kernel_samsung_a34x-permissive/drivers/input/touchscreen/GT1151/gt1x_tpd.c
2024-04-28 15:51:13 +02:00

1408 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2014 Goodix Technology.
*/
#include "gt1x_tpd_common.h"
#if TPD_SUPPORT_I2C_DMA
#include <linux/dma-mapping.h>
#endif
#ifdef CONFIG_GTP_ICS_SLOT_REPORT
#include <linux/input/mt.h>
#endif
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/suspend.h>
/*1 enable,0 disable,touch_panel_eint default status,
* need to confirm after register eint
*/
int irq_flag = 1;
static spinlock_t irq_flag_lock;
/*0 power off,default, 1 power on*/
static int power_flag;
static int tpd_flag;
static int tpd_pm_flag;
static int tpd_tui_flag;
static int tpd_tui_low_power_skipped;
DEFINE_MUTEX(tui_lock);
int tpd_halt;
static int tpd_eint_mode = 1;
static struct task_struct *thread;
static struct task_struct *update_thread;
static struct task_struct *probe_thread;
static struct notifier_block pm_notifier_block;
struct pinctrl *pinctrl1;
struct pinctrl_state *pins_default;
struct pinctrl_state *eint_as_int, *eint_output0,
*eint_output1, *rst_output0,
*pin_i2c_mode, *rst_output1;
static int tpd_polling_time = 50;
static DECLARE_WAIT_QUEUE_HEAD(waiter);
static DECLARE_WAIT_QUEUE_HEAD(pm_waiter);
static bool gtp_suspend;
DECLARE_WAIT_QUEUE_HEAD(init_waiter);
DEFINE_MUTEX(i2c_access);
unsigned int touch_irq;
u8 int_type;
#if (defined(TPD_WARP_START) && defined(TPD_WARP_END))
static int tpd_wb_start_local[TPD_WARP_CNT] = TPD_WARP_START;
static int tpd_wb_end_local[TPD_WARP_CNT] = TPD_WARP_END;
#endif
#if (defined(TPD_HAVE_CALIBRATION) && !defined(TPD_CUSTOM_CALIBRATION))
static int tpd_def_calmat_local[8] = TPD_CALIBRATION_MATRIX;
#endif
static int tpd_event_handler(void *unused);
static int tpd_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int tpd_i2c_detect(struct i2c_client *client,
struct i2c_board_info *info);
static int tpd_i2c_remove(struct i2c_client *client);
static irqreturn_t tpd_eint_interrupt_handler(int irq,
void *desc);
#define GTP_DRIVER_NAME "gt1151"
static const struct i2c_device_id tpd_i2c_id[] = { {GTP_DRIVER_NAME, 0}, {} };
static unsigned short force[] = {
0, GTP_I2C_ADDRESS, I2C_CLIENT_END, I2C_CLIENT_END };
static const unsigned short *const forces[] = { force, NULL };
static const struct of_device_id tpd_of_match[] = {
{.compatible = "goodix,gt1151"},
{},
};
static struct i2c_driver tpd_i2c_driver = {
.probe = tpd_i2c_probe,
.remove = tpd_i2c_remove,
.detect = tpd_i2c_detect,
.driver.name = GTP_DRIVER_NAME,
.driver = {
.name = GTP_DRIVER_NAME,
.of_match_table = tpd_of_match,
},
.id_table = tpd_i2c_id,
.address_list = (const unsigned short *)forces,
};
#if TPD_SUPPORT_I2C_DMA
static u8 *gpDMABuf_va;
static dma_addr_t gpDMABuf_pa;
struct mutex dma_mutex;
DEFINE_MUTEX(dma_mutex);
static s32 i2c_dma_write_mtk(u16 addr, u8 *buffer, s32 len)
{
s32 ret = 0;
s32 pos = 0;
s32 transfer_length;
u16 address = addr;
struct i2c_msg msg = {
.flags = !I2C_M_RD,
.ext_flag = (gt1x_i2c_client->ext_flag |
I2C_ENEXT_FLAG | I2C_DMA_FLAG),
.addr = (gt1x_i2c_client->addr & I2C_MASK_FLAG),
.timing = I2C_MASTER_CLOCK,
.buf = (u8 *)(uintptr_t)gpDMABuf_pa,
};
mutex_lock(&dma_mutex);
while (pos != len) {
if (len - pos > (IIC_DMA_MAX_TRANSFER_SIZE - GTP_ADDR_LENGTH))
transfer_length =
IIC_DMA_MAX_TRANSFER_SIZE - GTP_ADDR_LENGTH;
else
transfer_length = len - pos;
gpDMABuf_va[0] = (address >> 8) & 0xFF;
