intel_plane_state *pstate,
|
|
uint32_t mem_value)
|
|
{
|
|
uint32_t method1, method2;
|
|
int cpp;
|
|
|
|
if (mem_value == 0)
|
|
return U32_MAX;
|
|
|
|
if (!intel_wm_plane_visible(cstate, pstate))
|
|
return 0;
|
|
|
|
cpp = pstate->base.fb->format->cpp[0];
|
|
|
|
method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
|
|
method2 = ilk_wm_method2(cstate->pixel_rate,
|
|
cstate->base.adjusted_mode.crtc_htotal,
|
|
drm_rect_width(&pstate->base.dst),
|
|
cpp, mem_value);
|
|
return min(method1, method2);
|
|
}
|
|
|
|
/*
|
|
* For both WM_PIPE and WM_LP.
|
|
* mem_value must be in 0.1us units.
|
|
*/
|
|
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
|
|
const struct intel_plane_state *pstate,
|
|
uint32_t mem_value)
|
|
{
|
|
int cpp;
|
|
|
|
if (mem_value == 0)
|
|
return U32_MAX;
|
|
|
|
if (!intel_wm_plane_visible(cstate, pstate))
|
|
return 0;
|
|
|
|
cpp = pstate->base.fb->format->cpp[0];
|
|
|
|
return ilk_wm_method2(cstate->pixel_rate,
|
|
cstate->base.adjusted_mode.crtc_htotal,
|
|
pstate->base.crtc_w, cpp, mem_value);
|
|
}
|
|
|
|
/* Only for WM_LP. */
|
|
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
|
|
const struct intel_plane_state *pstate,
|
|
uint32_t pri_val)
|
|
{
|
|
int cpp;
|
|
|
|
if (!intel_wm_plane_visible(cstate, pstate))
|
|
return 0;
|
|
|
|
cpp = pstate->base.fb->format->cpp[0];
|
|
|
|
return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
|
|
}
|
|
|
|
static unsigned int
|
|
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
|
|
{
|
|
if (INTEL_GEN(dev_priv) >= 8)
|
|
return 3072;
|
|
else if (INTEL_GEN(dev_priv) >= 7)
|
|
return 768;
|
|
else
|
|
return 512;
|
|
}
|
|
|
|
static unsigned int
|
|
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
|
|
int level, bool is_sprite)
|
|
{
|
|
if (INTEL_GEN(dev_priv) >= 8)
|
|
/* BDW primary/sprite plane watermarks */
|
|
return level == 0 ? 255 : 2047;
|
|
else if (INTEL_GEN(dev_priv) >= 7)
|
|
/* IVB/HSW primary/sprite plane watermarks */
|
|
return level == 0 ? 127 : 1023;
|
|
else if (!is_sprite)
|
|
/* ILK/SNB primary plane watermarks */
|
|
return level == 0 ? 127 : 511;
|
|
else
|
|
/* ILK/SNB sprite plane watermarks */
|
|
return level == 0 ? 63 : 255;
|
|
}
|
|
|
|
static unsigned int
|
|
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
|
|
{
|
|
if (INTEL_GEN(dev_priv) >= 7)
|
|
return level == 0 ? 63 : 255;
|
|
else
|
|
return level == 0 ? 31 : 63;
|
|
}
|
|
|
|
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
|
|
{
|
|
if (INTEL_GEN(dev_priv) >= 8)
|
|
return 31;
|
|
else
|
|
return 15;
|
|
}
|
|
|
|
/* Calculate the maximum primary/sprite plane watermark */
|
|
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
|
|
int level,
|
|
const struct intel_wm_config *config,
|
|
enum intel_ddb_partitioning ddb_partitioning,
|
|
bool is_sprite)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
|
|
|
|
/* if sprites aren't enabled, sprites get nothing */
|
|
if (is_sprite && !config->sprites_enabled)
|
|
return 0;
|
|
|
|
/* HSW allows LP1+ watermarks even with multiple pipes */
|
|
if (level == 0 || config->num_pipes_active > 1) {
|
|
fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
|
|
|
|
/*
|
|
* For some reason the non self refresh
|
|
* FIFO size is only half of the self
|
|
* refresh FIFO size on ILK/SNB.
|
|
*/
|
|
if (INTEL_GEN(dev_priv) <= 6)
|
|
fifo_size /= 2;
|
|
}
|
|
|
|
if (config->sprites_enabled) {
|
|
/* level 0 is always calculated with 1:1 split */
|
|
if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
|
|
if (is_sprite)
|
|
fifo_size *= 5;
|
|
fifo_size /= 6;
|
|
} else {
|
|
fifo_size /= 2;
|
|
}
|
|
}
|
|
|
|
/* clamp to max that the registers can hold */
|
|
return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
|
|
}
|
|
|
|
/* Calculate the maximum cursor plane watermark */
|
|
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
|
|
int level,
|
|
const struct intel_wm_config *config)
|
|
{
|
|
/* HSW LP1+ watermarks w/ multiple pipes */
|
|
if (level > 0 && config->num_pipes_active > 1)
|
|
return 64;
|
|
|
|
/* otherwise just report max that registers can hold */
|
|
return ilk_cursor_wm_reg_max(to_i915(dev), level);
|
|
}
|
|
|
|
static void ilk_compute_wm_maximums(const struct drm_device *dev,
|
|
int level,
|
|
const struct intel_wm_config *config,
|
|
enum intel_ddb_partitioning ddb_partitioning,
|
|
struct ilk_wm_maximums *max)
|
|
{
|
|
max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
|
|
max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
|
|
max->cur = ilk_cursor_wm_max(dev, level, config);
|
|
max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
|
|
}
|
|
|
|
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
|
|
int level,
|
|
struct ilk_wm_maximums *max)
|
|
{
|
|
max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
|
|
max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
|
|
max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
|
|
max->fbc = ilk_fbc_wm_reg_max(dev_priv);
|
|
}
|
|
|
|
static bool ilk_validate_wm_level(int level,
|
|
const struct ilk_wm_maximums *max,
|
|
struct intel_wm_level *result)
|
|
{
|
|
bool ret;
|
|
|
|
/* already determined to be invalid? */
|
|
if (!result->enable)
|
|
return false;
|
|
|
|
result->enable = result->pri_val <= max->pri &&
|
|
result->spr_val <= max->spr &&
|
|
result->cur_val <= max->cur;
|
|
|
|
ret = result->enable;
|
|
|
|
/*
|
|
* HACK until we can pre-compute everything,
|
|
* and thus fail gracefully if LP0 watermarks
|
|
* are exceeded...
|
|
*/
|
|
if (level == 0 && !result->enable) {
|
|
if (result->pri_val > max->pri)
|
|
DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
|
|
level, result->pri_val, max->pri);
|
|
if (result->spr_val > max->spr)
|
|
DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
|
|
level, result->spr_val, max->spr);
|
|
if (result->cur_val > max->cur)
|
|
DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
|
|
level, result->cur_val, max->cur);
|
|
|
|
result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
|
|
result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
|
|
result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
|
|
result->enable = true;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
|
|
const struct intel_crtc *intel_crtc,
|
|
int level,
|
|
struct intel_crtc_state *cstate,
|
|
const struct intel_plane_state *pristate,
|
|
const struct intel_plane_state *sprstate,
|
|
const struct intel_plane_state *curstate,
|
|
struct intel_wm_level *result)
|
|
{
|
|
uint16_t pri_latency = dev_priv->wm.pri_latency[level];
|
|
uint16_t spr_latency = dev_priv->wm.spr_latency[level];
|
|
uint16_t cur_latency = dev_priv->wm.cur_latency[level];
|
|
|
|
/* WM1+ latency values stored in 0.5us units */
|
|
if (level > 0) {
|
|
pri_latency *= 5;
|
|
spr_latency *= 5;
|
|
cur_latency *= 5;
|
|
}
|
|
|
|
if (pristate) {
|
|
result->pri_val = ilk_compute_pri_wm(cstate, pristate,
|
|
pri_latency, level);
|
|
result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
|
|
}
|
|
|
|
if (sprstate)
|
|
result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
|
|
|
|
if (curstate)
|
|
result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
|
|
|
|
result->enable = true;
|
|
}
|
|
|
|
static uint32_t
|
|
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
|
|
{
|
|
const struct intel_atomic_state *intel_state =
|
|
to_intel_atomic_state(cstate->base.state);
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&cstate->base.adjusted_mode;
|
|
u32 linetime, ips_linetime;
|
|
|
|
if (!cstate->base.active)
|
|
return 0;
|
|
if (WARN_ON(adjusted_mode->crtc_clock == 0))
|
|
return 0;
|
|
if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
|
|
return 0;
|
|
|
|
/* The WM are computed with base on how long it takes to fill a single
|
|
* row at the given clock rate, multiplied by 8.
|
|
* */
|
|
linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
|
|
adjusted_mode->crtc_clock);
|
|
ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
|
|
intel_state->cdclk.logical.cdclk);
|
|
|
|
return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
|
|
PIPE_WM_LINETIME_TIME(linetime);
|
|
}
|
|
|
|
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
|
|
uint16_t wm[8])
|
|
{
|
|
if (INTEL_GEN(dev_priv) >= 9) {
|
|
uint32_t val;
|
|
int ret, i;
|
|
int level, max_level = ilk_wm_max_level(dev_priv);
|
|
|
|
/* read the first set of memory latencies[0:3] */
|
|
val = 0; /* data0 to be programmed to 0 for first set */
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
ret = sandybridge_pcode_read(dev_priv,
|
|
GEN9_PCODE_READ_MEM_LATENCY,
|
|
&val);
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
|
|
if (ret) {
|
|
DRM_ERROR("SKL Mailbox read error = %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
|
|
wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
|
|
GEN9_MEM_LATENCY_LEVEL_MASK;
|
|
wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
|
|
GEN9_MEM_LATENCY_LEVEL_MASK;
|
|
wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
|
|
GEN9_MEM_LATENCY_LEVEL_MASK;
|
|
|
|
/* read the second set of memory latencies[4:7] */
|
|
val = 1; /* data0 to be programmed to 1 for second set */
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
ret = sandybridge_pcode_read(dev_priv,
|
|
GEN9_PCODE_READ_MEM_LATENCY,
|
|
&val);
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
if (ret) {
|
|
DRM_ERROR("SKL Mailbox read error = %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
|
|
wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
|
|
GEN9_MEM_LATENCY_LEVEL_MASK;
|
|
wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
|
|
GEN9_MEM_LATENCY_LEVEL_MASK;
|
|
wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
|
|
GEN9_MEM_LATENCY_LEVEL_MASK;
|
|
|
|
/*
|
|
* If a level n (n > 1) has a 0us latency, all levels m (m >= n)
|
|
* need to be disabled. We make sure to sanitize the values out
|
|
* of the punit to satisfy this requirement.
|
|
*/
|
|
for (level = 1; level <= max_level; level++) {
|
|
if (wm[level] == 0) {
|
|
for (i = level + 1; i <= max_level; i++)
|
|
wm[i] = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* WaWmMemoryReadLatency:skl+,glk
|
|
*
|
|
* punit doesn't take into account the read latency so we need
|
|
* to add 2us to the various latency levels we retrieve from the
|
|
* punit when level 0 response data us 0us.
|
|
*/
|
|
if (wm[0] == 0) {
|
|
wm[0] += 2;
|
|
for (level = 1; level <= max_level; level++) {
|
|
if (wm[level] == 0)
|
|
break;
|
|
wm[level] += 2;
|
|
}
|
|
}
|
|
|
|
} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
|
|
uint64_t sskpd = I915_READ64(MCH_SSKPD);
|
|
|
|
wm[0] = (sskpd >> 56) & 0xFF;
|
|
if (wm[0] == 0)
|
|
wm[0] = sskpd & 0xF;
|
|
wm[1] = (sskpd >> 4) & 0xFF;
|
|
wm[2] = (sskpd >> 12) & 0xFF;
|
|
wm[3] = (sskpd >> 20) & 0x1FF;
|
|
wm[4] = (sskpd >> 32) & 0x1FF;
|
|
} else if (INTEL_GEN(dev_priv) >= 6) {
|
|
uint32_t sskpd = I915_READ(MCH_SSKPD);
|
|
|
|
wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
|
|
wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
|
|
wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
|
|
wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
|
|
} else if (INTEL_GEN(dev_priv) >= 5) {
|
|
uint32_t mltr = I915_READ(MLTR_ILK);
|
|
|
|
/* ILK primary LP0 latency is 700 ns */
|
|
wm[0] = 7;
|
|
wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
|
|
wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
|
|
} else {
|
|
MISSING_CASE(INTEL_DEVID(dev_priv));
|
|
}
|
|
}
|
|
|
|
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
|
|
uint16_t wm[5])
|
|
{
|
|
/* ILK sprite LP0 latency is 1300 ns */
|
|
if (IS_GEN5(dev_priv))
|
|
wm[0] = 13;
|
|
}
|
|
|
|
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
|
|
uint16_t wm[5])
|
|
{
|
|
/* ILK cursor LP0 latency is 1300 ns */
|
|
if (IS_GEN5(dev_priv))
|
|
wm[0] = 13;
|
|
}
|
|
|
|
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
|
|
{
|
|
/* how many WM levels are we expecting */
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
return 7;
|
|
else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
return 4;
|
|
else if (INTEL_GEN(dev_priv) >= 6)
|
|
return 3;
|
|
else
|
|
return 2;
|
|
}
|
|
|
|
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
|
|
const char *name,
|
|
const uint16_t wm[])
|
|
{
|
|
int level, max_level = ilk_wm_max_level(dev_priv);
|
|
|
|
for (level = 0; level <= max_level; level++) {
|
|
unsigned int latency = wm[level];
|
|
|
|
if (latency == 0) {
|
|
DRM_DEBUG_KMS("%s WM%d latency not provided\n",
|
|
name, level);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* - latencies are in us on gen9.
|
|
* - before then, WM1+ latency values are in 0.5us units
|
|
*/
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
latency *= 10;
|
|
else if (level > 0)
|
|
latency *= 5;
|
|
|
|
DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
|
|
name, level, wm[level],
|
|
latency / 10, latency % 10);
|
|
}
|
|
}
|
|
|
|
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
|
|
uint16_t wm[5], uint16_t min)
|
|
{
|
|
int level, max_level = ilk_wm_max_level(dev_priv);
|
|
|
|
if (wm[0] >= min)
|
|
return false;
|
|
|
|
wm[0] = max(wm[0], min);
|
|
for (level = 1; level <= max_level; level++)
|
|
wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
|
|
|
|
return true;
|
|
}
|
|
|
|
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
|
|
{
|
|
bool changed;
|
|
|
|
/*
|
|
* The BIOS provided WM memory latency values are often
|
|
* inadequate for high resolution displays. Adjust them.
|
|
*/
|
|
changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
|
|
ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
|
|
ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
|
|
|
|
if (!changed)
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
|
|
intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
|
|
intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
|
|
intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
|
|
}
|
|
|
|
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
|
|
{
|
|
/*
|
|
* On some SNB machines (Thinkpad X220 Tablet at least)
|
|
* LP3 usage can cause vblank interrupts to be lost.
|
|
* The DEIIR bit will go high but it looks like the CPU
|
|
* never gets interrupted.
|
|
*
|
|
* It's not clear whether other interrupt source could
|
|
* be affected or if this is somehow limited to vblank
|
|
* interrupts only. To play it safe we disable LP3
|
|
* watermarks entirely.
|
|
*/
|
|
if (dev_priv->wm.pri_latency[3] == 0 &&
|
|
dev_priv->wm.spr_latency[3] == 0 &&
|
|
dev_priv->wm.cur_latency[3] == 0)
|
|
return;
|
|
|
|
dev_priv->wm.pri_latency[3] = 0;
|
|
dev_priv->wm.spr_latency[3] = 0;
|
|
dev_priv->wm.cur_latency[3] = 0;
|
|
|
|
DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
|
|
intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
|
|
intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
|
|
intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
|
|
}
|
|
|
|
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
|
|
{
|
|
intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
|
|
|
|
memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
|
|
sizeof(dev_priv->wm.pri_latency));
|
|
memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
|
|
sizeof(dev_priv->wm.pri_latency));
|
|
|
|
intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
|
|
intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
|
|
|
|
intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
|
|
intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
|
|
intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
|
|
|
|
if (IS_GEN6(dev_priv)) {
|
|
snb_wm_latency_quirk(dev_priv);
|
|
snb_wm_lp3_irq_quirk(dev_priv);
|
|
}
|
|
}
|
|
|
|
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
|
|
{
|
|
intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
|
|
intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
|
|
}
|
|
|
|
static bool ilk_validate_pipe_wm(struct drm_device *dev,
|
|
struct intel_pipe_wm *pipe_wm)
|
|
{
|
|
/* LP0 watermark maximums depend on this pipe alone */
|
|
const struct intel_wm_config config = {
|
|
.num_pipes_active = 1,
|
|
.sprites_enabled = pipe_wm->sprites_enabled,
|
|
.sprites_scaled = pipe_wm->sprites_scaled,
|
|
};
|
|
struct ilk_wm_maximums max;
|
|
|
|
/* LP0 watermarks always use 1/2 DDB partitioning */
|
|
ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
|
|
|
|
/* At least LP0 must be valid */
|
|
if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
|
|
DRM_DEBUG_KMS("LP0 watermark invalid\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Compute new watermarks for the pipe */
|
|
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
|
|
{
|
|
struct drm_atomic_state *state = cstate->base.state;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
|
|
struct intel_pipe_wm *pipe_wm;
|
|
struct drm_device *dev = state->dev;
|
|
const struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_plane *plane;
|
|
const struct drm_plane_state *plane_state;
|
|
const struct intel_plane_state *pristate = NULL;
|
|
const struct intel_plane_state *sprstate = NULL;
|
|
const struct intel_plane_state *curstate = NULL;
|
|
int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
|
|
struct ilk_wm_maximums max;
|
|
|
|
pipe_wm = &cstate->wm.ilk.optimal;
|
|
|
|
drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
|
|
const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
|
|
|
|
if (plane->type == DRM_PLANE_TYPE_PRIMARY)
|
|
pristate = ps;
|
|
else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
|
|
sprstate = ps;
|
|
else if (plane->type == DRM_PLANE_TYPE_CURSOR)
|
|
curstate = ps;
|
|
}
|
|
|
|
pipe_wm->pipe_enabled = cstate->base.active;
|
|
if (sprstate) {
|
|
pipe_wm->sprites_enabled = sprstate->base.visible;
|
|
pipe_wm->sprites_scaled = sprstate->base.visible &&
|
|
(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
|
|
drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
|
|
}
|
|
|
|
usable_level = max_level;
|
|
|
|
/* ILK/SNB: LP2+ watermarks only w/o sprites */
|
|
if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
|
|
usable_level = 1;
|
|
|
|
/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
|
|
if (pipe_wm->sprites_scaled)
|
|
usable_level = 0;
|
|
|
|
memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
|
|
ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
|
|
pristate, sprstate, curstate, &pipe_wm->wm[0]);
|
|
|
|
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
|
|
|
|
if (!ilk_validate_pipe_wm(dev, pipe_wm))
|
|
return -EINVAL;
|
|
|
|
ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
|
|
|
|
for (level = 1; level <= usable_level; level++) {
|
|
struct intel_wm_level *wm = &pipe_wm->wm[level];
|
|
|
|
ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
|
|
pristate, sprstate, curstate, wm);
|
|
|
|
/*
|
|
* Disable any watermark level that exceeds the
|
|
* register maximums since such watermarks are
|
|
* always invalid.
|
|
*/
|
|
if (!ilk_validate_wm_level(level, &max, wm)) {
|
|
memset(wm, 0, sizeof(*wm));
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Build a set of 'intermediate' watermark values that satisfy both the old
|
|
* state and the new state. These can be programmed to the hardware
|
|
* immediately.
|
|
*/
|
|
static int ilk_compute_intermediate_wm(struct drm_device *dev,
|
|
struct intel_crtc *intel_crtc,
|
|
struct intel_crtc_state *newstate)
|
|
{
|
|
struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
|
|
struct intel_atomic_state *intel_state =
|
|
to_intel_atomic_state(newstate->base.state);
|
|
const struct intel_crtc_state *oldstate =
|
|
intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
|
|
const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
|
|
int level, max_level = ilk_wm_max_level(to_i915(dev));
|
|
|
|
/*
|
|
* Start with the final, target watermarks, then combine with the
|
|
* currently active watermarks to get values that are safe both before
|
|
* and after the vblank.
|
|
*/
|
|
*a = newstate->wm.ilk.optimal;
|
|
if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
|
|
return 0;
|
|
|
|
a->pipe_enabled |= b->pipe_enabled;
|
|
a->sprites_enabled |= b->sprites_enabled;
|
|
a->sprites_scaled |= b->sprites_scaled;
|
|
|
|
for (level = 0; level <= max_level; level++) {
|
|
struct intel_wm_level *a_wm = &a->wm[level];
|
|
const struct intel_wm_level *b_wm = &b->wm[level];
|
|
|
|
a_wm->enable &= b_wm->enable;
|
|
a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
|
|
a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
|
|
a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
|
|
a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
|
|
}
|
|
|
|
/*
|
|
* We need to make sure that these merged watermark values are
|
|
* actually a valid configuration themselves. If they're not,
|
|
* there's no safe way to transition from the old state to
|
|
* the new state, so we need to fail the atomic transaction.
|
|
*/
|
|
if (!ilk_validate_pipe_wm(dev, a))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If our intermediate WM are identical to the final WM, then we can
|
|
* omit the post-vblank programming; only update if it's different.
|
|
*/
|
|
if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
|
|
newstate->wm.need_postvbl_update = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Merge the watermarks from all active pipes for a specific level.
|
|
*/
|
|
static void ilk_merge_wm_level(struct drm_device *dev,
|
|
int level,
|
|
struct intel_wm_level *ret_wm)
|
|
{
|
|
const struct intel_crtc *intel_crtc;
|
|
|
|
ret_wm->enable = true;
|
|
|
|
for_each_intel_crtc(dev, intel_crtc) {
|
|
const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
|
|
const struct intel_wm_level *wm = &active->wm[level];
|
|
|
|
if (!active->pipe_enabled)
|
|
continue;
|
|
|
|
/*
|
|
* The watermark values may have been used in the past,
|
|
* so we must maintain them in the registers for some
|
|
* time even if the level is now disabled.
|
|
*/
|
|
if (!wm->enable)
|
|
ret_wm->enable = false;
|
|
|
|
ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
|
|
ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
|
|
ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
|
|
ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Merge all low power watermarks for all active pipes.
|
|
*/
|
|
static void ilk_wm_merge(struct drm_device *dev,
|
|
const struct intel_wm_config *config,
|
|
const struct ilk_wm_maximums *max,
|
|
struct intel_pipe_wm *merged)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int level, max_level = ilk_wm_max_level(dev_priv);
|
|
int last_enabled_level = max_level;
|
|
|
|
/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
|
|
if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
|
|
config->num_pipes_active > 1)
|
|
last_enabled_level = 0;
|
|
|
|
/* ILK: FBC WM must be disabled always */
|
|
merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
|
|
|
|
/* merge each WM1+ level */
|
|
for (level = 1; level <= max_level; level++) {
|
|
struct intel_wm_level *wm = &merged->wm[level];
|
|
|
|
ilk_merge_wm_level(dev, level, wm);
|
|
|
|
if (level > last_enabled_level)
|
|
wm->enable = false;
|
|
else if (!ilk_validate_wm_level(level, max, wm))
|
|
/* make sure all following levels get disabled */
|
|
last_enabled_level = level - 1;
|
|
|
|
/*
|
|
* The spec says it is preferred to disable
|
|
* FBC WMs instead of disabling a WM level.
|
|
*/
|
|
if (wm->fbc_val > max->fbc) {
|
|
if (wm->enable)
|
|
merged->fbc_wm_enabled = false;
|
|
wm->fbc_val = 0;
|
|
}
|
|
}
|
|
|
|
/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
|
|
/*
|
|
* FIXME this is racy. FBC might get enabled later.
|
|
* What we should check here is whether FBC can be
|
|
* enabled sometime later.
|
|
*/
|
|
if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
|
|
intel_fbc_is_active(dev_priv)) {
|
|
for (level = 2; level <= max_level; level++) {
|
|
struct intel_wm_level *wm = &merged->wm[level];
|
|
|
|
wm->enable = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
|
|
{
|
|
/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
|
|
return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
|
|
}
|
|
|
|
/* The value we need to program into the WM_LPx latency field */
|
|
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
return 2 * level;
|
|
else
|
|
return dev_priv->wm.pri_latency[level];
|
|
}
|
|
|
|
static void ilk_compute_wm_results(struct drm_device *dev,
|
|
const struct intel_pipe_wm *merged,
|
|
enum intel_ddb_partitioning partitioning,
|
|
struct ilk_wm_values *results)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc;
|
|
int level, wm_lp;
|
|
|
|
results->enable_fbc_wm = merged->fbc_wm_enabled;
|
|
results->partitioning = partitioning;
|
|
|
|
/* LP1+ register values */
|
|
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
|
|
const struct intel_wm_level *r;
|
|
|
|
level = ilk_wm_lp_to_level(wm_lp, merged);
|
|
|
|
r = &merged->wm[level];
|
|
|
|
/*
|
|
* Maintain the watermark values even if the level is
|
|
* disabled. Doing otherwise could cause underruns.
|
|
*/
|
|
results->wm_lp[wm_lp - 1] =
|
|
(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
|
|
(r->pri_val << WM1_LP_SR_SHIFT) |
|
|
r->cur_val;
|
|
|
|
if (r->enable)
|
|
results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 8)
|
|
results->wm_lp[wm_lp - 1] |=
|
|
r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
|
|
else
|
|
results->wm_lp[wm_lp - 1] |=
|
|
r->fbc_val << WM1_LP_FBC_SHIFT;
|
|
|
|
/*
|
|
* Always set WM1S_LP_EN when spr_val != 0, even if the
|
|
* level is disabled. Doing otherwise could cause underruns.
|
|
*/
|
|
if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
|
|
WARN_ON(wm_lp != 1);
|
|
results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
|
|
} else
|
|
results->wm_lp_spr[wm_lp - 1] = r->spr_val;
|
|
}
|
|
|
|
/* LP0 register values */
|
|
for_each_intel_crtc(dev, intel_crtc) {
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
const struct intel_wm_level *r =
|
|
&intel_crtc->wm.active.ilk.wm[0];
|
|
|
|
if (WARN_ON(!r->enable))
|
|
continue;
|
|
|
|
results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
|
|
|
|
results->wm_pipe[pipe] =
|
|
(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
|
|
(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
|
|
r->cur_val;
|
|
}
|
|
}
|
|
|
|
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
|
|
* case both are at the same level. Prefer r1 in case they're the same. */
|
|
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
|
|
struct intel_pipe_wm *r1,
|
|
struct intel_pipe_wm *r2)
|
|
{
|
|
int level, max_level = ilk_wm_max_level(to_i915(dev));
|
|
int level1 = 0, level2 = 0;
|
|
|
|
for (level = 1; level <= max_level; level++) {
|
|
if (r1->wm[level].enable)
|
|
level1 = level;
|
|
if (r2->wm[level].enable)
|
|
level2 = level;
|
|
}
|
|
|
|
if (level1 == level2) {
|
|
if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
|
|
return r2;
|
|
else
|
|
return r1;
|
|
} else if (level1 > level2) {
|
|
return r1;
|
|
} else {
|
|
return r2;
|
|
}
|
|
}
|
|
|
|
/* dirty bits used to track which watermarks need changes */
|
|
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
|
|
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
|
|
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
|
|
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
|
|
#define WM_DIRTY_FBC (1 << 24)
|
|
#define WM_DIRTY_DDB (1 << 25)
|
|
|
|
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
|
|
const struct ilk_wm_values *old,
|
|
const struct ilk_wm_values *new)
|
|
{
|
|
unsigned int dirty = 0;
|
|
enum pipe pipe;
|
|
int wm_lp;
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
|
|
dirty |= WM_DIRTY_LINETIME(pipe);
|
|
/* Must disable LP1+ watermarks too */
|
|
dirty |= WM_DIRTY_LP_ALL;
|
|
}
|
|
|
|
if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
|
|
dirty |= WM_DIRTY_PIPE(pipe);
|
|
/* Must disable LP1+ watermarks too */
|
|
dirty |= WM_DIRTY_LP_ALL;
|
|
}
|
|
}
|
|
|
|
if (old->enable_fbc_wm != new->enable_fbc_wm) {
|
|
dirty |= WM_DIRTY_FBC;
|
|
/* Must disable LP1+ watermarks too */
|
|
dirty |= WM_DIRTY_LP_ALL;
|
|
}
|
|
|
|
if (old->partitioning != new->partitioning) {
|
|
dirty |= WM_DIRTY_DDB;
|
|
/* Must disable LP1+ watermarks too */
|
|
dirty |= WM_DIRTY_LP_ALL;
|
|
}
|
|
|
|
/* LP1+ watermarks already deemed dirty, no need to continue */
|
|
if (dirty & WM_DIRTY_LP_ALL)
|
|
return dirty;
|
|
|
|
/* Find the lowest numbered LP1+ watermark in need of an update... */
|
|
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
|
|
if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
|
|
old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
|
|
break;
|
|
}
|
|
|
|
/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
|
|
for (; wm_lp <= 3; wm_lp++)
|
|
dirty |= WM_DIRTY_LP(wm_lp);
|
|
|
|
return dirty;
|
|
}
|
|
|
|
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
|
|
unsigned int dirty)
|
|
{
|
|
struct ilk_wm_values *previous = &dev_priv->wm.hw;
|
|
bool changed = false;
|
|
|
|
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
|
|
previous->wm_lp[2] &= ~WM1_LP_SR_EN;
|
|
I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
|
|
changed = true;
|
|
}
|
|
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
|
|
previous->wm_lp[1] &= ~WM1_LP_SR_EN;
|
|
I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
|
|
changed = true;
|
|
}
|
|
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
|
|
previous->wm_lp[0] &= ~WM1_LP_SR_EN;
|
|
I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
|
|
changed = true;
|
|
}
|
|
|
|
/*
|
|
* Don't touch WM1S_LP_EN here.
