kernel_samsung_a34x-permissive/sound/isa/sb/sb16_main.c
2024-04-28 15:51:13 +02:00

903 lines
26 KiB
C

/*
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
* Routines for control of 16-bit SoundBlaster cards and clones
* Note: This is very ugly hardware which uses one 8-bit DMA channel and
* second 16-bit DMA channel. Unfortunately 8-bit DMA channel can't
* transfer 16-bit samples and 16-bit DMA channels can't transfer
* 8-bit samples. This make full duplex more complicated than
* can be... People, don't buy these soundcards for full 16-bit
* duplex!!!
* Note: 16-bit wide is assigned to first direction which made request.
* With full duplex - playback is preferred with abstract layer.
*
* Note: Some chip revisions have hardware bug. Changing capture
* channel from full-duplex 8bit DMA to 16bit DMA will block
* 16bit DMA transfers from DSP chip (capture) until 8bit transfer
* to DSP chip (playback) starts. This bug can be avoided with
* "16bit DMA Allocation" setting set to Playback or Capture.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/io.h>
#include <asm/dma.h>
#include <linux/init.h>
#include <linux/time.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/sb.h>
#include <sound/sb16_csp.h>
#include <sound/mpu401.h>
#include <sound/control.h>
#include <sound/info.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
MODULE_DESCRIPTION("Routines for control of 16-bit SoundBlaster cards and clones");
MODULE_LICENSE("GPL");
#define runtime_format_bits(runtime) \
((unsigned int)pcm_format_to_bits((runtime)->format))
#ifdef CONFIG_SND_SB16_CSP
static void snd_sb16_csp_playback_prepare(struct snd_sb *chip, struct snd_pcm_runtime *runtime)
{
if (chip->hardware == SB_HW_16CSP) {
struct snd_sb_csp *csp = chip->csp;
if (csp->running & SNDRV_SB_CSP_ST_LOADED) {
/* manually loaded codec */
if ((csp->mode & SNDRV_SB_CSP_MODE_DSP_WRITE) &&
(runtime_format_bits(runtime) == csp->acc_format)) {
/* Supported runtime PCM format for playback */
if (csp->ops.csp_use(csp) == 0) {
/* If CSP was successfully acquired */
goto __start_CSP;
}
} else if ((csp->mode & SNDRV_SB_CSP_MODE_QSOUND) && (csp->q_enabled)) {
/* QSound decoder is loaded and enabled */
if (runtime_format_bits(runtime) & (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE)) {
/* Only for simple PCM formats */
if (csp->ops.csp_use(csp) == 0) {
/* If CSP was successfully acquired */
goto __start_CSP;
}
}
}
} else if (csp->ops.csp_use(csp) == 0) {
/* Acquire CSP and try to autoload hardware codec */
if (csp->ops.csp_autoload(csp, runtime->format, SNDRV_SB_CSP_MODE_DSP_WRITE)) {
/* Unsupported format, release CSP */
csp->ops.csp_unuse(csp);
} else {
__start_CSP:
/* Try to start CSP */
if (csp->ops.csp_start(csp, (chip->mode & SB_MODE_PLAYBACK_16) ?
SNDRV_SB_CSP_SAMPLE_16BIT : SNDRV_SB_CSP_SAMPLE_8BIT,
(runtime->channels > 1) ?
SNDRV_SB_CSP_STEREO : SNDRV_SB_CSP_MONO)) {
/* Failed, release CSP */
csp->ops.csp_unuse(csp);
} else {
/* Success, CSP acquired and running */
chip->open = SNDRV_SB_CSP_MODE_DSP_WRITE;
}
}
}
}
}
static void snd_sb16_csp_capture_prepare(struct snd_sb *chip, struct snd_pcm_runtime *runtime)
{
if (chip->hardware == SB_HW_16CSP) {
struct snd_sb_csp *csp = chip->csp;
if (csp->running & SNDRV_SB_CSP_ST_LOADED) {
/* manually loaded codec */
if ((csp->mode & SNDRV_SB_CSP_MODE_DSP_READ) &&
(runtime_format_bits(runtime) == csp->acc_format)) {
/* Supported runtime PCM format for capture */
if (csp->ops.csp_use(csp) == 0) {
/* If CSP was successfully acquired */
goto __start_CSP;
}
}
} else if (csp->ops.csp_use(csp) == 0) {
/* Acquire CSP and try to autoload hardware codec */
if (csp->ops.csp_autoload(csp, runtime->format, SNDRV_SB_CSP_MODE_DSP_READ)) {
/* Unsupported format, release CSP */
csp->ops.csp_unuse(csp);
} else {
__start_CSP:
/* Try to start CSP */
if (csp->ops.csp_start(csp, (chip->mode & SB_MODE_CAPTURE_16) ?
