kernel_samsung_a34x-permissive/drivers/mtd/nand/raw/cafe_nand.c
2024-04-28 15:51:13 +02:00

890 lines
24 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Driver for One Laptop Per Child CAFÉ controller, aka Marvell 88ALP01
*
* The data sheet for this device can be found at:
* http://wiki.laptop.org/go/Datasheets
*
* Copyright © 2006 Red Hat, Inc.
* Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
*/
#define DEBUG
#include <linux/device.h>
#undef DEBUG
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/rslib.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <asm/io.h>
#define CAFE_NAND_CTRL1 0x00
#define CAFE_NAND_CTRL2 0x04
#define CAFE_NAND_CTRL3 0x08
#define CAFE_NAND_STATUS 0x0c
#define CAFE_NAND_IRQ 0x10
#define CAFE_NAND_IRQ_MASK 0x14
#define CAFE_NAND_DATA_LEN 0x18
#define CAFE_NAND_ADDR1 0x1c
#define CAFE_NAND_ADDR2 0x20
#define CAFE_NAND_TIMING1 0x24
#define CAFE_NAND_TIMING2 0x28
#define CAFE_NAND_TIMING3 0x2c
#define CAFE_NAND_NONMEM 0x30
#define CAFE_NAND_ECC_RESULT 0x3C
#define CAFE_NAND_DMA_CTRL 0x40
#define CAFE_NAND_DMA_ADDR0 0x44
#define CAFE_NAND_DMA_ADDR1 0x48
#define CAFE_NAND_ECC_SYN01 0x50
#define CAFE_NAND_ECC_SYN23 0x54
#define CAFE_NAND_ECC_SYN45 0x58
#define CAFE_NAND_ECC_SYN67 0x5c
#define CAFE_NAND_READ_DATA 0x1000
#define CAFE_NAND_WRITE_DATA 0x2000
#define CAFE_GLOBAL_CTRL 0x3004
#define CAFE_GLOBAL_IRQ 0x3008
#define CAFE_GLOBAL_IRQ_MASK 0x300c
#define CAFE_NAND_RESET 0x3034
/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
#define CTRL1_CHIPSELECT (1<<19)
struct cafe_priv {
struct nand_chip nand;
struct pci_dev *pdev;
void __iomem *mmio;
struct rs_control *rs;
uint32_t ctl1;
uint32_t ctl2;
int datalen;
int nr_data;
int data_pos;
int page_addr;
bool usedma;
dma_addr_t dmaaddr;
unsigned char *dmabuf;
};
static int usedma = 1;
module_param(usedma, int, 0644);
static int skipbbt = 0;
module_param(skipbbt, int, 0644);
static int debug = 0;
module_param(debug, int, 0644);
static int regdebug = 0;
module_param(regdebug, int, 0644);
static int checkecc = 1;
module_param(checkecc, int, 0644);
static unsigned int numtimings;
static int timing[3];
module_param_array(timing, int, &numtimings, 0644);
static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
/* Hrm. Why isn't this already conditional on something in the struct device? */
#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
/* Make it easier to switch to PIO if we need to */
#define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
#define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
static int cafe_device_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
cafe_writel(cafe, irqs, NAND_IRQ);
cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
return result;
}
static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
if (cafe->usedma)
memcpy(cafe->dmabuf + cafe->datalen, buf, len);
else
memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
cafe->datalen += len;
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
len, cafe->datalen);
}
static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
if (cafe->usedma)
memcpy(buf, cafe->dmabuf + cafe->datalen, len);
else
memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
len, cafe->datalen);
cafe->datalen += len;
}
static uint8_t cafe_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
uint8_t d;
cafe_read_buf(mtd, &d, 1);
cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
return d;
}
static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
int adrbytes = 0;
uint32_t ctl1;
uint32_t doneint = 0x80000000;
cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
command, column, page_addr);
if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
/* Second half of a command we already calculated */
cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
ctl1 = cafe->ctl1;
cafe->ctl2 &= ~(1<<30);
cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
cafe->ctl1, cafe->nr_data);
goto do_command;
}
/* Reset ECC engine */
cafe_writel(cafe, 0, NAND_CTRL2);
/* Emulate NAND_CMD_READOOB on large-page chips */
if (mtd->writesize > 512 &&
command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* FIXME: Do we need to send read command before sending data
for small-page chips, to position the buffer correctly? */
if (column != -1) {
cafe_writel(cafe, column, NAND_ADDR1);
adrbytes = 2;
if (page_addr != -1)
goto write_adr2;
} else if (page_addr != -1) {
cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
page_addr >>= 16;
write_adr2:
cafe_writel(cafe, page_addr, NAND_ADDR2);
adrbytes += 2;
if (mtd->size > mtd->writesize << 16)
adrbytes++;
}
cafe->data_pos = cafe->datalen = 0;
/* Set command valid bit, mask in the chip select bit */
ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
/* Set RD or WR bits as appropriate */
if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
ctl1 |= (1<<26); /* rd */
/* Always 5 bytes, for now */
cafe->datalen = 4;
/* And one address cycle -- even for STATUS, since the controller doesn't work without */
adrbytes = 1;
} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
ctl1 |= 1<<26; /* rd */
/* For now, assume just read to end of page */
cafe->datalen = mtd->writesize + mtd->oobsize - column;
} else if (command == NAND_CMD_SEQIN)
ctl1 |= 1<<25; /* wr */
/* Set number of address bytes */
if (adrbytes)
ctl1 |= ((adrbytes-1)|8) << 27;
if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
/* Ignore the first command of a pair; the hardware
deals with them both at once, later */
cafe->ctl1 = ctl1;
cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
cafe->ctl1, cafe->datalen);
return;
}
/* RNDOUT and READ0 commands need a following byte */
if (command == NAND_CMD_RNDOUT)
cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
do_command:
cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
/* NB: The datasheet lies -- we really should be subtracting 1 here */
cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
cafe_writel(cafe, 0x90000000, NAND_IRQ);
if (cafe->usedma && (ctl1 & (3<<25))) {
uint32_t dmactl = 0xc0000000 + cafe->datalen;
/* If WR or RD bits set, set up DMA */
if (ctl1 & (1<<26)) {
/* It's a read */
dmactl |= (1<<29);
/* ... so it's done when the DMA is done, not just
the command. */
doneint = 0x10000000;
}
cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
}
cafe->datalen = 0;
if (unlikely(regdebug)) {
int i;
printk("About to write command %08x to register 0\n", ctl1);
for (i=4; i< 0x5c; i+=4)
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
}
cafe_writel(cafe, ctl1, NAND_CTRL1);
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay(100);
if (1) {
int c;
uint32_t irqs;
for (c = 500000; c != 0; c--) {
irqs = cafe_readl(cafe, NAND_IRQ);
if (irqs & doneint)
break;
udelay(1);
if (!(c % 100000))
cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
cpu_relax();
}
cafe_writel(cafe, doneint, NAND_IRQ);
cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
}
WARN_ON(cafe->ctl2 & (1<<30));
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_RNDIN:
case NAND_CMD_STATUS:
case NAND_CMD_RNDOUT:
cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
return;
}
nand_wait_ready(mtd);
cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
}
static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
/* Mask the appropriate bit into the stored value of ctl1
which will be used by cafe_nand_cmdfunc() */
if (chipnr)
cafe->ctl1 |= CTRL1_CHIPSELECT;
else
cafe->ctl1 &= ~CTRL1_CHIPSELECT;
}
static irqreturn_t cafe_nand_interrupt(int irq, void *id)
{
struct mtd_info *mtd = id;
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
if (!irqs)
return IRQ_NONE;
cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
return IRQ_HANDLED;
}
static int cafe_nand_write_oob(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
mtd->oobsize);
}
/* Don't use -- use nand_read_oob_std for now */
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
}
/**
* cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller expects OOB data read to chip->oob_poi
*
* The hw generator calculates the error syndrome automatically. Therefore
* we need a special oob layout and handling.
*/
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct cafe_priv *cafe = nand_get_controller_data(chip);
unsigned int max_bitflips = 0;
cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
cafe_readl(cafe, NAND_ECC_RESULT),
cafe_readl(cafe, NAND_ECC_SYN01));
nand_read_page_op(chip, page, 0, buf, mtd->writesize);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
unsigned short syn[8], pat[4];
int pos[4];
u8 *oob = chip->oob_poi;
int i, n;
for (i=0; i<8; i+=2) {
uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
}
n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
pat);
for (i = 0; i < n; i++) {
int p = pos[i];
/* The 12-bit symbols are mapped to bytes here */
if (p > 1374) {
/* out of range */
n = -1374;
} else if (p == 0) {
/* high four bits do not correspond to data */
if (pat[i] > 0xff)
n = -2048;
else
buf[0] ^= pat[i];
} else if (p == 1365) {
buf[2047] ^= pat[i] >> 4;
oob[0] ^= pat[i] << 4;
} else if (p > 1365) {
if ((p & 1) == 1) {
oob[3*p/2 - 2048] ^= pat[i] >> 4;
oob[3*p/2 - 2047] ^= pat[i] << 4;
} else {
oob[3*p/2 - 2049] ^= pat[i] >> 8;
oob[3*p/2 - 2048] ^= pat[i];
}
} else if ((p & 1) == 1) {
buf[3*p/2] ^= pat[i] >> 4;
buf[3*p/2 + 1] ^= pat[i] << 4;
} else {
buf[3*p/2 - 1] ^= pat[i] >> 8;
buf[3*p/2] ^= pat[i];
}
}
if (n < 0) {
dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
cafe_readl(cafe, NAND_ADDR2) * 2048);
for (i = 0; i < 0x5c; i += 4)
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
mtd->ecc_stats.failed++;
} else {
dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
mtd->ecc_stats.corrected += n;
max_bitflips = max_t(unsigned int, max_bitflips, n);
}
}
return max_bitflips;
}
static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = 0;
oobregion->length = chip->ecc.total;
return 0;
}
static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = chip->ecc.total;
oobregion->length = mtd->oobsize - chip->ecc.total;
return 0;
}
static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
.ecc = cafe_ooblayout_ecc,
.free = cafe_ooblayout_free,
};
/* Ick. The BBT code really ought to be able to work this bit out
for itself from the above, at least for the 2KiB case */
static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 4,
.veroffs = 18,
.maxblocks = 4,
.pattern = cafe_bbt_pattern_2048
};
static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 4,
.veroffs = 18,
.maxblocks = 4,
.pattern = cafe_mirror_pattern_2048
};
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 1,
.veroffs = 15,
.maxblocks = 4,
.pattern = cafe_bbt_pattern_512
};
static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 1,
.veroffs = 15,
.maxblocks = 4,
.pattern = cafe_mirror_pattern_512
};
static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
struct cafe_priv *cafe = nand_get_controller_data(chip);
nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
/* Set up ECC autogeneration */
cafe->ctl2 |= (1<<30);
return nand_prog_page_end_op(chip);
}
static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
{
return 0;
}
/* F_2[X]/(X**6+X+1) */
static unsigned short gf64_mul(u8 a, u8 b)
{
u8 c;
unsigned int i;
c = 0;
for (i = 0; i < 6; i++) {
if (a & 1)
c ^= b;
a >>= 1;
b <<= 1;
if ((b & 0x40) != 0)
b ^= 0x43;
}
return c;
}
/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
static u16 gf4096_mul(u16 a, u16 b)
{
u8 ah, al, bh, bl, ch, cl;
ah = a >> 6;
al = a & 0x3f;
bh = b >> 6;
bl = b & 0x3f;
ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
return (ch << 6) ^ cl;
}
static int cafe_mul(int x)
{
if (x == 0)
return 1;
return gf4096_mul(x, 0xe01);
}
static int cafe_nand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct cafe_priv *cafe = nand_get_controller_data(chip);
int err = 0;
cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
&cafe->dmaaddr, GFP_KERNEL);
if (!cafe->dmabuf)
return -ENOMEM;
/* Set up DMA address */
cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
/* Restore the DMA flag */
cafe->usedma = usedma;
cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
if (mtd->writesize == 2048)
cafe->ctl2 |= BIT(29); /* 2KiB page size */
/* Set up ECC according to the type of chip we found */
mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
if (mtd->writesize == 2048) {
cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
} else if (mtd->writesize == 512) {
cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
} else {
dev_warn(&cafe->pdev->dev,
"Unexpected NAND flash writesize %d. Aborting\n",
mtd->writesize);
err = -ENOTSUPP;
goto out_free_dma;
}
cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
cafe->nand.ecc.size = mtd->writesize;
cafe->nand.ecc.bytes = 14;
cafe->nand.ecc.strength = 4;
cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
cafe->nand.ecc.write_oob = cafe_nand_write_oob;
cafe->nand.ecc.read_page = cafe_nand_read_page;
cafe->nand.ecc.read_oob = cafe_nand_read_oob;
return 0;
out_free_dma:
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
return err;
}
static void cafe_nand_detach_chip(struct nand_chip *chip)
{
struct cafe_priv *cafe = nand_get_controller_data(chip);
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
}
static const struct nand_controller_ops cafe_nand_controller_ops = {
.attach_chip = cafe_nand_attach_chip,
.detach_chip = cafe_nand_detach_chip,
};
static int cafe_nand_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct mtd_info *mtd;
struct cafe_priv *cafe;
uint32_t ctrl;
int err = 0;
/* Very old versions shared the same PCI ident for all three
functions on the chip. Verify the class too... */
if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
return -ENODEV;
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
if (!cafe)
return -ENOMEM;
mtd = nand_to_mtd(&cafe->nand);
mtd->dev.parent = &pdev->dev;
nand_set_controller_data(&cafe->nand, cafe);
cafe->pdev = pdev;
cafe->mmio = pci_iomap(pdev, 0, 0);
if (!cafe->mmio) {
dev_warn(&pdev->dev, "failed to iomap\n");
err = -ENOMEM;
goto out_free_mtd;
}
cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
