kernel_samsung_a34x-permissive/fs/sdfat/blkdev.c
2024-04-28 15:51:13 +02:00

431 lines
11 KiB
C

/*
* Copyright (C) 2012-2013 Samsung Electronics Co., Ltd.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/************************************************************************/
/* */
/* PROJECT : exFAT & FAT12/16/32 File System */
/* FILE : blkdev.c */
/* PURPOSE : sdFAT Block Device Driver Glue Layer */
/* */
/*----------------------------------------------------------------------*/
/* NOTES */
/* */
/************************************************************************/
#include <linux/blkdev.h>
#include <linux/log2.h>
#include <linux/backing-dev.h>
#include "sdfat.h"
/*----------------------------------------------------------------------*/
/* Constant & Macro Definitions */
/*----------------------------------------------------------------------*/
/*----------------------------------------------------------------------*/
/* Global Variable Definitions */
/*----------------------------------------------------------------------*/
/*----------------------------------------------------------------------*/
/* Local Variable Definitions */
/*----------------------------------------------------------------------*/
/*----------------------------------------------------------------------*/
/* FUNCTIONS WHICH HAS KERNEL VERSION DEPENDENCY */
/************************************************************************/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 0, 0)
/* EMPTY */
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 0, 0) */
static struct backing_dev_info *inode_to_bdi(struct inode *bd_inode)
{
return bd_inode->i_mapping->backing_dev_info;
}
#endif
/*======================================================================*/
/* Function Definitions */
/*======================================================================*/
s32 bdev_open_dev(struct super_block *sb)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
if (fsi->bd_opened)
return 0;
fsi->bd_opened = true;
return 0;
}
s32 bdev_close_dev(struct super_block *sb)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
fsi->bd_opened = false;
return 0;
}
static inline s32 block_device_ejected(struct super_block *sb)
{
struct inode *bd_inode = sb->s_bdev->bd_inode;
struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
return (bdi->dev == NULL);
}
s32 bdev_check_bdi_valid(struct super_block *sb)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
if (block_device_ejected(sb)) {
if (!(fsi->prev_eio & SDFAT_EIO_BDI)) {
fsi->prev_eio |= SDFAT_EIO_BDI;
sdfat_log_msg(sb, KERN_ERR, "%s: block device is "
"eliminated.(bdi:%p)", __func__, sb->s_bdi);
}
return -ENXIO;
}
return 0;
}
#if IS_BUILTIN(CONFIG_SDFAT_FS)
static void __bdev_readahead(struct super_block *sb, u64 secno, u64 num_secs)
{
u32 sects_per_page = (PAGE_SIZE >> sb->s_blocksize_bits);
struct blk_plug plug;
u64 i;
blk_start_plug(&plug);
for (i = 0; i < num_secs; i++) {
if (i && !(i & (sects_per_page - 1)))
blk_flush_plug(current);
sb_breadahead(sb, (sector_t)(secno + i));
}
blk_finish_plug(&plug);
}
#else
static void __bdev_readahead(struct super_block *sb, u64 secno, u64 num_secs)
{
u64 i;
for (i = 0; i < num_secs; i++)
sb_breadahead(sb, (sector_t)(secno + i));
}
#endif
/* Make a readahead request */
s32 bdev_readahead(struct super_block *sb, u64 secno, u64 num_secs)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
if (!fsi->bd_opened)
return -EIO;
__bdev_readahead(sb, secno, num_secs);
return 0;
}
s32 bdev_mread(struct super_block *sb, u64 secno, struct buffer_head **bh, u64 num_secs, s32 read)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
u8 blksize_bits = sb->s_blocksize_bits;
#ifdef CONFIG_SDFAT_DBG_IOCTL
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
long flags = sbi->debug_flags;
if (flags & SDFAT_DEBUGFLAGS_ERROR_RW)
return -EIO;
#endif /* CONFIG_SDFAT_DBG_IOCTL */
if (!fsi->bd_opened)
return -EIO;
brelse(*bh);
if (read)
*bh = __bread(sb->s_bdev, (sector_t)secno, num_secs << blksize_bits);
else
*bh = __getblk(sb->s_bdev, (sector_t)secno, num_secs << blksize_bits);
/* read successfully */
if (*bh)
return 0;
/*
* patch 1.2.4 : reset ONCE warning message per volume.