gpDMABuf_va[1] = address & 0xFF;
memcpy(&gpDMABuf_va[GTP_ADDR_LENGTH], &buffer[pos],
transfer_length);
msg.len = transfer_length + GTP_ADDR_LENGTH;
if (!gtp_suspend) {/*workround log too much*/
ret = i2c_transfer(gt1x_i2c_client->adapter, &msg, 1);
if (ret != 1) {
GTP_INFO("I2c Transfer error! (%d)", ret);
ret = ERROR_IIC;
break;
}
} else {
ret = ERROR_IIC;
break;
}
ret = 0;
pos += transfer_length;
address += transfer_length;
}
mutex_unlock(&dma_mutex);
return ret;
}
static s32 i2c_dma_read_mtk(u16 addr, u8 *buffer, s32 len)
{
s32 ret = ERROR;
s32 pos = 0;
s32 transfer_length;
u16 address = addr;
u8 addr_buf[GTP_ADDR_LENGTH] = { 0 };
struct i2c_msg msgs[2] = {
{
.flags = 0, /*!I2C_M_RD,*/
.addr = (gt1x_i2c_client->addr & I2C_MASK_FLAG),
.timing = I2C_MASTER_CLOCK,
.len = GTP_ADDR_LENGTH,
.buf = addr_buf,
},
{
.flags = I2C_M_RD,
.ext_flag = (gt1x_i2c_client->ext_flag |
I2C_ENEXT_FLAG | I2C_DMA_FLAG),
.addr = (gt1x_i2c_client->addr & I2C_MASK_FLAG),
.timing = I2C_MASTER_CLOCK,
.buf = (u8 *)(uintptr_t)gpDMABuf_pa,
},
};
mutex_lock(&dma_mutex);
while (pos != len) {
if (len - pos > IIC_DMA_MAX_TRANSFER_SIZE)
transfer_length = IIC_DMA_MAX_TRANSFER_SIZE;
else
transfer_length = len - pos;
msgs[0].buf[0] = (address >> 8) & 0xFF;
msgs[0].buf[1] = address & 0xFF;
msgs[1].len = transfer_length;
ret = i2c_transfer(gt1x_i2c_client->adapter, msgs, 2);
if (ret != 2) {
GTP_ERROR("I2C Transfer error! (%d)", ret);
ret = ERROR_IIC;
break;
}
ret = 0;
memcpy(&buffer[pos], gpDMABuf_va, transfer_length);
pos += transfer_length;
address += transfer_length;
};
mutex_unlock(&dma_mutex);
return ret;
}
#else
static s32 i2c_write_mtk(u16 addr, u8 *buffer, s32 len)
{
s32 ret;
struct i2c_msg msg = {
.flags = 0,
#ifdef CONFIG_MTK_I2C_EXTENSION
.addr = (gt1x_i2c_client->addr & I2C_MASK_FLAG) |
(I2C_ENEXT_FLAG),
.timing = I2C_MASTER_CLOCK,
#else
.addr = gt1x_i2c_client->addr,
#endif
};
ret = _do_i2c_write(&msg, addr, buffer, len);
return ret;
}
static s32 i2c_read_mtk(u16 addr, u8 *buffer, s32 len)
{
int ret;
u8 addr_buf[GTP_ADDR_LENGTH] = { (addr >> 8) & 0xFF, addr & 0xFF };
struct i2c_msg msgs[2] = {
{
#ifdef CONFIG_MTK_I2C_EXTENSION
.addr = ((gt1x_i2c_client->addr & I2C_MASK_FLAG) |
(I2C_ENEXT_FLAG)),
.timing = I2C_MASTER_CLOCK,
#else
.addr = gt1x_i2c_client->addr,
#endif
.flags = 0,
.buf = addr_buf,
.len = GTP_ADDR_LENGTH,
},
{
#ifdef CONFIG_MTK_I2C_EXTENSION
.addr = ((gt1x_i2c_client->addr & I2C_MASK_FLAG) |
(I2C_ENEXT_FLAG)),
.timing = I2C_MASTER_CLOCK,
#else
.addr = gt1x_i2c_client->addr,
#endif
.flags = I2C_M_RD,
},
};
ret = _do_i2c_read(msgs, addr, buffer, len);
return ret;
}
#endif/* TPD_SUPPORT_I2C_DMA */
/**
* @return: return 0 if success, otherwise return a negative number
* which contains the error code.
*/
s32 gt1x_i2c_read(u16 addr, u8 *buffer, s32 len)
{
#if TPD_SUPPORT_I2C_DMA
return i2c_dma_read_mtk(addr, buffer, len);
#else
return i2c_read_mtk(addr, buffer, len);
#endif
}
/**
* @return: return 0 if success, otherwise return a negative number
* which contains the error code.
*/
s32 gt1x_i2c_write(u16 addr, u8 *buffer, s32 len)
{
#if TPD_SUPPORT_I2C_DMA
return i2c_dma_write_mtk(addr, buffer, len);
#else
return i2c_write_mtk(addr, buffer, len);
#endif
}
#ifdef TPD_REFRESH_RATE
/*******************************************************
* Function:
* Write refresh rate
*
* Input:
* rate: refresh rate N (Duration=5+N ms, N=0~15)
*
* Output:
* Executive outcomes.0---succeed.