if (!cafe->rs) {
err = -ENOMEM;
goto out_ior;
}
cafe->nand.cmdfunc = cafe_nand_cmdfunc;
cafe->nand.dev_ready = cafe_device_ready;
cafe->nand.read_byte = cafe_read_byte;
cafe->nand.read_buf = cafe_read_buf;
cafe->nand.write_buf = cafe_write_buf;
cafe->nand.select_chip = cafe_select_chip;
cafe->nand.set_features = nand_get_set_features_notsupp;
cafe->nand.get_features = nand_get_set_features_notsupp;
cafe->nand.chip_delay = 0;
/* Enable the following for a flash based bad block table */
cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
if (skipbbt) {
cafe->nand.options |= NAND_SKIP_BBTSCAN;
cafe->nand.block_bad = cafe_nand_block_bad;
}
if (numtimings && numtimings != 3) {
dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
}
if (numtimings == 3) {
cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
timing[0], timing[1], timing[2]);
} else {
timing[0] = cafe_readl(cafe, NAND_TIMING1);
timing[1] = cafe_readl(cafe, NAND_TIMING2);
timing[2] = cafe_readl(cafe, NAND_TIMING3);
if (timing[0] | timing[1] | timing[2]) {
cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
timing[0], timing[1], timing[2]);
} else {
dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
timing[0] = timing[1] = timing[2] = 0xffffffff;
}
}
/* Start off by resetting the NAND controller completely */
cafe_writel(cafe, 1, NAND_RESET);
cafe_writel(cafe, 0, NAND_RESET);
cafe_writel(cafe, timing[0], NAND_TIMING1);
cafe_writel(cafe, timing[1], NAND_TIMING2);
cafe_writel(cafe, timing[2], NAND_TIMING3);
cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
"CAFE NAND", mtd);
if (err) {
dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
goto out_ior;
}
/* Disable master reset, enable NAND clock */
ctrl = cafe_readl(cafe, GLOBAL_CTRL);
ctrl &= 0xffffeff0;
ctrl |= 0x00007000;
cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
cafe_writel(cafe, 0, NAND_DMA_CTRL);
cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
/* Enable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
cafe_readl(cafe, GLOBAL_CTRL),
cafe_readl(cafe, GLOBAL_IRQ_MASK));
/* Do not use the DMA during the NAND identification */
cafe->usedma = 0;
/* Scan to find existence of the device */
cafe->nand.dummy_controller.ops = &cafe_nand_controller_ops;
err = nand_scan(&cafe->nand, 2);
if (err)
goto out_irq;
pci_set_drvdata(pdev, mtd);
mtd->name = "cafe_nand";
err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
if (err)
goto out_cleanup_nand;
goto out;
out_cleanup_nand:
nand_cleanup(&cafe->nand);
out_irq:
/* Disable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
free_irq(pdev->irq, mtd);
out_ior:
pci_iounmap(pdev, cafe->mmio);
out_free_mtd:
kfree(cafe);
out:
return err;
}
static void cafe_nand_remove(struct pci_dev *pdev)
{
struct mtd_info *mtd = pci_get_drvdata(pdev);
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
/* Disable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
free_irq(pdev->irq, mtd);
nand_release(chip);
free_rs(cafe->rs);
pci_iounmap(pdev, cafe->mmio);
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
kfree(cafe);
}
static const struct pci_device_id cafe_nand_tbl[] = {
{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
PCI_ANY_ID, PCI_ANY_ID },
{ }
};
MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
static int cafe_nand_resume(struct pci_dev *pdev)
{
uint32_t ctrl;
struct mtd_info *mtd = pci_get_drvdata(pdev);
struct nand_chip *chip = mtd_to_nand(mtd);
struct cafe_priv *cafe = nand_get_controller_data(chip);
/* Start off by resetting the NAND controller completely */
cafe_writel(cafe, 1, NAND_RESET);
cafe_writel(cafe, 0, NAND_RESET);
cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
/* Restore timing configuration */
cafe_writel(cafe, timing[0], NAND_TIMING1);
cafe_writel(cafe, timing[1], NAND_TIMING2);
cafe_writel(cafe, timing[2], NAND_TIMING3);
/* Disable master reset, enable NAND clock */
ctrl = cafe_readl(cafe, GLOBAL_CTRL);
ctrl &= 0xffffeff0;
ctrl |= 0x00007000;
cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
cafe_writel(cafe, 0, NAND_DMA_CTRL);
cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
/* Set up DMA address */
cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
if (sizeof(cafe->dmaaddr) > 4)
/* Shift in two parts to shut the compiler up */
cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
else
cafe_writel(cafe, 0, NAND_DMA_ADDR1);
/* Enable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
return 0;
}
static struct pci_driver cafe_nand_pci_driver = {
.name = "CAFÉ NAND",
.id_table = cafe_nand_tbl,
.probe = cafe_nand_probe,
.remove = cafe_nand_remove,
.resume = cafe_nand_resume,
};
module_pci_driver(cafe_nand_pci_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");