|
|
* Doing so could cause underruns.
|
|
*/
|
|
|
|
return changed;
|
|
}
|
|
|
|
/*
|
|
* The spec says we shouldn't write when we don't need, because every write
|
|
* causes WMs to be re-evaluated, expending some power.
|
|
*/
|
|
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
|
|
struct ilk_wm_values *results)
|
|
{
|
|
struct ilk_wm_values *previous = &dev_priv->wm.hw;
|
|
unsigned int dirty;
|
|
uint32_t val;
|
|
|
|
dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
|
|
if (!dirty)
|
|
return;
|
|
|
|
_ilk_disable_lp_wm(dev_priv, dirty);
|
|
|
|
if (dirty & WM_DIRTY_PIPE(PIPE_A))
|
|
I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
|
|
if (dirty & WM_DIRTY_PIPE(PIPE_B))
|
|
I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
|
|
if (dirty & WM_DIRTY_PIPE(PIPE_C))
|
|
I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
|
|
|
|
if (dirty & WM_DIRTY_LINETIME(PIPE_A))
|
|
I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
|
|
if (dirty & WM_DIRTY_LINETIME(PIPE_B))
|
|
I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
|
|
if (dirty & WM_DIRTY_LINETIME(PIPE_C))
|
|
I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
|
|
|
|
if (dirty & WM_DIRTY_DDB) {
|
|
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
|
|
val = I915_READ(WM_MISC);
|
|
if (results->partitioning == INTEL_DDB_PART_1_2)
|
|
val &= ~WM_MISC_DATA_PARTITION_5_6;
|
|
else
|
|
val |= WM_MISC_DATA_PARTITION_5_6;
|
|
I915_WRITE(WM_MISC, val);
|
|
} else {
|
|
val = I915_READ(DISP_ARB_CTL2);
|
|
if (results->partitioning == INTEL_DDB_PART_1_2)
|
|
val &= ~DISP_DATA_PARTITION_5_6;
|
|
else
|
|
val |= DISP_DATA_PARTITION_5_6;
|
|
I915_WRITE(DISP_ARB_CTL2, val);
|
|
}
|
|
}
|
|
|
|
if (dirty & WM_DIRTY_FBC) {
|
|
val = I915_READ(DISP_ARB_CTL);
|
|
if (results->enable_fbc_wm)
|
|
val &= ~DISP_FBC_WM_DIS;
|
|
else
|
|
val |= DISP_FBC_WM_DIS;
|
|
I915_WRITE(DISP_ARB_CTL, val);
|
|
}
|
|
|
|
if (dirty & WM_DIRTY_LP(1) &&
|
|
previous->wm_lp_spr[0] != results->wm_lp_spr[0])
|
|
I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 7) {
|
|
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
|
|
I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
|
|
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
|
|
I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
|
|
}
|
|
|
|
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
|
|
I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
|
|
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
|
|
I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
|
|
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
|
|
I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
|
|
|
|
dev_priv->wm.hw = *results;
|
|
}
|
|
|
|
bool ilk_disable_lp_wm(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
|
|
return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
|
|
}
|
|
|
|
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
|
|
{
|
|
u8 enabled_slices;
|
|
|
|
/* Slice 1 will always be enabled */
|
|
enabled_slices = 1;
|
|
|
|
/* Gen prior to GEN11 have only one DBuf slice */
|
|
if (INTEL_GEN(dev_priv) < 11)
|
|
return enabled_slices;
|
|
|
|
if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
|
|
enabled_slices++;
|
|
|
|
return enabled_slices;
|
|
}
|
|
|
|
/*
|
|
* FIXME: We still don't have the proper code detect if we need to apply the WA,
|
|
* so assume we'll always need it in order to avoid underruns.
|
|
*/
|
|
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
|
|
|
|
if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
intel_has_sagv(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
|
|
IS_CANNONLAKE(dev_priv))
|
|
return true;
|
|
|
|
if (IS_SKYLAKE(dev_priv) &&
|
|
dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* SAGV dynamically adjusts the system agent voltage and clock frequencies
|
|
* depending on power and performance requirements. The display engine access
|
|
* to system memory is blocked during the adjustment time. Because of the
|
|
* blocking time, having this enabled can cause full system hangs and/or pipe
|
|
* underruns if we don't meet all of the following requirements:
|
|
*
|
|
* - <= 1 pipe enabled
|
|
* - All planes can enable watermarks for latencies >= SAGV engine block time
|
|
* - We're not using an interlaced display configuration
|
|
*/
|
|
int
|
|
intel_enable_sagv(struct drm_i915_private *dev_priv)
|
|
{
|
|
int ret;
|
|
|
|
if (!intel_has_sagv(dev_priv))
|
|
return 0;
|
|
|
|
if (dev_priv->sagv_status == I915_SAGV_ENABLED)
|
|
return 0;
|
|
|
|
DRM_DEBUG_KMS("Enabling the SAGV\n");
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
|
|
ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
|
|
GEN9_SAGV_ENABLE);
|
|
|
|
/* We don't need to wait for the SAGV when enabling */
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
|
|
/*
|
|
* Some skl systems, pre-release machines in particular,
|
|
* don't actually have an SAGV.
|
|
*/
|
|
if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
|
|
DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
|
|
dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
|
|
return 0;
|
|
} else if (ret < 0) {
|
|
DRM_ERROR("Failed to enable the SAGV\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_priv->sagv_status = I915_SAGV_ENABLED;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
intel_disable_sagv(struct drm_i915_private *dev_priv)
|
|
{
|
|
int ret;
|
|
|
|
if (!intel_has_sagv(dev_priv))
|
|
return 0;
|
|
|
|
if (dev_priv->sagv_status == I915_SAGV_DISABLED)
|
|
return 0;
|
|
|
|
DRM_DEBUG_KMS("Disabling the SAGV\n");
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
|
|
/* bspec says to keep retrying for at least 1 ms */
|
|
ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
|
|
GEN9_SAGV_DISABLE,
|
|
GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
|
|
1);
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
|
|
/*
|
|
* Some skl systems, pre-release machines in particular,
|
|
* don't actually have an SAGV.
|
|
*/
|
|
if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
|
|
DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
|
|
dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
|
|
return 0;
|
|
} else if (ret < 0) {
|
|
DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
dev_priv->sagv_status = I915_SAGV_DISABLED;
|
|
return 0;
|
|
}
|
|
|
|
bool intel_can_enable_sagv(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_device *dev = state->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct intel_crtc *crtc;
|
|
struct intel_plane *plane;
|
|
struct intel_crtc_state *cstate;
|
|
enum pipe pipe;
|
|
int level, latency;
|
|
int sagv_block_time_us;
|
|
|
|
if (!intel_has_sagv(dev_priv))
|
|
return false;
|
|
|
|
if (IS_GEN9(dev_priv))
|
|
sagv_block_time_us = 30;
|
|
else if (IS_GEN10(dev_priv))
|
|
sagv_block_time_us = 20;
|
|
else
|
|
sagv_block_time_us = 10;
|
|
|
|
/*
|
|
* SKL+ workaround: bspec recommends we disable the SAGV when we have
|
|
* more then one pipe enabled
|
|
*
|
|
* If there are no active CRTCs, no additional checks need be performed
|
|
*/
|
|
if (hweight32(intel_state->active_crtcs) == 0)
|
|
return true;
|
|
else if (hweight32(intel_state->active_crtcs) > 1)
|
|
return false;
|
|
|
|
/* Since we're now guaranteed to only have one active CRTC... */
|
|
pipe = ffs(intel_state->active_crtcs) - 1;
|
|
crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
|
|
cstate = to_intel_crtc_state(crtc->base.state);
|
|
|
|
if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
|
|
return false;
|
|
|
|
for_each_intel_plane_on_crtc(dev, crtc, plane) {
|
|
struct skl_plane_wm *wm =
|
|
&cstate->wm.skl.optimal.planes[plane->id];
|
|
|
|
/* Skip this plane if it's not enabled */
|
|
if (!wm->wm[0].plane_en)
|
|
continue;
|
|
|
|
/* Find the highest enabled wm level for this plane */
|
|
for (level = ilk_wm_max_level(dev_priv);
|
|
!wm->wm[level].plane_en; --level)
|
|
{ }
|
|
|
|
latency = dev_priv->wm.skl_latency[level];
|
|
|
|
if (skl_needs_memory_bw_wa(intel_state) &&
|
|
plane->base.state->fb->modifier ==
|
|
I915_FORMAT_MOD_X_TILED)
|
|
latency += 15;
|
|
|
|
/*
|
|
* If any of the planes on this pipe don't enable wm levels that
|
|
* incur memory latencies higher than sagv_block_time_us we
|
|
* can't enable the SAGV.
|
|
*/
|
|
if (latency < sagv_block_time_us)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static unsigned int intel_get_ddb_size(struct drm_i915_private *dev_priv,
|
|
const struct intel_crtc_state *cstate,
|
|
const unsigned int total_data_rate,
|
|
const int num_active,
|
|
struct skl_ddb_allocation *ddb)
|
|
{
|
|
const struct drm_display_mode *adjusted_mode;
|
|
u64 total_data_bw;
|
|
u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
|
|
|
|
WARN_ON(ddb_size == 0);
|
|
|
|
if (INTEL_GEN(dev_priv) < 11)
|
|
return ddb_size - 4; /* 4 blocks for bypass path allocation */
|
|
|
|
adjusted_mode = &cstate->base.adjusted_mode;
|
|
total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);
|
|
|
|
/*
|
|
* 12GB/s is maximum BW supported by single DBuf slice.
|
|
*/
|
|
if (total_data_bw >= GBps(12) || num_active > 1) {
|
|
ddb->enabled_slices = 2;
|
|
} else {
|
|
ddb->enabled_slices = 1;
|
|
ddb_size /= 2;
|
|
}
|
|
|
|
return ddb_size;
|
|
}
|
|
|
|
static void
|
|
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
|
|
const struct intel_crtc_state *cstate,
|
|
const unsigned int total_data_rate,
|
|
struct skl_ddb_allocation *ddb,
|
|
struct skl_ddb_entry *alloc, /* out */
|
|
int *num_active /* out */)
|
|
{
|
|
struct drm_atomic_state *state = cstate->base.state;
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_crtc *for_crtc = cstate->base.crtc;
|
|
unsigned int pipe_size, ddb_size;
|
|
int nth_active_pipe;
|
|
|
|
if (WARN_ON(!state) || !cstate->base.active) {
|
|
alloc->start = 0;
|
|
alloc->end = 0;
|
|
*num_active = hweight32(dev_priv->active_crtcs);
|
|
return;
|
|
}
|
|
|
|
if (intel_state->active_pipe_changes)
|
|
*num_active = hweight32(intel_state->active_crtcs);
|
|
else
|
|
*num_active = hweight32(dev_priv->active_crtcs);
|
|
|
|
ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
|
|
*num_active, ddb);
|
|
|
|
/*
|
|
* If the state doesn't change the active CRTC's, then there's
|
|
* no need to recalculate; the existing pipe allocation limits
|
|
* should remain unchanged. Note that we're safe from racing
|
|
* commits since any racing commit that changes the active CRTC
|
|
* list would need to grab _all_ crtc locks, including the one
|
|
* we currently hold.
|
|
*/
|
|
if (!intel_state->active_pipe_changes) {
|
|
/*
|
|
* alloc may be cleared by clear_intel_crtc_state,
|
|
* copy from old state to be sure
|
|
*/
|
|
*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
|
|
return;
|
|
}
|
|
|
|
nth_active_pipe = hweight32(intel_state->active_crtcs &
|
|
(drm_crtc_mask(for_crtc) - 1));
|
|
pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
|
|
alloc->start = nth_active_pipe * ddb_size / *num_active;
|
|
alloc->end = alloc->start + pipe_size;
|
|
}
|
|
|
|
static unsigned int skl_cursor_allocation(int num_active)
|
|
{
|
|
if (num_active == 1)
|
|
return 32;
|
|
|
|
return 8;
|
|
}
|
|
|
|
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
|
|
struct skl_ddb_entry *entry, u32 reg)
|
|
{
|
|
u16 mask;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 11)
|
|
mask = ICL_DDB_ENTRY_MASK;
|
|
else
|
|
mask = SKL_DDB_ENTRY_MASK;
|
|
entry->start = reg & mask;
|
|
entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;
|
|
|
|
if (entry->end)
|
|
entry->end += 1;
|
|
}
|
|
|
|
static void
|
|
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
|
|
const enum pipe pipe,
|
|
const enum plane_id plane_id,
|
|
struct skl_ddb_allocation *ddb /* out */)
|
|
{
|
|
u32 val, val2 = 0;
|
|
int fourcc, pixel_format;
|
|
|
|
/* Cursor doesn't support NV12/planar, so no extra calculation needed */
|
|
if (plane_id == PLANE_CURSOR) {
|
|
val = I915_READ(CUR_BUF_CFG(pipe));
|
|
skl_ddb_entry_init_from_hw(dev_priv,
|
|
&ddb->plane[pipe][plane_id], val);
|
|
return;
|
|
}
|
|
|
|
val = I915_READ(PLANE_CTL(pipe, plane_id));
|
|
|
|
/* No DDB allocated for disabled planes */
|
|
if (!(val & PLANE_CTL_ENABLE))
|
|
return;
|
|
|
|
pixel_format = val & PLANE_CTL_FORMAT_MASK;
|
|
fourcc = skl_format_to_fourcc(pixel_format,
|
|
val & PLANE_CTL_ORDER_RGBX,
|
|
val & PLANE_CTL_ALPHA_MASK);
|
|
|
|
val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
|
|
val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
|
|
|
|
if (fourcc == DRM_FORMAT_NV12) {
|
|
skl_ddb_entry_init_from_hw(dev_priv,
|
|
&ddb->plane[pipe][plane_id], val2);
|
|
skl_ddb_entry_init_from_hw(dev_priv,
|
|
&ddb->uv_plane[pipe][plane_id], val);
|
|
} else {
|
|
skl_ddb_entry_init_from_hw(dev_priv,
|
|
&ddb->plane[pipe][plane_id], val);
|
|
}
|
|
}
|
|
|
|
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct skl_ddb_allocation *ddb /* out */)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
|
|
memset(ddb, 0, sizeof(*ddb));
|
|
|
|
ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
|
|
|
|
for_each_intel_crtc(&dev_priv->drm, crtc) {
|
|
enum intel_display_power_domain power_domain;
|
|
enum plane_id plane_id;
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
power_domain = POWER_DOMAIN_PIPE(pipe);
|
|
if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
|
|
continue;
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id)
|
|
skl_ddb_get_hw_plane_state(dev_priv, pipe,
|
|
plane_id, ddb);
|
|
|
|
intel_display_power_put(dev_priv, power_domain);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determines the downscale amount of a plane for the purposes of watermark calculations.
|
|
* The bspec defines downscale amount as:
|
|
*
|
|
* """
|
|
* Horizontal down scale amount = maximum[1, Horizontal source size /
|
|
* Horizontal destination size]
|
|
* Vertical down scale amount = maximum[1, Vertical source size /
|
|
* Vertical destination size]
|
|
* Total down scale amount = Horizontal down scale amount *
|
|
* Vertical down scale amount
|
|
* """
|
|
*
|
|
* Return value is provided in 16.16 fixed point form to retain fractional part.
|
|
* Caller should take care of dividing & rounding off the value.
|
|
*/
|
|
static uint_fixed_16_16_t
|
|
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
|
|
const struct intel_plane_state *pstate)
|
|
{
|
|
struct intel_plane *plane = to_intel_plane(pstate->base.plane);
|
|
uint32_t src_w, src_h, dst_w, dst_h;
|
|
uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
|
|
uint_fixed_16_16_t downscale_h, downscale_w;
|
|
|
|
if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
|
|
return u32_to_fixed16(0);
|
|
|
|
/* n.b., src is 16.16 fixed point, dst is whole integer */
|
|
if (plane->id == PLANE_CURSOR) {
|
|
/*
|
|
* Cursors only support 0/180 degree rotation,
|
|
* hence no need to account for rotation here.
|
|
*/
|
|
src_w = pstate->base.src_w >> 16;
|
|
src_h = pstate->base.src_h >> 16;
|
|
dst_w = pstate->base.crtc_w;
|
|
dst_h = pstate->base.crtc_h;
|
|
} else {
|
|
/*
|
|
* Src coordinates are already rotated by 270 degrees for
|
|
* the 90/270 degree plane rotation cases (to match the
|
|
* GTT mapping), hence no need to account for rotation here.
|
|
*/
|
|
src_w = drm_rect_width(&pstate->base.src) >> 16;
|
|
src_h = drm_rect_height(&pstate->base.src) >> 16;
|
|
dst_w = drm_rect_width(&pstate->base.dst);
|
|
dst_h = drm_rect_height(&pstate->base.dst);
|
|
}
|
|
|
|
fp_w_ratio = div_fixed16(src_w, dst_w);
|
|
fp_h_ratio = div_fixed16(src_h, dst_h);
|
|
downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
|
|
downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
|
|
|
|
return mul_fixed16(downscale_w, downscale_h);
|
|
}
|
|
|
|
static uint_fixed_16_16_t
|
|
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
|
|
{
|
|
uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
|
|
|
|
if (!crtc_state->base.enable)
|
|
return pipe_downscale;
|
|
|
|
if (crtc_state->pch_pfit.enabled) {
|
|
uint32_t src_w, src_h, dst_w, dst_h;
|
|
uint32_t pfit_size = crtc_state->pch_pfit.size;
|
|
uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
|
|
uint_fixed_16_16_t downscale_h, downscale_w;
|
|
|
|
src_w = crtc_state->pipe_src_w;
|
|
src_h = crtc_state->pipe_src_h;
|
|
dst_w = pfit_size >> 16;
|
|
dst_h = pfit_size & 0xffff;
|
|
|
|
if (!dst_w || !dst_h)
|
|
return pipe_downscale;
|
|
|
|
fp_w_ratio = div_fixed16(src_w, dst_w);
|
|
fp_h_ratio = div_fixed16(src_h, dst_h);
|
|
downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
|
|
downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
|
|
|
|
pipe_downscale = mul_fixed16(downscale_w, downscale_h);
|
|
}
|
|
|
|
return pipe_downscale;
|
|
}
|
|
|
|
int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
|
|
struct intel_crtc_state *cstate)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
|
|
struct drm_crtc_state *crtc_state = &cstate->base;
|
|
struct drm_atomic_state *state = crtc_state->state;
|
|
struct drm_plane *plane;
|
|
const struct drm_plane_state *pstate;
|
|
struct intel_plane_state *intel_pstate;
|
|
int crtc_clock, dotclk;
|
|
uint32_t pipe_max_pixel_rate;
|
|
uint_fixed_16_16_t pipe_downscale;
|
|
uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
|
|
|
|
if (!cstate->base.enable)
|
|
return 0;
|
|
|
|
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
|
|
uint_fixed_16_16_t plane_downscale;
|
|
uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
|
|
int bpp;
|
|
|
|
if (!intel_wm_plane_visible(cstate,
|
|
to_intel_plane_state(pstate)))
|
|
continue;
|
|
|
|
if (WARN_ON(!pstate->fb))
|
|
return -EINVAL;
|
|
|
|
intel_pstate = to_intel_plane_state(pstate);
|
|
plane_downscale = skl_plane_downscale_amount(cstate,
|
|
intel_pstate);
|
|
bpp = pstate->fb->format->cpp[0] * 8;
|
|
if (bpp == 64)
|
|
plane_downscale = mul_fixed16(plane_downscale,
|
|
fp_9_div_8);
|
|
|
|
max_downscale = max_fixed16(plane_downscale, max_downscale);
|
|
}
|
|
pipe_downscale = skl_pipe_downscale_amount(cstate);
|
|
|
|
pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
|
|
|
|
crtc_clock = crtc_state->adjusted_mode.crtc_clock;
|
|
dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
|
|
|
|
if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
|
|
dotclk *= 2;
|
|
|
|
pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
|
|
|
|
if (pipe_max_pixel_rate < crtc_clock) {
|
|
DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int
|
|
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
|
|
const struct drm_plane_state *pstate,
|
|
const int plane)
|
|
{
|
|
struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
|
|
struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
|
|
uint32_t data_rate;
|
|
uint32_t width = 0, height = 0;
|
|
struct drm_framebuffer *fb;
|
|
u32 format;
|
|
uint_fixed_16_16_t down_scale_amount;
|
|
|
|
if (!intel_pstate->base.visible)
|
|
return 0;
|
|
|
|
fb = pstate->fb;
|
|
format = fb->format->format;
|
|
|
|
if (intel_plane->id == PLANE_CURSOR)
|
|
return 0;
|
|
if (plane == 1 && format != DRM_FORMAT_NV12)
|
|
return 0;
|
|
|
|
/*
|
|
* Src coordinates are already rotated by 270 degrees for
|
|
* the 90/270 degree plane rotation cases (to match the
|
|
* GTT mapping), hence no need to account for rotation here.
|
|
*/
|
|
width = drm_rect_width(&intel_pstate->base.src) >> 16;
|
|
height = drm_rect_height(&intel_pstate->base.src) >> 16;
|
|
|
|
/* UV plane does 1/2 pixel sub-sampling */
|
|
if (plane == 1 && format == DRM_FORMAT_NV12) {
|
|
width /= 2;
|
|
height /= 2;
|
|
}
|
|
|
|
data_rate = width * height * fb->format->cpp[plane];
|
|
|
|
down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
|
|
|
|
return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
|
|
}
|
|
|
|
/*
|
|
* We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
|
|
* a 8192x4096@32bpp framebuffer:
|
|
* 3 * 4096 * 8192 * 4 < 2^32
|
|
*/
|
|
static unsigned int
|
|
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
|
|
unsigned int *plane_data_rate,
|
|
unsigned int *uv_plane_data_rate)
|
|
{
|
|
struct drm_crtc_state *cstate = &intel_cstate->base;
|
|
struct drm_atomic_state *state = cstate->state;
|
|
struct drm_plane *plane;
|
|
const struct drm_plane_state *pstate;
|
|
unsigned int total_data_rate = 0;
|
|
|
|
if (WARN_ON(!state))
|
|
return 0;
|
|
|
|
/* Calculate and cache data rate for each plane */
|
|
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
|
|
enum plane_id plane_id = to_intel_plane(plane)->id;
|
|
unsigned int rate;
|
|
|
|
/* packed/y */
|
|
rate = skl_plane_relative_data_rate(intel_cstate,
|
|
pstate, 0);
|
|
plane_data_rate[plane_id] = rate;
|
|
|
|
total_data_rate += rate;
|
|
|
|
/* uv-plane */
|
|
rate = skl_plane_relative_data_rate(intel_cstate,
|
|
pstate, 1);
|
|
uv_plane_data_rate[plane_id] = rate;
|
|
|
|
total_data_rate += rate;
|
|
}
|
|
|
|
return total_data_rate;
|
|
}
|
|
|
|
static uint16_t
|
|
skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
|
|
{
|
|
struct drm_framebuffer *fb = pstate->fb;
|
|
struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
|
|
uint32_t src_w, src_h;
|
|
uint32_t min_scanlines = 8;
|
|
uint8_t plane_bpp;
|
|
|
|
if (WARN_ON(!fb))
|
|
return 0;
|
|
|
|
/* For packed formats, and uv-plane, return 0 */
|
|
if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
|
|
return 0;
|
|
|
|
/* For Non Y-tile return 8-blocks */
|
|
if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
|
|
fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
|
|
fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
|
|
fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
|
|
return 8;
|
|
|
|
/*
|
|
* Src coordinates are already rotated by 270 degrees for
|
|
* the 90/270 degree plane rotation cases (to match the
|
|
* GTT mapping), hence no need to account for rotation here.
|
|
*/
|
|
src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
|
|
src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
|
|
|
|
/* Halve UV plane width and height for NV12 */
|
|
if (plane == 1) {
|
|
src_w /= 2;
|
|
src_h /= 2;
|
|
}
|
|
|
|
plane_bpp = fb->format->cpp[plane];
|
|
|
|
if (drm_rotation_90_or_270(pstate->rotation)) {
|
|
switch (plane_bpp) {
|
|
case 1:
|
|
min_scanlines = 32;
|
|
break;
|
|
case 2:
|
|
min_scanlines = 16;
|
|
break;
|
|
case 4:
|
|
min_scanlines = 8;
|
|
break;
|
|
case 8:
|
|
min_scanlines = 4;
|
|
break;
|
|
default:
|
|
WARN(1, "Unsupported pixel depth %u for rotation",
|
|
plane_bpp);
|
|
min_scanlines = 32;
|
|
}
|
|
}
|
|
|
|
return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
|
|
}
|
|
|
|
static void
|
|
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
|
|
uint16_t *minimum, uint16_t *uv_minimum)
|
|
{
|
|
const struct drm_plane_state *pstate;
|
|
struct drm_plane *plane;
|
|
|
|
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
|
|
enum plane_id plane_id = to_intel_plane(plane)->id;
|
|
|
|
if (plane_id == PLANE_CURSOR)
|
|
continue;
|
|
|
|
if (!pstate->visible)
|
|
continue;
|
|
|
|
minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
|
|
uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
|
|
}
|
|
|
|
minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
|
|
}
|
|
|
|
static int
|
|
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
|
|
struct skl_ddb_allocation *ddb /* out */)
|
|
{
|
|
struct drm_atomic_state *state = cstate->base.state;
|
|
struct drm_crtc *crtc = cstate->base.crtc;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
|
|
uint16_t alloc_size, start;
|
|
uint16_t minimum[I915_MAX_PLANES] = {};
|
|
uint16_t uv_minimum[I915_MAX_PLANES] = {};
|
|
unsigned int total_data_rate;
|
|
enum plane_id plane_id;
|
|
int num_active;
|
|
unsigned int plane_data_rate[I915_MAX_PLANES] = {};
|
|
unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
|
|
uint16_t total_min_blocks = 0;
|
|
|
|
/* Clear the partitioning for disabled planes. */
|
|
memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
|
|
memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
|
|
|
|
if (WARN_ON(!state))
|
|
return 0;
|
|
|
|
if (!cstate->base.active) {
|
|
alloc->start = alloc->end = 0;
|
|
return 0;
|
|
}
|
|
|
|
total_data_rate = skl_get_total_relative_data_rate(cstate,
|
|
plane_data_rate,
|
|
uv_plane_data_rate);
|
|
skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
|
|
alloc, &num_active);
|
|
alloc_size = skl_ddb_entry_size(alloc);
|
|
if (alloc_size == 0)
|
|
return 0;
|
|
|
|
skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
|
|
|
|
/*
|
|
* 1. Allocate the mininum required blocks for each active plane
|
|
* and allocate the cursor, it doesn't require extra allocation
|
|
* proportional to the data rate.