SNDRV_SB_CSP_SAMPLE_16BIT : SNDRV_SB_CSP_SAMPLE_8BIT,
(runtime->channels > 1) ?
SNDRV_SB_CSP_STEREO : SNDRV_SB_CSP_MONO)) {
/* Failed, release CSP */
csp->ops.csp_unuse(csp);
} else {
/* Success, CSP acquired and running */
chip->open = SNDRV_SB_CSP_MODE_DSP_READ;
}
}
}
}
}
static void snd_sb16_csp_update(struct snd_sb *chip)
{
if (chip->hardware == SB_HW_16CSP) {
struct snd_sb_csp *csp = chip->csp;
if (csp->qpos_changed) {
spin_lock(&chip->reg_lock);
csp->ops.csp_qsound_transfer (csp);
spin_unlock(&chip->reg_lock);
}
}
}
static void snd_sb16_csp_playback_open(struct snd_sb *chip, struct snd_pcm_runtime *runtime)
{
/* CSP decoders (QSound excluded) support only 16bit transfers */
if (chip->hardware == SB_HW_16CSP) {
struct snd_sb_csp *csp = chip->csp;
if (csp->running & SNDRV_SB_CSP_ST_LOADED) {
/* manually loaded codec */
if (csp->mode & SNDRV_SB_CSP_MODE_DSP_WRITE) {
runtime->hw.formats |= csp->acc_format;
}
} else {
/* autoloaded codecs */
runtime->hw.formats |= SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW |
SNDRV_PCM_FMTBIT_IMA_ADPCM;
}
}
}
static void snd_sb16_csp_playback_close(struct snd_sb *chip)
{
if ((chip->hardware == SB_HW_16CSP) && (chip->open == SNDRV_SB_CSP_MODE_DSP_WRITE)) {
struct snd_sb_csp *csp = chip->csp;
if (csp->ops.csp_stop(csp) == 0) {
csp->ops.csp_unuse(csp);
chip->open = 0;
}
}
}
static void snd_sb16_csp_capture_open(struct snd_sb *chip, struct snd_pcm_runtime *runtime)
{
/* CSP coders support only 16bit transfers */
if (chip->hardware == SB_HW_16CSP) {
struct snd_sb_csp *csp = chip->csp;
if (csp->running & SNDRV_SB_CSP_ST_LOADED) {
/* manually loaded codec */
if (csp->mode & SNDRV_SB_CSP_MODE_DSP_READ) {
runtime->hw.formats |= csp->acc_format;
}
} else {
/* autoloaded codecs */
runtime->hw.formats |= SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW |
SNDRV_PCM_FMTBIT_IMA_ADPCM;
}
}
}
static void snd_sb16_csp_capture_close(struct snd_sb *chip)
{
if ((chip->hardware == SB_HW_16CSP) && (chip->open == SNDRV_SB_CSP_MODE_DSP_READ)) {
struct snd_sb_csp *csp = chip->csp;
if (csp->ops.csp_stop(csp) == 0) {
csp->ops.csp_unuse(csp);
chip->open = 0;
}
}
}
#else
#define snd_sb16_csp_playback_prepare(chip, runtime) /*nop*/
#define snd_sb16_csp_capture_prepare(chip, runtime) /*nop*/
#define snd_sb16_csp_update(chip) /*nop*/
#define snd_sb16_csp_playback_open(chip, runtime) /*nop*/
#define snd_sb16_csp_playback_close(chip) /*nop*/
#define snd_sb16_csp_capture_open(chip, runtime) /*nop*/
#define snd_sb16_csp_capture_close(chip) /*nop*/
#endif
static void snd_sb16_setup_rate(struct snd_sb *chip,
unsigned short rate,
int channel)
{
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
if (chip->mode & (channel == SNDRV_PCM_STREAM_PLAYBACK ? SB_MODE_PLAYBACK_16 : SB_MODE_CAPTURE_16))
snd_sb_ack_16bit(chip);
else
snd_sb_ack_8bit(chip);
if (!(chip->mode & SB_RATE_LOCK)) {
chip->locked_rate = rate;
snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE_IN);
snd_sbdsp_command(chip, rate >> 8);
snd_sbdsp_command(chip, rate & 0xff);
snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE_OUT);
snd_sbdsp_command(chip, rate >> 8);
snd_sbdsp_command(chip, rate & 0xff);
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
static int snd_sb16_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_sb16_hw_free(struct snd_pcm_substream *substream)