*/
if (!(fsi->prev_eio & SDFAT_EIO_READ)) {
fsi->prev_eio |= SDFAT_EIO_READ;
sdfat_log_msg(sb, KERN_ERR, "%s: No bh. I/O error.", __func__);
sdfat_debug_warn_on(1);
}
return -EIO;
}
s32 bdev_mwrite(struct super_block *sb, u64 secno, struct buffer_head *bh, u64 num_secs, s32 sync)
{
u64 count;
struct buffer_head *bh2;
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
#ifdef CONFIG_SDFAT_DBG_IOCTL
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
long flags = sbi->debug_flags;
if (flags & SDFAT_DEBUGFLAGS_ERROR_RW)
return -EIO;
#endif /* CONFIG_SDFAT_DBG_IOCTL */
if (!fsi->bd_opened)
return -EIO;
if (secno == bh->b_blocknr) {
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
if (sync && (sync_dirty_buffer(bh) != 0))
return -EIO;
} else {
count = num_secs << sb->s_blocksize_bits;
bh2 = __getblk(sb->s_bdev, (sector_t)secno, count);
if (!bh2)
goto no_bh;
lock_buffer(bh2);
memcpy(bh2->b_data, bh->b_data, count);
set_buffer_uptodate(bh2);
mark_buffer_dirty(bh2);
unlock_buffer(bh2);
if (sync && (sync_dirty_buffer(bh2) != 0)) {
__brelse(bh2);
goto no_bh;
}
__brelse(bh2);
}
return 0;
no_bh:
/*
* patch 1.2.4 : reset ONCE warning message per volume.
*/
if (!(fsi->prev_eio & SDFAT_EIO_WRITE)) {
fsi->prev_eio |= SDFAT_EIO_WRITE;
sdfat_log_msg(sb, KERN_ERR, "%s: No bh. I/O error.", __func__);
sdfat_debug_warn_on(1);
}
return -EIO;
}
s32 bdev_sync_all(struct super_block *sb)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
#ifdef CONFIG_SDFAT_DBG_IOCTL
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
long flags = sbi->debug_flags;
if (flags & SDFAT_DEBUGFLAGS_ERROR_RW)
return -EIO;
#endif /* CONFIG_SDFAT_DBG_IOCTL */
if (!fsi->bd_opened)
return -EIO;
return sync_blockdev(sb->s_bdev);
}
/*
* Sector Read/Write Functions
*/
s32 read_sect(struct super_block *sb, u64 sec, struct buffer_head **bh, s32 read)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
BUG_ON(!bh);
if ((sec >= fsi->num_sectors) && (fsi->num_sectors > 0)) {
sdfat_fs_error_ratelimit(sb,
"%s: out of range (sect:%llu)", __func__, sec);
return -EIO;
}
if (bdev_mread(sb, sec, bh, 1, read)) {
sdfat_fs_error_ratelimit(sb,
"%s: I/O error (sect:%llu)", __func__, sec);
return -EIO;
}
return 0;
}
s32 write_sect(struct super_block *sb, u64 sec, struct buffer_head *bh, s32 sync)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
BUG_ON(!bh);
if ((sec >= fsi->num_sectors) && (fsi->num_sectors > 0)) {
sdfat_fs_error_ratelimit(sb,
"%s: out of range (sect:%llu)", __func__, sec);
return -EIO;
}
if (bdev_mwrite(sb, sec, bh, 1, sync)) {
sdfat_fs_error_ratelimit(sb, "%s: I/O error (sect:%llu)",
__func__, sec);
return -EIO;
}
return 0;
}
s32 read_msect(struct super_block *sb, u64 sec, struct buffer_head **bh, u64 num_secs, s32 read)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