|
|
*/
|
|
|
|
for_each_plane_id_on_crtc(intel_crtc, plane_id) {
|
|
total_min_blocks += minimum[plane_id];
|
|
total_min_blocks += uv_minimum[plane_id];
|
|
}
|
|
|
|
if (total_min_blocks > alloc_size) {
|
|
DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
|
|
DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
|
|
alloc_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
alloc_size -= total_min_blocks;
|
|
ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
|
|
ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
|
|
|
|
/*
|
|
* 2. Distribute the remaining space in proportion to the amount of
|
|
* data each plane needs to fetch from memory.
|
|
*
|
|
* FIXME: we may not allocate every single block here.
|
|
*/
|
|
if (total_data_rate == 0)
|
|
return 0;
|
|
|
|
start = alloc->start;
|
|
for_each_plane_id_on_crtc(intel_crtc, plane_id) {
|
|
unsigned int data_rate, uv_data_rate;
|
|
uint16_t plane_blocks, uv_plane_blocks;
|
|
|
|
if (plane_id == PLANE_CURSOR)
|
|
continue;
|
|
|
|
data_rate = plane_data_rate[plane_id];
|
|
|
|
/*
|
|
* allocation for (packed formats) or (uv-plane part of planar format):
|
|
* promote the expression to 64 bits to avoid overflowing, the
|
|
* result is < available as data_rate / total_data_rate < 1
|
|
*/
|
|
plane_blocks = minimum[plane_id];
|
|
plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
|
|
total_data_rate);
|
|
|
|
/* Leave disabled planes at (0,0) */
|
|
if (data_rate) {
|
|
ddb->plane[pipe][plane_id].start = start;
|
|
ddb->plane[pipe][plane_id].end = start + plane_blocks;
|
|
}
|
|
|
|
start += plane_blocks;
|
|
|
|
/* Allocate DDB for UV plane for planar format/NV12 */
|
|
uv_data_rate = uv_plane_data_rate[plane_id];
|
|
|
|
uv_plane_blocks = uv_minimum[plane_id];
|
|
uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
|
|
total_data_rate);
|
|
|
|
if (uv_data_rate) {
|
|
ddb->uv_plane[pipe][plane_id].start = start;
|
|
ddb->uv_plane[pipe][plane_id].end =
|
|
start + uv_plane_blocks;
|
|
}
|
|
|
|
start += uv_plane_blocks;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The max latency should be 257 (max the punit can code is 255 and we add 2us
|
|
* for the read latency) and cpp should always be <= 8, so that
|
|
* should allow pixel_rate up to ~2 GHz which seems sufficient since max
|
|
* 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
|
|
*/
|
|
static uint_fixed_16_16_t
|
|
skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
|
|
uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
|
|
{
|
|
uint32_t wm_intermediate_val;
|
|
uint_fixed_16_16_t ret;
|
|
|
|
if (latency == 0)
|
|
return FP_16_16_MAX;
|
|
|
|
wm_intermediate_val = latency * pixel_rate * cpp;
|
|
ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 10)
|
|
ret = add_fixed16_u32(ret, 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
|
|
uint32_t pipe_htotal,
|
|
uint32_t latency,
|
|
uint_fixed_16_16_t plane_blocks_per_line)
|
|
{
|
|
uint32_t wm_intermediate_val;
|
|
uint_fixed_16_16_t ret;
|
|
|
|
if (latency == 0)
|
|
return FP_16_16_MAX;
|
|
|
|
wm_intermediate_val = latency * pixel_rate;
|
|
wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
|
|
pipe_htotal * 1000);
|
|
ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
|
|
return ret;
|
|
}
|
|
|
|
static uint_fixed_16_16_t
|
|
intel_get_linetime_us(struct intel_crtc_state *cstate)
|
|
{
|
|
uint32_t pixel_rate;
|
|
uint32_t crtc_htotal;
|
|
uint_fixed_16_16_t linetime_us;
|
|
|
|
if (!cstate->base.active)
|
|
return u32_to_fixed16(0);
|
|
|
|
pixel_rate = cstate->pixel_rate;
|
|
|
|
if (WARN_ON(pixel_rate == 0))
|
|
return u32_to_fixed16(0);
|
|
|
|
crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
|
|
linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
|
|
|
|
return linetime_us;
|
|
}
|
|
|
|
static uint32_t
|
|
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
|
|
const struct intel_plane_state *pstate)
|
|
{
|
|
uint64_t adjusted_pixel_rate;
|
|
uint_fixed_16_16_t downscale_amount;
|
|
|
|
/* Shouldn't reach here on disabled planes... */
|
|
if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
|
|
return 0;
|
|
|
|
/*
|
|
* Adjusted plane pixel rate is just the pipe's adjusted pixel rate
|
|
* with additional adjustments for plane-specific scaling.
|
|
*/
|
|
adjusted_pixel_rate = cstate->pixel_rate;
|
|
downscale_amount = skl_plane_downscale_amount(cstate, pstate);
|
|
|
|
return mul_round_up_u32_fixed16(adjusted_pixel_rate,
|
|
downscale_amount);
|
|
}
|
|
|
|
static int
|
|
skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
|
|
struct intel_crtc_state *cstate,
|
|
const struct intel_plane_state *intel_pstate,
|
|
struct skl_wm_params *wp, int plane_id)
|
|
{
|
|
struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
|
|
const struct drm_plane_state *pstate = &intel_pstate->base;
|
|
const struct drm_framebuffer *fb = pstate->fb;
|
|
uint32_t interm_pbpl;
|
|
struct intel_atomic_state *state =
|
|
to_intel_atomic_state(cstate->base.state);
|
|
bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
|
|
|
|
if (!intel_wm_plane_visible(cstate, intel_pstate))
|
|
return 0;
|
|
|
|
/* only NV12 format has two planes */
|
|
if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
|
|
DRM_DEBUG_KMS("Non NV12 format have single plane\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
|
|
fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
|
|
fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
|
|
fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
|
|
wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
|
|
wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
|
|
fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
|
|
wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
|
|
|
|
if (plane->id == PLANE_CURSOR) {
|
|
wp->width = intel_pstate->base.crtc_w;
|
|
} else {
|
|
/*
|
|
* Src coordinates are already rotated by 270 degrees for
|
|
* the 90/270 degree plane rotation cases (to match the
|
|
* GTT mapping), hence no need to account for rotation here.
|
|
*/
|
|
wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
|
|
}
|
|
|
|
if (plane_id == 1 && wp->is_planar)
|
|
wp->width /= 2;
|
|
|
|
wp->cpp = fb->format->cpp[plane_id];
|
|
wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
|
|
intel_pstate);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 11 &&
|
|
fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
|
|
wp->dbuf_block_size = 256;
|
|
else
|
|
wp->dbuf_block_size = 512;
|
|
|
|
if (drm_rotation_90_or_270(pstate->rotation)) {
|
|
|
|
switch (wp->cpp) {
|
|
case 1:
|
|
wp->y_min_scanlines = 16;
|
|
break;
|
|
case 2:
|
|
wp->y_min_scanlines = 8;
|
|
break;
|
|
case 4:
|
|
wp->y_min_scanlines = 4;
|
|
break;
|
|
default:
|
|
MISSING_CASE(wp->cpp);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
wp->y_min_scanlines = 4;
|
|
}
|
|
|
|
if (apply_memory_bw_wa)
|
|
wp->y_min_scanlines *= 2;
|
|
|
|
wp->plane_bytes_per_line = wp->width * wp->cpp;
|
|
if (wp->y_tiled) {
|
|
interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
|
|
wp->y_min_scanlines,
|
|
wp->dbuf_block_size);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 10)
|
|
interm_pbpl++;
|
|
|
|
wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
|
|
wp->y_min_scanlines);
|
|
} else if (wp->x_tiled && IS_GEN9(dev_priv)) {
|
|
interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
|
|
wp->dbuf_block_size);
|
|
wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
|
|
} else {
|
|
interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
|
|
wp->dbuf_block_size) + 1;
|
|
wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
|
|
}
|
|
|
|
wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
|
|
wp->plane_blocks_per_line);
|
|
wp->linetime_us = fixed16_to_u32_round_up(
|
|
intel_get_linetime_us(cstate));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
|
|
struct intel_crtc_state *cstate,
|
|
const struct intel_plane_state *intel_pstate,
|
|
uint16_t ddb_allocation,
|
|
int level,
|
|
const struct skl_wm_params *wp,
|
|
const struct skl_wm_level *result_prev,
|
|
struct skl_wm_level *result /* out */)
|
|
{
|
|
const struct drm_plane_state *pstate = &intel_pstate->base;
|
|
uint32_t latency = dev_priv->wm.skl_latency[level];
|
|
uint_fixed_16_16_t method1, method2;
|
|
uint_fixed_16_16_t selected_result;
|
|
uint32_t res_blocks, res_lines;
|
|
struct intel_atomic_state *state =
|
|
to_intel_atomic_state(cstate->base.state);
|
|
bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
|
|
uint32_t min_disp_buf_needed;
|
|
|
|
if (latency == 0 ||
|
|
!intel_wm_plane_visible(cstate, intel_pstate)) {
|
|
result->plane_en = false;
|
|
return 0;
|
|
}
|
|
|
|
/* Display WA #1141: kbl,cfl */
|
|
if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
|
|
IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
|
|
dev_priv->ipc_enabled)
|
|
latency += 4;
|
|
|
|
if (apply_memory_bw_wa && wp->x_tiled)
|
|
latency += 15;
|
|
|
|
method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
|
|
wp->cpp, latency, wp->dbuf_block_size);
|
|
method2 = skl_wm_method2(wp->plane_pixel_rate,
|
|
cstate->base.adjusted_mode.crtc_htotal,
|
|
latency,
|
|
wp->plane_blocks_per_line);
|
|
|
|
if (wp->y_tiled) {
|
|
selected_result = max_fixed16(method2, wp->y_tile_minimum);
|
|
} else {
|
|
if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
|
|
wp->dbuf_block_size < 1) &&
|
|
(wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
|
|
selected_result = method2;
|
|
else if (ddb_allocation >=
|
|
fixed16_to_u32_round_up(wp->plane_blocks_per_line))
|
|
selected_result = min_fixed16(method1, method2);
|
|
else if (latency >= wp->linetime_us)
|
|
selected_result = min_fixed16(method1, method2);
|
|
else
|
|
selected_result = method1;
|
|
}
|
|
|
|
res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
|
|
res_lines = div_round_up_fixed16(selected_result,
|
|
wp->plane_blocks_per_line);
|
|
|
|
/* Display WA #1125: skl,bxt,kbl,glk */
|
|
if (level == 0 && wp->rc_surface)
|
|
res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
|
|
|
|
/* Display WA #1126: skl,bxt,kbl,glk */
|
|
if (level >= 1 && level <= 7) {
|
|
if (wp->y_tiled) {
|
|
res_blocks += fixed16_to_u32_round_up(
|
|
wp->y_tile_minimum);
|
|
res_lines += wp->y_min_scanlines;
|
|
} else {
|
|
res_blocks++;
|
|
}
|
|
|
|
/*
|
|
* Make sure result blocks for higher latency levels are atleast
|
|
* as high as level below the current level.
|
|
* Assumption in DDB algorithm optimization for special cases.
|
|
* Also covers Display WA #1125 for RC.
|
|
*/
|
|
if (result_prev->plane_res_b > res_blocks)
|
|
res_blocks = result_prev->plane_res_b;
|
|
}
|
|
|
|
if (INTEL_GEN(dev_priv) >= 11) {
|
|
if (wp->y_tiled) {
|
|
uint32_t extra_lines;
|
|
uint_fixed_16_16_t fp_min_disp_buf_needed;
|
|
|
|
if (res_lines % wp->y_min_scanlines == 0)
|
|
extra_lines = wp->y_min_scanlines;
|
|
else
|
|
extra_lines = wp->y_min_scanlines * 2 -
|
|
res_lines % wp->y_min_scanlines;
|
|
|
|
fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
|
|
extra_lines,
|
|
wp->plane_blocks_per_line);
|
|
min_disp_buf_needed = fixed16_to_u32_round_up(
|
|
fp_min_disp_buf_needed);
|
|
} else {
|
|
min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
|
|
}
|
|
} else {
|
|
min_disp_buf_needed = res_blocks;
|
|
}
|
|
|
|
if ((level > 0 && res_lines > 31) ||
|
|
res_blocks >= ddb_allocation ||
|
|
min_disp_buf_needed >= ddb_allocation) {
|
|
result->plane_en = false;
|
|
|
|
/*
|
|
* If there are no valid level 0 watermarks, then we can't
|
|
* support this display configuration.
|
|
*/
|
|
if (level) {
|
|
return 0;
|
|
} else {
|
|
struct drm_plane *plane = pstate->plane;
|
|
|
|
DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
|
|
DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
|
|
plane->base.id, plane->name,
|
|
res_blocks, ddb_allocation, res_lines);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
|
|
* disable wm level 1-7 on NV12 planes
|
|
*/
|
|
if (wp->is_planar && level >= 1 &&
|
|
(IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
|
|
IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
|
|
result->plane_en = false;
|
|
return 0;
|
|
}
|
|
|
|
/* The number of lines are ignored for the level 0 watermark. */
|
|
result->plane_res_b = res_blocks;
|
|
result->plane_res_l = res_lines;
|
|
result->plane_en = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
|
|
struct skl_ddb_allocation *ddb,
|
|
struct intel_crtc_state *cstate,
|
|
const struct intel_plane_state *intel_pstate,
|
|
const struct skl_wm_params *wm_params,
|
|
struct skl_plane_wm *wm,
|
|
int plane_id)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
|
|
struct drm_plane *plane = intel_pstate->base.plane;
|
|
struct intel_plane *intel_plane = to_intel_plane(plane);
|
|
uint16_t ddb_blocks;
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
int level, max_level = ilk_wm_max_level(dev_priv);
|
|
enum plane_id intel_plane_id = intel_plane->id;
|
|
int ret;
|
|
|
|
if (WARN_ON(!intel_pstate->base.fb))
|
|
return -EINVAL;
|
|
|
|
ddb_blocks = plane_id ?
|
|
skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
|
|
skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
|
|
|
|
for (level = 0; level <= max_level; level++) {
|
|
struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
|
|
&wm->wm[level];
|
|
struct skl_wm_level *result_prev;
|
|
|
|
if (level)
|
|
result_prev = plane_id ? &wm->uv_wm[level - 1] :
|
|
&wm->wm[level - 1];
|
|
else
|
|
result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
|
|
|
|
ret = skl_compute_plane_wm(dev_priv,
|
|
cstate,
|
|
intel_pstate,
|
|
ddb_blocks,
|
|
level,
|
|
wm_params,
|
|
result_prev,
|
|
result);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
|
|
wm->is_planar = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
|
|
{
|
|
struct drm_atomic_state *state = cstate->base.state;
|
|
struct drm_i915_private *dev_priv = to_i915(state->dev);
|
|
uint_fixed_16_16_t linetime_us;
|
|
uint32_t linetime_wm;
|
|
|
|
linetime_us = intel_get_linetime_us(cstate);
|
|
|
|
if (is_fixed16_zero(linetime_us))
|
|
return 0;
|
|
|
|
linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
|
|
|
|
/* Display WA #1135: bxt:ALL GLK:ALL */
|
|
if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
|
|
dev_priv->ipc_enabled)
|
|
linetime_wm /= 2;
|
|
|
|
return linetime_wm;
|
|
}
|
|
|
|
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
|
|
struct skl_wm_params *wp,
|
|
struct skl_wm_level *wm_l0,
|
|
uint16_t ddb_allocation,
|
|
struct skl_wm_level *trans_wm /* out */)
|
|
{
|
|
struct drm_device *dev = cstate->base.crtc->dev;
|
|
const struct drm_i915_private *dev_priv = to_i915(dev);
|
|
uint16_t trans_min, trans_y_tile_min;
|
|
const uint16_t trans_amount = 10; /* This is configurable amount */
|
|
uint16_t trans_offset_b, res_blocks;
|
|
|
|
if (!cstate->base.active)
|
|
goto exit;
|
|
|
|
/* Transition WM are not recommended by HW team for GEN9 */
|
|
if (INTEL_GEN(dev_priv) <= 9)
|
|
goto exit;
|
|
|
|
/* Transition WM don't make any sense if ipc is disabled */
|
|
if (!dev_priv->ipc_enabled)
|
|
goto exit;
|
|
|
|
trans_min = 0;
|
|
if (INTEL_GEN(dev_priv) >= 10)
|
|
trans_min = 4;
|
|
|
|
trans_offset_b = trans_min + trans_amount;
|
|
|
|
if (wp->y_tiled) {
|
|
trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
|
|
wp->y_tile_minimum);
|
|
res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
|
|
trans_offset_b;
|
|
} else {
|
|
res_blocks = wm_l0->plane_res_b + trans_offset_b;
|
|
|
|
/* WA BUG:1938466 add one block for non y-tile planes */
|
|
if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
|
|
res_blocks += 1;
|
|
|
|
}
|
|
|
|
res_blocks += 1;
|
|
|
|
if (res_blocks < ddb_allocation) {
|
|
trans_wm->plane_res_b = res_blocks;
|
|
trans_wm->plane_en = true;
|
|
return;
|
|
}
|
|
|
|
exit:
|
|
trans_wm->plane_en = false;
|
|
}
|
|
|
|
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
|
|
struct skl_ddb_allocation *ddb,
|
|
struct skl_pipe_wm *pipe_wm)
|
|
{
|
|
struct drm_device *dev = cstate->base.crtc->dev;
|
|
struct drm_crtc_state *crtc_state = &cstate->base;
|
|
const struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_plane *plane;
|
|
const struct drm_plane_state *pstate;
|
|
struct skl_plane_wm *wm;
|
|
int ret;
|
|
|
|
/*
|
|
* We'll only calculate watermarks for planes that are actually
|
|
* enabled, so make sure all other planes are set as disabled.
|
|
*/
|
|
memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
|
|
|
|
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
|
|
const struct intel_plane_state *intel_pstate =
|
|
to_intel_plane_state(pstate);
|
|
enum plane_id plane_id = to_intel_plane(plane)->id;
|
|
struct skl_wm_params wm_params;
|
|
enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
|
|
uint16_t ddb_blocks;
|
|
|
|
wm = &pipe_wm->planes[plane_id];
|
|
ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
|
|
|
|
ret = skl_compute_plane_wm_params(dev_priv, cstate,
|
|
intel_pstate, &wm_params, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
|
|
intel_pstate, &wm_params, wm, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
|
|
ddb_blocks, &wm->trans_wm);
|
|
|
|
/* uv plane watermarks must also be validated for NV12/Planar */
|
|
if (wm_params.is_planar) {
|
|
memset(&wm_params, 0, sizeof(struct skl_wm_params));
|
|
wm->is_planar = true;
|
|
|
|
ret = skl_compute_plane_wm_params(dev_priv, cstate,
|
|
intel_pstate,
|
|
&wm_params, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
|
|
intel_pstate, &wm_params,
|
|
wm, 1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
pipe_wm->linetime = skl_compute_linetime_wm(cstate);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
|
|
i915_reg_t reg,
|
|
const struct skl_ddb_entry *entry)
|
|
{
|
|
if (entry->end)
|
|
I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
|
|
else
|
|
I915_WRITE(reg, 0);
|
|
}
|
|
|
|
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
|
|
i915_reg_t reg,
|
|
const struct skl_wm_level *level)
|
|
{
|
|
uint32_t val = 0;
|
|
|
|
if (level->plane_en) {
|
|
val |= PLANE_WM_EN;
|
|
val |= level->plane_res_b;
|
|
val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
|
|
}
|
|
|
|
I915_WRITE(reg, val);
|
|
}
|
|
|
|
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
|
|
const struct skl_plane_wm *wm,
|
|
const struct skl_ddb_allocation *ddb,
|
|
enum plane_id plane_id)
|
|
{
|
|
struct drm_crtc *crtc = &intel_crtc->base;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int level, max_level = ilk_wm_max_level(dev_priv);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
|
|
for (level = 0; level <= max_level; level++) {
|
|
skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
|
|
&wm->wm[level]);
|
|
}
|
|
skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
|
|
&wm->trans_wm);
|
|
|
|
skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
|
|
&ddb->plane[pipe][plane_id]);
|
|
if (INTEL_GEN(dev_priv) >= 11)
|
|
return skl_ddb_entry_write(dev_priv,
|
|
PLANE_BUF_CFG(pipe, plane_id),
|
|
&ddb->plane[pipe][plane_id]);
|
|
if (wm->is_planar) {
|
|
skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
|
|
&ddb->uv_plane[pipe][plane_id]);
|
|
skl_ddb_entry_write(dev_priv,
|
|
PLANE_NV12_BUF_CFG(pipe, plane_id),
|
|
&ddb->plane[pipe][plane_id]);
|
|
} else {
|
|
skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
|
|
&ddb->plane[pipe][plane_id]);
|
|
I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
|
|
}
|
|
}
|
|
|
|
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
|
|
const struct skl_plane_wm *wm,
|
|
const struct skl_ddb_allocation *ddb)
|
|
{
|
|
struct drm_crtc *crtc = &intel_crtc->base;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
int level, max_level = ilk_wm_max_level(dev_priv);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
|
|
for (level = 0; level <= max_level; level++) {
|
|
skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
|
|
&wm->wm[level]);
|
|
}
|
|
skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
|
|
|
|
skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
|
|
&ddb->plane[pipe][PLANE_CURSOR]);
|
|
}
|
|
|
|
bool skl_wm_level_equals(const struct skl_wm_level *l1,
|
|
const struct skl_wm_level *l2)
|
|
{
|
|
if (l1->plane_en != l2->plane_en)
|
|
return false;
|
|
|
|
/* If both planes aren't enabled, the rest shouldn't matter */
|
|
if (!l1->plane_en)
|
|
return true;
|
|
|
|
return (l1->plane_res_l == l2->plane_res_l &&
|
|
l1->plane_res_b == l2->plane_res_b);
|
|
}
|
|
|
|
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
|
|
const struct skl_ddb_entry *b)
|
|
{
|
|
return a->start < b->end && b->start < a->end;
|
|
}
|
|
|
|
bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
|
|
const struct skl_ddb_entry **entries,
|
|
const struct skl_ddb_entry *ddb,
|
|
int ignore)
|
|
{
|
|
enum pipe pipe;
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
if (pipe != ignore && entries[pipe] &&
|
|
skl_ddb_entries_overlap(ddb, entries[pipe]))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
|
|
const struct skl_pipe_wm *old_pipe_wm,
|
|
struct skl_pipe_wm *pipe_wm, /* out */
|
|
struct skl_ddb_allocation *ddb, /* out */
|
|
bool *changed /* out */)
|
|
{
|
|
struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
|
|
int ret;
|
|
|
|
ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
|
|
*changed = false;
|
|
else
|
|
*changed = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
pipes_modified(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
struct drm_crtc_state *cstate;
|
|
uint32_t i, ret = 0;
|
|
|
|
for_each_new_crtc_in_state(state, crtc, cstate, i)
|
|
ret |= drm_crtc_mask(crtc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
|
|
{
|
|
struct drm_atomic_state *state = cstate->base.state;
|
|
struct drm_device *dev = state->dev;
|
|
struct drm_crtc *crtc = cstate->base.crtc;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
|
|
struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
|
|
struct drm_plane_state *plane_state;
|
|
struct drm_plane *plane;
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
|
|
drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
|
|
enum plane_id plane_id = to_intel_plane(plane)->id;
|
|
|
|
if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
|
|
&new_ddb->plane[pipe][plane_id]) &&
|
|
skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
|
|
&new_ddb->uv_plane[pipe][plane_id]))
|
|
continue;
|
|
|
|
plane_state = drm_atomic_get_plane_state(state, plane);
|
|
if (IS_ERR(plane_state))
|
|
return PTR_ERR(plane_state);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
skl_compute_ddb(struct drm_atomic_state *state)
|
|
{
|
|
const struct drm_i915_private *dev_priv = to_i915(state->dev);
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
|
|
struct intel_crtc *crtc;
|
|
struct intel_crtc_state *cstate;
|
|
int ret, i;
|
|
|
|
memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
|
|
|
|
for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
|
|
ret = skl_allocate_pipe_ddb(cstate, ddb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = skl_ddb_add_affected_planes(cstate);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
skl_copy_ddb_for_pipe(struct skl_ddb_values *dst,
|
|
struct skl_ddb_values *src,
|
|
enum pipe pipe)
|
|
{
|
|
memcpy(dst->ddb.uv_plane[pipe], src->ddb.uv_plane[pipe],
|
|
sizeof(dst->ddb.uv_plane[pipe]));
|
|
memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
|
|
sizeof(dst->ddb.plane[pipe]));
|
|
}
|
|
|
|
static void
|
|
skl_print_wm_changes(const struct drm_atomic_state *state)
|
|
{
|
|
const struct drm_device *dev = state->dev;
|
|
const struct drm_i915_private *dev_priv = to_i915(dev);
|
|
const struct intel_atomic_state *intel_state =
|
|
to_intel_atomic_state(state);
|
|
const struct drm_crtc *crtc;
|
|
const struct drm_crtc_state *cstate;
|
|
const struct intel_plane *intel_plane;
|
|
const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
|
|
const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
|
|
int i;
|
|
|
|
for_each_new_crtc_in_state(state, crtc, cstate, i) {
|
|
const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
|
|
for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
|
|
enum plane_id plane_id = intel_plane->id;
|
|
const struct skl_ddb_entry *old, *new;
|
|
|
|
old = &old_ddb->plane[pipe][plane_id];
|
|
new = &new_ddb->plane[pipe][plane_id];
|
|
|
|
if (skl_ddb_entry_equal(old, new))
|
|
continue;
|
|
|
|
DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
|
|
intel_plane->base.base.id,
|
|
intel_plane->base.name,
|
|
old->start, old->end,
|
|
new->start, new->end);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
|
|
{
|
|
struct drm_device *dev = state->dev;
|
|
const struct drm_i915_private *dev_priv = to_i915(dev);
|
|
const struct drm_crtc *crtc;
|
|
const struct drm_crtc_state *cstate;
|
|
struct intel_crtc *intel_crtc;
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
uint32_t realloc_pipes = pipes_modified(state);
|
|
int ret, i;
|
|
|
|
/*
|
|
* When we distrust bios wm we always need to recompute to set the
|
|
* expected DDB allocations for each CRTC.
|
|
*/
|
|
if (dev_priv->wm.distrust_bios_wm)
|
|
(*changed) = true;
|
|
|
|
/*
|
|
* If this transaction isn't actually touching any CRTC's, don't
|
|
* bother with watermark calculation. Note that if we pass this
|
|
* test, we're guaranteed to hold at least one CRTC state mutex,
|
|
* which means we can safely use values like dev_priv->active_crtcs
|
|
* since any racing commits that want to update them would need to
|
|
* hold _all_ CRTC state mutexes.
|
|
*/
|
|
for_each_new_crtc_in_state(state, crtc, cstate, i)
|
|
(*changed) = true;
|
|
|
|
if (!*changed)
|
|
return 0;
|
|
|
|
/*
|
|
* If this is our first atomic update following hardware readout,
|
|
* we can't trust the DDB that the BIOS programmed for us. Let's
|
|
* pretend that all pipes switched active status so that we'll
|
|
* ensure a full DDB recompute.
|
|
*/
|
|
if (dev_priv->wm.distrust_bios_wm) {
|
|
ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
|
|
state->acquire_ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_state->active_pipe_changes = ~0;
|
|
|
|
/*
|
|
* We usually only initialize intel_state->active_crtcs if we
|
|
* we're doing a modeset; make sure this field is always
|
|
* initialized during the sanitization process that happens
|
|
* on the first commit too.
|
|
*/
|
|
if (!intel_state->modeset)
|
|
intel_state->active_crtcs = dev_priv->active_crtcs;
|
|
}
|
|
|
|
/*
|
|
* If the modeset changes which CRTC's are active, we need to
|
|
* recompute the DDB allocation for *all* active pipes, even
|
|
* those that weren't otherwise being modified in any way by this
|
|
* atomic commit. Due to the shrinking of the per-pipe allocations
|
|
* when new active CRTC's are added, it's possible for a pipe that
|
|
* we were already using and aren't changing at all here to suddenly
|
|
* become invalid if its DDB needs exceeds its new allocation.
|
|
*
|
|
* Note that if we wind up doing a full DDB recompute, we can't let
|
|
* any other display updates race with this transaction, so we need
|
|
* to grab the lock on *all* CRTC's.
|
|
*/
|
|
if (intel_state->active_pipe_changes) {
|
|
realloc_pipes = ~0;
|
|
intel_state->wm_results.dirty_pipes = ~0;
|
|
}
|
|
|
|
/*
|
|
* We're not recomputing for the pipes not included in the commit, so
|
|
* make sure we start with the current state.