{
snd_pcm_lib_free_pages(substream);
return 0;
}
static int snd_sb16_playback_prepare(struct snd_pcm_substream *substream)
{
unsigned long flags;
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned char format;
unsigned int size, count, dma;
snd_sb16_csp_playback_prepare(chip, runtime);
if (snd_pcm_format_unsigned(runtime->format) > 0) {
format = runtime->channels > 1 ? SB_DSP4_MODE_UNS_STEREO : SB_DSP4_MODE_UNS_MONO;
} else {
format = runtime->channels > 1 ? SB_DSP4_MODE_SIGN_STEREO : SB_DSP4_MODE_SIGN_MONO;
}
snd_sb16_setup_rate(chip, runtime->rate, SNDRV_PCM_STREAM_PLAYBACK);
size = chip->p_dma_size = snd_pcm_lib_buffer_bytes(substream);
dma = (chip->mode & SB_MODE_PLAYBACK_8) ? chip->dma8 : chip->dma16;
snd_dma_program(dma, runtime->dma_addr, size, DMA_MODE_WRITE | DMA_AUTOINIT);
count = snd_pcm_lib_period_bytes(substream);
spin_lock_irqsave(&chip->reg_lock, flags);
if (chip->mode & SB_MODE_PLAYBACK_16) {
count >>= 1;
count--;
snd_sbdsp_command(chip, SB_DSP4_OUT16_AI);
snd_sbdsp_command(chip, format);
snd_sbdsp_command(chip, count & 0xff);
snd_sbdsp_command(chip, count >> 8);
snd_sbdsp_command(chip, SB_DSP_DMA16_OFF);
} else {
count--;
snd_sbdsp_command(chip, SB_DSP4_OUT8_AI);
snd_sbdsp_command(chip, format);
snd_sbdsp_command(chip, count & 0xff);
snd_sbdsp_command(chip, count >> 8);
snd_sbdsp_command(chip, SB_DSP_DMA8_OFF);
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
return 0;
}
static int snd_sb16_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
int result = 0;
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
chip->mode |= SB_RATE_LOCK_PLAYBACK;
snd_sbdsp_command(chip, chip->mode & SB_MODE_PLAYBACK_16 ? SB_DSP_DMA16_ON : SB_DSP_DMA8_ON);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
snd_sbdsp_command(chip, chip->mode & SB_MODE_PLAYBACK_16 ? SB_DSP_DMA16_OFF : SB_DSP_DMA8_OFF);
/* next two lines are needed for some types of DSP4 (SB AWE 32 - 4.13) */
if (chip->mode & SB_RATE_LOCK_CAPTURE)
snd_sbdsp_command(chip, chip->mode & SB_MODE_CAPTURE_16 ? SB_DSP_DMA16_ON : SB_DSP_DMA8_ON);
chip->mode &= ~SB_RATE_LOCK_PLAYBACK;
break;
default:
result = -EINVAL;
}
spin_unlock(&chip->reg_lock);
return result;
}
static int snd_sb16_capture_prepare(struct snd_pcm_substream *substream)
{
unsigned long flags;
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned char format;
unsigned int size, count, dma;
snd_sb16_csp_capture_prepare(chip, runtime);
if (snd_pcm_format_unsigned(runtime->format) > 0) {
format = runtime->channels > 1 ? SB_DSP4_MODE_UNS_STEREO : SB_DSP4_MODE_UNS_MONO;
} else {
format = runtime->channels > 1 ? SB_DSP4_MODE_SIGN_STEREO : SB_DSP4_MODE_SIGN_MONO;
}
snd_sb16_setup_rate(chip, runtime->rate, SNDRV_PCM_STREAM_CAPTURE);
size = chip->c_dma_size = snd_pcm_lib_buffer_bytes(substream);
dma = (chip->mode & SB_MODE_CAPTURE_8) ? chip->dma8 : chip->dma16;
snd_dma_program(dma, runtime->dma_addr, size, DMA_MODE_READ | DMA_AUTOINIT);
count = snd_pcm_lib_period_bytes(substream);
spin_lock_irqsave(&chip->reg_lock, flags);
if (chip->mode & SB_MODE_CAPTURE_16) {
count >>= 1;
count--;
snd_sbdsp_command(chip, SB_DSP4_IN16_AI);
snd_sbdsp_command(chip, format);
snd_sbdsp_command(chip, count & 0xff);
snd_sbdsp_command(chip, count >> 8);
snd_sbdsp_command(chip, SB_DSP_DMA16_OFF);