*******************************************************/
static u8 gt1x_set_refresh_rate(u8 rate)
{
u8 buf[1] = { rate };
if (rate > 0xf) {
GTP_ERROR("Refresh rate is over range (%d)", rate);
return ERROR_VALUE;
}
GTP_INFO("Refresh rate change to %d", rate);
return gt1x_i2c_write(GTP_REG_REFRESH_RATE, buf, sizeof(buf));
}
/*******************************************************
* Function:
* Get refresh rate
*
* Output:
* Refresh rate or error code
*******************************************************/
static u8 gt1x_get_refresh_rate(void)
{
int ret;
u8 buf[1] = { 0x00 };
ret = gt1x_i2c_read(GTP_REG_REFRESH_RATE, buf, sizeof(buf));
if (ret < 0)
return ret;
GTP_INFO("Refresh rate is %d", buf[0]);
return buf[0];
}
/*=============================================================*/
static ssize_t tpd_refresh_rate_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int ret = gt1x_get_refresh_rate();
if (ret < 0)
return 0;
else
return sprintf(buf, "%d\n", ret);
}
static ssize_t tpd_refresh_rate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long rate;
int ret;
ret = kstrtoul(buf, 0, &rate);
gt1x_set_refresh_rate(rate);
return size;
}
static DEVICE_ATTR_RW(tpd_refresh_rate);
static struct device_attribute *gt9xx_attrs[] = {
&dev_attr_tpd_refresh_rate,
};
#endif
/*=============================================================*/
static int tpd_i2c_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
strncpy(info->type, "mtk-tpd", sizeof(info->type));
return 0;
}
static DEFINE_MUTEX(tpd_set_gpio_mutex);
void tpd_gpio_as_int(int pin)
{
mutex_lock(&tpd_set_gpio_mutex);
GTP_INFO("[tpd] %s\n", __func__);
if (pin == 1)
pinctrl_select_state(pinctrl1, eint_as_int);
mutex_unlock(&tpd_set_gpio_mutex);
}
void tpd_gpio_output(int pin, int level)
{
mutex_lock(&tpd_set_gpio_mutex);
GTP_DEBUG("%s pin = EINT, level = %d\n", __func__, level);
if (pin == 1) {
if (level)
pinctrl_select_state(pinctrl1, eint_output1);
else
pinctrl_select_state(pinctrl1, eint_output0);
} else {
if (level)
pinctrl_select_state(pinctrl1, rst_output1);
else
pinctrl_select_state(pinctrl1, rst_output0);
}
mutex_unlock(&tpd_set_gpio_mutex);
}
int tpd_get_pinctrl(struct i2c_client *client)
{
int ret;
GTP_INFO("[tpd] mt_tpd_pinctrl+\n");
pinctrl1 = devm_pinctrl_get(client->adapter->dev.parent);
if (IS_ERR(pinctrl1)) {
ret = PTR_ERR(pinctrl1);
GTP_ERROR("Cannot find pinctrl1!\n");
return ret;
}
pins_default = pinctrl_lookup_state(pinctrl1, "default");
if (IS_ERR(pins_default)) {
ret = PTR_ERR(pins_default);
GTP_INFO("Cannot find pinctrl default %d!\n", ret);
}
/* default i2c mode */
pin_i2c_mode = pinctrl_lookup_state(pinctrl1, "ts_i2c_mode");
if (IS_ERR(pin_i2c_mode)) {
ret = PTR_ERR(pin_i2c_mode);
GTP_ERROR("Failed to get pinctrl state:%s, ret:%d",
"ts_i2c_mode", ret);
}
eint_as_int = pinctrl_lookup_state(pinctrl1, "ts_int_active");
if (IS_ERR(eint_as_int)) {
ret = PTR_ERR(eint_as_int);
GTP_ERROR("Cannot find pinctrl ts_int_active!\n");
return ret;
}
eint_output0 = pinctrl_lookup_state(pinctrl1, "ts_int_suspend");
if (IS_ERR(eint_output0)) {
ret = PTR_ERR(eint_output0);
GTP_ERROR("Cannot find pinctrl ts_int_suspend!\n");
return ret;
}
eint_output1 = pinctrl_lookup_state(pinctrl1, "ts_eint_high");
if (IS_ERR(eint_output1)) {
ret = PTR_ERR(eint_output1);
GTP_ERROR("Cannot find pinctrl ts_eint_high!\n");
return ret;
}
if (tpd_dts_data.tpd_use_ext_gpio == false) {
rst_output0 =
pinctrl_lookup_state(pinctrl1, "ts_reset_suspend");
if (IS_ERR(rst_output0)) {
ret = PTR_ERR(rst_output0);
GTP_ERROR("Cannot find pinctrl ts_reset_suspend!\n");
return ret;
}
rst_output1 =
pinctrl_lookup_state(pinctrl1, "ts_reset_active");
if (IS_ERR(rst_output1)) {
ret = PTR_ERR(rst_output1);
GTP_ERROR("Cannot find pinctrl ts_reset_active!\n");
return ret;
}
}
GTP_INFO("[tpd] mt_tpd_pinctrl-\n");
return 0;
}
static int tpd_power_on(void)
{
gt1x_power_switch(SWITCH_ON);
gt1x_select_addr();
msleep(20);
if (gt1x_get_chip_type() != 0)
return -1;
if (gt1x_reset_guitar() != 0)