BUG_ON(!bh);
if (((sec+num_secs) > fsi->num_sectors) && (fsi->num_sectors > 0)) {
sdfat_fs_error_ratelimit(sb, "%s: out of range(sect:%llu len:%llu)",
__func__, sec, num_secs);
return -EIO;
}
if (bdev_mread(sb, sec, bh, num_secs, read)) {
sdfat_fs_error_ratelimit(sb, "%s: I/O error (sect:%llu len:%llu)",
__func__, sec, num_secs);
return -EIO;
}
return 0;
}
s32 write_msect(struct super_block *sb, u64 sec, struct buffer_head *bh, u64 num_secs, s32 sync)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
BUG_ON(!bh);
if (((sec+num_secs) > fsi->num_sectors) && (fsi->num_sectors > 0)) {
sdfat_fs_error_ratelimit(sb, "%s: out of range(sect:%llu len:%llu)",
__func__, sec, num_secs);
return -EIO;
}
if (bdev_mwrite(sb, sec, bh, num_secs, sync)) {
sdfat_fs_error_ratelimit(sb, "%s: I/O error (sect:%llu len:%llu)",
__func__, sec, num_secs);
return -EIO;
}
return 0;
}
static inline void __blkdev_write_bhs(struct buffer_head **bhs, s32 nr_bhs)
{
s32 i;
for (i = 0; i < nr_bhs; i++)
write_dirty_buffer(bhs[i], WRITE);
}
static inline s32 __blkdev_sync_bhs(struct buffer_head **bhs, s32 nr_bhs)
{
s32 i, err = 0;
for (i = 0; i < nr_bhs; i++) {
wait_on_buffer(bhs[i]);
if (!err && !buffer_uptodate(bhs[i]))
err = -EIO;
}
return err;
}
static inline s32 __buffer_zeroed(struct super_block *sb, u64 blknr, u64 num_secs)
{
struct buffer_head *bhs[MAX_BUF_PER_PAGE];
s32 nr_bhs = MAX_BUF_PER_PAGE;
u64 last_blknr = blknr + num_secs;
s32 err, i, n;
struct blk_plug plug;
/* Zeroing the unused blocks on this cluster */
n = 0;
blk_start_plug(&plug);
while (blknr < last_blknr) {
bhs[n] = sb_getblk(sb, (sector_t)blknr);
if (!bhs[n]) {
err = -ENOMEM;
blk_finish_plug(&plug);
goto error;
}
memset(bhs[n]->b_data, 0, sb->s_blocksize);
set_buffer_uptodate(bhs[n]);
mark_buffer_dirty(bhs[n]);
n++;
blknr++;
if (blknr == last_blknr)
break;
if (n == nr_bhs) {
__blkdev_write_bhs(bhs, n);
for (i = 0; i < n; i++)
brelse(bhs[i]);
n = 0;
}
}
__blkdev_write_bhs(bhs, n);
blk_finish_plug(&plug);
err = __blkdev_sync_bhs(bhs, n);
if (err)
goto error;
for (i = 0; i < n; i++)
brelse(bhs[i]);
return 0;
error:
EMSG("%s: failed zeroed sect %llu\n", __func__, blknr);
for (i = 0; i < n; i++)
bforget(bhs[i]);
return err;
}
s32 write_msect_zero(struct super_block *sb, u64 sec, u64 num_secs)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
if (((sec+num_secs) > fsi->num_sectors) && (fsi->num_sectors > 0)) {
sdfat_fs_error_ratelimit(sb, "%s: out of range(sect:%llu len:%llu)",
__func__, sec, num_secs);
return -EIO;
}
/* Just return -EAGAIN if it is failed */
if (__buffer_zeroed(sb, sec, num_secs))
return -EAGAIN;
return 0;
} /* end of write_msect_zero */
/* end of blkdev.c */