} else {
count--;
snd_sbdsp_command(chip, SB_DSP4_IN8_AI);
snd_sbdsp_command(chip, format);
snd_sbdsp_command(chip, count & 0xff);
snd_sbdsp_command(chip, count >> 8);
snd_sbdsp_command(chip, SB_DSP_DMA8_OFF);
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
return 0;
}
static int snd_sb16_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
int result = 0;
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
chip->mode |= SB_RATE_LOCK_CAPTURE;
snd_sbdsp_command(chip, chip->mode & SB_MODE_CAPTURE_16 ? SB_DSP_DMA16_ON : SB_DSP_DMA8_ON);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
snd_sbdsp_command(chip, chip->mode & SB_MODE_CAPTURE_16 ? SB_DSP_DMA16_OFF : SB_DSP_DMA8_OFF);
/* next two lines are needed for some types of DSP4 (SB AWE 32 - 4.13) */
if (chip->mode & SB_RATE_LOCK_PLAYBACK)
snd_sbdsp_command(chip, chip->mode & SB_MODE_PLAYBACK_16 ? SB_DSP_DMA16_ON : SB_DSP_DMA8_ON);
chip->mode &= ~SB_RATE_LOCK_CAPTURE;
break;
default:
result = -EINVAL;
}
spin_unlock(&chip->reg_lock);
return result;
}
irqreturn_t snd_sb16dsp_interrupt(int irq, void *dev_id)
{
struct snd_sb *chip = dev_id;
unsigned char status;
int ok;
spin_lock(&chip->mixer_lock);
status = snd_sbmixer_read(chip, SB_DSP4_IRQSTATUS);
spin_unlock(&chip->mixer_lock);
if ((status & SB_IRQTYPE_MPUIN) && chip->rmidi_callback)
chip->rmidi_callback(irq, chip->rmidi->private_data);
if (status & SB_IRQTYPE_8BIT) {
ok = 0;
if (chip->mode & SB_MODE_PLAYBACK_8) {
snd_pcm_period_elapsed(chip->playback_substream);
snd_sb16_csp_update(chip);
ok++;
}
if (chip->mode & SB_MODE_CAPTURE_8) {
snd_pcm_period_elapsed(chip->capture_substream);
ok++;
}
spin_lock(&chip->reg_lock);
if (!ok)
snd_sbdsp_command(chip, SB_DSP_DMA8_OFF);
snd_sb_ack_8bit(chip);
spin_unlock(&chip->reg_lock);
}
if (status & SB_IRQTYPE_16BIT) {
ok = 0;
if (chip->mode & SB_MODE_PLAYBACK_16) {
snd_pcm_period_elapsed(chip->playback_substream);
snd_sb16_csp_update(chip);
ok++;
}
if (chip->mode & SB_MODE_CAPTURE_16) {
snd_pcm_period_elapsed(chip->capture_substream);
ok++;
}
spin_lock(&chip->reg_lock);
if (!ok)
snd_sbdsp_command(chip, SB_DSP_DMA16_OFF);
snd_sb_ack_16bit(chip);
spin_unlock(&chip->reg_lock);
}
return IRQ_HANDLED;
}
/*
*/
static snd_pcm_uframes_t snd_sb16_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
unsigned int dma;
size_t ptr;
dma = (chip->mode & SB_MODE_PLAYBACK_8) ? chip->dma8 : chip->dma16;
ptr = snd_dma_pointer(dma, chip->p_dma_size);
return bytes_to_frames(substream->runtime, ptr);
}
static snd_pcm_uframes_t snd_sb16_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
unsigned int dma;
size_t ptr;
dma = (chip->mode & SB_MODE_CAPTURE_8) ? chip->dma8 : chip->dma16;
ptr = snd_dma_pointer(dma, chip->c_dma_size);
return bytes_to_frames(substream->runtime, ptr);
}
/*
*/
static const struct snd_pcm_hardware snd_sb16_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = 0,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_44100,
.rate_min = 4000,
.rate_max = 44100,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
static const struct snd_pcm_hardware snd_sb16_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = 0,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_44100,
.rate_min = 4000,
.rate_max = 44100,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0,
};
/*