|
|
*/
|
|
for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
|
|
struct intel_crtc_state *cstate;
|
|
|
|
cstate = intel_atomic_get_crtc_state(state, intel_crtc);
|
|
if (IS_ERR(cstate))
|
|
return PTR_ERR(cstate);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
skl_compute_wm(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
struct drm_crtc_state *cstate;
|
|
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
|
|
struct skl_ddb_values *results = &intel_state->wm_results;
|
|
struct skl_pipe_wm *pipe_wm;
|
|
bool changed = false;
|
|
int ret, i;
|
|
|
|
/* Clear all dirty flags */
|
|
results->dirty_pipes = 0;
|
|
|
|
ret = skl_ddb_add_affected_pipes(state, &changed);
|
|
if (ret || !changed)
|
|
return ret;
|
|
|
|
ret = skl_compute_ddb(state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Calculate WM's for all pipes that are part of this transaction.
|
|
* Note that the DDB allocation above may have added more CRTC's that
|
|
* weren't otherwise being modified (and set bits in dirty_pipes) if
|
|
* pipe allocations had to change.
|
|
*
|
|
* FIXME: Now that we're doing this in the atomic check phase, we
|
|
* should allow skl_update_pipe_wm() to return failure in cases where
|
|
* no suitable watermark values can be found.
|
|
*/
|
|
for_each_new_crtc_in_state(state, crtc, cstate, i) {
|
|
struct intel_crtc_state *intel_cstate =
|
|
to_intel_crtc_state(cstate);
|
|
const struct skl_pipe_wm *old_pipe_wm =
|
|
&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
|
|
|
|
pipe_wm = &intel_cstate->wm.skl.optimal;
|
|
ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
|
|
&results->ddb, &changed);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (changed)
|
|
results->dirty_pipes |= drm_crtc_mask(crtc);
|
|
|
|
if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
|
|
/* This pipe's WM's did not change */
|
|
continue;
|
|
|
|
intel_cstate->update_wm_pre = true;
|
|
}
|
|
|
|
skl_print_wm_changes(state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
|
|
struct intel_crtc_state *cstate)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
|
|
struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
|
|
const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
|
|
enum pipe pipe = crtc->pipe;
|
|
enum plane_id plane_id;
|
|
|
|
if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
|
|
return;
|
|
|
|
I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id) {
|
|
if (plane_id != PLANE_CURSOR)
|
|
skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
|
|
ddb, plane_id);
|
|
else
|
|
skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
|
|
ddb);
|
|
}
|
|
}
|
|
|
|
static void skl_initial_wm(struct intel_atomic_state *state,
|
|
struct intel_crtc_state *cstate)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct skl_ddb_values *results = &state->wm_results;
|
|
struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
|
|
if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->wm.wm_mutex);
|
|
|
|
if (cstate->base.active_changed)
|
|
skl_atomic_update_crtc_wm(state, cstate);
|
|
|
|
skl_copy_ddb_for_pipe(hw_vals, results, pipe);
|
|
|
|
mutex_unlock(&dev_priv->wm.wm_mutex);
|
|
}
|
|
|
|
static void ilk_compute_wm_config(struct drm_device *dev,
|
|
struct intel_wm_config *config)
|
|
{
|
|
struct intel_crtc *crtc;
|
|
|
|
/* Compute the currently _active_ config */
|
|
for_each_intel_crtc(dev, crtc) {
|
|
const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
|
|
|
|
if (!wm->pipe_enabled)
|
|
continue;
|
|
|
|
config->sprites_enabled |= wm->sprites_enabled;
|
|
config->sprites_scaled |= wm->sprites_scaled;
|
|
config->num_pipes_active++;
|
|
}
|
|
}
|
|
|
|
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
|
|
struct ilk_wm_maximums max;
|
|
struct intel_wm_config config = {};
|
|
struct ilk_wm_values results = {};
|
|
enum intel_ddb_partitioning partitioning;
|
|
|
|
ilk_compute_wm_config(dev, &config);
|
|
|
|
ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
|
|
ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
|
|
|
|
/* 5/6 split only in single pipe config on IVB+ */
|
|
if (INTEL_GEN(dev_priv) >= 7 &&
|
|
config.num_pipes_active == 1 && config.sprites_enabled) {
|
|
ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
|
|
ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
|
|
|
|
best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
|
|
} else {
|
|
best_lp_wm = &lp_wm_1_2;
|
|
}
|
|
|
|
partitioning = (best_lp_wm == &lp_wm_1_2) ?
|
|
INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
|
|
|
|
ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
|
|
|
|
ilk_write_wm_values(dev_priv, &results);
|
|
}
|
|
|
|
static void ilk_initial_watermarks(struct intel_atomic_state *state,
|
|
struct intel_crtc_state *cstate)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
|
|
|
|
mutex_lock(&dev_priv->wm.wm_mutex);
|
|
intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
|
|
ilk_program_watermarks(dev_priv);
|
|
mutex_unlock(&dev_priv->wm.wm_mutex);
|
|
}
|
|
|
|
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
|
|
struct intel_crtc_state *cstate)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
|
|
|
|
mutex_lock(&dev_priv->wm.wm_mutex);
|
|
if (cstate->wm.need_postvbl_update) {
|
|
intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
|
|
ilk_program_watermarks(dev_priv);
|
|
}
|
|
mutex_unlock(&dev_priv->wm.wm_mutex);
|
|
}
|
|
|
|
static inline void skl_wm_level_from_reg_val(uint32_t val,
|
|
struct skl_wm_level *level)
|
|
{
|
|
level->plane_en = val & PLANE_WM_EN;
|
|
level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
|
|
level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
|
|
PLANE_WM_LINES_MASK;
|
|
}
|
|
|
|
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
|
|
struct skl_pipe_wm *out)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
int level, max_level;
|
|
enum plane_id plane_id;
|
|
uint32_t val;
|
|
|
|
max_level = ilk_wm_max_level(dev_priv);
|
|
|
|
for_each_plane_id_on_crtc(intel_crtc, plane_id) {
|
|
struct skl_plane_wm *wm = &out->planes[plane_id];
|
|
|
|
for (level = 0; level <= max_level; level++) {
|
|
if (plane_id != PLANE_CURSOR)
|
|
val = I915_READ(PLANE_WM(pipe, plane_id, level));
|
|
else
|
|
val = I915_READ(CUR_WM(pipe, level));
|
|
|
|
skl_wm_level_from_reg_val(val, &wm->wm[level]);
|
|
}
|
|
|
|
if (plane_id != PLANE_CURSOR)
|
|
val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
|
|
else
|
|
val = I915_READ(CUR_WM_TRANS(pipe));
|
|
|
|
skl_wm_level_from_reg_val(val, &wm->trans_wm);
|
|
}
|
|
|
|
if (!intel_crtc->active)
|
|
return;
|
|
|
|
out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
|
|
}
|
|
|
|
void skl_wm_get_hw_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
|
|
struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
|
|
struct drm_crtc *crtc;
|
|
struct intel_crtc *intel_crtc;
|
|
struct intel_crtc_state *cstate;
|
|
|
|
skl_ddb_get_hw_state(dev_priv, ddb);
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
cstate = to_intel_crtc_state(crtc->state);
|
|
|
|
skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
|
|
|
|
if (intel_crtc->active)
|
|
hw->dirty_pipes |= drm_crtc_mask(crtc);
|
|
}
|
|
|
|
if (dev_priv->active_crtcs) {
|
|
/* Fully recompute DDB on first atomic commit */
|
|
dev_priv->wm.distrust_bios_wm = true;
|
|
} else {
|
|
/*
|
|
* Easy/common case; just sanitize DDB now if everything off
|
|
* Keep dbuf slice info intact
|
|
*/
|
|
memset(ddb->plane, 0, sizeof(ddb->plane));
|
|
memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
|
|
}
|
|
}
|
|
|
|
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct ilk_wm_values *hw = &dev_priv->wm.hw;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
|
|
struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
static const i915_reg_t wm0_pipe_reg[] = {
|
|
[PIPE_A] = WM0_PIPEA_ILK,
|
|
[PIPE_B] = WM0_PIPEB_ILK,
|
|
[PIPE_C] = WM0_PIPEC_IVB,
|
|
};
|
|
|
|
hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
|
|
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
|
|
|
|
memset(active, 0, sizeof(*active));
|
|
|
|
active->pipe_enabled = intel_crtc->active;
|
|
|
|
if (active->pipe_enabled) {
|
|
u32 tmp = hw->wm_pipe[pipe];
|
|
|
|
/*
|
|
* For active pipes LP0 watermark is marked as
|
|
* enabled, and LP1+ watermaks as disabled since
|
|
* we can't really reverse compute them in case
|
|
* multiple pipes are active.
|
|
*/
|
|
active->wm[0].enable = true;
|
|
active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
|
|
active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
|
|
active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
|
|
active->linetime = hw->wm_linetime[pipe];
|
|
} else {
|
|
int level, max_level = ilk_wm_max_level(dev_priv);
|
|
|
|
/*
|
|
* For inactive pipes, all watermark levels
|
|
* should be marked as enabled but zeroed,
|
|
* which is what we'd compute them to.
|
|
*/
|
|
for (level = 0; level <= max_level; level++)
|
|
active->wm[level].enable = true;
|
|
}
|
|
|
|
intel_crtc->wm.active.ilk = *active;
|
|
}
|
|
|
|
#define _FW_WM(value, plane) \
|
|
(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
|
|
#define _FW_WM_VLV(value, plane) \
|
|
(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
|
|
|
|
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
|
|
struct g4x_wm_values *wm)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = I915_READ(DSPFW1);
|
|
wm->sr.plane = _FW_WM(tmp, SR);
|
|
wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
|
|
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
|
|
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
|
|
|
|
tmp = I915_READ(DSPFW2);
|
|
wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
|
|
wm->sr.fbc = _FW_WM(tmp, FBC_SR);
|
|
wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
|
|
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
|
|
wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
|
|
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
|
|
|
|
tmp = I915_READ(DSPFW3);
|
|
wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
|
|
wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
|
|
wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
|
|
wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
|
|
}
|
|
|
|
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
|
|
struct vlv_wm_values *wm)
|
|
{
|
|
enum pipe pipe;
|
|
uint32_t tmp;
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
tmp = I915_READ(VLV_DDL(pipe));
|
|
|
|
wm->ddl[pipe].plane[PLANE_PRIMARY] =
|
|
(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
|
|
wm->ddl[pipe].plane[PLANE_CURSOR] =
|
|
(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
|
|
wm->ddl[pipe].plane[PLANE_SPRITE0] =
|
|
(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
|
|
wm->ddl[pipe].plane[PLANE_SPRITE1] =
|
|
(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
|
|
}
|
|
|
|
tmp = I915_READ(DSPFW1);
|
|
wm->sr.plane = _FW_WM(tmp, SR);
|
|
wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
|
|
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
|
|
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
|
|
|
|
tmp = I915_READ(DSPFW2);
|
|
wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
|
|
wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
|
|
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
|
|
|
|
tmp = I915_READ(DSPFW3);
|
|
wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
|
|
|
|
if (IS_CHERRYVIEW(dev_priv)) {
|
|
tmp = I915_READ(DSPFW7_CHV);
|
|
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
|
|
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
|
|
|
|
tmp = I915_READ(DSPFW8_CHV);
|
|
wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
|
|
wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
|
|
|
|
tmp = I915_READ(DSPFW9_CHV);
|
|
wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
|
|
wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
|
|
|
|
tmp = I915_READ(DSPHOWM);
|
|
wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
|
|
wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
|
|
wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
|
|
wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
|
|
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
|
|
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
|
|
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
|
|
wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
|
|
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
|
|
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
|
|
} else {
|
|
tmp = I915_READ(DSPFW7);
|
|
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
|
|
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
|
|
|
|
tmp = I915_READ(DSPHOWM);
|
|
wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
|
|
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
|
|
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
|
|
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
|
|
wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
|
|
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
|
|
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
|
|
}
|
|
}
|
|
|
|
#undef _FW_WM
|
|
#undef _FW_WM_VLV
|
|
|
|
void g4x_wm_get_hw_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct g4x_wm_values *wm = &dev_priv->wm.g4x;
|
|
struct intel_crtc *crtc;
|
|
|
|
g4x_read_wm_values(dev_priv, wm);
|
|
|
|
wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
struct intel_crtc_state *crtc_state =
|
|
to_intel_crtc_state(crtc->base.state);
|
|
struct g4x_wm_state *active = &crtc->wm.active.g4x;
|
|
struct g4x_pipe_wm *raw;
|
|
enum pipe pipe = crtc->pipe;
|
|
enum plane_id plane_id;
|
|
int level, max_level;
|
|
|
|
active->cxsr = wm->cxsr;
|
|
active->hpll_en = wm->hpll_en;
|
|
active->fbc_en = wm->fbc_en;
|
|
|
|
active->sr = wm->sr;
|
|
active->hpll = wm->hpll;
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id) {
|
|
active->wm.plane[plane_id] =
|
|
wm->pipe[pipe].plane[plane_id];
|
|
}
|
|
|
|
if (wm->cxsr && wm->hpll_en)
|
|
max_level = G4X_WM_LEVEL_HPLL;
|
|
else if (wm->cxsr)
|
|
max_level = G4X_WM_LEVEL_SR;
|
|
else
|
|
max_level = G4X_WM_LEVEL_NORMAL;
|
|
|
|
level = G4X_WM_LEVEL_NORMAL;
|
|
raw = &crtc_state->wm.g4x.raw[level];
|
|
for_each_plane_id_on_crtc(crtc, plane_id)
|
|
raw->plane[plane_id] = active->wm.plane[plane_id];
|
|
|
|
if (++level > max_level)
|
|
goto out;
|
|
|
|
raw = &crtc_state->wm.g4x.raw[level];
|
|
raw->plane[PLANE_PRIMARY] = active->sr.plane;
|
|
raw->plane[PLANE_CURSOR] = active->sr.cursor;
|
|
raw->plane[PLANE_SPRITE0] = 0;
|
|
raw->fbc = active->sr.fbc;
|
|
|
|
if (++level > max_level)
|
|
goto out;
|
|
|
|
raw = &crtc_state->wm.g4x.raw[level];
|
|
raw->plane[PLANE_PRIMARY] = active->hpll.plane;
|
|
raw->plane[PLANE_CURSOR] = active->hpll.cursor;
|
|
raw->plane[PLANE_SPRITE0] = 0;
|
|
raw->fbc = active->hpll.fbc;
|
|
|
|
out:
|
|
for_each_plane_id_on_crtc(crtc, plane_id)
|
|
g4x_raw_plane_wm_set(crtc_state, level,
|
|
plane_id, USHRT_MAX);
|
|
g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
|
|
|
|
crtc_state->wm.g4x.optimal = *active;
|
|
crtc_state->wm.g4x.intermediate = *active;
|
|
|
|
DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
|
|
pipe_name(pipe),
|
|
wm->pipe[pipe].plane[PLANE_PRIMARY],
|
|
wm->pipe[pipe].plane[PLANE_CURSOR],
|
|
wm->pipe[pipe].plane[PLANE_SPRITE0]);
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
|
|
wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
|
|
DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
|
|
wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
|
|
DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
|
|
yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
|
|
}
|
|
|
|
void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_plane *plane;
|
|
struct intel_crtc *crtc;
|
|
|
|
mutex_lock(&dev_priv->wm.wm_mutex);
|
|
|
|
for_each_intel_plane(&dev_priv->drm, plane) {
|
|
struct intel_crtc *crtc =
|
|
intel_get_crtc_for_pipe(dev_priv, plane->pipe);
|
|
struct intel_crtc_state *crtc_state =
|
|
to_intel_crtc_state(crtc->base.state);
|
|
struct intel_plane_state *plane_state =
|
|
to_intel_plane_state(plane->base.state);
|
|
struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
|
|
enum plane_id plane_id = plane->id;
|
|
int level;
|
|
|
|
if (plane_state->base.visible)
|
|
continue;
|
|
|
|
for (level = 0; level < 3; level++) {
|
|
struct g4x_pipe_wm *raw =
|
|
&crtc_state->wm.g4x.raw[level];
|
|
|
|
raw->plane[plane_id] = 0;
|
|
wm_state->wm.plane[plane_id] = 0;
|
|
}
|
|
|
|
if (plane_id == PLANE_PRIMARY) {
|
|
for (level = 0; level < 3; level++) {
|
|
struct g4x_pipe_wm *raw =
|
|
&crtc_state->wm.g4x.raw[level];
|
|
raw->fbc = 0;
|
|
}
|
|
|
|
wm_state->sr.fbc = 0;
|
|
wm_state->hpll.fbc = 0;
|
|
wm_state->fbc_en = false;
|
|
}
|
|
}
|
|
|
|
for_each_intel_crtc(&dev_priv->drm, crtc) {
|
|
struct intel_crtc_state *crtc_state =
|
|
to_intel_crtc_state(crtc->base.state);
|
|
|
|
crtc_state->wm.g4x.intermediate =
|
|
crtc_state->wm.g4x.optimal;
|
|
crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
|
|
}
|
|
|
|
g4x_program_watermarks(dev_priv);
|
|
|
|
mutex_unlock(&dev_priv->wm.wm_mutex);
|
|
}
|
|
|
|
void vlv_wm_get_hw_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct vlv_wm_values *wm = &dev_priv->wm.vlv;
|
|
struct intel_crtc *crtc;
|
|
u32 val;
|
|
|
|
vlv_read_wm_values(dev_priv, wm);
|
|
|
|
wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
|
|
wm->level = VLV_WM_LEVEL_PM2;
|
|
|
|
if (IS_CHERRYVIEW(dev_priv)) {
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
|
|
if (val & DSP_MAXFIFO_PM5_ENABLE)
|
|
wm->level = VLV_WM_LEVEL_PM5;
|
|
|
|
/*
|
|
* If DDR DVFS is disabled in the BIOS, Punit
|
|
* will never ack the request. So if that happens
|
|
* assume we don't have to enable/disable DDR DVFS
|
|
* dynamically. To test that just set the REQ_ACK
|
|
* bit to poke the Punit, but don't change the
|
|
* HIGH/LOW bits so that we don't actually change
|
|
* the current state.
|
|
*/
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
|
|
val |= FORCE_DDR_FREQ_REQ_ACK;
|
|
vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
|
|
|
|
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
|
|
FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
|
|
DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
|
|
"assuming DDR DVFS is disabled\n");
|
|
dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
|
|
} else {
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
|
|
if ((val & FORCE_DDR_HIGH_FREQ) == 0)
|
|
wm->level = VLV_WM_LEVEL_DDR_DVFS;
|
|
}
|
|
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
}
|
|
|
|
for_each_intel_crtc(dev, crtc) {
|
|
struct intel_crtc_state *crtc_state =
|
|
to_intel_crtc_state(crtc->base.state);
|
|
struct vlv_wm_state *active = &crtc->wm.active.vlv;
|
|
const struct vlv_fifo_state *fifo_state =
|
|
&crtc_state->wm.vlv.fifo_state;
|
|
enum pipe pipe = crtc->pipe;
|
|
enum plane_id plane_id;
|
|
int level;
|
|
|
|
vlv_get_fifo_size(crtc_state);
|
|
|
|
active->num_levels = wm->level + 1;
|
|
active->cxsr = wm->cxsr;
|
|
|
|
for (level = 0; level < active->num_levels; level++) {
|
|
struct g4x_pipe_wm *raw =
|
|
&crtc_state->wm.vlv.raw[level];
|
|
|
|
active->sr[level].plane = wm->sr.plane;
|
|
active->sr[level].cursor = wm->sr.cursor;
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id) {
|
|
active->wm[level].plane[plane_id] =
|
|
wm->pipe[pipe].plane[plane_id];
|
|
|
|
raw->plane[plane_id] =
|
|
vlv_invert_wm_value(active->wm[level].plane[plane_id],
|
|
fifo_state->plane[plane_id]);
|
|
}
|
|
}
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id)
|
|
vlv_raw_plane_wm_set(crtc_state, level,
|
|
plane_id, USHRT_MAX);
|
|
vlv_invalidate_wms(crtc, active, level);
|
|
|
|
crtc_state->wm.vlv.optimal = *active;
|
|
crtc_state->wm.vlv.intermediate = *active;
|
|
|
|
DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
|
|
pipe_name(pipe),
|
|
wm->pipe[pipe].plane[PLANE_PRIMARY],
|
|
wm->pipe[pipe].plane[PLANE_CURSOR],
|
|
wm->pipe[pipe].plane[PLANE_SPRITE0],
|
|
wm->pipe[pipe].plane[PLANE_SPRITE1]);
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
|
|
wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
|
|
}
|
|
|
|
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_plane *plane;
|
|
struct intel_crtc *crtc;
|
|
|
|
mutex_lock(&dev_priv->wm.wm_mutex);
|
|
|
|
for_each_intel_plane(&dev_priv->drm, plane) {
|
|
struct intel_crtc *crtc =
|
|
intel_get_crtc_for_pipe(dev_priv, plane->pipe);
|
|
struct intel_crtc_state *crtc_state =
|
|
to_intel_crtc_state(crtc->base.state);
|
|
struct intel_plane_state *plane_state =
|
|
to_intel_plane_state(plane->base.state);
|
|
struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
|
|
const struct vlv_fifo_state *fifo_state =
|
|
&crtc_state->wm.vlv.fifo_state;
|
|
enum plane_id plane_id = plane->id;
|
|
int level;
|
|
|
|
if (plane_state->base.visible)
|
|
continue;
|
|
|
|
for (level = 0; level < wm_state->num_levels; level++) {
|
|
struct g4x_pipe_wm *raw =
|
|
&crtc_state->wm.vlv.raw[level];
|
|
|
|
raw->plane[plane_id] = 0;
|
|
|
|
wm_state->wm[level].plane[plane_id] =
|
|
vlv_invert_wm_value(raw->plane[plane_id],
|
|
fifo_state->plane[plane_id]);
|
|
}
|
|
}
|
|
|
|
for_each_intel_crtc(&dev_priv->drm, crtc) {
|
|
struct intel_crtc_state *crtc_state =
|
|
to_intel_crtc_state(crtc->base.state);
|
|
|
|
crtc_state->wm.vlv.intermediate =
|
|
crtc_state->wm.vlv.optimal;
|
|
crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
|
|
}
|
|
|
|
vlv_program_watermarks(dev_priv);
|
|
|
|
mutex_unlock(&dev_priv->wm.wm_mutex);
|
|
}
|
|
|
|
/*
|
|
* FIXME should probably kill this and improve
|
|
* the real watermark readout/sanitation instead
|
|
*/
|
|
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
|
|
I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
|
|
I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
|
|
|
|
/*
|
|
* Don't touch WM1S_LP_EN here.
|
|
* Doing so could cause underruns.
|
|
*/
|
|
}
|
|
|
|
void ilk_wm_get_hw_state(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct ilk_wm_values *hw = &dev_priv->wm.hw;
|
|
struct drm_crtc *crtc;
|
|
|
|
ilk_init_lp_watermarks(dev_priv);
|
|
|
|
for_each_crtc(dev, crtc)
|
|
ilk_pipe_wm_get_hw_state(crtc);
|
|
|
|
hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
|
|
hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
|
|
hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
|
|
|
|
hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
|
|
if (INTEL_GEN(dev_priv) >= 7) {
|
|
hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
|
|
hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
|
|
}
|
|
|
|
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
|
|
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
|
|
else if (IS_IVYBRIDGE(dev_priv))
|
|
hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
|
|
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
|
|
|
|
hw->enable_fbc_wm =
|
|
!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
|
|
}
|
|
|
|
/**
|
|
* intel_update_watermarks - update FIFO watermark values based on current modes
|
|
* @crtc: the #intel_crtc on which to compute the WM
|
|
*
|
|
* Calculate watermark values for the various WM regs based on current mode
|
|
* and plane configuration.
|
|
*
|
|
* There are several cases to deal with here:
|
|
* - normal (i.e. non-self-refresh)
|
|
* - self-refresh (SR) mode
|
|
* - lines are large relative to FIFO size (buffer can hold up to 2)
|
|
* - lines are small relative to FIFO size (buffer can hold more than 2
|
|
* lines), so need to account for TLB latency
|
|
*
|
|
* The normal calculation is:
|
|
* watermark = dotclock * bytes per pixel * latency
|
|
* where latency is platform & configuration dependent (we assume pessimal
|
|
* values here).
|
|
*
|
|
* The SR calculation is:
|
|
* watermark = (trunc(latency/line time)+1) * surface width *
|
|
* bytes per pixel
|
|
* where
|
|
* line time = htotal / dotclock
|
|
* surface width = hdisplay for normal plane and 64 for cursor
|
|
* and latency is assumed to be high, as above.
|
|
*
|
|
* The final value programmed to the register should always be rounded up,
|
|
* and include an extra 2 entries to account for clock crossings.
|
|
*
|
|
* We don't use the sprite, so we can ignore that. And on Crestline we have
|
|
* to set the non-SR watermarks to 8.
|
|
*/
|
|
void intel_update_watermarks(struct intel_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
|
|
if (dev_priv->display.update_wm)
|
|
dev_priv->display.update_wm(crtc);
|
|
}
|
|
|
|
void intel_enable_ipc(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
|
|
/* Display WA #0477 WaDisableIPC: skl */
|
|
if (IS_SKYLAKE(dev_priv)) {
|
|
dev_priv->ipc_enabled = false;
|
|
return;
|
|
}
|
|
|
|
val = I915_READ(DISP_ARB_CTL2);
|
|
|
|
if (dev_priv->ipc_enabled)
|
|
val |= DISP_IPC_ENABLE;
|
|
else
|
|
val &= ~DISP_IPC_ENABLE;
|
|
|
|
I915_WRITE(DISP_ARB_CTL2, val);
|
|
}
|
|
|
|
void intel_init_ipc(struct drm_i915_private *dev_priv)
|
|
{
|
|
dev_priv->ipc_enabled = false;
|
|
if (!HAS_IPC(dev_priv))
|
|
return;
|
|
|
|
dev_priv->ipc_enabled = true;
|
|
intel_enable_ipc(dev_priv);
|
|
}
|
|
|
|
/*
|
|
* Lock protecting IPS related data structures
|
|
*/
|
|
DEFINE_SPINLOCK(mchdev_lock);
|
|
|
|
/* Global for IPS driver to get at the current i915 device. Protected by
|
|
* mchdev_lock. */
|
|
static struct drm_i915_private *i915_mch_dev;
|
|
|
|
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
|
|
{
|
|
u16 rgvswctl;
|
|
|
|
lockdep_assert_held(&mchdev_lock);
|
|
|
|
rgvswctl = I915_READ16(MEMSWCTL);
|
|
if (rgvswctl & MEMCTL_CMD_STS) {
|
|
DRM_DEBUG("gpu busy, RCS change rejected\n");
|
|
return false; /* still busy with another command */
|
|
}
|
|
|
|
rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
|
|
(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
|
|
I915_WRITE16(MEMSWCTL, rgvswctl);
|
|
POSTING_READ16(MEMSWCTL);
|
|
|
|
rgvswctl |= MEMCTL_CMD_STS;
|
|
I915_WRITE16(MEMSWCTL, rgvswctl);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 rgvmodectl;
|
|
u8 fmax, fmin, fstart, vstart;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
|
|
rgvmodectl = I915_READ(MEMMODECTL);
|
|
|
|
/* Enable temp reporting */
|
|
I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
|
|
I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
|
|
|
|
/* 100ms RC evaluation intervals */
|
|
I915_WRITE(RCUPEI, 100000);
|
|
I915_WRITE(RCDNEI, 100000);
|
|
|
|
/* Set max/min thresholds to 90ms and 80ms respectively */
|
|
I915_WRITE(RCBMAXAVG, 90000);
|
|
I915_WRITE(RCBMINAVG, 80000);
|
|
|
|
I915_WRITE(MEMIHYST, 1);
|
|
|
|
/* Set up min, max, and cur for interrupt handling */
|
|
fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
|
|
fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
|
|
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
|
|
MEMMODE_FSTART_SHIFT;
|
|
|
|
vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
|
|
PXVFREQ_PX_SHIFT;
|
|
|
|
dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
|
|
dev_priv->ips.fstart = fstart;
|
|
|
|
dev_priv->ips.max_delay = fstart;
|
|
dev_priv->ips.min_delay = fmin;
|
|
dev_priv->ips.cur_delay = fstart;
|
|
|
|
DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
|
|
fmax, fmin, fstart);
|
|
|
|
I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
|
|
|
|
/*
|
|
* Interrupts will be enabled in ironlake_irq_postinstall
|
|
*/
|
|
|
|
I915_WRITE(VIDSTART, vstart);
|
|
POSTING_READ(VIDSTART);
|
|
|
|
rgvmodectl |= MEMMODE_SWMODE_EN;
|
|
I915_WRITE(MEMMODECTL, rgvmodectl);
|
|
|
|
if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
|
|
DRM_ERROR("stuck trying to change perf mode\n");
|
|
mdelay(1);
|
|
|
|
ironlake_set_drps(dev_priv, fstart);
|
|
|
|
dev_priv->ips.last_count1 = I915_READ(DMIEC) +
|
|
I915_READ(DDREC) + I915_READ(CSIEC);
|
|
dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
|
|
dev_priv->ips.last_count2 = I915_READ(GFXEC);
|
|
dev_priv->ips.last_time2 = ktime_get_raw_ns();
|
|
|
|
spin_unlock_irq(&mchdev_lock);
|
|
}
|
|
|
|
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
|
|
{
|
|
u16 rgvswctl;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
|
|
rgvswctl = I915_READ16(MEMSWCTL);
|
|
|
|
/* Ack interrupts, disable EFC interrupt */
|
|
I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
|
|
I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
|
|
I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
|
|
I915_WRITE(DEIIR, DE_PCU_EVENT);
|
|
I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
|
|
|
|
/* Go back to the starting frequency */
|
|
ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
|
|
mdelay(1);
|
|
rgvswctl |= MEMCTL_CMD_STS;
|
|
I915_WRITE(MEMSWCTL, rgvswctl);
|
|
mdelay(1);
|
|
|
|
spin_unlock_irq(&mchdev_lock);
|
|
}
|
|
|
|
/* There's a funny hw issue where the hw returns all 0 when reading from
|
|
* GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
|
|
* ourselves, instead of doing a rmw cycle (which might result in us clearing
|
|
* all limits and the gpu stuck at whatever frequency it is at atm).