return -1;
return 0;
}
void gt1x_irq_enable(void)
{
unsigned long flags;
spin_lock_irqsave(&irq_flag_lock, flags);
if (irq_flag == 0) {
irq_flag = 1;
spin_unlock_irqrestore(&irq_flag_lock, flags);
enable_irq(touch_irq);
GTP_DEBUG("%s, irq_flag=%d", __func__, irq_flag);
} else if (irq_flag == 1) {
spin_unlock_irqrestore(&irq_flag_lock, flags);
GTP_INFO("Touch Eint already enabled!");
} else {
spin_unlock_irqrestore(&irq_flag_lock, flags);
GTP_ERROR("Invalid irq_flag %d!", irq_flag);
}
/*GTP_INFO("Enable irq_flag=%d",irq_flag);*/
}
void gt1x_irq_disable(void)
{
unsigned long flags;
spin_lock_irqsave(&irq_flag_lock, flags);
if (irq_flag == 1) {
irq_flag = 0;
spin_unlock_irqrestore(&irq_flag_lock, flags);
disable_irq(touch_irq);
GTP_DEBUG("%s, irq_flag=%d", __func__, irq_flag);
} else if (irq_flag == 0) {
spin_unlock_irqrestore(&irq_flag_lock, flags);
GTP_INFO("Touch Eint already disabled!");
} else {
spin_unlock_irqrestore(&irq_flag_lock, flags);
GTP_ERROR("Invalid irq_flag %d!", irq_flag);
}
/*GTP_INFO("Disable irq_flag=%d",irq_flag);*/
}
void gt1x_power_off(void)
{
int ret = 0;
if (power_flag == 1) {
GTP_INFO("Power switch off!");
/*disable regulator*/
ret = regulator_disable(tpd->reg);
if (ret)
GTP_ERROR("regulator_disable() failed!\n");
power_flag = 0;
}
}
void gt1x_power_switch(s32 state)
{
int ret = 0;
GTP_GPIO_OUTPUT(GTP_RST_PORT, 0);
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
msleep(20);
switch (state) {
case SWITCH_ON:
if (power_flag == 0) {
GTP_INFO("Power switch on!");
/*enable regulator*/
ret = regulator_enable(tpd->reg);
if (ret)
GTP_ERROR("regulator_enable() failed!\n");
power_flag = 1;
} else
GTP_DEBUG("Power already is on!");
break;
case SWITCH_OFF:
if (power_flag == 1) {
GTP_INFO("Power switch off!");
/*disable regulator*/
ret = regulator_disable(tpd->reg);
if (ret)
GTP_ERROR("regulator_disable() failed!\n");
power_flag = 0;
} else
GTP_INFO("Power already is off!");
break;
default:
GTP_ERROR("Invalid power switch command!");
break;
}
}
int gt1x_is_tpd_halt(void)
{
return tpd_halt;
}
static int tpd_irq_registration(void)
{
struct device_node *node = NULL;
int ret = 0;
u32 ints[2] = { 0, 0 };
GTP_INFO("Device Tree Tpd_irq_registration!");
node = of_find_matching_node(node, touch_of_match);
if (node) {
if (of_property_read_u32_array(node, "debounce",
ints, ARRAY_SIZE(ints)) == 0) {
GTP_INFO("debounce:%d-%d\n", ints[0], ints[1]);
gpio_set_debounce(ints[0], ints[1]);
} else
GTP_INFO("debounce time not found\n");
touch_irq = irq_of_parse_and_map(node, 0);
GTP_INFO("Device gt1x_int_type = %d!", gt1x_int_type);
if (!gt1x_int_type) {/*EINTF_TRIGGER*/
ret = request_irq(touch_irq,
(irq_handler_t) tpd_eint_interrupt_handler,
IRQF_TRIGGER_RISING,
"TOUCH_PANEL-eint", NULL);
if (ret > 0) {
ret = -1;
GTP_ERROR("request_irq IRQ NOT AVAILABLE!.");
}
} else {
ret = request_irq(touch_irq,
(irq_handler_t) tpd_eint_interrupt_handler,
IRQF_TRIGGER_FALLING,
"TOUCH_PANEL-eint", NULL);
if (ret > 0) {
ret = -1;
GTP_ERROR("request_irq IRQ NOT AVAILABLE!.");
}
}
} else {
GTP_ERROR("can not find touch eint device node!.");
ret = -1;
}
GTP_INFO("[%s]irq:%d", __func__, touch_irq);
return ret;
}
void gt1x_auto_update_done(void)
{
tpd_pm_flag = 1;
wake_up(&pm_waiter);
}
static int gt1x_ts_gpio_setup(void)
{
int ret = 0;
GTP_INFO("GPIO setup,reset-gpio:%d, irq-gpio:%d",
tpd_dts_data.rst_gpio_num, tpd_dts_data.eint_gpio_num);
if (gpio_is_valid(tpd_dts_data.rst_gpio_num)) {
ret = gpio_request(tpd_dts_data.rst_gpio_num,
"goodix,reset-gpio");
if (ret < 0) {
GTP_ERROR("Failed to request reset gpio, ret:%d", ret);
goto err_request_reset_gpio;
}
}
if (gpio_is_valid(tpd_dts_data.eint_gpio_num)) {
ret = gpio_request(tpd_dts_data.eint_gpio_num,
"goodix,eint-gpio");
if (ret < 0) {
GTP_ERROR("Failed to request irq gpio, ret:%d", ret);
goto err_request_eint_gpio;
}
}
return ret;
err_request_eint_gpio:
gpio_free(tpd_dts_data.rst_gpio_num);
err_request_reset_gpio:
return ret;
}