* open/close
*/
static int snd_sb16_playback_open(struct snd_pcm_substream *substream)
{
unsigned long flags;
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
spin_lock_irqsave(&chip->open_lock, flags);
if (chip->mode & SB_MODE_PLAYBACK) {
spin_unlock_irqrestore(&chip->open_lock, flags);
return -EAGAIN;
}
runtime->hw = snd_sb16_playback;
/* skip if 16 bit DMA was reserved for capture */
if (chip->force_mode16 & SB_MODE_CAPTURE_16)
goto __skip_16bit;
if (chip->dma16 >= 0 && !(chip->mode & SB_MODE_CAPTURE_16)) {
chip->mode |= SB_MODE_PLAYBACK_16;
runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE;
/* Vibra16X hack */
if (chip->dma16 <= 3) {
runtime->hw.buffer_bytes_max =
runtime->hw.period_bytes_max = 64 * 1024;
} else {
snd_sb16_csp_playback_open(chip, runtime);
}
goto __open_ok;
}
__skip_16bit:
if (chip->dma8 >= 0 && !(chip->mode & SB_MODE_CAPTURE_8)) {
chip->mode |= SB_MODE_PLAYBACK_8;
/* DSP v 4.xx can transfer 16bit data through 8bit DMA channel, SBHWPG 2-7 */
if (chip->dma16 < 0) {
runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE;
chip->mode |= SB_MODE_PLAYBACK_16;
} else {
runtime->hw.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8;
}
runtime->hw.buffer_bytes_max =
runtime->hw.period_bytes_max = 64 * 1024;
goto __open_ok;
}
spin_unlock_irqrestore(&chip->open_lock, flags);
return -EAGAIN;
__open_ok:
if (chip->hardware == SB_HW_ALS100)
runtime->hw.rate_max = 48000;
if (chip->hardware == SB_HW_CS5530) {
runtime->hw.buffer_bytes_max = 32 * 1024;
runtime->hw.periods_min = 2;
runtime->hw.rate_min = 44100;
}
if (chip->mode & SB_RATE_LOCK)
runtime->hw.rate_min = runtime->hw.rate_max = chip->locked_rate;
chip->playback_substream = substream;
spin_unlock_irqrestore(&chip->open_lock, flags);
return 0;
}
static int snd_sb16_playback_close(struct snd_pcm_substream *substream)
{
unsigned long flags;
struct snd_sb *chip = snd_pcm_substream_chip(substream);
snd_sb16_csp_playback_close(chip);
spin_lock_irqsave(&chip->open_lock, flags);
chip->playback_substream = NULL;
chip->mode &= ~SB_MODE_PLAYBACK;
spin_unlock_irqrestore(&chip->open_lock, flags);
return 0;
}
static int snd_sb16_capture_open(struct snd_pcm_substream *substream)
{
unsigned long flags;
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
spin_lock_irqsave(&chip->open_lock, flags);
if (chip->mode & SB_MODE_CAPTURE) {
spin_unlock_irqrestore(&chip->open_lock, flags);
return -EAGAIN;
}
runtime->hw = snd_sb16_capture;
/* skip if 16 bit DMA was reserved for playback */
if (chip->force_mode16 & SB_MODE_PLAYBACK_16)
goto __skip_16bit;
if (chip->dma16 >= 0 && !(chip->mode & SB_MODE_PLAYBACK_16)) {
chip->mode |= SB_MODE_CAPTURE_16;
runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE;
/* Vibra16X hack */
if (chip->dma16 <= 3) {
runtime->hw.buffer_bytes_max =
runtime->hw.period_bytes_max = 64 * 1024;
} else {
snd_sb16_csp_capture_open(chip, runtime);
}
goto __open_ok;
}
__skip_16bit:
if (chip->dma8 >= 0 && !(chip->mode & SB_MODE_PLAYBACK_8)) {
chip->mode |= SB_MODE_CAPTURE_8;
/* DSP v 4.xx can transfer 16bit data through 8bit DMA channel, SBHWPG 2-7 */
if (chip->dma16 < 0) {
runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE;
chip->mode |= SB_MODE_CAPTURE_16;
} else {
runtime->hw.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8;
}