|
|
*/
|
|
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
u32 limits;
|
|
|
|
/* Only set the down limit when we've reached the lowest level to avoid
|
|
* getting more interrupts, otherwise leave this clear. This prevents a
|
|
* race in the hw when coming out of rc6: There's a tiny window where
|
|
* the hw runs at the minimal clock before selecting the desired
|
|
* frequency, if the down threshold expires in that window we will not
|
|
* receive a down interrupt. */
|
|
if (INTEL_GEN(dev_priv) >= 9) {
|
|
limits = (rps->max_freq_softlimit) << 23;
|
|
if (val <= rps->min_freq_softlimit)
|
|
limits |= (rps->min_freq_softlimit) << 14;
|
|
} else {
|
|
limits = rps->max_freq_softlimit << 24;
|
|
if (val <= rps->min_freq_softlimit)
|
|
limits |= rps->min_freq_softlimit << 16;
|
|
}
|
|
|
|
return limits;
|
|
}
|
|
|
|
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
u32 threshold_up = 0, threshold_down = 0; /* in % */
|
|
u32 ei_up = 0, ei_down = 0;
|
|
|
|
lockdep_assert_held(&rps->power.mutex);
|
|
|
|
if (new_power == rps->power.mode)
|
|
return;
|
|
|
|
/* Note the units here are not exactly 1us, but 1280ns. */
|
|
switch (new_power) {
|
|
case LOW_POWER:
|
|
/* Upclock if more than 95% busy over 16ms */
|
|
ei_up = 16000;
|
|
threshold_up = 95;
|
|
|
|
/* Downclock if less than 85% busy over 32ms */
|
|
ei_down = 32000;
|
|
threshold_down = 85;
|
|
break;
|
|
|
|
case BETWEEN:
|
|
/* Upclock if more than 90% busy over 13ms */
|
|
ei_up = 13000;
|
|
threshold_up = 90;
|
|
|
|
/* Downclock if less than 75% busy over 32ms */
|
|
ei_down = 32000;
|
|
threshold_down = 75;
|
|
break;
|
|
|
|
case HIGH_POWER:
|
|
/* Upclock if more than 85% busy over 10ms */
|
|
ei_up = 10000;
|
|
threshold_up = 85;
|
|
|
|
/* Downclock if less than 60% busy over 32ms */
|
|
ei_down = 32000;
|
|
threshold_down = 60;
|
|
break;
|
|
}
|
|
|
|
/* When byt can survive without system hang with dynamic
|
|
* sw freq adjustments, this restriction can be lifted.
|
|
*/
|
|
if (IS_VALLEYVIEW(dev_priv))
|
|
goto skip_hw_write;
|
|
|
|
I915_WRITE(GEN6_RP_UP_EI,
|
|
GT_INTERVAL_FROM_US(dev_priv, ei_up));
|
|
I915_WRITE(GEN6_RP_UP_THRESHOLD,
|
|
GT_INTERVAL_FROM_US(dev_priv,
|
|
ei_up * threshold_up / 100));
|
|
|
|
I915_WRITE(GEN6_RP_DOWN_EI,
|
|
GT_INTERVAL_FROM_US(dev_priv, ei_down));
|
|
I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
|
|
GT_INTERVAL_FROM_US(dev_priv,
|
|
ei_down * threshold_down / 100));
|
|
|
|
I915_WRITE(GEN6_RP_CONTROL,
|
|
GEN6_RP_MEDIA_TURBO |
|
|
GEN6_RP_MEDIA_HW_NORMAL_MODE |
|
|
GEN6_RP_MEDIA_IS_GFX |
|
|
GEN6_RP_ENABLE |
|
|
GEN6_RP_UP_BUSY_AVG |
|
|
GEN6_RP_DOWN_IDLE_AVG);
|
|
|
|
skip_hw_write:
|
|
rps->power.mode = new_power;
|
|
rps->power.up_threshold = threshold_up;
|
|
rps->power.down_threshold = threshold_down;
|
|
}
|
|
|
|
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
int new_power;
|
|
|
|
new_power = rps->power.mode;
|
|
switch (rps->power.mode) {
|
|
case LOW_POWER:
|
|
if (val > rps->efficient_freq + 1 &&
|
|
val > rps->cur_freq)
|
|
new_power = BETWEEN;
|
|
break;
|
|
|
|
case BETWEEN:
|
|
if (val <= rps->efficient_freq &&
|
|
val < rps->cur_freq)
|
|
new_power = LOW_POWER;
|
|
else if (val >= rps->rp0_freq &&
|
|
val > rps->cur_freq)
|
|
new_power = HIGH_POWER;
|
|
break;
|
|
|
|
case HIGH_POWER:
|
|
if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
|
|
val < rps->cur_freq)
|
|
new_power = BETWEEN;
|
|
break;
|
|
}
|
|
/* Max/min bins are special */
|
|
if (val <= rps->min_freq_softlimit)
|
|
new_power = LOW_POWER;
|
|
if (val >= rps->max_freq_softlimit)
|
|
new_power = HIGH_POWER;
|
|
|
|
mutex_lock(&rps->power.mutex);
|
|
if (rps->power.interactive)
|
|
new_power = HIGH_POWER;
|
|
rps_set_power(dev_priv, new_power);
|
|
mutex_unlock(&rps->power.mutex);
|
|
rps->last_adj = 0;
|
|
}
|
|
|
|
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
|
|
{
|
|
struct intel_rps *rps = &i915->gt_pm.rps;
|
|
|
|
if (INTEL_GEN(i915) < 6)
|
|
return;
|
|
|
|
mutex_lock(&rps->power.mutex);
|
|
if (interactive) {
|
|
if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
|
|
rps_set_power(i915, HIGH_POWER);
|
|
} else {
|
|
GEM_BUG_ON(!rps->power.interactive);
|
|
rps->power.interactive--;
|
|
}
|
|
mutex_unlock(&rps->power.mutex);
|
|
}
|
|
|
|
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
u32 mask = 0;
|
|
|
|
/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
|
|
if (val > rps->min_freq_softlimit)
|
|
mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
|
|
if (val < rps->max_freq_softlimit)
|
|
mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
|
|
|
|
mask &= dev_priv->pm_rps_events;
|
|
|
|
return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
|
|
}
|
|
|
|
/* gen6_set_rps is called to update the frequency request, but should also be
|
|
* called when the range (min_delay and max_delay) is modified so that we can
|
|
* update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
|
|
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
|
|
/* min/max delay may still have been modified so be sure to
|
|
* write the limits value.
|
|
*/
|
|
if (val != rps->cur_freq) {
|
|
gen6_set_rps_thresholds(dev_priv, val);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
I915_WRITE(GEN6_RPNSWREQ,
|
|
GEN9_FREQUENCY(val));
|
|
else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
I915_WRITE(GEN6_RPNSWREQ,
|
|
HSW_FREQUENCY(val));
|
|
else
|
|
I915_WRITE(GEN6_RPNSWREQ,
|
|
GEN6_FREQUENCY(val) |
|
|
GEN6_OFFSET(0) |
|
|
GEN6_AGGRESSIVE_TURBO);
|
|
}
|
|
|
|
/* Make sure we continue to get interrupts
|
|
* until we hit the minimum or maximum frequencies.
|
|
*/
|
|
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
|
|
I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
|
|
|
|
rps->cur_freq = val;
|
|
trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
|
|
{
|
|
int err;
|
|
|
|
if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
|
|
"Odd GPU freq value\n"))
|
|
val &= ~1;
|
|
|
|
I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
|
|
|
|
if (val != dev_priv->gt_pm.rps.cur_freq) {
|
|
err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
|
|
if (err)
|
|
return err;
|
|
|
|
gen6_set_rps_thresholds(dev_priv, val);
|
|
}
|
|
|
|
dev_priv->gt_pm.rps.cur_freq = val;
|
|
trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
|
|
*
|
|
* * If Gfx is Idle, then
|
|
* 1. Forcewake Media well.
|
|
* 2. Request idle freq.
|
|
* 3. Release Forcewake of Media well.
|
|
*/
|
|
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
u32 val = rps->idle_freq;
|
|
int err;
|
|
|
|
if (rps->cur_freq <= val)
|
|
return;
|
|
|
|
/* The punit delays the write of the frequency and voltage until it
|
|
* determines the GPU is awake. During normal usage we don't want to
|
|
* waste power changing the frequency if the GPU is sleeping (rc6).
|
|
* However, the GPU and driver is now idle and we do not want to delay
|
|
* switching to minimum voltage (reducing power whilst idle) as we do
|
|
* not expect to be woken in the near future and so must flush the
|
|
* change by waking the device.
|
|
*
|
|
* We choose to take the media powerwell (either would do to trick the
|
|
* punit into committing the voltage change) as that takes a lot less
|
|
* power than the render powerwell.
|
|
*/
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
|
|
err = valleyview_set_rps(dev_priv, val);
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
|
|
|
|
if (err)
|
|
DRM_ERROR("Failed to set RPS for idle\n");
|
|
}
|
|
|
|
void gen6_rps_busy(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
if (rps->enabled) {
|
|
u8 freq;
|
|
|
|
if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
|
|
gen6_rps_reset_ei(dev_priv);
|
|
I915_WRITE(GEN6_PMINTRMSK,
|
|
gen6_rps_pm_mask(dev_priv, rps->cur_freq));
|
|
|
|
gen6_enable_rps_interrupts(dev_priv);
|
|
|
|
/* Use the user's desired frequency as a guide, but for better
|
|
* performance, jump directly to RPe as our starting frequency.
|
|
*/
|
|
freq = max(rps->cur_freq,
|
|
rps->efficient_freq);
|
|
|
|
if (intel_set_rps(dev_priv,
|
|
clamp(freq,
|
|
rps->min_freq_softlimit,
|
|
rps->max_freq_softlimit)))
|
|
DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
|
|
}
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
}
|
|
|
|
void gen6_rps_idle(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
|
|
/* Flush our bottom-half so that it does not race with us
|
|
* setting the idle frequency and so that it is bounded by
|
|
* our rpm wakeref. And then disable the interrupts to stop any
|
|
* futher RPS reclocking whilst we are asleep.
|
|
*/
|
|
gen6_disable_rps_interrupts(dev_priv);
|
|
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
if (rps->enabled) {
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
vlv_set_rps_idle(dev_priv);
|
|
else
|
|
gen6_set_rps(dev_priv, rps->idle_freq);
|
|
rps->last_adj = 0;
|
|
I915_WRITE(GEN6_PMINTRMSK,
|
|
gen6_sanitize_rps_pm_mask(dev_priv, ~0));
|
|
}
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
}
|
|
|
|
void gen6_rps_boost(struct i915_request *rq,
|
|
struct intel_rps_client *rps_client)
|
|
{
|
|
struct intel_rps *rps = &rq->i915->gt_pm.rps;
|
|
unsigned long flags;
|
|
bool boost;
|
|
|
|
/* This is intentionally racy! We peek at the state here, then
|
|
* validate inside the RPS worker.
|
|
*/
|
|
if (!rps->enabled)
|
|
return;
|
|
|
|
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
|
|
return;
|
|
|
|
/* Serializes with i915_request_retire() */
|
|
boost = false;
|
|
spin_lock_irqsave(&rq->lock, flags);
|
|
if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
|
|
boost = !atomic_fetch_inc(&rps->num_waiters);
|
|
rq->waitboost = true;
|
|
}
|
|
spin_unlock_irqrestore(&rq->lock, flags);
|
|
if (!boost)
|
|
return;
|
|
|
|
if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
|
|
schedule_work(&rps->work);
|
|
|
|
atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
|
|
}
|
|
|
|
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
int err;
|
|
|
|
lockdep_assert_held(&dev_priv->pcu_lock);
|
|
GEM_BUG_ON(val > rps->max_freq);
|
|
GEM_BUG_ON(val < rps->min_freq);
|
|
|
|
if (!rps->enabled) {
|
|
rps->cur_freq = val;
|
|
return 0;
|
|
}
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
err = valleyview_set_rps(dev_priv, val);
|
|
else
|
|
err = gen6_set_rps(dev_priv, val);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(GEN6_RC_CONTROL, 0);
|
|
I915_WRITE(GEN9_PG_ENABLE, 0);
|
|
}
|
|
|
|
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(GEN6_RP_CONTROL, 0);
|
|
}
|
|
|
|
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(GEN6_RC_CONTROL, 0);
|
|
}
|
|
|
|
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
|
|
I915_WRITE(GEN6_RP_CONTROL, 0);
|
|
}
|
|
|
|
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(GEN6_RC_CONTROL, 0);
|
|
}
|
|
|
|
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(GEN6_RP_CONTROL, 0);
|
|
}
|
|
|
|
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* We're doing forcewake before Disabling RC6,
|
|
* This what the BIOS expects when going into suspend */
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
I915_WRITE(GEN6_RC_CONTROL, 0);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(GEN6_RP_CONTROL, 0);
|
|
}
|
|
|
|
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
|
|
{
|
|
bool enable_rc6 = true;
|
|
unsigned long rc6_ctx_base;
|
|
u32 rc_ctl;
|
|
int rc_sw_target;
|
|
|
|
rc_ctl = I915_READ(GEN6_RC_CONTROL);
|
|
rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
|
|
RC_SW_TARGET_STATE_SHIFT;
|
|
DRM_DEBUG_DRIVER("BIOS enabled RC states: "
|
|
"HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
|
|
onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
|
|
onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
|
|
rc_sw_target);
|
|
|
|
if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
|
|
DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
|
|
enable_rc6 = false;
|
|
}
|
|
|
|
/*
|
|
* The exact context size is not known for BXT, so assume a page size
|
|
* for this check.
|
|
*/
|
|
rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
|
|
if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
|
|
(rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
|
|
DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
|
|
enable_rc6 = false;
|
|
}
|
|
|
|
if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
|
|
((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
|
|
((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
|
|
((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
|
|
DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
|
|
enable_rc6 = false;
|
|
}
|
|
|
|
if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
|
|
!I915_READ(GEN8_PUSHBUS_ENABLE) ||
|
|
!I915_READ(GEN8_PUSHBUS_SHIFT)) {
|
|
DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
|
|
enable_rc6 = false;
|
|
}
|
|
|
|
if (!I915_READ(GEN6_GFXPAUSE)) {
|
|
DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
|
|
enable_rc6 = false;
|
|
}
|
|
|
|
if (!I915_READ(GEN8_MISC_CTRL0)) {
|
|
DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
|
|
enable_rc6 = false;
|
|
}
|
|
|
|
return enable_rc6;
|
|
}
|
|
|
|
static bool sanitize_rc6(struct drm_i915_private *i915)
|
|
{
|
|
struct intel_device_info *info = mkwrite_device_info(i915);
|
|
|
|
/* Powersaving is controlled by the host when inside a VM */
|
|
if (intel_vgpu_active(i915))
|
|
info->has_rc6 = 0;
|
|
|
|
if (info->has_rc6 &&
|
|
IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
|
|
DRM_INFO("RC6 disabled by BIOS\n");
|
|
info->has_rc6 = 0;
|
|
}
|
|
|
|
/*
|
|
* We assume that we do not have any deep rc6 levels if we don't have
|
|
* have the previous rc6 level supported, i.e. we use HAS_RC6()
|
|
* as the initial coarse check for rc6 in general, moving on to
|
|
* progressively finer/deeper levels.
|
|
*/
|
|
if (!info->has_rc6 && info->has_rc6p)
|
|
info->has_rc6p = 0;
|
|
|
|
return info->has_rc6;
|
|
}
|
|
|
|
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
|
|
/* All of these values are in units of 50MHz */
|
|
|
|
/* static values from HW: RP0 > RP1 > RPn (min_freq) */
|
|
if (IS_GEN9_LP(dev_priv)) {
|
|
u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
|
|
rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
|
|
rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
|
|
rps->min_freq = (rp_state_cap >> 0) & 0xff;
|
|
} else {
|
|
u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
|
|
rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
|
|
rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
|
|
rps->min_freq = (rp_state_cap >> 16) & 0xff;
|
|
}
|
|
/* hw_max = RP0 until we check for overclocking */
|
|
rps->max_freq = rps->rp0_freq;
|
|
|
|
rps->efficient_freq = rps->rp1_freq;
|
|
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
|
|
IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
|
|
u32 ddcc_status = 0;
|
|
|
|
if (sandybridge_pcode_read(dev_priv,
|
|
HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
|
|
&ddcc_status) == 0)
|
|
rps->efficient_freq =
|
|
clamp_t(u8,
|
|
((ddcc_status >> 8) & 0xff),
|
|
rps->min_freq,
|
|
rps->max_freq);
|
|
}
|
|
|
|
if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
|
|
/* Store the frequency values in 16.66 MHZ units, which is
|
|
* the natural hardware unit for SKL
|
|
*/
|
|
rps->rp0_freq *= GEN9_FREQ_SCALER;
|
|
rps->rp1_freq *= GEN9_FREQ_SCALER;
|
|
rps->min_freq *= GEN9_FREQ_SCALER;
|
|
rps->max_freq *= GEN9_FREQ_SCALER;
|
|
rps->efficient_freq *= GEN9_FREQ_SCALER;
|
|
}
|
|
}
|
|
|
|
static void reset_rps(struct drm_i915_private *dev_priv,
|
|
int (*set)(struct drm_i915_private *, u8))
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
u8 freq = rps->cur_freq;
|
|
|
|
/* force a reset */
|
|
rps->power.mode = -1;
|
|
rps->cur_freq = -1;
|
|
|
|
if (set(dev_priv, freq))
|
|
DRM_ERROR("Failed to reset RPS to initial values\n");
|
|
}
|
|
|
|
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
|
|
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
|
|
{
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/* Program defaults and thresholds for RPS */
|
|
if (IS_GEN9(dev_priv))
|
|
I915_WRITE(GEN6_RC_VIDEO_FREQ,
|
|
GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
|
|
|
|
/* 1 second timeout*/
|
|
I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
|
|
GT_INTERVAL_FROM_US(dev_priv, 1000000));
|
|
|
|
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
|
|
|
|
/* Leaning on the below call to gen6_set_rps to program/setup the
|
|
* Up/Down EI & threshold registers, as well as the RP_CONTROL,
|
|
* RP_INTERRUPT_LIMITS & RPNSWREQ registers */
|
|
reset_rps(dev_priv, gen6_set_rps);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
u32 rc6_mode;
|
|
|
|
/* 1a: Software RC state - RC0 */
|
|
I915_WRITE(GEN6_RC_STATE, 0);
|
|
|
|
/* 1b: Get forcewake during program sequence. Although the driver
|
|
* hasn't enabled a state yet where we need forcewake, BIOS may have.*/
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/* 2a: Disable RC states. */
|
|
I915_WRITE(GEN6_RC_CONTROL, 0);
|
|
|
|
/* 2b: Program RC6 thresholds.*/
|
|
if (INTEL_GEN(dev_priv) >= 10) {
|
|
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
|
|
I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
|
|
} else if (IS_SKYLAKE(dev_priv)) {
|
|
/*
|
|
* WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
|
|
* when CPG is enabled
|
|
*/
|
|
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
|
|
} else {
|
|
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
|
|
}
|
|
|
|
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
|
|
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
|
|
for_each_engine(engine, dev_priv, id)
|
|
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
|
|
|
|
if (HAS_GUC(dev_priv))
|
|
I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
|
|
|
|
I915_WRITE(GEN6_RC_SLEEP, 0);
|
|
|
|
/*
|
|
* 2c: Program Coarse Power Gating Policies.
|
|
*
|
|
* Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
|
|
* use instead is a more conservative estimate for the maximum time
|
|
* it takes us to service a CS interrupt and submit a new ELSP - that
|
|
* is the time which the GPU is idle waiting for the CPU to select the
|
|
* next request to execute. If the idle hysteresis is less than that
|
|
* interrupt service latency, the hardware will automatically gate
|
|
* the power well and we will then incur the wake up cost on top of
|
|
* the service latency. A similar guide from intel_pstate is that we
|
|
* do not want the enable hysteresis to less than the wakeup latency.
|
|
*
|
|
* igt/gem_exec_nop/sequential provides a rough estimate for the
|
|
* service latency, and puts it around 10us for Broadwell (and other
|
|
* big core) and around 40us for Broxton (and other low power cores).
|
|
* [Note that for legacy ringbuffer submission, this is less than 1us!]
|
|
* However, the wakeup latency on Broxton is closer to 100us. To be
|
|
* conservative, we have to factor in a context switch on top (due
|
|
* to ksoftirqd).
|
|
*/
|
|
I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
|
|
I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
|
|
|
|
/* 3a: Enable RC6 */
|
|
I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
|
|
|
|
/* WaRsUseTimeoutMode:cnl (pre-prod) */
|
|
if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
|
|
rc6_mode = GEN7_RC_CTL_TO_MODE;
|
|
else
|
|
rc6_mode = GEN6_RC_CTL_EI_MODE(1);
|
|
|
|
I915_WRITE(GEN6_RC_CONTROL,
|
|
GEN6_RC_CTL_HW_ENABLE |
|
|
GEN6_RC_CTL_RC6_ENABLE |
|
|
rc6_mode);
|
|
|
|
/*
|
|
* 3b: Enable Coarse Power Gating only when RC6 is enabled.
|
|
* WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
|
|
*/
|
|
if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
|
|
I915_WRITE(GEN9_PG_ENABLE, 0);
|
|
else
|
|
I915_WRITE(GEN9_PG_ENABLE,
|
|
GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
/* 1a: Software RC state - RC0 */
|
|
I915_WRITE(GEN6_RC_STATE, 0);
|
|
|
|
/* 1b: Get forcewake during program sequence. Although the driver
|
|
* hasn't enabled a state yet where we need forcewake, BIOS may have.*/
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/* 2a: Disable RC states. */
|
|
I915_WRITE(GEN6_RC_CONTROL, 0);
|
|
|
|
/* 2b: Program RC6 thresholds.*/
|
|
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
|
|
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
|
|
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
|
|
for_each_engine(engine, dev_priv, id)
|
|
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
|
|
I915_WRITE(GEN6_RC_SLEEP, 0);
|
|
I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
|
|
|
|
/* 3: Enable RC6 */
|
|
|
|
I915_WRITE(GEN6_RC_CONTROL,
|
|
GEN6_RC_CTL_HW_ENABLE |
|
|
GEN7_RC_CTL_TO_MODE |
|
|
GEN6_RC_CTL_RC6_ENABLE);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/* 1 Program defaults and thresholds for RPS*/
|
|
I915_WRITE(GEN6_RPNSWREQ,
|
|
HSW_FREQUENCY(rps->rp1_freq));
|
|
I915_WRITE(GEN6_RC_VIDEO_FREQ,
|
|
HSW_FREQUENCY(rps->rp1_freq));
|
|
/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
|
|
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
|
|
|
|
/* Docs recommend 900MHz, and 300 MHz respectively */
|
|
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
|
|
rps->max_freq_softlimit << 24 |
|
|
rps->min_freq_softlimit << 16);
|
|
|
|
I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
|
|
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
|
|
I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
|
|
I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
|
|
|
|
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
|
|
|
|
/* 2: Enable RPS */
|
|
I915_WRITE(GEN6_RP_CONTROL,
|
|
GEN6_RP_MEDIA_TURBO |
|
|
GEN6_RP_MEDIA_HW_NORMAL_MODE |
|
|
GEN6_RP_MEDIA_IS_GFX |
|
|
GEN6_RP_ENABLE |
|
|
GEN6_RP_UP_BUSY_AVG |
|
|
GEN6_RP_DOWN_IDLE_AVG);
|
|
|
|
reset_rps(dev_priv, gen6_set_rps);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
u32 rc6vids, rc6_mask;
|
|
u32 gtfifodbg;
|
|
int ret;
|
|
|
|
I915_WRITE(GEN6_RC_STATE, 0);
|
|
|
|
/* Clear the DBG now so we don't confuse earlier errors */
|
|
gtfifodbg = I915_READ(GTFIFODBG);
|
|
if (gtfifodbg) {
|
|
DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
|
|
I915_WRITE(GTFIFODBG, gtfifodbg);
|
|
}
|
|
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/* disable the counters and set deterministic thresholds */
|
|
I915_WRITE(GEN6_RC_CONTROL, 0);
|
|
|
|
I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
|
|
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
|
|
I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
|
|
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
|
|
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
|
|
|
|
for_each_engine(engine, dev_priv, id)
|
|
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
|
|
|
|
I915_WRITE(GEN6_RC_SLEEP, 0);
|
|
I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
|
|
if (IS_IVYBRIDGE(dev_priv))
|
|
I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
|
|
else
|
|
I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
|
|
I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
|
|
I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
|
|
|
|
/* We don't use those on Haswell */
|
|
rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
|
|
if (HAS_RC6p(dev_priv))
|
|
rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
|
|
if (HAS_RC6pp(dev_priv))
|
|
rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
|
|
I915_WRITE(GEN6_RC_CONTROL,
|
|
rc6_mask |
|
|
GEN6_RC_CTL_EI_MODE(1) |
|
|
GEN6_RC_CTL_HW_ENABLE);
|
|
|
|
rc6vids = 0;
|
|
ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
|
|
if (IS_GEN6(dev_priv) && ret) {
|
|
DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
|
|
} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
|
|
DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
|
|
GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
|
|
rc6vids &= 0xffff00;
|
|
rc6vids |= GEN6_ENCODE_RC6_VID(450);
|
|
ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
|
|
if (ret)
|
|
DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
|
|
}
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* Here begins a magic sequence of register writes to enable
|
|
* auto-downclocking.
|
|
*
|
|
* Perhaps there might be some value in exposing these to
|
|
* userspace...
|
|
*/
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/* Power down if completely idle for over 50ms */
|
|
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
|
|
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
|
|
|
|
reset_rps(dev_priv, gen6_set_rps);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
const int min_freq = 15;
|
|
const int scaling_factor = 180;
|
|
unsigned int gpu_freq;
|
|
unsigned int max_ia_freq, min_ring_freq;
|
|
unsigned int max_gpu_freq, min_gpu_freq;
|
|
struct cpufreq_policy *policy;
|
|
|
|
WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
|
|
|
|
if (rps->max_freq <= rps->min_freq)
|
|
return;
|
|
|
|
policy = cpufreq_cpu_get(0);
|
|
if (policy) {
|
|
max_ia_freq = policy->cpuinfo.max_freq;
|
|
cpufreq_cpu_put(policy);
|
|
} else {
|
|
/*
|
|
* Default to measured freq if none found, PCU will ensure we
|
|
* don't go over
|
|
*/
|
|
max_ia_freq = tsc_khz;
|
|
}
|
|
|
|
/* Convert from kHz to MHz */
|
|
max_ia_freq /= 1000;
|
|
|
|
min_ring_freq = I915_READ(DCLK) & 0xf;
|
|
/* convert DDR frequency from units of 266.6MHz to bandwidth */
|
|
min_ring_freq = mult_frac(min_ring_freq, 8, 3);
|
|
|
|
min_gpu_freq = rps->min_freq;
|
|
max_gpu_freq = rps->max_freq;
|
|
if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
|
|
/* Convert GT frequency to 50 HZ units */
|
|
min_gpu_freq /= GEN9_FREQ_SCALER;
|
|
max_gpu_freq /= GEN9_FREQ_SCALER;
|
|
}
|
|
|
|
/*
|
|
* For each potential GPU frequency, load a ring frequency we'd like
|
|
* to use for memory access. We do this by specifying the IA frequency
|
|
* the PCU should use as a reference to determine the ring frequency.