static int gt1x_ts_power_init(void)
{
int ret = 0;
GTP_INFO("Power init");
/* dev:i2c client device or spi slave device*/
tpd->reg = devm_regulator_get(tpd->tpd_dev, "vtouch");
if (IS_ERR(tpd->reg)) {
GTP_ERROR("regulator_get() failed!\n");
tpd->reg = NULL;
return PTR_ERR(tpd->reg);
}
/*set 2.8v*/
ret = regulator_set_voltage(tpd->reg, 3000000, 3000000);
if (ret)
GTP_ERROR("regulator_set_voltage(%d) failed!\n", ret);
return ret;
}
#ifdef GTP_AUTO_UPDATE
int gt1x_pm_notifier(struct notifier_block *nb, unsigned long val, void *ign)
{
switch (val) {
case PM_RESTORE_PREPARE:
GTP_INFO("%s: PM_RESTORE_PREPARE enter\n", __func__);
if (!IS_ERR(update_thread) && update_thread)
wait_event(waiter, tpd_pm_flag == 1);
GTP_INFO("%s: PM_RESTORE_PREPARE leave\n", __func__);
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
#endif
int tpd_reregister_from_tui(void)
{
int ret = 0;
free_irq(touch_irq, NULL);
ret = tpd_irq_registration();
if (ret < 0) {
ret = -1;
GTP_INFO("tpd request_irq IRQ LINE NOT AVAILABLE!.");
}
return ret;
}
static int tpd_registration(void *client)
{
s32 err = 0;
s32 idx = 0;
gt1x_i2c_client = client;
GTP_INFO(" start %s ++\n", __func__);
tpd_get_pinctrl(client);
err = pinctrl_select_state(pinctrl1, pin_i2c_mode);
if (err < 0)
GTP_ERROR("Failed to select default pinstate, err:%d", err);
gt1x_power_switch(SWITCH_ON);
/* select i2c address */
gt1x_select_addr();
if (gt1x_init()) {
/* TP resolution == LCD resolution,
* no need to match resolution when initialized fail
*/
gt1x_abs_x_max = 0;
gt1x_abs_y_max = 0;
gt1x_power_off();
wake_up(&init_waiter);
GTP_INFO("gt1x_init failed!++");
return -1;
}
thread = kthread_run(tpd_event_handler, 0, TPD_DEVICE);
if (IS_ERR(thread)) {
err = PTR_ERR(thread);
GTP_INFO(" failed to create kernel thread: %d\n", err);
}
if (tpd_dts_data.use_tpd_button) {
for (idx = 0; idx < tpd_dts_data.tpd_key_num; idx++)
input_set_capability(tpd->dev, EV_KEY,
tpd_dts_data.tpd_key_local[idx]);
}
#ifdef CONFIG_GTP_GESTURE_WAKEUP
input_set_capability(tpd->dev, EV_KEY, KEY_GESTURE);
#endif
/* EINT device tree, default EINT enable */
tpd_irq_registration();
#ifdef CONFIG_GTP_ESD_PROTECT
/* must before auto update */
gt1x_init_esd_protect();
gt1x_esd_switch(SWITCH_ON);
#endif
update_thread = kthread_run(gt1x_auto_update_proc,
(void *)NULL, "gt1x_auto_update");
if (IS_ERR(update_thread)) {
err = PTR_ERR(update_thread);
GTP_INFO(" failed to create auto-update thread: %d\n", err);
}
pm_notifier_block.notifier_call = gt1x_pm_notifier;
pm_notifier_block.priority = 0;
register_pm_notifier(&pm_notifier_block);
#ifdef CONFIG_MTK_LENS
AF_PowerDown();
#endif
return 0;
}
static s32 tpd_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int err = 0;
/*int count = 0;*/
GTP_INFO("%s enter.", __func__);
#ifdef CONFIG_MTK_BOOT
if (get_boot_mode() == RECOVERY_BOOT)
return 0;
#endif
probe_thread = kthread_run(tpd_registration,
(void *)client, "tpd_probe");
if (IS_ERR(probe_thread)) {
err = PTR_ERR(probe_thread);
GTP_INFO(" failed to create probe thread: %d\n", err);
return err;
}
GTP_INFO("%s start.wait_event_interruptible", __func__);
wait_event_timeout(init_waiter,
check_flag == true, 5 * HZ);
GTP_INFO("%s end.wait_event_interruptible", __func__);
return 0;
}
static irqreturn_t tpd_eint_interrupt_handler(int irq,
void *desc)
{
unsigned long flags;
TPD_DEBUG_PRINT_INT;
tpd_flag = 1;
spin_lock_irqsave(&irq_flag_lock, flags);
if (irq_flag == 0) {
spin_unlock_irqrestore(&irq_flag_lock, flags);
return IRQ_HANDLED;
}
/* enter EINT handler disable INT, make sure INT is disable when
* handle touch event including top/bottom half
* use _nosync to avoid deadlock
*/
irq_flag = 0;
spin_unlock_irqrestore(&irq_flag_lock, flags);
disable_irq_nosync(touch_irq);
GTP_DEBUG("eint disable irq_flat=%d", irq_flag);
/*GTP_INFO("disable irq_flag=%d",irq_flag);*/
wake_up(&waiter);
return IRQ_HANDLED;
}
static int tpd_history_x, tpd_history_y;
void gt1x_touch_down(s32 x, s32 y, s32 size, s32 id)
{
#ifdef CONFIG_GTP_CHANGE_X2Y