runtime->hw.buffer_bytes_max =
runtime->hw.period_bytes_max = 64 * 1024;
goto __open_ok;
}
spin_unlock_irqrestore(&chip->open_lock, flags);
return -EAGAIN;
__open_ok:
if (chip->hardware == SB_HW_ALS100)
runtime->hw.rate_max = 48000;
if (chip->hardware == SB_HW_CS5530) {
runtime->hw.buffer_bytes_max = 32 * 1024;
runtime->hw.periods_min = 2;
runtime->hw.rate_min = 44100;
}
if (chip->mode & SB_RATE_LOCK)
runtime->hw.rate_min = runtime->hw.rate_max = chip->locked_rate;
chip->capture_substream = substream;
spin_unlock_irqrestore(&chip->open_lock, flags);
return 0;
}
static int snd_sb16_capture_close(struct snd_pcm_substream *substream)
{
unsigned long flags;
struct snd_sb *chip = snd_pcm_substream_chip(substream);
snd_sb16_csp_capture_close(chip);
spin_lock_irqsave(&chip->open_lock, flags);
chip->capture_substream = NULL;
chip->mode &= ~SB_MODE_CAPTURE;
spin_unlock_irqrestore(&chip->open_lock, flags);
return 0;
}
/*
* DMA control interface
*/
static int snd_sb16_set_dma_mode(struct snd_sb *chip, int what)
{
if (chip->dma8 < 0 || chip->dma16 < 0) {
if (snd_BUG_ON(what))
return -EINVAL;
return 0;
}
if (what == 0) {
chip->force_mode16 = 0;
} else if (what == 1) {
chip->force_mode16 = SB_MODE_PLAYBACK_16;
} else if (what == 2) {
chip->force_mode16 = SB_MODE_CAPTURE_16;
} else {
return -EINVAL;
}
return 0;
}
static int snd_sb16_get_dma_mode(struct snd_sb *chip)
{
if (chip->dma8 < 0 || chip->dma16 < 0)
return 0;
switch (chip->force_mode16) {
case SB_MODE_PLAYBACK_16:
return 1;
case SB_MODE_CAPTURE_16:
return 2;
default:
return 0;
}
}
static int snd_sb16_dma_control_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[3] = {
"Auto", "Playback", "Capture"
};
return snd_ctl_enum_info(uinfo, 1, 3, texts);
}
static int snd_sb16_dma_control_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_sb *chip = snd_kcontrol_chip(kcontrol);
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
ucontrol->value.enumerated.item[0] = snd_sb16_get_dma_mode(chip);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return 0;
}
static int snd_sb16_dma_control_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_sb *chip = snd_kcontrol_chip(kcontrol);
unsigned long flags;
unsigned char nval, oval;
int change;
if ((nval = ucontrol->value.enumerated.item[0]) > 2)
return -EINVAL;
spin_lock_irqsave(&chip->reg_lock, flags);
oval = snd_sb16_get_dma_mode(chip);
change = nval != oval;
snd_sb16_set_dma_mode(chip, nval);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return change;
}
static const struct snd_kcontrol_new snd_sb16_dma_control = {
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
.name = "16-bit DMA Allocation",
.info = snd_sb16_dma_control_info,
.get = snd_sb16_dma_control_get,
.put = snd_sb16_dma_control_put
};
/*
* Initialization part
*/
int snd_sb16dsp_configure(struct snd_sb * chip)
{
unsigned long flags;
unsigned char irqreg = 0, dmareg = 0, mpureg;
unsigned char realirq, realdma, realmpureg;
/* note: mpu register should be present only on SB16 Vibra soundcards */
// printk(KERN_DEBUG "codec->irq=%i, codec->dma8=%i, codec->dma16=%i\n", chip->irq, chip->dma8, chip->dma16);
spin_lock_irqsave(&chip->mixer_lock, flags);
mpureg = snd_sbmixer_read(chip, SB_DSP4_MPUSETUP) & ~0x06;
spin_unlock_irqrestore(&chip->mixer_lock, flags);
switch (chip->irq) {
case 2:
case 9:
irqreg |= SB_IRQSETUP_IRQ9;
break;
case 5:
irqreg |= SB_IRQSETUP_IRQ5;
break;
case 7:
irqreg |= SB_IRQSETUP_IRQ7;
break;
case 10:
irqreg |= SB_IRQSETUP_IRQ10;
break;
default:
return -EINVAL;
}
if (chip->dma8 >= 0) {
switch (chip->dma8) {
case 0:
dmareg |= SB_DMASETUP_DMA0;
break;
case 1:
dmareg |= SB_DMASETUP_DMA1;
break;
case 3:
dmareg |= SB_DMASETUP_DMA3;
break;
default:
return -EINVAL;
}
}
if (chip->dma16 >= 0 && chip->dma16 != chip->dma8) {
switch (chip->dma16) {
case 5:
dmareg |= SB_DMASETUP_DMA5;
break;
case 6:
dmareg |= SB_DMASETUP_DMA6;
break;
case 7:
dmareg |= SB_DMASETUP_DMA7;
break;
default:
return -EINVAL;
}
}
switch (chip->mpu_port) {
case 0x300:
mpureg |= 0x04;
break;
case 0x330:
mpureg |= 0x00;
break;
default:
mpureg |= 0x02; /* disable MPU */
}
spin_lock_irqsave(&chip->mixer_lock, flags);
snd_sbmixer_write(chip, SB_DSP4_IRQSETUP, irqreg);
realirq = snd_sbmixer_read(chip, SB_DSP4_IRQSETUP);
snd_sbmixer_write(chip, SB_DSP4_DMASETUP, dmareg);
realdma = snd_sbmixer_read(chip, SB_DSP4_DMASETUP);
snd_sbmixer_write(chip, SB_DSP4_MPUSETUP, mpureg);
realmpureg = snd_sbmixer_read(chip, SB_DSP4_MPUSETUP);
spin_unlock_irqrestore(&chip->mixer_lock, flags);
if ((~realirq) & irqreg || (~realdma) & dmareg) {
snd_printk(KERN_ERR "SB16 [0x%lx]: unable to set DMA & IRQ (PnP device?)\n", chip->port);
snd_printk(KERN_ERR "SB16 [0x%lx]: wanted: irqreg=0x%x, dmareg=0x%x, mpureg = 0x%x\n", chip->port, realirq, realdma, realmpureg);
snd_printk(KERN_ERR "SB16 [0x%lx]: got: irqreg=0x%x, dmareg=0x%x, mpureg = 0x%x\n", chip->port, irqreg, dmareg, mpureg);
return -ENODEV;
}
return 0;
}
static const struct snd_pcm_ops snd_sb16_playback_ops = {
.open = snd_sb16_playback_open,
.close = snd_sb16_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_sb16_hw_params,
.hw_free = snd_sb16_hw_free,
.prepare = snd_sb16_playback_prepare,
.trigger = snd_sb16_playback_trigger,
.pointer = snd_sb16_playback_pointer,
};
static const struct snd_pcm_ops snd_sb16_capture_ops = {
.open = snd_sb16_capture_open,
.close = snd_sb16_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_sb16_hw_params,
.hw_free = snd_sb16_hw_free,
.prepare = snd_sb16_capture_prepare,
.trigger = snd_sb16_capture_trigger,
.pointer = snd_sb16_capture_pointer,
};
int snd_sb16dsp_pcm(struct snd_sb *chip, int device)
{
struct snd_card *card = chip->card;
struct snd_pcm *pcm;
int err;
if ((err = snd_pcm_new(card, "SB16 DSP", device, 1, 1, &pcm)) < 0)
return err;
sprintf(pcm->name, "DSP v%i.%i", chip->version >> 8, chip->version & 0xff);
pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
pcm->private_data = chip;
chip->pcm = pcm;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_sb16_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_sb16_capture_ops);
if (chip->dma16 >= 0 && chip->dma8 != chip->dma16)
snd_ctl_add(card, snd_ctl_new1(&snd_sb16_dma_control, chip));
else
pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_isa_data(),
64*1024, 128*1024);
return 0;
}
const struct snd_pcm_ops *snd_sb16dsp_get_pcm_ops(int direction)
{
return direction == SNDRV_PCM_STREAM_PLAYBACK ?
&snd_sb16_playback_ops : &snd_sb16_capture_ops;
}
EXPORT_SYMBOL(snd_sb16dsp_pcm);
EXPORT_SYMBOL(snd_sb16dsp_get_pcm_ops);
EXPORT_SYMBOL(snd_sb16dsp_configure);
EXPORT_SYMBOL(snd_sb16dsp_interrupt);