|
|
*/
|
|
for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
|
|
const int diff = max_gpu_freq - gpu_freq;
|
|
unsigned int ia_freq = 0, ring_freq = 0;
|
|
|
|
if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
|
|
/*
|
|
* ring_freq = 2 * GT. ring_freq is in 100MHz units
|
|
* No floor required for ring frequency on SKL.
|
|
*/
|
|
ring_freq = gpu_freq;
|
|
} else if (INTEL_GEN(dev_priv) >= 8) {
|
|
/* max(2 * GT, DDR). NB: GT is 50MHz units */
|
|
ring_freq = max(min_ring_freq, gpu_freq);
|
|
} else if (IS_HASWELL(dev_priv)) {
|
|
ring_freq = mult_frac(gpu_freq, 5, 4);
|
|
ring_freq = max(min_ring_freq, ring_freq);
|
|
/* leave ia_freq as the default, chosen by cpufreq */
|
|
} else {
|
|
/* On older processors, there is no separate ring
|
|
* clock domain, so in order to boost the bandwidth
|
|
* of the ring, we need to upclock the CPU (ia_freq).
|
|
*
|
|
* For GPU frequencies less than 750MHz,
|
|
* just use the lowest ring freq.
|
|
*/
|
|
if (gpu_freq < min_freq)
|
|
ia_freq = 800;
|
|
else
|
|
ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
|
|
ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
|
|
}
|
|
|
|
sandybridge_pcode_write(dev_priv,
|
|
GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
|
|
ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
|
|
ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
|
|
gpu_freq);
|
|
}
|
|
}
|
|
|
|
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val, rp0;
|
|
|
|
val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
|
|
|
|
switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
|
|
case 8:
|
|
/* (2 * 4) config */
|
|
rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
|
|
break;
|
|
case 12:
|
|
/* (2 * 6) config */
|
|
rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
|
|
break;
|
|
case 16:
|
|
/* (2 * 8) config */
|
|
default:
|
|
/* Setting (2 * 8) Min RP0 for any other combination */
|
|
rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
|
|
break;
|
|
}
|
|
|
|
rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
|
|
|
|
return rp0;
|
|
}
|
|
|
|
static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val, rpe;
|
|
|
|
val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
|
|
rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
|
|
|
|
return rpe;
|
|
}
|
|
|
|
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val, rp1;
|
|
|
|
val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
|
|
rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
|
|
|
|
return rp1;
|
|
}
|
|
|
|
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val, rpn;
|
|
|
|
val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
|
|
rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
|
|
FB_GFX_FREQ_FUSE_MASK);
|
|
|
|
return rpn;
|
|
}
|
|
|
|
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val, rp1;
|
|
|
|
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
|
|
|
|
rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
|
|
|
|
return rp1;
|
|
}
|
|
|
|
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val, rp0;
|
|
|
|
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
|
|
|
|
rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
|
|
/* Clamp to max */
|
|
rp0 = min_t(u32, rp0, 0xea);
|
|
|
|
return rp0;
|
|
}
|
|
|
|
static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val, rpe;
|
|
|
|
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
|
|
rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
|
|
val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
|
|
rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
|
|
|
|
return rpe;
|
|
}
|
|
|
|
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
|
|
/*
|
|
* According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
|
|
* for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
|
|
* a BYT-M B0 the above register contains 0xbf. Moreover when setting
|
|
* a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
|
|
* to make sure it matches what Punit accepts.
|
|
*/
|
|
return max_t(u32, val, 0xc0);
|
|
}
|
|
|
|
/* Check that the pctx buffer wasn't move under us. */
|
|
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
|
|
{
|
|
unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
|
|
|
|
WARN_ON(pctx_addr != dev_priv->dsm.start +
|
|
dev_priv->vlv_pctx->stolen->start);
|
|
}
|
|
|
|
|
|
/* Check that the pcbr address is not empty. */
|
|
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
|
|
{
|
|
unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
|
|
|
|
WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
|
|
}
|
|
|
|
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
|
|
{
|
|
resource_size_t pctx_paddr, paddr;
|
|
resource_size_t pctx_size = 32*1024;
|
|
u32 pcbr;
|
|
|
|
pcbr = I915_READ(VLV_PCBR);
|
|
if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
|
|
DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
|
|
paddr = dev_priv->dsm.end + 1 - pctx_size;
|
|
GEM_BUG_ON(paddr > U32_MAX);
|
|
|
|
pctx_paddr = (paddr & (~4095));
|
|
I915_WRITE(VLV_PCBR, pctx_paddr);
|
|
}
|
|
|
|
DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
|
|
}
|
|
|
|
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_i915_gem_object *pctx;
|
|
resource_size_t pctx_paddr;
|
|
resource_size_t pctx_size = 24*1024;
|
|
u32 pcbr;
|
|
|
|
pcbr = I915_READ(VLV_PCBR);
|
|
if (pcbr) {
|
|
/* BIOS set it up already, grab the pre-alloc'd space */
|
|
resource_size_t pcbr_offset;
|
|
|
|
pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
|
|
pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
|
|
pcbr_offset,
|
|
I915_GTT_OFFSET_NONE,
|
|
pctx_size);
|
|
goto out;
|
|
}
|
|
|
|
DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
|
|
|
|
/*
|
|
* From the Gunit register HAS:
|
|
* The Gfx driver is expected to program this register and ensure
|
|
* proper allocation within Gfx stolen memory. For example, this
|
|
* register should be programmed such than the PCBR range does not
|
|
* overlap with other ranges, such as the frame buffer, protected
|
|
* memory, or any other relevant ranges.
|
|
*/
|
|
pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
|
|
if (!pctx) {
|
|
DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
|
|
goto out;
|
|
}
|
|
|
|
GEM_BUG_ON(range_overflows_t(u64,
|
|
dev_priv->dsm.start,
|
|
pctx->stolen->start,
|
|
U32_MAX));
|
|
pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
|
|
I915_WRITE(VLV_PCBR, pctx_paddr);
|
|
|
|
out:
|
|
DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
|
|
dev_priv->vlv_pctx = pctx;
|
|
}
|
|
|
|
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_i915_gem_object *pctx;
|
|
|
|
pctx = fetch_and_zero(&dev_priv->vlv_pctx);
|
|
if (pctx)
|
|
i915_gem_object_put(pctx);
|
|
}
|
|
|
|
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
|
|
{
|
|
dev_priv->gt_pm.rps.gpll_ref_freq =
|
|
vlv_get_cck_clock(dev_priv, "GPLL ref",
|
|
CCK_GPLL_CLOCK_CONTROL,
|
|
dev_priv->czclk_freq);
|
|
|
|
DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
|
|
dev_priv->gt_pm.rps.gpll_ref_freq);
|
|
}
|
|
|
|
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
u32 val;
|
|
|
|
valleyview_setup_pctx(dev_priv);
|
|
|
|
vlv_init_gpll_ref_freq(dev_priv);
|
|
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
|
|
switch ((val >> 6) & 3) {
|
|
case 0:
|
|
case 1:
|
|
dev_priv->mem_freq = 800;
|
|
break;
|
|
case 2:
|
|
dev_priv->mem_freq = 1066;
|
|
break;
|
|
case 3:
|
|
dev_priv->mem_freq = 1333;
|
|
break;
|
|
}
|
|
DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
|
|
|
|
rps->max_freq = valleyview_rps_max_freq(dev_priv);
|
|
rps->rp0_freq = rps->max_freq;
|
|
DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(dev_priv, rps->max_freq),
|
|
rps->max_freq);
|
|
|
|
rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
|
|
DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(dev_priv, rps->efficient_freq),
|
|
rps->efficient_freq);
|
|
|
|
rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
|
|
DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(dev_priv, rps->rp1_freq),
|
|
rps->rp1_freq);
|
|
|
|
rps->min_freq = valleyview_rps_min_freq(dev_priv);
|
|
DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(dev_priv, rps->min_freq),
|
|
rps->min_freq);
|
|
}
|
|
|
|
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
u32 val;
|
|
|
|
cherryview_setup_pctx(dev_priv);
|
|
|
|
vlv_init_gpll_ref_freq(dev_priv);
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
switch ((val >> 2) & 0x7) {
|
|
case 3:
|
|
dev_priv->mem_freq = 2000;
|
|
break;
|
|
default:
|
|
dev_priv->mem_freq = 1600;
|
|
break;
|
|
}
|
|
DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
|
|
|
|
rps->max_freq = cherryview_rps_max_freq(dev_priv);
|
|
rps->rp0_freq = rps->max_freq;
|
|
DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(dev_priv, rps->max_freq),
|
|
rps->max_freq);
|
|
|
|
rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
|
|
DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(dev_priv, rps->efficient_freq),
|
|
rps->efficient_freq);
|
|
|
|
rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
|
|
DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(dev_priv, rps->rp1_freq),
|
|
rps->rp1_freq);
|
|
|
|
rps->min_freq = cherryview_rps_min_freq(dev_priv);
|
|
DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(dev_priv, rps->min_freq),
|
|
rps->min_freq);
|
|
|
|
WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
|
|
rps->min_freq) & 1,
|
|
"Odd GPU freq values\n");
|
|
}
|
|
|
|
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
|
|
{
|
|
valleyview_cleanup_pctx(dev_priv);
|
|
}
|
|
|
|
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
u32 gtfifodbg, rc6_mode, pcbr;
|
|
|
|
gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
|
|
GT_FIFO_FREE_ENTRIES_CHV);
|
|
if (gtfifodbg) {
|
|
DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
|
|
gtfifodbg);
|
|
I915_WRITE(GTFIFODBG, gtfifodbg);
|
|
}
|
|
|
|
cherryview_check_pctx(dev_priv);
|
|
|
|
/* 1a & 1b: Get forcewake during program sequence. Although the driver
|
|
* hasn't enabled a state yet where we need forcewake, BIOS may have.*/
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/* Disable RC states. */
|
|
I915_WRITE(GEN6_RC_CONTROL, 0);
|
|
|
|
/* 2a: Program RC6 thresholds.*/
|
|
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
|
|
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
|
|
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
|
|
|
|
for_each_engine(engine, dev_priv, id)
|
|
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
|
|
I915_WRITE(GEN6_RC_SLEEP, 0);
|
|
|
|
/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
|
|
I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
|
|
|
|
/* Allows RC6 residency counter to work */
|
|
I915_WRITE(VLV_COUNTER_CONTROL,
|
|
_MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
|
|
VLV_MEDIA_RC6_COUNT_EN |
|
|
VLV_RENDER_RC6_COUNT_EN));
|
|
|
|
/* For now we assume BIOS is allocating and populating the PCBR */
|
|
pcbr = I915_READ(VLV_PCBR);
|
|
|
|
/* 3: Enable RC6 */
|
|
rc6_mode = 0;
|
|
if (pcbr >> VLV_PCBR_ADDR_SHIFT)
|
|
rc6_mode = GEN7_RC_CTL_TO_MODE;
|
|
I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/* 1: Program defaults and thresholds for RPS*/
|
|
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
|
|
I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
|
|
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
|
|
I915_WRITE(GEN6_RP_UP_EI, 66000);
|
|
I915_WRITE(GEN6_RP_DOWN_EI, 350000);
|
|
|
|
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
|
|
|
|
/* 2: Enable RPS */
|
|
I915_WRITE(GEN6_RP_CONTROL,
|
|
GEN6_RP_MEDIA_HW_NORMAL_MODE |
|
|
GEN6_RP_MEDIA_IS_GFX |
|
|
GEN6_RP_ENABLE |
|
|
GEN6_RP_UP_BUSY_AVG |
|
|
GEN6_RP_DOWN_IDLE_AVG);
|
|
|
|
/* Setting Fixed Bias */
|
|
val = VLV_OVERRIDE_EN |
|
|
VLV_SOC_TDP_EN |
|
|
CHV_BIAS_CPU_50_SOC_50;
|
|
vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
|
|
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
|
|
|
|
/* RPS code assumes GPLL is used */
|
|
WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
|
|
|
|
DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
|
|
DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
|
|
|
|
reset_rps(dev_priv, valleyview_set_rps);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
u32 gtfifodbg;
|
|
|
|
valleyview_check_pctx(dev_priv);
|
|
|
|
gtfifodbg = I915_READ(GTFIFODBG);
|
|
if (gtfifodbg) {
|
|
DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
|
|
gtfifodbg);
|
|
I915_WRITE(GTFIFODBG, gtfifodbg);
|
|
}
|
|
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
/* Disable RC states. */
|
|
I915_WRITE(GEN6_RC_CONTROL, 0);
|
|
|
|
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
|
|
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
|
|
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
|
|
|
|
for_each_engine(engine, dev_priv, id)
|
|
I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
|
|
|
|
I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
|
|
|
|
/* Allows RC6 residency counter to work */
|
|
I915_WRITE(VLV_COUNTER_CONTROL,
|
|
_MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
|
|
VLV_MEDIA_RC0_COUNT_EN |
|
|
VLV_RENDER_RC0_COUNT_EN |
|
|
VLV_MEDIA_RC6_COUNT_EN |
|
|
VLV_RENDER_RC6_COUNT_EN));
|
|
|
|
I915_WRITE(GEN6_RC_CONTROL,
|
|
GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
|
|
I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
|
|
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
|
|
I915_WRITE(GEN6_RP_UP_EI, 66000);
|
|
I915_WRITE(GEN6_RP_DOWN_EI, 350000);
|
|
|
|
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
|
|
|
|
I915_WRITE(GEN6_RP_CONTROL,
|
|
GEN6_RP_MEDIA_TURBO |
|
|
GEN6_RP_MEDIA_HW_NORMAL_MODE |
|
|
GEN6_RP_MEDIA_IS_GFX |
|
|
GEN6_RP_ENABLE |
|
|
GEN6_RP_UP_BUSY_AVG |
|
|
GEN6_RP_DOWN_IDLE_CONT);
|
|
|
|
/* Setting Fixed Bias */
|
|
val = VLV_OVERRIDE_EN |
|
|
VLV_SOC_TDP_EN |
|
|
VLV_BIAS_CPU_125_SOC_875;
|
|
vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
|
|
|
|
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
|
|
|
|
/* RPS code assumes GPLL is used */
|
|
WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
|
|
|
|
DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
|
|
DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
|
|
|
|
reset_rps(dev_priv, valleyview_set_rps);
|
|
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static unsigned long intel_pxfreq(u32 vidfreq)
|
|
{
|
|
unsigned long freq;
|
|
int div = (vidfreq & 0x3f0000) >> 16;
|
|
int post = (vidfreq & 0x3000) >> 12;
|
|
int pre = (vidfreq & 0x7);
|
|
|
|
if (!pre)
|
|
return 0;
|
|
|
|
freq = ((div * 133333) / ((1<<post) * pre));
|
|
|
|
return freq;
|
|
}
|
|
|
|
static const struct cparams {
|
|
u16 i;
|
|
u16 t;
|
|
u16 m;
|
|
u16 c;
|
|
} cparams[] = {
|
|
{ 1, 1333, 301, 28664 },
|
|
{ 1, 1066, 294, 24460 },
|
|
{ 1, 800, 294, 25192 },
|
|
{ 0, 1333, 276, 27605 },
|
|
{ 0, 1066, 276, 27605 },
|
|
{ 0, 800, 231, 23784 },
|
|
};
|
|
|
|
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
|
|
{
|
|
u64 total_count, diff, ret;
|
|
u32 count1, count2, count3, m = 0, c = 0;
|
|
unsigned long now = jiffies_to_msecs(jiffies), diff1;
|
|
int i;
|
|
|
|
lockdep_assert_held(&mchdev_lock);
|
|
|
|
diff1 = now - dev_priv->ips.last_time1;
|
|
|
|
/* Prevent division-by-zero if we are asking too fast.
|
|
* Also, we don't get interesting results if we are polling
|
|
* faster than once in 10ms, so just return the saved value
|
|
* in such cases.
|
|
*/
|
|
if (diff1 <= 10)
|
|
return dev_priv->ips.chipset_power;
|
|
|
|
count1 = I915_READ(DMIEC);
|
|
count2 = I915_READ(DDREC);
|
|
count3 = I915_READ(CSIEC);
|
|
|
|
total_count = count1 + count2 + count3;
|
|
|
|
/* FIXME: handle per-counter overflow */
|
|
if (total_count < dev_priv->ips.last_count1) {
|
|
diff = ~0UL - dev_priv->ips.last_count1;
|
|
diff += total_count;
|
|
} else {
|
|
diff = total_count - dev_priv->ips.last_count1;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cparams); i++) {
|
|
if (cparams[i].i == dev_priv->ips.c_m &&
|
|
cparams[i].t == dev_priv->ips.r_t) {
|
|
m = cparams[i].m;
|
|
c = cparams[i].c;
|
|
break;
|
|
}
|
|
}
|
|
|
|
diff = div_u64(diff, diff1);
|
|
ret = ((m * diff) + c);
|
|
ret = div_u64(ret, 10);
|
|
|
|
dev_priv->ips.last_count1 = total_count;
|
|
dev_priv->ips.last_time1 = now;
|
|
|
|
dev_priv->ips.chipset_power = ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
|
|
{
|
|
unsigned long val;
|
|
|
|
if (!IS_GEN5(dev_priv))
|
|
return 0;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
|
|
val = __i915_chipset_val(dev_priv);
|
|
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
return val;
|
|
}
|
|
|
|
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
|
|
{
|
|
unsigned long m, x, b;
|
|
u32 tsfs;
|
|
|
|
tsfs = I915_READ(TSFS);
|
|
|
|
m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
|
|
x = I915_READ8(TR1);
|
|
|
|
b = tsfs & TSFS_INTR_MASK;
|
|
|
|
return ((m * x) / 127) - b;
|
|
}
|
|
|
|
static int _pxvid_to_vd(u8 pxvid)
|
|
{
|
|
if (pxvid == 0)
|
|
return 0;
|
|
|
|
if (pxvid >= 8 && pxvid < 31)
|
|
pxvid = 31;
|
|
|
|
return (pxvid + 2) * 125;
|
|
}
|
|
|
|
static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
|
|
{
|
|
const int vd = _pxvid_to_vd(pxvid);
|
|
const int vm = vd - 1125;
|
|
|
|
if (INTEL_INFO(dev_priv)->is_mobile)
|
|
return vm > 0 ? vm : 0;
|
|
|
|
return vd;
|
|
}
|
|
|
|
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
|
|
{
|
|
u64 now, diff, diffms;
|
|
u32 count;
|
|
|
|
lockdep_assert_held(&mchdev_lock);
|
|
|
|
now = ktime_get_raw_ns();
|
|
diffms = now - dev_priv->ips.last_time2;
|
|
do_div(diffms, NSEC_PER_MSEC);
|
|
|
|
/* Don't divide by 0 */
|
|
if (!diffms)
|
|
return;
|
|
|
|
count = I915_READ(GFXEC);
|
|
|
|
if (count < dev_priv->ips.last_count2) {
|
|
diff = ~0UL - dev_priv->ips.last_count2;
|
|
diff += count;
|
|
} else {
|
|
diff = count - dev_priv->ips.last_count2;
|
|
}
|
|
|
|
dev_priv->ips.last_count2 = count;
|
|
dev_priv->ips.last_time2 = now;
|
|
|
|
/* More magic constants... */
|
|
diff = diff * 1181;
|
|
diff = div_u64(diff, diffms * 10);
|
|
dev_priv->ips.gfx_power = diff;
|
|
}
|
|
|
|
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (!IS_GEN5(dev_priv))
|
|
return;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
|
|
__i915_update_gfx_val(dev_priv);
|
|
|
|
spin_unlock_irq(&mchdev_lock);
|
|
}
|
|
|
|
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
|
|
{
|
|
unsigned long t, corr, state1, corr2, state2;
|
|
u32 pxvid, ext_v;
|
|
|
|
lockdep_assert_held(&mchdev_lock);
|
|
|
|
pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
|
|
pxvid = (pxvid >> 24) & 0x7f;
|
|
ext_v = pvid_to_extvid(dev_priv, pxvid);
|
|
|
|
state1 = ext_v;
|
|
|
|
t = i915_mch_val(dev_priv);
|
|
|
|
/* Revel in the empirically derived constants */
|
|
|
|
/* Correction factor in 1/100000 units */
|
|
if (t > 80)
|
|
corr = ((t * 2349) + 135940);
|
|
else if (t >= 50)
|
|
corr = ((t * 964) + 29317);
|
|
else /* < 50 */
|
|
corr = ((t * 301) + 1004);
|
|
|
|
corr = corr * ((150142 * state1) / 10000 - 78642);
|
|
corr /= 100000;
|
|
corr2 = (corr * dev_priv->ips.corr);
|
|
|
|
state2 = (corr2 * state1) / 10000;
|
|
state2 /= 100; /* convert to mW */
|
|
|
|
__i915_update_gfx_val(dev_priv);
|
|
|
|
return dev_priv->ips.gfx_power + state2;
|
|
}
|
|
|
|
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
|
|
{
|
|
unsigned long val;
|
|
|
|
if (!IS_GEN5(dev_priv))
|
|
return 0;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
|
|
val = __i915_gfx_val(dev_priv);
|
|
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* i915_read_mch_val - return value for IPS use
|
|
*
|
|
* Calculate and return a value for the IPS driver to use when deciding whether
|
|
* we have thermal and power headroom to increase CPU or GPU power budget.
|
|
*/
|
|
unsigned long i915_read_mch_val(void)
|
|
{
|
|
struct drm_i915_private *dev_priv;
|
|
unsigned long chipset_val, graphics_val, ret = 0;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
if (!i915_mch_dev)
|
|
goto out_unlock;
|
|
dev_priv = i915_mch_dev;
|
|
|
|
chipset_val = __i915_chipset_val(dev_priv);
|
|
graphics_val = __i915_gfx_val(dev_priv);
|
|
|
|
ret = chipset_val + graphics_val;
|
|
|
|
out_unlock:
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i915_read_mch_val);
|
|
|
|
/**
|
|
* i915_gpu_raise - raise GPU frequency limit
|
|
*
|
|
* Raise the limit; IPS indicates we have thermal headroom.
|
|
*/
|
|
bool i915_gpu_raise(void)
|
|
{
|
|
struct drm_i915_private *dev_priv;
|
|
bool ret = true;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
if (!i915_mch_dev) {
|
|
ret = false;
|
|
goto out_unlock;
|
|
}
|
|
dev_priv = i915_mch_dev;
|
|
|
|
if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
|
|
dev_priv->ips.max_delay--;
|
|
|
|
out_unlock:
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i915_gpu_raise);
|
|
|
|
/**
|
|
* i915_gpu_lower - lower GPU frequency limit
|
|
*
|
|
* IPS indicates we're close to a thermal limit, so throttle back the GPU
|
|
* frequency maximum.
|
|
*/
|
|
bool i915_gpu_lower(void)
|
|
{
|
|
struct drm_i915_private *dev_priv;
|
|
bool ret = true;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
if (!i915_mch_dev) {
|
|
ret = false;
|
|
goto out_unlock;
|
|
}
|
|
dev_priv = i915_mch_dev;
|
|
|
|
if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
|
|
dev_priv->ips.max_delay++;
|
|
|
|
out_unlock:
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i915_gpu_lower);
|
|
|
|
/**
|
|
* i915_gpu_busy - indicate GPU business to IPS
|
|
*
|
|
* Tell the IPS driver whether or not the GPU is busy.
|
|
*/
|
|
bool i915_gpu_busy(void)
|
|
{
|
|
bool ret = false;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
if (i915_mch_dev)
|
|
ret = i915_mch_dev->gt.awake;
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i915_gpu_busy);
|
|
|
|
/**
|
|
* i915_gpu_turbo_disable - disable graphics turbo
|
|
*
|
|
* Disable graphics turbo by resetting the max frequency and setting the
|
|
* current frequency to the default.
|
|
*/
|
|
bool i915_gpu_turbo_disable(void)
|
|
{
|
|
struct drm_i915_private *dev_priv;
|
|
bool ret = true;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
if (!i915_mch_dev) {
|
|
ret = false;
|
|
goto out_unlock;
|
|
}
|
|
dev_priv = i915_mch_dev;
|
|
|
|
dev_priv->ips.max_delay = dev_priv->ips.fstart;
|
|
|
|
if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
|
|
ret = false;
|
|
|
|
out_unlock:
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
|
|
|
|
/**
|
|
* Tells the intel_ips driver that the i915 driver is now loaded, if
|
|
* IPS got loaded first.
|
|
*
|
|
* This awkward dance is so that neither module has to depend on the
|
|
* other in order for IPS to do the appropriate communication of
|
|
* GPU turbo limits to i915.
|
|
*/
|
|
static void
|
|
ips_ping_for_i915_load(void)
|
|
{
|
|
void (*link)(void);
|
|
|
|
link = symbol_get(ips_link_to_i915_driver);
|
|
if (link) {
|
|
link();
|
|
symbol_put(ips_link_to_i915_driver);
|
|
}
|
|
}
|
|
|
|
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* We only register the i915 ips part with intel-ips once everything is
|
|
* set up, to avoid intel-ips sneaking in and reading bogus values. */
|
|
spin_lock_irq(&mchdev_lock);
|
|
i915_mch_dev = dev_priv;
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
ips_ping_for_i915_load();
|
|
}
|
|
|
|
void intel_gpu_ips_teardown(void)
|
|
{
|
|
spin_lock_irq(&mchdev_lock);
|
|
i915_mch_dev = NULL;
|
|
spin_unlock_irq(&mchdev_lock);
|
|
}
|
|
|
|
static void intel_init_emon(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 lcfuse;
|
|
u8 pxw[16];
|
|
int i;
|
|
|
|
/* Disable to program */
|
|
I915_WRITE(ECR, 0);
|
|
POSTING_READ(ECR);
|
|
|
|
/* Program energy weights for various events */
|
|
I915_WRITE(SDEW, 0x15040d00);
|
|
I915_WRITE(CSIEW0, 0x007f0000);
|
|
I915_WRITE(CSIEW1, 0x1e220004);
|
|
I915_WRITE(CSIEW2, 0x04000004);
|
|
|
|
for (i = 0; i < 5; i++)
|
|
I915_WRITE(PEW(i), 0);
|
|
for (i = 0; i < 3; i++)
|
|
I915_WRITE(DEW(i), 0);
|
|
|
|
/* Program P-state weights to account for frequency power adjustment */
|
|
for (i = 0; i < 16; i++) {
|
|
u32 pxvidfreq = I915_READ(PXVFREQ(i));
|
|
unsigned long freq = intel_pxfreq(pxvidfreq);
|
|
unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
|
|
PXVFREQ_PX_SHIFT;
|
|
unsigned long val;
|
|
|
|
val = vid * vid;
|
|
val *= (freq / 1000);
|
|
val *= 255;
|
|
val /= (127*127*900);
|
|
if (val > 0xff)
|
|
DRM_ERROR("bad pxval: %ld\n", val);
|
|
pxw[i] = val;
|
|
}
|
|
/* Render standby states get 0 weight */
|
|
pxw[14] = 0;
|
|
pxw[15] = 0;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
|
|
(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
|
|
I915_WRITE(PXW(i), val);
|
|
}
|
|
|
|
/* Adjust magic regs to magic values (more experimental results) */
|
|
I915_WRITE(OGW0, 0);
|
|
I915_WRITE(OGW1, 0);
|
|
I915_WRITE(EG0, 0x00007f00);
|
|
I915_WRITE(EG1, 0x0000000e);
|
|
I915_WRITE(EG2, 0x000e0000);
|
|
I915_WRITE(EG3, 0x68000300);
|
|
I915_WRITE(EG4, 0x42000000);
|
|
I915_WRITE(EG5, 0x00140031);
|
|
I915_WRITE(EG6, 0);
|
|
I915_WRITE(EG7, 0);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
I915_WRITE(PXWL(i), 0);
|
|
|
|
/* Enable PMON + select events */
|
|
I915_WRITE(ECR, 0x80000019);
|
|
|
|
lcfuse = I915_READ(LCFUSE02);
|
|
|
|
dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
|
|
}
|
|
|
|
static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
|
|
{
|
|
return !I915_READ(GEN8_RC6_CTX_INFO);
|
|
}
|
|
|
|
static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
|
|
{
|
|
if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
|
|
return;
|
|
|
|
if (i915_rc6_ctx_corrupted(i915)) {
|
|
DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
|
|
i915->gt_pm.rc6.ctx_corrupted = true;
|
|
intel_runtime_pm_get(i915);
|
|
}
|
|
}
|
|
|
|
static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
|
|
{
|
|
if (i915->gt_pm.rc6.ctx_corrupted) {
|
|
intel_runtime_pm_put(i915);
|
|
i915->gt_pm.rc6.ctx_corrupted = false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
|
|
* @i915: i915 device
|
|
*
|
|
* Perform any steps needed to clean up the RC6 CTX WA before system suspend.