GTP_SWAP(x, y);
#endif
#ifndef CONFIG_GTP_ICS_SLOT_REPORT
#ifdef CONFIG_CUSTOM_LCM_X
unsigned long lcm_x = 0, lcm_y = 0;
int ret;
#endif
#endif
input_report_key(tpd->dev, BTN_TOUCH, 1);
#ifdef CONFIG_GTP_ICS_SLOT_REPORT
input_mt_slot(tpd->dev, id);
input_report_abs(tpd->dev, ABS_MT_PRESSURE, size);
input_report_abs(tpd->dev, ABS_MT_TOUCH_MAJOR, size);
input_report_abs(tpd->dev, ABS_MT_TRACKING_ID, id);
input_report_abs(tpd->dev, ABS_MT_POSITION_X, x);
input_report_abs(tpd->dev, ABS_MT_POSITION_Y, y);
#else
if ((!size) && (!id)) {
/* for virtual button */
input_report_abs(tpd->dev, ABS_MT_PRESSURE, 100);
input_report_abs(tpd->dev, ABS_MT_TOUCH_MAJOR, 100);
} else {
input_report_abs(tpd->dev, ABS_MT_PRESSURE, size);
input_report_abs(tpd->dev, ABS_MT_TOUCH_MAJOR, size);
input_report_abs(tpd->dev, ABS_MT_TRACKING_ID, id);
}
#ifdef CONFIG_CUSTOM_LCM_X
ret = kstrtoul(CONFIG_CUSTOM_LCM_X, 0, &lcm_x);
if (ret)
GTP_ERROR("Touch down get lcm_x failed");
ret = kstrtoul(CONFIG_CUSTOM_LCM_Y, 0, &lcm_y);
if (ret)
GTP_ERROR("Touch down get lcm_y failed");
if (x < lcm_x)
x = 0;
else
x = x - lcm_x;
if (y < lcm_y)
y = 0;
else
y = y - lcm_y;
GTP_DEBUG("x:%d, y:%d, lcm_x:%lu, lcm_y:%lu", x, y, lcm_x, lcm_y);
#endif
input_report_abs(tpd->dev, ABS_MT_POSITION_X, x);
input_report_abs(tpd->dev, ABS_MT_POSITION_Y, y);
input_mt_sync(tpd->dev);
#endif
TPD_DEBUG_SET_TIME;
TPD_EM_PRINT(x, y, x, y, id, 1);
tpd_history_x = x;
tpd_history_y = y;
#ifdef CONFIG_MTK_BOOT
if (tpd_dts_data.use_tpd_button) {
if (get_boot_mode() == FACTORY_BOOT ||
get_boot_mode() == RECOVERY_BOOT)
tpd_button(x, y, 1);
}
#endif
}
void gt1x_touch_up(s32 id)
{
#ifdef CONFIG_GTP_ICS_SLOT_REPORT
input_mt_slot(tpd->dev, id);
input_report_abs(tpd->dev, ABS_MT_TRACKING_ID, -1);
#else
input_mt_sync(tpd->dev);
#endif
TPD_DEBUG_SET_TIME;
TPD_EM_PRINT(tpd_history_x, tpd_history_y,
tpd_history_x, tpd_history_y, id, 0);
tpd_history_x = 0;
tpd_history_y = 0;
#ifdef CONFIG_MTK_BOOT
if (tpd_dts_data.use_tpd_button) {
if (get_boot_mode() == FACTORY_BOOT ||
get_boot_mode() == RECOVERY_BOOT)
tpd_button(0, 0, 0);
}
#endif
}
#ifdef CONFIG_GTP_CHARGER_SWITCH
u32 gt1x_get_charger_status(void)
{
u32 chr_status = 0;
#ifdef MT6573
chr_status = *(u32 *)CHR_CON0;
chr_status &= (1 << 13);
#else
/* ( defined(MT6575) || defined(MT6577) || defined(MT6589) ) */
chr_status = upmu_is_chr_det();
#endif
return chr_status;
}
#endif
static int tpd_event_handler(void *unused)
{
u8 finger = 0;
u8 end_cmd = 0;
s32 ret = 0;
u8 point_data[11] = { 0 };
struct sched_param param = {.sched_priority = 4};
sched_setscheduler(current, SCHED_RR, &param);
do {
if (tpd_eint_mode) {
wait_event(waiter, tpd_flag != 0);
tpd_flag = 0;
} else {
GTP_DEBUG("Polling coordinate mode!");
msleep(tpd_polling_time);
}
set_current_state(TASK_RUNNING);
mutex_lock(&i2c_access);
/* don't reset before "if (tpd_halt..." */
#ifdef CONFIG_GTP_GESTURE_WAKEUP
ret = gesture_event_handler(tpd->dev);
if (ret >= 0) {
gt1x_irq_enable();
mutex_unlock(&i2c_access);
continue;
}
#endif
if (tpd_halt) {
mutex_unlock(&i2c_access);
GTP_DEBUG("return for interrupt after suspend... ");
continue;
}
/* read coordinates */
ret = gt1x_i2c_read(GTP_READ_COOR_ADDR,
point_data, sizeof(point_data));
if (ret < 0) {
GTP_ERROR("I2C transfer error!");
#ifndef CONFIG_GTP_ESD_PROTECT
gt1x_power_reset();
#endif
goto exit_work_func;
}
finger = point_data[0];
/* response to a ic request */
if (finger == 0x00)
gt1x_request_event_handler();
if ((finger & 0x80) == 0) {
#ifdef CONFIG_HOTKNOT_BLOCK_RW
if (!hotknot_paired_flag) {
#endif
gt1x_irq_enable();
mutex_unlock(&i2c_access);
continue;
}
#ifdef CONFIG_HOTKNOT_BLOCK_RW
}
ret = hotknot_event_handler(point_data);
if (!ret)
goto exit_work_func;
#endif
#ifdef CONFIG_GTP_PROXIMITY
ret = gt1x_prox_event_handler(point_data);
if (ret > 0)
goto exit_work_func;
#endif
#ifdef CONFIG_GTP_WITH_STYLUS
ret = gt1x_touch_event_handler(point_data, tpd->dev, pen_dev);
#else
ret = gt1x_touch_event_handler(point_data, tpd->dev, NULL);