|
|
*/
|
|
void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
|
|
{
|
|
if (i915->gt_pm.rc6.ctx_corrupted)
|
|
intel_runtime_pm_put(i915);
|
|
}
|
|
|
|
/**
|
|
* i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
|
|
* @i915: i915 device
|
|
*
|
|
* Perform any steps needed to re-init the RC6 CTX WA after system resume.
|
|
*/
|
|
void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
|
|
{
|
|
if (!i915->gt_pm.rc6.ctx_corrupted)
|
|
return;
|
|
|
|
if (i915_rc6_ctx_corrupted(i915)) {
|
|
intel_runtime_pm_get(i915);
|
|
return;
|
|
}
|
|
|
|
DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
|
|
i915->gt_pm.rc6.ctx_corrupted = false;
|
|
}
|
|
|
|
static void intel_disable_rc6(struct drm_i915_private *dev_priv);
|
|
|
|
/**
|
|
* i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
|
|
* @i915: i915 device
|
|
*
|
|
* Check if an RC6 CTX corruption has happened since the last check and if so
|
|
* disable RC6 and runtime power management.
|
|
*
|
|
* Return false if no context corruption has happened since the last call of
|
|
* this function, true otherwise.
|
|
*/
|
|
bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
|
|
{
|
|
if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
|
|
return false;
|
|
|
|
if (i915->gt_pm.rc6.ctx_corrupted)
|
|
return false;
|
|
|
|
if (!i915_rc6_ctx_corrupted(i915))
|
|
return false;
|
|
|
|
DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
|
|
|
|
intel_disable_rc6(i915);
|
|
i915->gt_pm.rc6.ctx_corrupted = true;
|
|
intel_runtime_pm_get_noresume(i915);
|
|
|
|
return true;
|
|
}
|
|
|
|
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
|
|
/*
|
|
* RPM depends on RC6 to save restore the GT HW context, so make RC6 a
|
|
* requirement.
|
|
*/
|
|
if (!sanitize_rc6(dev_priv)) {
|
|
DRM_INFO("RC6 disabled, disabling runtime PM support\n");
|
|
intel_runtime_pm_get(dev_priv);
|
|
}
|
|
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
|
|
i915_rc6_ctx_wa_init(dev_priv);
|
|
|
|
/* Initialize RPS limits (for userspace) */
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
cherryview_init_gt_powersave(dev_priv);
|
|
else if (IS_VALLEYVIEW(dev_priv))
|
|
valleyview_init_gt_powersave(dev_priv);
|
|
else if (INTEL_GEN(dev_priv) >= 6)
|
|
gen6_init_rps_frequencies(dev_priv);
|
|
|
|
/* Derive initial user preferences/limits from the hardware limits */
|
|
rps->idle_freq = rps->min_freq;
|
|
rps->cur_freq = rps->idle_freq;
|
|
|
|
rps->max_freq_softlimit = rps->max_freq;
|
|
rps->min_freq_softlimit = rps->min_freq;
|
|
|
|
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
rps->min_freq_softlimit =
|
|
max_t(int,
|
|
rps->efficient_freq,
|
|
intel_freq_opcode(dev_priv, 450));
|
|
|
|
/* After setting max-softlimit, find the overclock max freq */
|
|
if (IS_GEN6(dev_priv) ||
|
|
IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
|
|
u32 params = 0;
|
|
|
|
sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, ¶ms);
|
|
if (params & BIT(31)) { /* OC supported */
|
|
DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
|
|
(rps->max_freq & 0xff) * 50,
|
|
(params & 0xff) * 50);
|
|
rps->max_freq = params & 0xff;
|
|
}
|
|
}
|
|
|
|
/* Finally allow us to boost to max by default */
|
|
rps->boost_freq = rps->max_freq;
|
|
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
}
|
|
|
|
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (IS_VALLEYVIEW(dev_priv))
|
|
valleyview_cleanup_gt_powersave(dev_priv);
|
|
|
|
i915_rc6_ctx_wa_cleanup(dev_priv);
|
|
|
|
if (!HAS_RC6(dev_priv))
|
|
intel_runtime_pm_put(dev_priv);
|
|
}
|
|
|
|
/**
|
|
* intel_suspend_gt_powersave - suspend PM work and helper threads
|
|
* @dev_priv: i915 device
|
|
*
|
|
* We don't want to disable RC6 or other features here, we just want
|
|
* to make sure any work we've queued has finished and won't bother
|
|
* us while we're suspended.
|
|
*/
|
|
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (INTEL_GEN(dev_priv) < 6)
|
|
return;
|
|
|
|
/* gen6_rps_idle() will be called later to disable interrupts */
|
|
}
|
|
|
|
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
|
|
{
|
|
dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
|
|
dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
|
|
intel_disable_gt_powersave(dev_priv);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 11)
|
|
gen11_reset_rps_interrupts(dev_priv);
|
|
else
|
|
gen6_reset_rps_interrupts(dev_priv);
|
|
}
|
|
|
|
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
|
|
{
|
|
lockdep_assert_held(&i915->pcu_lock);
|
|
|
|
if (!i915->gt_pm.llc_pstate.enabled)
|
|
return;
|
|
|
|
/* Currently there is no HW configuration to be done to disable. */
|
|
|
|
i915->gt_pm.llc_pstate.enabled = false;
|
|
}
|
|
|
|
static void __intel_disable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
lockdep_assert_held(&dev_priv->pcu_lock);
|
|
|
|
if (!dev_priv->gt_pm.rc6.enabled)
|
|
return;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
gen9_disable_rc6(dev_priv);
|
|
else if (IS_CHERRYVIEW(dev_priv))
|
|
cherryview_disable_rc6(dev_priv);
|
|
else if (IS_VALLEYVIEW(dev_priv))
|
|
valleyview_disable_rc6(dev_priv);
|
|
else if (INTEL_GEN(dev_priv) >= 6)
|
|
gen6_disable_rc6(dev_priv);
|
|
|
|
dev_priv->gt_pm.rc6.enabled = false;
|
|
}
|
|
|
|
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
__intel_disable_rc6(dev_priv);
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
}
|
|
|
|
static void intel_disable_rps(struct drm_i915_private *dev_priv)
|
|
{
|
|
lockdep_assert_held(&dev_priv->pcu_lock);
|
|
|
|
if (!dev_priv->gt_pm.rps.enabled)
|
|
return;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
gen9_disable_rps(dev_priv);
|
|
else if (IS_CHERRYVIEW(dev_priv))
|
|
cherryview_disable_rps(dev_priv);
|
|
else if (IS_VALLEYVIEW(dev_priv))
|
|
valleyview_disable_rps(dev_priv);
|
|
else if (INTEL_GEN(dev_priv) >= 6)
|
|
gen6_disable_rps(dev_priv);
|
|
else if (IS_IRONLAKE_M(dev_priv))
|
|
ironlake_disable_drps(dev_priv);
|
|
|
|
dev_priv->gt_pm.rps.enabled = false;
|
|
}
|
|
|
|
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
|
|
{
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
|
|
__intel_disable_rc6(dev_priv);
|
|
intel_disable_rps(dev_priv);
|
|
if (HAS_LLC(dev_priv))
|
|
intel_disable_llc_pstate(dev_priv);
|
|
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
}
|
|
|
|
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
|
|
{
|
|
lockdep_assert_held(&i915->pcu_lock);
|
|
|
|
if (i915->gt_pm.llc_pstate.enabled)
|
|
return;
|
|
|
|
gen6_update_ring_freq(i915);
|
|
|
|
i915->gt_pm.llc_pstate.enabled = true;
|
|
}
|
|
|
|
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
|
|
{
|
|
lockdep_assert_held(&dev_priv->pcu_lock);
|
|
|
|
if (dev_priv->gt_pm.rc6.enabled)
|
|
return;
|
|
|
|
if (dev_priv->gt_pm.rc6.ctx_corrupted)
|
|
return;
|
|
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
cherryview_enable_rc6(dev_priv);
|
|
else if (IS_VALLEYVIEW(dev_priv))
|
|
valleyview_enable_rc6(dev_priv);
|
|
else if (INTEL_GEN(dev_priv) >= 9)
|
|
gen9_enable_rc6(dev_priv);
|
|
else if (IS_BROADWELL(dev_priv))
|
|
gen8_enable_rc6(dev_priv);
|
|
else if (INTEL_GEN(dev_priv) >= 6)
|
|
gen6_enable_rc6(dev_priv);
|
|
|
|
dev_priv->gt_pm.rc6.enabled = true;
|
|
}
|
|
|
|
static void intel_enable_rps(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
|
|
lockdep_assert_held(&dev_priv->pcu_lock);
|
|
|
|
if (rps->enabled)
|
|
return;
|
|
|
|
if (IS_CHERRYVIEW(dev_priv)) {
|
|
cherryview_enable_rps(dev_priv);
|
|
} else if (IS_VALLEYVIEW(dev_priv)) {
|
|
valleyview_enable_rps(dev_priv);
|
|
} else if (INTEL_GEN(dev_priv) >= 9) {
|
|
gen9_enable_rps(dev_priv);
|
|
} else if (IS_BROADWELL(dev_priv)) {
|
|
gen8_enable_rps(dev_priv);
|
|
} else if (INTEL_GEN(dev_priv) >= 6) {
|
|
gen6_enable_rps(dev_priv);
|
|
} else if (IS_IRONLAKE_M(dev_priv)) {
|
|
ironlake_enable_drps(dev_priv);
|
|
intel_init_emon(dev_priv);
|
|
}
|
|
|
|
WARN_ON(rps->max_freq < rps->min_freq);
|
|
WARN_ON(rps->idle_freq > rps->max_freq);
|
|
|
|
WARN_ON(rps->efficient_freq < rps->min_freq);
|
|
WARN_ON(rps->efficient_freq > rps->max_freq);
|
|
|
|
rps->enabled = true;
|
|
}
|
|
|
|
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* Powersaving is controlled by the host when inside a VM */
|
|
if (intel_vgpu_active(dev_priv))
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->pcu_lock);
|
|
|
|
if (HAS_RC6(dev_priv))
|
|
intel_enable_rc6(dev_priv);
|
|
intel_enable_rps(dev_priv);
|
|
if (HAS_LLC(dev_priv))
|
|
intel_enable_llc_pstate(dev_priv);
|
|
|
|
mutex_unlock(&dev_priv->pcu_lock);
|
|
}
|
|
|
|
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
/*
|
|
* On Ibex Peak and Cougar Point, we need to disable clock
|
|
* gating for the panel power sequencer or it will fail to
|
|
* start up when no ports are active.
|
|
*/
|
|
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
|
|
}
|
|
|
|
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
|
|
{
|
|
enum pipe pipe;
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
I915_WRITE(DSPCNTR(pipe),
|
|
I915_READ(DSPCNTR(pipe)) |
|
|
DISPPLANE_TRICKLE_FEED_DISABLE);
|
|
|
|
I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
|
|
POSTING_READ(DSPSURF(pipe));
|
|
}
|
|
}
|
|
|
|
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
|
|
|
|
/*
|
|
* Required for FBC
|
|
* WaFbcDisableDpfcClockGating:ilk
|
|
*/
|
|
dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
|
|
ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
|
|
ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
|
|
|
|
I915_WRITE(PCH_3DCGDIS0,
|
|
MARIUNIT_CLOCK_GATE_DISABLE |
|
|
SVSMUNIT_CLOCK_GATE_DISABLE);
|
|
I915_WRITE(PCH_3DCGDIS1,
|
|
VFMUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/*
|
|
* According to the spec the following bits should be set in
|
|
* order to enable memory self-refresh
|
|
* The bit 22/21 of 0x42004
|
|
* The bit 5 of 0x42020
|
|
* The bit 15 of 0x45000
|
|
*/
|
|
I915_WRITE(ILK_DISPLAY_CHICKEN2,
|
|
(I915_READ(ILK_DISPLAY_CHICKEN2) |
|
|
ILK_DPARB_GATE | ILK_VSDPFD_FULL));
|
|
dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
|
|
I915_WRITE(DISP_ARB_CTL,
|
|
(I915_READ(DISP_ARB_CTL) |
|
|
DISP_FBC_WM_DIS));
|
|
|
|
/*
|
|
* Based on the document from hardware guys the following bits
|
|
* should be set unconditionally in order to enable FBC.
|
|
* The bit 22 of 0x42000
|
|
* The bit 22 of 0x42004
|
|
* The bit 7,8,9 of 0x42020.
|
|
*/
|
|
if (IS_IRONLAKE_M(dev_priv)) {
|
|
/* WaFbcAsynchFlipDisableFbcQueue:ilk */
|
|
I915_WRITE(ILK_DISPLAY_CHICKEN1,
|
|
I915_READ(ILK_DISPLAY_CHICKEN1) |
|
|
ILK_FBCQ_DIS);
|
|
I915_WRITE(ILK_DISPLAY_CHICKEN2,
|
|
I915_READ(ILK_DISPLAY_CHICKEN2) |
|
|
ILK_DPARB_GATE);
|
|
}
|
|
|
|
I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
|
|
|
|
I915_WRITE(ILK_DISPLAY_CHICKEN2,
|
|
I915_READ(ILK_DISPLAY_CHICKEN2) |
|
|
ILK_ELPIN_409_SELECT);
|
|
I915_WRITE(_3D_CHICKEN2,
|
|
_3D_CHICKEN2_WM_READ_PIPELINED << 16 |
|
|
_3D_CHICKEN2_WM_READ_PIPELINED);
|
|
|
|
/* WaDisableRenderCachePipelinedFlush:ilk */
|
|
I915_WRITE(CACHE_MODE_0,
|
|
_MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
|
|
|
|
/* WaDisable_RenderCache_OperationalFlush:ilk */
|
|
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
|
|
|
|
g4x_disable_trickle_feed(dev_priv);
|
|
|
|
ibx_init_clock_gating(dev_priv);
|
|
}
|
|
|
|
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
int pipe;
|
|
uint32_t val;
|
|
|
|
/*
|
|
* On Ibex Peak and Cougar Point, we need to disable clock
|
|
* gating for the panel power sequencer or it will fail to
|
|
* start up when no ports are active.
|
|
*/
|
|
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
|
|
PCH_DPLUNIT_CLOCK_GATE_DISABLE |
|
|
PCH_CPUNIT_CLOCK_GATE_DISABLE);
|
|
I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
|
|
DPLS_EDP_PPS_FIX_DIS);
|
|
/* The below fixes the weird display corruption, a few pixels shifted
|
|
* downward, on (only) LVDS of some HP laptops with IVY.
|
|
*/
|
|
for_each_pipe(dev_priv, pipe) {
|
|
val = I915_READ(TRANS_CHICKEN2(pipe));
|
|
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
|
|
val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
|
|
if (dev_priv->vbt.fdi_rx_polarity_inverted)
|
|
val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
|
|
val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
|
|
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
|
|
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
|
|
I915_WRITE(TRANS_CHICKEN2(pipe), val);
|
|
}
|
|
/* WADP0ClockGatingDisable */
|
|
for_each_pipe(dev_priv, pipe) {
|
|
I915_WRITE(TRANS_CHICKEN1(pipe),
|
|
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
|
|
}
|
|
}
|
|
|
|
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = I915_READ(MCH_SSKPD);
|
|
if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
|
|
DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
|
|
tmp);
|
|
}
|
|
|
|
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
|
|
|
|
I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
|
|
|
|
I915_WRITE(ILK_DISPLAY_CHICKEN2,
|
|
I915_READ(ILK_DISPLAY_CHICKEN2) |
|
|
ILK_ELPIN_409_SELECT);
|
|
|
|
/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
|
|
I915_WRITE(_3D_CHICKEN,
|
|
_MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
|
|
|
|
/* WaDisable_RenderCache_OperationalFlush:snb */
|
|
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
|
|
|
|
/*
|
|
* BSpec recoomends 8x4 when MSAA is used,
|
|
* however in practice 16x4 seems fastest.
|
|
*
|
|
* Note that PS/WM thread counts depend on the WIZ hashing
|
|
* disable bit, which we don't touch here, but it's good
|
|
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
|
|
*/
|
|
I915_WRITE(GEN6_GT_MODE,
|
|
_MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
|
|
|
|
I915_WRITE(CACHE_MODE_0,
|
|
_MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
|
|
|
|
I915_WRITE(GEN6_UCGCTL1,
|
|
I915_READ(GEN6_UCGCTL1) |
|
|
GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
|
|
GEN6_CSUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
|
|
* gating disable must be set. Failure to set it results in
|
|
* flickering pixels due to Z write ordering failures after
|
|
* some amount of runtime in the Mesa "fire" demo, and Unigine
|
|
* Sanctuary and Tropics, and apparently anything else with
|
|
* alpha test or pixel discard.
|
|
*
|
|
* According to the spec, bit 11 (RCCUNIT) must also be set,
|
|
* but we didn't debug actual testcases to find it out.
|
|
*
|
|
* WaDisableRCCUnitClockGating:snb
|
|
* WaDisableRCPBUnitClockGating:snb
|
|
*/
|
|
I915_WRITE(GEN6_UCGCTL2,
|
|
GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
|
|
GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/* WaStripsFansDisableFastClipPerformanceFix:snb */
|
|
I915_WRITE(_3D_CHICKEN3,
|
|
_MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
|
|
|
|
/*
|
|
* Bspec says:
|
|
* "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
|
|
* 3DSTATE_SF number of SF output attributes is more than 16."
|
|
*/
|
|
I915_WRITE(_3D_CHICKEN3,
|
|
_MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
|
|
|
|
/*
|
|
* According to the spec the following bits should be
|
|
* set in order to enable memory self-refresh and fbc:
|
|
* The bit21 and bit22 of 0x42000
|
|
* The bit21 and bit22 of 0x42004
|
|
* The bit5 and bit7 of 0x42020
|
|
* The bit14 of 0x70180
|
|
* The bit14 of 0x71180
|
|
*
|
|
* WaFbcAsynchFlipDisableFbcQueue:snb
|
|
*/
|
|
I915_WRITE(ILK_DISPLAY_CHICKEN1,
|
|
I915_READ(ILK_DISPLAY_CHICKEN1) |
|
|
ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
|
|
I915_WRITE(ILK_DISPLAY_CHICKEN2,
|
|
I915_READ(ILK_DISPLAY_CHICKEN2) |
|
|
ILK_DPARB_GATE | ILK_VSDPFD_FULL);
|
|
I915_WRITE(ILK_DSPCLK_GATE_D,
|
|
I915_READ(ILK_DSPCLK_GATE_D) |
|
|
ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
|
|
ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
|
|
|
|
g4x_disable_trickle_feed(dev_priv);
|
|
|
|
cpt_init_clock_gating(dev_priv);
|
|
|
|
gen6_check_mch_setup(dev_priv);
|
|
}
|
|
|
|
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
|
|
|
|
/*
|
|
* WaVSThreadDispatchOverride:ivb,vlv
|
|
*
|
|
* This actually overrides the dispatch
|
|
* mode for all thread types.
|
|
*/
|
|
reg &= ~GEN7_FF_SCHED_MASK;
|
|
reg |= GEN7_FF_TS_SCHED_HW;
|
|
reg |= GEN7_FF_VS_SCHED_HW;
|
|
reg |= GEN7_FF_DS_SCHED_HW;
|
|
|
|
I915_WRITE(GEN7_FF_THREAD_MODE, reg);
|
|
}
|
|
|
|
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
/*
|
|
* TODO: this bit should only be enabled when really needed, then
|
|
* disabled when not needed anymore in order to save power.
|
|
*/
|
|
if (HAS_PCH_LPT_LP(dev_priv))
|
|
I915_WRITE(SOUTH_DSPCLK_GATE_D,
|
|
I915_READ(SOUTH_DSPCLK_GATE_D) |
|
|
PCH_LP_PARTITION_LEVEL_DISABLE);
|
|
|
|
/* WADPOClockGatingDisable:hsw */
|
|
I915_WRITE(TRANS_CHICKEN1(PIPE_A),
|
|
I915_READ(TRANS_CHICKEN1(PIPE_A)) |
|
|
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
|
|
}
|
|
|
|
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (HAS_PCH_LPT_LP(dev_priv)) {
|
|
uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
|
|
|
|
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
|
|
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
|
|
}
|
|
}
|
|
|
|
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
|
|
int general_prio_credits,
|
|
int high_prio_credits)
|
|
{
|
|
u32 misccpctl;
|
|
u32 val;
|
|
|
|
/* WaTempDisableDOPClkGating:bdw */
|
|
misccpctl = I915_READ(GEN7_MISCCPCTL);
|
|
I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
|
|
|
|
val = I915_READ(GEN8_L3SQCREG1);
|
|
val &= ~L3_PRIO_CREDITS_MASK;
|
|
val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
|
|
val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
|
|
I915_WRITE(GEN8_L3SQCREG1, val);
|
|
|
|
/*
|
|
* Wait at least 100 clocks before re-enabling clock gating.
|
|
* See the definition of L3SQCREG1 in BSpec.
|
|
*/
|
|
POSTING_READ(GEN8_L3SQCREG1);
|
|
udelay(1);
|
|
I915_WRITE(GEN7_MISCCPCTL, misccpctl);
|
|
}
|
|
|
|
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* This is not an Wa. Enable to reduce Sampler power */
|
|
I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
|
|
I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
|
|
}
|
|
|
|
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (!HAS_PCH_CNP(dev_priv))
|
|
return;
|
|
|
|
/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
|
|
I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
|
|
CNP_PWM_CGE_GATING_DISABLE);
|
|
}
|
|
|
|
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
cnp_init_clock_gating(dev_priv);
|
|
|
|
/* This is not an Wa. Enable for better image quality */
|
|
I915_WRITE(_3D_CHICKEN3,
|
|
_MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
|
|
|
|
/* WaEnableChickenDCPR:cnl */
|
|
I915_WRITE(GEN8_CHICKEN_DCPR_1,
|
|
I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
|
|
|
|
/* WaFbcWakeMemOn:cnl */
|
|
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
|
|
DISP_FBC_MEMORY_WAKE);
|
|
|
|
val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
|
|
/* ReadHitWriteOnlyDisable:cnl */
|
|
val |= RCCUNIT_CLKGATE_DIS;
|
|
/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
|
|
if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
|
|
val |= SARBUNIT_CLKGATE_DIS;
|
|
I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
|
|
|
|
/* Wa_2201832410:cnl */
|
|
val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
|
|
val |= GWUNIT_CLKGATE_DIS;
|
|
I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
|
|
|
|
/* WaDisableVFclkgate:cnl */
|
|
/* WaVFUnitClockGatingDisable:cnl */
|
|
val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
|
|
val |= VFUNIT_CLKGATE_DIS;
|
|
I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
|
|
}
|
|
|
|
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
cnp_init_clock_gating(dev_priv);
|
|
gen9_init_clock_gating(dev_priv);
|
|
|
|
/* WaFbcNukeOnHostModify:cfl */
|
|
I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
|
|
ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
|
|
}
|
|
|
|
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
gen9_init_clock_gating(dev_priv);
|
|
|
|
/* WaDisableSDEUnitClockGating:kbl */
|
|
if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
|
|
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
|
|
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/* WaDisableGamClockGating:kbl */
|
|
if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
|
|
I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
|
|
GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/* WaFbcNukeOnHostModify:kbl */
|
|
I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
|
|
ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
|
|
}
|
|
|
|
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
gen9_init_clock_gating(dev_priv);
|
|
|
|
/* WAC6entrylatency:skl */
|
|
I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
|
|
FBC_LLC_FULLY_OPEN);
|
|
|
|
/* WaFbcNukeOnHostModify:skl */
|
|
I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
|
|
ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
|
|
}
|
|
|
|
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* The GTT cache must be disabled if the system is using 2M pages. */
|
|
bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
|
|
I915_GTT_PAGE_SIZE_2M);
|
|
enum pipe pipe;
|
|
|
|
/* WaSwitchSolVfFArbitrationPriority:bdw */
|
|
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
|
|
|
|
/* WaPsrDPAMaskVBlankInSRD:bdw */
|
|
I915_WRITE(CHICKEN_PAR1_1,
|
|
I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
|
|
|
|
/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
|
|
for_each_pipe(dev_priv, pipe) {
|
|
I915_WRITE(CHICKEN_PIPESL_1(pipe),
|
|
I915_READ(CHICKEN_PIPESL_1(pipe)) |
|
|
BDW_DPRS_MASK_VBLANK_SRD);
|
|
}
|
|
|
|
/* WaVSRefCountFullforceMissDisable:bdw */
|
|
/* WaDSRefCountFullforceMissDisable:bdw */
|
|
I915_WRITE(GEN7_FF_THREAD_MODE,
|
|
I915_READ(GEN7_FF_THREAD_MODE) &
|
|
~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
|
|
|
|
I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
|
|
_MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
|
|
|
|
/* WaDisableSDEUnitClockGating:bdw */
|
|
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
|
|
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/* WaProgramL3SqcReg1Default:bdw */
|
|
gen8_set_l3sqc_credits(dev_priv, 30, 2);
|
|
|
|
/* WaGttCachingOffByDefault:bdw */
|
|
I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
|
|
|
|
/* WaKVMNotificationOnConfigChange:bdw */
|
|
I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
|
|
| KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
|
|
|
|
lpt_init_clock_gating(dev_priv);
|
|
|
|
/* WaDisableDopClockGating:bdw
|
|
*
|
|
* Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
|
|
* clock gating.
|
|
*/
|
|
I915_WRITE(GEN6_UCGCTL1,
|
|
I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
|
|
}
|
|
|
|
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* L3 caching of data atomics doesn't work -- disable it. */
|
|
I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
|
|
I915_WRITE(HSW_ROW_CHICKEN3,
|
|
_MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
|
|
|
|
/* This is required by WaCatErrorRejectionIssue:hsw */
|
|
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
|
|
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
|
|
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
|
|
|
|
/* WaVSRefCountFullforceMissDisable:hsw */
|
|
I915_WRITE(GEN7_FF_THREAD_MODE,
|
|
I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
|
|
|
|
/* WaDisable_RenderCache_OperationalFlush:hsw */
|
|
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
|
|
|
|
/* enable HiZ Raw Stall Optimization */
|
|
I915_WRITE(CACHE_MODE_0_GEN7,
|
|
_MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
|
|
|
|
/* WaDisable4x2SubspanOptimization:hsw */
|
|
I915_WRITE(CACHE_MODE_1,
|
|
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
|
|
|
|
/*
|
|
* BSpec recommends 8x4 when MSAA is used,
|
|
* however in practice 16x4 seems fastest.
|
|
*
|
|
* Note that PS/WM thread counts depend on the WIZ hashing
|
|
* disable bit, which we don't touch here, but it's good
|
|
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
|
|
*/
|
|
I915_WRITE(GEN7_GT_MODE,
|
|
_MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
|
|
|
|
/* WaSampleCChickenBitEnable:hsw */
|
|
I915_WRITE(HALF_SLICE_CHICKEN3,
|
|
_MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
|
|
|
|
/* WaSwitchSolVfFArbitrationPriority:hsw */
|
|
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
|
|
|
|
lpt_init_clock_gating(dev_priv);
|
|
}
|
|
|
|
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t snpcr;
|
|
|
|
I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/* WaDisableEarlyCull:ivb */
|
|
I915_WRITE(_3D_CHICKEN3,
|
|
_MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
|
|
|
|
/* WaDisableBackToBackFlipFix:ivb */
|
|
I915_WRITE(IVB_CHICKEN3,
|
|
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
|
|
CHICKEN3_DGMG_DONE_FIX_DISABLE);
|
|
|
|
/* WaDisablePSDDualDispatchEnable:ivb */
|
|
if (IS_IVB_GT1(dev_priv))
|
|
I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
|
|
_MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
|
|
|
|
/* WaDisable_RenderCache_OperationalFlush:ivb */
|
|
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
|
|
|
|
/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
|
|
I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
|
|
GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
|
|
|
|
/* WaApplyL3ControlAndL3ChickenMode:ivb */
|
|
I915_WRITE(GEN7_L3CNTLREG1,
|
|
GEN7_WA_FOR_GEN7_L3_CONTROL);
|
|
I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
|
|
GEN7_WA_L3_CHICKEN_MODE);
|
|
if (IS_IVB_GT1(dev_priv))
|
|
I915_WRITE(GEN7_ROW_CHICKEN2,
|
|
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
|
|
else {
|
|
/* must write both registers */
|
|
I915_WRITE(GEN7_ROW_CHICKEN2,
|
|
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
|
|
I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
|
|
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
|
|
}
|
|
|
|
/* WaForceL3Serialization:ivb */
|
|
I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
|
|
~L3SQ_URB_READ_CAM_MATCH_DISABLE);
|
|
|
|
/*
|
|
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
|
|
* This implements the WaDisableRCZUnitClockGating:ivb workaround.
|
|
*/
|
|
I915_WRITE(GEN6_UCGCTL2,
|
|
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/* This is required by WaCatErrorRejectionIssue:ivb */
|
|
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
|
|
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
|
|
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
|
|
|
|
g4x_disable_trickle_feed(dev_priv);
|
|
|
|
gen7_setup_fixed_func_scheduler(dev_priv);
|
|
|
|
if (0) { /* causes HiZ corruption on ivb:gt1 */
|
|
/* enable HiZ Raw Stall Optimization */
|
|
I915_WRITE(CACHE_MODE_0_GEN7,
|
|
_MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
|
|
}
|
|
|
|
/* WaDisable4x2SubspanOptimization:ivb */
|
|
I915_WRITE(CACHE_MODE_1,
|
|
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
|
|
|
|
/*
|
|
* BSpec recommends 8x4 when MSAA is used,
|
|
* however in practice 16x4 seems fastest.
|
|
*
|
|
* Note that PS/WM thread counts depend on the WIZ hashing
|
|
* disable bit, which we don't touch here, but it's good
|
|
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
|
|
*/
|
|
I915_WRITE(GEN7_GT_MODE,
|
|
_MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
|
|
|
|
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
|
|
snpcr &= ~GEN6_MBC_SNPCR_MASK;
|
|
snpcr |= GEN6_MBC_SNPCR_MED;
|
|
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
|
|
|
|
if (!HAS_PCH_NOP(dev_priv))
|
|
cpt_init_clock_gating(dev_priv);
|
|
|
|
gen6_check_mch_setup(dev_priv);
|
|
}
|
|
|
|
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* WaDisableEarlyCull:vlv */
|
|
I915_WRITE(_3D_CHICKEN3,
|
|
_MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
|
|
|
|
/* WaDisableBackToBackFlipFix:vlv */
|
|
I915_WRITE(IVB_CHICKEN3,
|
|
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
|
|
CHICKEN3_DGMG_DONE_FIX_DISABLE);
|
|
|
|
/* WaPsdDispatchEnable:vlv */
|
|
/* WaDisablePSDDualDispatchEnable:vlv */
|
|
I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
|
|
_MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
|
|
GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
|
|
|
|
/* WaDisable_RenderCache_OperationalFlush:vlv */
|
|
I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
|
|
|
|
/* WaForceL3Serialization:vlv */
|
|
I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
|
|
~L3SQ_URB_READ_CAM_MATCH_DISABLE);
|
|
|
|
/* WaDisableDopClockGating:vlv */
|
|
I915_WRITE(GEN7_ROW_CHICKEN2,
|
|
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
|
|
|
|
/* This is required by WaCatErrorRejectionIssue:vlv */
|
|
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
|
|
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
|
|
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
|
|
|
|
gen7_setup_fixed_func_scheduler(dev_priv);
|
|
|
|
/*
|
|
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
|
|
* This implements the WaDisableRCZUnitClockGating:vlv workaround.
|
|
*/
|
|
I915_WRITE(GEN6_UCGCTL2,
|
|
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/* WaDisableL3Bank2xClockGate:vlv
|
|
* Disabling L3 clock gating- MMIO 940c[25] = 1
|
|
* Set bit 25, to disable L3_BANK_2x_CLK_GATING */
|
|
I915_WRITE(GEN7_UCGCTL4,
|
|
I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
|
|
|
|
/*
|
|
* BSpec says this must be set, even though
|
|
* WaDisable4x2SubspanOptimization isn't listed for VLV.
|
|
*/
|
|
I915_WRITE(CACHE_MODE_1,
|
|
_MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
|
|
|
|
/*
|
|
* BSpec recommends 8x4 when MSAA is used,
|
|
* however in practice 16x4 seems fastest.
|
|
*
|
|
* Note that PS/WM thread counts depend on the WIZ hashing
|
|
* disable bit, which we don't touch here, but it's good
|
|
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
|
|
*/
|
|
I915_WRITE(GEN7_GT_MODE,
|
|
_MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
|
|
|
|
/*
|
|
* WaIncreaseL3CreditsForVLVB0:vlv
|
|
* This is the hardware default actually.
|
|
*/
|
|
I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
|
|
|
|
/*
|
|
* WaDisableVLVClockGating_VBIIssue:vlv
|
|
* Disable clock gating on th GCFG unit to prevent a delay
|
|
* in the reporting of vblank events.
|
|
*/
|
|
I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
|
|
}
|
|
|
|
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* WaVSRefCountFullforceMissDisable:chv */
|
|
/* WaDSRefCountFullforceMissDisable:chv */
|
|
I915_WRITE(GEN7_FF_THREAD_MODE,
|
|
I915_READ(GEN7_FF_THREAD_MODE) &
|
|
~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
|
|
|
|
/* WaDisableSemaphoreAndSyncFlipWait:chv */
|
|
I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
|
|
_MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
|
|
|
|
/* WaDisableCSUnitClockGating:chv */
|
|
I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
|
|
GEN6_CSUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/* WaDisableSDEUnitClockGating:chv */
|
|
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
|
|
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
|
|
|
|
/*
|
|
* WaProgramL3SqcReg1Default:chv
|
|
* See gfxspecs/Related Documents/Performance Guide/
|
|
* LSQC Setting Recommendations.
|
|
*/
|
|
gen8_set_l3sqc_credits(dev_priv, 38, 2);
|
|
|
|
/*
|
|
* GTT cache may not work with big pages, so if those
|
|
* are ever enabled GTT cache may need to be disabled.
|
|
*/
|
|
I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
|
|
}
|
|
|
|
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t dspclk_gate;
|
|
|
|
I915_WRITE(RENCLK_GATE_D1, 0);
|
|
I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
|
|
GS_UNIT_CLOCK_GATE_DISABLE |
|
|
CL_UNIT_CLOCK_GATE_DISABLE);
|
|
I915_WRITE(RAMCLK_GATE_D, 0);
|
|
dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
|
|
OVRUNIT_CLOCK_GATE_DISABLE |
|
|
OVCUNIT_CLOCK_GATE_DISABLE;
|
|
if (IS_GM45(dev_priv))
|
|
dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
|
|
I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
|
|
|
|
/* WaDisableRenderCachePipelinedFlush */
|
|
I915_WRITE(CACHE_MODE_0,
|
|
_MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
|
|
|
|
/* WaDisable_RenderCache_OperationalFlush:g4x */
|
|
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
|
|
|
|
g4x_disable_trickle_feed(dev_priv);
|
|
}
|
|
|
|
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
|
|
I915_WRITE(RENCLK_GATE_D2, 0);
|
|
I915_WRITE(DSPCLK_GATE_D, 0);
|
|
I915_WRITE(RAMCLK_GATE_D, 0);
|
|
I915_WRITE16(DEUC, 0);
|
|
I915_WRITE(MI_ARB_STATE,
|
|
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
|
|
|
|
/* WaDisable_RenderCache_OperationalFlush:gen4 */
|
|
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
|
|
}
|
|
|
|
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
|
|
I965_RCC_CLOCK_GATE_DISABLE |
|
|
I965_RCPB_CLOCK_GATE_DISABLE |
|
|
I965_ISC_CLOCK_GATE_DISABLE |
|
|
I965_FBC_CLOCK_GATE_DISABLE);
|
|
I915_WRITE(RENCLK_GATE_D2, 0);
|
|
I915_WRITE(MI_ARB_STATE,
|
|
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
|
|
|
|
/* WaDisable_RenderCache_OperationalFlush:gen4 */
|
|
I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
|
|
}
|
|
|
|
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 dstate = I915_READ(D_STATE);
|
|
|
|
dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
|
|
DSTATE_DOT_CLOCK_GATING;
|
|
I915_WRITE(D_STATE, dstate);
|
|
|
|
if (IS_PINEVIEW(dev_priv))
|
|
I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
|
|
|
|
/* IIR "flip pending" means done if this bit is set */
|
|
I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
|
|
|
|
/* interrupts should cause a wake up from C3 */
|
|
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
|
|
|
|
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
|
|
I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
|
|
|
|
I915_WRITE(MI_ARB_STATE,
|
|
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
|
|
}
|
|
|
|
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
|
|
|
|
/* interrupts should cause a wake up from C3 */
|
|
I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
|
|
_MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
|
|
|
|
I915_WRITE(MEM_MODE,
|
|
_MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
|
|
}
|
|
|
|
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
I915_WRITE(MEM_MODE,
|
|
_MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
|
|
_MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
|
|
}
|
|
|
|
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
dev_priv->display.init_clock_gating(dev_priv);
|
|
}
|
|
|
|
void intel_suspend_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (HAS_PCH_LPT(dev_priv))
|
|
lpt_suspend_hw(dev_priv);
|
|
}
|
|
|
|
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
|
|
{
|
|
DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
|
|
}
|
|
|
|
/**
|
|
* intel_init_clock_gating_hooks - setup the clock gating hooks
|
|
* @dev_priv: device private
|
|
*
|
|
* Setup the hooks that configure which clocks of a given platform can be
|
|
* gated and also apply various GT and display specific workarounds for these
|
|
* platforms. Note that some GT specific workarounds are applied separately
|
|
* when GPU contexts or batchbuffers start their execution.
|
|
*/
|
|
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (IS_ICELAKE(dev_priv))
|
|
dev_priv->display.init_clock_gating = icl_init_clock_gating;
|
|
else if (IS_CANNONLAKE(dev_priv))
|
|
dev_priv->display.init_clock_gating = cnl_init_clock_gating;
|
|
else if (IS_COFFEELAKE(dev_priv))
|
|
dev_priv->display.init_clock_gating = cfl_init_clock_gating;
|
|
else if (IS_SKYLAKE(dev_priv))
|
|
dev_priv->display.init_clock_gating = skl_init_clock_gating;
|
|
else if (IS_KABYLAKE(dev_priv))
|
|
dev_priv->display.init_clock_gating = kbl_init_clock_gating;
|
|
else if (IS_BROXTON(dev_priv))
|
|
dev_priv->display.init_clock_gating = bxt_init_clock_gating;
|
|
else if (IS_GEMINILAKE(dev_priv))
|
|
dev_priv->display.init_clock_gating = glk_init_clock_gating;
|
|
else if (IS_BROADWELL(dev_priv))
|
|
dev_priv->display.init_clock_gating = bdw_init_clock_gating;
|
|
else if (IS_CHERRYVIEW(dev_priv))
|
|
dev_priv->display.init_clock_gating = chv_init_clock_gating;
|
|
else if (IS_HASWELL(dev_priv))
|
|
dev_priv->display.init_clock_gating = hsw_init_clock_gating;
|
|
else if (IS_IVYBRIDGE(dev_priv))
|
|
dev_priv->display.init_clock_gating = ivb_init_clock_gating;
|
|
else if (IS_VALLEYVIEW(dev_priv))
|
|
dev_priv->display.init_clock_gating = vlv_init_clock_gating;
|
|
else if (IS_GEN6(dev_priv))
|
|
dev_priv->display.init_clock_gating = gen6_init_clock_gating;
|
|
else if (IS_GEN5(dev_priv))
|
|
dev_priv->display.init_clock_gating = ilk_init_clock_gating;
|
|
else if (IS_G4X(dev_priv))
|
|
dev_priv->display.init_clock_gating = g4x_init_clock_gating;
|
|
else if (IS_I965GM(dev_priv))
|
|
dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
|
|
else if (IS_I965G(dev_priv))
|
|
dev_priv->display.init_clock_gating = i965g_init_clock_gating;
|
|
else if (IS_GEN3(dev_priv))
|
|
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
|
|
else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
|
|
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
|
|
else if (IS_GEN2(dev_priv))
|
|
dev_priv->display.init_clock_gating = i830_init_clock_gating;
|
|
else {
|
|
MISSING_CASE(INTEL_DEVID(dev_priv));
|
|
dev_priv->display.init_clock_gating = nop_init_clock_gating;
|
|
}
|
|
}
|
|
|
|
/* Set up chip specific power management-related functions */
|
|
void intel_init_pm(struct drm_i915_private *dev_priv)
|
|
{
|
|
intel_fbc_init(dev_priv);
|
|
|
|
/* For cxsr */
|
|
if (IS_PINEVIEW(dev_priv))
|
|
i915_pineview_get_mem_freq(dev_priv);
|
|
else if (IS_GEN5(dev_priv))
|
|
i915_ironlake_get_mem_freq(dev_priv);
|
|
|
|
/* For FIFO watermark updates */
|
|
if (INTEL_GEN(dev_priv) >= 9) {
|
|
skl_setup_wm_latency(dev_priv);
|
|
dev_priv->display.initial_watermarks = skl_initial_wm;
|
|
dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
|
|
dev_priv->display.compute_global_watermarks = skl_compute_wm;
|
|
} else if (HAS_PCH_SPLIT(dev_priv)) {
|
|
ilk_setup_wm_latency(dev_priv);
|
|
|
|
if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
|
|
dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
|
|
(!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
|
|
dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
|
|
dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
|
|
dev_priv->display.compute_intermediate_wm =
|
|
ilk_compute_intermediate_wm;
|
|
dev_priv->display.initial_watermarks =
|
|
ilk_initial_watermarks;
|
|
dev_priv->display.optimize_watermarks =
|
|
ilk_optimize_watermarks;
|
|
} else {
|
|
DRM_DEBUG_KMS("Failed to read display plane latency. "
|
|
"Disable CxSR\n");
|
|
}
|
|
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
vlv_setup_wm_latency(dev_priv);
|
|
dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
|
|
dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
|
|
dev_priv->display.initial_watermarks = vlv_initial_watermarks;
|
|
dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
|
|
dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
|
|
} else if (IS_G4X(dev_priv)) {
|
|
g4x_setup_wm_latency(dev_priv);
|
|
dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
|
|
dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
|
|
dev_priv->display.initial_watermarks = g4x_initial_watermarks;
|
|
dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
|
|
} else if (IS_PINEVIEW(dev_priv)) {
|
|
if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
|
|
dev_priv->is_ddr3,
|
|
dev_priv->fsb_freq,
|
|
dev_priv->mem_freq)) {
|
|
DRM_INFO("failed to find known CxSR latency "
|
|
"(found ddr%s fsb freq %d, mem freq %d), "
|
|
"disabling CxSR\n",
|
|
(dev_priv->is_ddr3 == 1) ? "3" : "2",
|
|
dev_priv->fsb_freq, dev_priv->mem_freq);
|
|
/* Disable CxSR and never update its watermark again */
|
|
intel_set_memory_cxsr(dev_priv, false);
|
|
dev_priv->display.update_wm = NULL;
|
|
} else
|
|
dev_priv->display.update_wm = pineview_update_wm;
|
|
} else if (IS_GEN4(dev_priv)) {
|
|
dev_priv->display.update_wm = i965_update_wm;
|
|
} else if (IS_GEN3(dev_priv)) {
|
|
dev_priv->display.update_wm = i9xx_update_wm;
|
|
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
|
|
} else if (IS_GEN2(dev_priv)) {
|
|
if (INTEL_INFO(dev_priv)->num_pipes == 1) {
|
|
dev_priv->display.update_wm = i845_update_wm;
|
|
dev_priv->display.get_fifo_size = i845_get_fifo_size;
|
|
} else {
|
|
dev_priv->display.update_wm = i9xx_update_wm;
|
|
dev_priv->display.get_fifo_size = i830_get_fifo_size;
|
|
}
|
|
} else {
|
|
DRM_ERROR("unexpected fall-through in intel_init_pm\n");
|
|
}
|
|
}
|
|
|
|
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t flags =
|
|
I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
|
|
|
|
switch (flags) {
|
|
case GEN6_PCODE_SUCCESS:
|
|
return 0;
|
|
case GEN6_PCODE_UNIMPLEMENTED_CMD:
|
|
return -ENODEV;
|
|
case GEN6_PCODE_ILLEGAL_CMD:
|
|
return -ENXIO;
|
|
case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
|
|
case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
|
|
return -EOVERFLOW;
|
|
case GEN6_PCODE_TIMEOUT:
|
|
return -ETIMEDOUT;
|
|
default:
|
|
MISSING_CASE(flags);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint32_t flags =
|
|
I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
|
|
|
|
switch (flags) {
|
|
case GEN6_PCODE_SUCCESS:
|
|
return 0;
|
|
case GEN6_PCODE_ILLEGAL_CMD:
|
|
return -ENXIO;
|
|
case GEN7_PCODE_TIMEOUT:
|
|
return -ETIMEDOUT;
|
|
case GEN7_PCODE_ILLEGAL_DATA:
|
|
return -EINVAL;
|
|
case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
|
|
return -EOVERFLOW;
|
|
default:
|
|
MISSING_CASE(flags);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
|
|
{
|
|
int status;
|
|
|
|
WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
|
|
|
|
/* GEN6_PCODE_* are outside of the forcewake domain, we can
|
|
* use te fw I915_READ variants to reduce the amount of work
|
|
* required when reading/writing.
|
|
*/
|
|
|
|
if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
|
|
DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
|
|
mbox, __builtin_return_address(0));
|
|
return -EAGAIN;
|
|
}
|
|
|
|
I915_WRITE_FW(GEN6_PCODE_DATA, *val);
|
|
I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
|
|
I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
|
|
|
|
if (__intel_wait_for_register_fw(dev_priv,
|
|
GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
|
|
500, 0, NULL)) {
|
|
DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
|
|
mbox, __builtin_return_address(0));
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
*val = I915_READ_FW(GEN6_PCODE_DATA);
|
|
I915_WRITE_FW(GEN6_PCODE_DATA, 0);
|
|
|
|
if (INTEL_GEN(dev_priv) > 6)
|
|
status = gen7_check_mailbox_status(dev_priv);
|
|
else
|
|
status = gen6_check_mailbox_status(dev_priv);
|
|
|
|
if (status) {
|
|
DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
|
|
mbox, __builtin_return_address(0), status);
|
|
return status;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
|
|
u32 mbox, u32 val,
|
|
int fast_timeout_us, int slow_timeout_ms)
|
|
{
|
|
int status;
|
|
|
|
WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
|
|
|
|
/* GEN6_PCODE_* are outside of the forcewake domain, we can
|
|
* use te fw I915_READ variants to reduce the amount of work
|
|
* required when reading/writing.
|
|
*/
|
|
|
|
if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
|
|
DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
|
|
val, mbox, __builtin_return_address(0));
|
|
return -EAGAIN;
|
|
}
|
|
|
|
I915_WRITE_FW(GEN6_PCODE_DATA, val);
|
|
I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
|
|
I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
|
|
|
|
if (__intel_wait_for_register_fw(dev_priv,
|
|
GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
|
|
fast_timeout_us, slow_timeout_ms,
|
|
NULL)) {
|
|
DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
|
|
val, mbox, __builtin_return_address(0));
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
I915_WRITE_FW(GEN6_PCODE_DATA, 0);
|
|
|
|
if (INTEL_GEN(dev_priv) > 6)
|
|
status = gen7_check_mailbox_status(dev_priv);
|
|
else
|
|
status = gen6_check_mailbox_status(dev_priv);
|
|
|
|
if (status) {
|
|
DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
|
|
val, mbox, __builtin_return_address(0), status);
|
|
return status;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
|
|
u32 request, u32 reply_mask, u32 reply,
|
|
u32 *status)
|
|
{
|
|
u32 val = request;
|
|
|
|
*status = sandybridge_pcode_read(dev_priv, mbox, &val);
|
|
|
|
return *status || ((val & reply_mask) == reply);
|
|
}
|
|
|
|
/**
|
|
* skl_pcode_request - send PCODE request until acknowledgment
|
|
* @dev_priv: device private
|
|
* @mbox: PCODE mailbox ID the request is targeted for
|
|
* @request: request ID
|
|
* @reply_mask: mask used to check for request acknowledgment
|
|
* @reply: value used to check for request acknowledgment
|
|
* @timeout_base_ms: timeout for polling with preemption enabled
|
|
*
|
|
* Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
|
|
* reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
|
|
* The request is acknowledged once the PCODE reply dword equals @reply after
|
|
* applying @reply_mask. Polling is first attempted with preemption enabled
|
|
* for @timeout_base_ms and if this times out for another 50 ms with
|
|
* preemption disabled.
|
|
*
|
|
* Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
|
|
* other error as reported by PCODE.
|
|
*/
|
|
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
|
|
u32 reply_mask, u32 reply, int timeout_base_ms)
|
|
{
|
|
u32 status;
|
|
int ret;
|
|
|
|
WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
|
|
|
|
#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
|
|
&status)
|
|
|
|
/*
|
|
* Prime the PCODE by doing a request first. Normally it guarantees
|
|
* that a subsequent request, at most @timeout_base_ms later, succeeds.
|
|
* _wait_for() doesn't guarantee when its passed condition is evaluated
|
|
* first, so send the first request explicitly.
|
|
*/
|
|
if (COND) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
|
|
if (!ret)
|
|
goto out;
|
|
|
|
/*
|
|
* The above can time out if the number of requests was low (2 in the
|
|
* worst case) _and_ PCODE was busy for some reason even after a
|
|
* (queued) request and @timeout_base_ms delay. As a workaround retry
|
|
* the poll with preemption disabled to maximize the number of
|
|
* requests. Increase the timeout from @timeout_base_ms to 50ms to
|
|
* account for interrupts that could reduce the number of these
|
|
* requests, and for any quirks of the PCODE firmware that delays
|
|
* the request completion.
|
|
*/
|
|
DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
|
|
WARN_ON_ONCE(timeout_base_ms > 3);
|
|
preempt_disable();
|
|
ret = wait_for_atomic(COND, 50);
|
|
preempt_enable();
|
|
|
|
out:
|
|
return ret ? ret : status;
|
|
#undef COND
|
|
}
|
|
|
|
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
|
|
/*
|
|
* N = val - 0xb7
|
|
* Slow = Fast = GPLL ref * N
|
|
*/
|
|
return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
|
|
}
|
|
|
|
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
|
|
return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
|
|
}
|
|
|
|
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
|
|
/*
|
|
* N = val / 2
|
|
* CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
|
|
*/
|
|
return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
|
|
}
|
|
|
|
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
|
|
{
|
|
struct intel_rps *rps = &dev_priv->gt_pm.rps;
|
|
|
|
/* CHV needs even values */
|
|
return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
|
|
}
|
|
|
|
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
|
|
{
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
|
|
GEN9_FREQ_SCALER);
|
|
else if (IS_CHERRYVIEW(dev_priv))
|
|
return chv_gpu_freq(dev_priv, val);
|
|
else if (IS_VALLEYVIEW(dev_priv))
|
|
return byt_gpu_freq(dev_priv, val);
|
|
else
|
|
return val * GT_FREQUENCY_MULTIPLIER;
|
|
}
|
|
|
|
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
|
|
{
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
|
|
GT_FREQUENCY_MULTIPLIER);
|
|
else if (IS_CHERRYVIEW(dev_priv))
|
|
return chv_freq_opcode(dev_priv, val);
|
|
else if (IS_VALLEYVIEW(dev_priv))
|
|
return byt_freq_opcode(dev_priv, val);
|
|
else
|
|
return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
|
|
}
|
|
|
|
void intel_pm_setup(struct drm_i915_private *dev_priv)
|
|
{
|
|
mutex_init(&dev_priv->pcu_lock);
|
|
mutex_init(&dev_priv->gt_pm.rps.power.mutex);
|
|
|
|
atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
|
|
|
|
dev_priv->runtime_pm.suspended = false;
|
|
atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
|
|
}
|
|
|
|
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
|
|
const i915_reg_t reg)
|
|
{
|
|
u32 lower, upper, tmp;
|
|
int loop = 2;
|
|
|
|
/*
|
|
* The register accessed do not need forcewake. We borrow
|
|
* uncore lock to prevent concurrent access to range reg.
|
|
*/
|
|
lockdep_assert_held(&dev_priv->uncore.lock);
|
|
|
|
/*
|
|
* vlv and chv residency counters are 40 bits in width.
|
|
* With a control bit, we can choose between upper or lower
|
|
* 32bit window into this counter.
|
|
*
|
|
* Although we always use the counter in high-range mode elsewhere,
|
|
* userspace may attempt to read the value before rc6 is initialised,
|
|
* before we have set the default VLV_COUNTER_CONTROL value. So always
|
|
* set the high bit to be safe.
|
|
*/
|
|
I915_WRITE_FW(VLV_COUNTER_CONTROL,
|
|
_MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
|
|
upper = I915_READ_FW(reg);
|
|
do {
|
|
tmp = upper;
|
|
|
|
I915_WRITE_FW(VLV_COUNTER_CONTROL,
|
|
_MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
|
|
lower = I915_READ_FW(reg);
|
|
|
|
I915_WRITE_FW(VLV_COUNTER_CONTROL,
|
|
_MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
|
|
upper = I915_READ_FW(reg);
|
|
} while (upper != tmp && --loop);
|
|
|
|
/*
|
|
* Everywhere else we always use VLV_COUNTER_CONTROL with the
|
|
* VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
|
|
* now.
|
|
*/
|
|
|
|
return lower | (u64)upper << 8;
|
|
}
|
|
|
|
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
|
|
const i915_reg_t reg)
|
|
{
|
|
u64 time_hw, prev_hw, overflow_hw;
|
|
unsigned int fw_domains;
|
|
unsigned long flags;
|
|
unsigned int i;
|
|
u32 mul, div;
|
|
|
|
if (!HAS_RC6(dev_priv))
|
|
return 0;
|
|
|
|
/*
|
|
* Store previous hw counter values for counter wrap-around handling.
|
|
*
|
|
* There are only four interesting registers and they live next to each
|
|
* other so we can use the relative address, compared to the smallest
|
|
* one as the index into driver storage.
|
|
*/
|
|
i = (i915_mmio_reg_offset(reg) -
|
|
i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
|
|
if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
|
|
return 0;
|
|
|
|
fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
|
|
|
|
spin_lock_irqsave(&dev_priv->uncore.lock, flags);
|
|
intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
|
|
|
|
/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
mul = 1000000;
|
|
div = dev_priv->czclk_freq;
|
|
overflow_hw = BIT_ULL(40);
|
|
time_hw = vlv_residency_raw(dev_priv, reg);
|
|
} else {
|
|
/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
|
|
if (IS_GEN9_LP(dev_priv)) {
|
|
mul = 10000;
|
|
div = 12;
|
|
} else {
|
|
mul = 1280;
|
|
div = 1;
|
|
}
|
|
|
|
overflow_hw = BIT_ULL(32);
|
|
time_hw = I915_READ_FW(reg);
|
|
}
|
|
|
|
/*
|
|
* Counter wrap handling.
|
|
*
|
|
* But relying on a sufficient frequency of queries otherwise counters
|
|
* can still wrap.
|
|
*/
|
|
prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
|
|
dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
|
|
|
|
/* RC6 delta from last sample. */
|
|
if (time_hw >= prev_hw)
|
|
time_hw -= prev_hw;
|
|
else
|
|
time_hw += overflow_hw - prev_hw;
|
|
|
|
/* Add delta to RC6 extended raw driver copy. */
|
|
time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
|
|
dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
|
|
|
|
intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
|
|
spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
|
|
|
|
return mul_u64_u32_div(time_hw, mul, div);
|
|
}
|
|
|
|
u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
|
|
{
|
|
u32 cagf;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
|
|
else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
|
|
cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
|
|
else
|
|
cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
|
|
|
|
return cagf;
|
|
}
|