#endif
if (ret) {
gt1x_irq_enable();
mutex_unlock(&i2c_access);
continue;
}
exit_work_func:
if (!gt1x_rawdiff_mode) {
ret = gt1x_i2c_write(GTP_READ_COOR_ADDR, &end_cmd, 1);
if (ret < 0)
GTP_INFO("I2C write end_cmd error!");
}
gt1x_irq_enable();
mutex_unlock(&i2c_access);
} while (!kthread_should_stop());
return 0;
}
int gt1x_debug_proc(u8 *buf, int count)
{
char mode_str[50] = { 0 };
int mode;
int ret;
ret = sscanf(buf, "%49s %d", (char *)&mode_str, &mode);
if (ret < 0) {
GTP_ERROR("%s sscanf failed", __func__);
return ret;
}
/***********POLLING/EINT MODE switch****************/
if (strcmp(mode_str, "polling") == 0) {
if (mode >= 10 && mode <= 200) {
GTP_INFO("Switch to polling mode, polling time is %d",
mode);
tpd_eint_mode = 0;
tpd_polling_time = mode;
tpd_flag = 1;
wake_up(&waiter);
} else {
/* please set between 10~200ms */
GTP_INFO("Wrong polling time\n");
}
return count;
}
if (strcmp(mode_str, "eint") == 0) {
GTP_INFO("Switch to eint mode");
tpd_eint_mode = 1;
return count;
}
/**********************************************/
if (strcmp(mode_str, "switch") == 0) {
if (mode == 0) /*turn off*/
tpd_off();
else if (mode == 1) /*turn on*/
tpd_on();
else
GTP_ERROR("error mode :%d", mode);
return count;
} else if (strcmp(mode_str, "enable_irq") == 0) {
if (mode == 0) {
GTP_ERROR("enable_irq 0, touch_irq = %d, irq_flag = %d",
(int)touch_irq, irq_flag);
disable_irq(touch_irq);
} else if (mode == 1) {
GTP_ERROR("enable_irq 1, touch_irq = %d, irq_flag = %d",
(int)touch_irq, irq_flag);
enable_irq(touch_irq);
} else
GTP_ERROR("error mode :%d", mode);
} else if (strcmp(mode_str, "rerequest_irq") == 0) {
int ret;
GTP_ERROR("rerequest_irq, touch_irq = %d, irq_flag = %d",
(int)touch_irq, irq_flag);
free_irq(touch_irq, NULL);
ret = tpd_irq_registration();
if (ret < 0)
GTP_ERROR("rerequest_irq fail, %d!", ret);
} else if (strcmp(mode_str, "eint_dump_status") == 0) {
GTP_ERROR("eint_dump_status, %u", touch_irq);
/*mt_eint_dump_status(1);*/
}
return -1;
}
static u16 convert_productname(u8 *name)
{
int i;
u16 product = 0;
for (i = 0; i < 4; i++) {
product <<= 4;
if (name[i] < '0' || name[i] > '9')
product += '*';
else
product += name[i] - '0';
}
return product;
}
static int tpd_i2c_remove(struct i2c_client *client)
{
gt1x_deinit();
return 0;
}
static int tpd_local_init(void)
{
int ret;
ret = gt1x_ts_gpio_setup();
if (ret < 0)
goto gpio_err;
ret = gt1x_ts_power_init();
if (ret < 0)
goto power_init_err;
#if TPD_SUPPORT_I2C_DMA
tpd->dev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
gpDMABuf_va = (u8 *) dma_alloc_coherent(&tpd->dev->dev,
IIC_DMA_MAX_TRANSFER_SIZE,
&gpDMABuf_pa, GFP_KERNEL);
if (!gpDMABuf_va) {
GTP_ERROR("Allocate DMA I2C Buffer failed!");
goto regulator_out;
}
memset(gpDMABuf_va, 0, IIC_DMA_MAX_TRANSFER_SIZE);
#endif
spin_lock_init(&irq_flag_lock);
if (i2c_add_driver(&tpd_i2c_driver) != 0) {
GTP_ERROR("unable to add i2c driver.");
goto regulator_out;
}
/*disable auto load touch driver for linux3.0 porting*/
if (tpd_load_status == 0) {
GTP_ERROR("add error touch panel driver.");
goto touch_probe_err;
}
#ifdef CONFIG_GTP_ICS_SLOT_REPORT
input_mt_init_slots(tpd->dev, 10, 0);
#endif
if (!tpd_dts_data.touch_max_num)
tpd_dts_data.touch_max_num = DEFAULT_MAX_TOUCH_NUM;
input_set_abs_params(tpd->dev, ABS_MT_TRACKING_ID, 0,
(tpd_dts_data.touch_max_num - 1), 0, 0);
if (tpd_dts_data.use_tpd_button) {
/*initialize tpd button data*/
tpd_button_setting(tpd_dts_data.tpd_key_num,
tpd_dts_data.tpd_key_local,
tpd_dts_data.tpd_key_dim_local);
}
/*set vendor string*/
tpd->dev->id.vendor = 0x00;
tpd->dev->id.product = convert_productname(gt1x_version.product_id);
tpd->dev->id.version = (gt1x_version.patch_id >> 8);
GTP_INFO("end %s --, %d\n", __func__, __LINE__);
tpd_type_cap = 1;
return 0;
touch_probe_err:
i2c_del_driver(&tpd_i2c_driver);
regulator_out:
regulator_put(tpd->reg);
gpio_free(tpd_dts_data.rst_gpio_num);
gpio_free(tpd_dts_data.eint_gpio_num);
gpio_err:
power_init_err:
return ret;
}
/* Function to manage low power suspend */
static void tpd_suspend(struct device *h)
{
s32 ret = -1;
#if defined(CONFIG_GTP_HOTKNOT)
#ifndef CONFIG_HOTKNOT_BLOCK_RW
u8 buf[1] = { 0 };
#endif
#endif
if (is_resetting || update_info.status)
return;
GTP_INFO("TPD suspend start...");
mutex_lock(&tui_lock);
if (tpd_tui_flag) {
GTP_INFO("[TPD] skip %s due to TUI in used\n", __func__);
tpd_tui_low_power_skipped = 1;
mutex_unlock(&tui_lock);
return;
}
mutex_unlock(&tui_lock);
#ifdef CONFIG_GTP_PROXIMITY
if (gt1x_proximity_flag == 1) {
GTP_INFO("Suspend: proximity is detected!");
return;
}
#endif
#ifdef CONFIG_GTP_HOTKNOT
if (hotknot_enabled) {
#ifdef CONFIG_HOTKNOT_BLOCK_RW
if (hotknot_paired_flag) {
GTP_INFO("Suspend: hotknot is paired!");
return;
}
#else
gt1x_i2c_read(GTP_REG_HN_PAIRED, buf, sizeof(buf));
GTP_DEBUG("0x81AA: 0x%02X", buf[0]);
if (buf[0] == 0x55) {
GTP_INFO("Suspend: hotknot is paired!");
return;
}
#endif
}
#endif
tpd_halt = 1;
#ifdef CONFIG_GTP_ESD_PROTECT
gt1x_esd_switch(SWITCH_OFF);
#endif
#ifdef CONFIG_GTP_CHARGER_SWITCH
gt1x_charger_switch(SWITCH_OFF);
#endif
mutex_lock(&i2c_access);
#ifdef CONFIG_GTP_GESTURE_WAKEUP
gesture_clear_wakeup_data();
if (gesture_enabled) {
gesture_enter_doze();
} else
#endif
{
gt1x_irq_disable();
ret = gt1x_enter_sleep();
if (ret < 0)
GTP_ERROR("GTP early suspend failed.");
else
gtp_suspend = true;
}
mutex_unlock(&i2c_access);
msleep(58);
}
/* Function to manage power-on resume */
static void tpd_resume(struct device *h)
{
s32 ret = -1;
if (is_resetting || update_info.status)
return;
GTP_INFO("TPD resume start...");
gtp_suspend = false;
#ifdef CONFIG_GTP_PROXIMITY
if (gt1x_proximity_flag == 1) {
GTP_INFO("Resume: proximity is on!");
return;
}
#endif
#ifdef CONFIG_GTP_HOTKNOT
if (hotknot_enabled) {
#ifdef CONFIG_HOTKNOT_BLOCK_RW
if (hotknot_paired_flag) {
hotknot_paired_flag = 0;
GTP_INFO("Resume: hotknot is paired!");
return;
}
#endif
}
#endif
gt1x_irq_disable();
ret = gt1x_wakeup_sleep();
if (ret < 0)
GTP_ERROR("GTP later resume failed.");
#ifdef CONFIG_GTP_HOTKNOT
if (!hotknot_enabled)
gt1x_send_cmd(GTP_CMD_HN_EXIT_SLAVE, 0);
#endif
#ifdef CONFIG_GTP_CHARGER_SWITCH
gt1x_charger_config(0);
gt1x_charger_switch(SWITCH_ON);
#endif
tpd_halt = 0;
gt1x_irq_enable();
#ifdef CONFIG_GTP_ESD_PROTECT
gt1x_esd_switch(SWITCH_ON);
#endif
#ifdef CONFIG_MTK_LENS
AF_PowerDown();
#endif
GTP_DEBUG("tpd resume end.");
}
static struct tpd_driver_t tpd_device_driver = {
.tpd_device_name = "gt1151",
.tpd_local_init = tpd_local_init,
.suspend = tpd_suspend,
.resume = tpd_resume,
};
void tpd_off(void)
{
gt1x_power_switch(SWITCH_OFF);
tpd_halt = 1;
gt1x_irq_disable();
}
int tpd_enter_tui(void)
{
int ret = 0;
tpd_tui_flag = 1;
GTP_INFO("[%s] enter tui", __func__);
return ret;
}
int tpd_exit_tui(void)
{
int ret = 0;
GTP_INFO("[%s] exit TUI+", __func__);
tpd_reregister_from_tui();
mutex_lock(&tui_lock);
tpd_tui_flag = 0;
mutex_unlock(&tui_lock);
if (tpd_tui_low_power_skipped) {
tpd_tui_low_power_skipped = 0;
GTP_INFO("[%s] do low power again+", __func__);
tpd_suspend(NULL);
GTP_INFO("[%s] do low power again-", __func__);
}
GTP_INFO("[%s] exit TUI-", __func__);
return ret;
}
void tpd_on(void)
{
s32 ret = -1, retry = 0;
while (retry++ < 5) {
ret = tpd_power_on();
if (ret < 0)
GTP_ERROR("I2C Power on ERROR!");
ret = gt1x_send_cfg(gt1x_config, gt1x_cfg_length);
if (ret == 0) {
GTP_DEBUG("Wakeup sleep send gt1x_config success.");
break;
}
}
if (ret < 0)
GTP_ERROR("GTP later resume failed.");
tpd_halt = 0;
}
int gt1x_driver_init(void)
{
GTP_INFO("Goodix touch panel driver init.");
tpd_get_dts_info();
if (tpd_driver_add(&tpd_device_driver) < 0)
GTP_INFO("add generic driver failed\n");
return 0;
}
EXPORT_SYMBOL_GPL(gt1x_driver_init);
void gt1x_driver_exit(void)
{
unregister_pm_notifier(&pm_notifier_block);
regulator_put(tpd->reg);
disable_irq(touch_irq);
free_irq(touch_irq, NULL);
tpd_driver_remove(&tpd_device_driver);
}
EXPORT_SYMBOL_GPL(gt1x_driver_exit);