6db4831e98
Android 14
810 lines
20 KiB
C
810 lines
20 KiB
C
/*
|
|
* arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
|
|
*
|
|
* Created by: Nicolas Pitre, March 2012
|
|
* Copyright: (C) 2012-2013 Linaro Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <uapi/linux/sched/types.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/cpu_pm.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/time.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/irqchip/arm-gic.h>
|
|
#include <linux/moduleparam.h>
|
|
|
|
#include <asm/smp_plat.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/suspend.h>
|
|
#include <asm/mcpm.h>
|
|
#include <asm/bL_switcher.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/power_cpu_migrate.h>
|
|
|
|
|
|
/*
|
|
* Use our own MPIDR accessors as the generic ones in asm/cputype.h have
|
|
* __attribute_const__ and we don't want the compiler to assume any
|
|
* constness here as the value _does_ change along some code paths.
|
|
*/
|
|
|
|
static int read_mpidr(void)
|
|
{
|
|
unsigned int id;
|
|
asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
|
|
return id & MPIDR_HWID_BITMASK;
|
|
}
|
|
|
|
/*
|
|
* bL switcher core code.
|
|
*/
|
|
|
|
static void bL_do_switch(void *_arg)
|
|
{
|
|
unsigned ib_mpidr, ib_cpu, ib_cluster;
|
|
long volatile handshake, **handshake_ptr = _arg;
|
|
|
|
pr_debug("%s\n", __func__);
|
|
|
|
ib_mpidr = cpu_logical_map(smp_processor_id());
|
|
ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
|
|
ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
|
|
|
|
/* Advertise our handshake location */
|
|
if (handshake_ptr) {
|
|
handshake = 0;
|
|
*handshake_ptr = &handshake;
|
|
} else
|
|
handshake = -1;
|
|
|
|
/*
|
|
* Our state has been saved at this point. Let's release our
|
|
* inbound CPU.
|
|
*/
|
|
mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
|
|
sev();
|
|
|
|
/*
|
|
* From this point, we must assume that our counterpart CPU might
|
|
* have taken over in its parallel world already, as if execution
|
|
* just returned from cpu_suspend(). It is therefore important to
|
|
* be very careful not to make any change the other guy is not
|
|
* expecting. This is why we need stack isolation.
|
|
*
|
|
* Fancy under cover tasks could be performed here. For now
|
|
* we have none.
|
|
*/
|
|
|
|
/*
|
|
* Let's wait until our inbound is alive.
|
|
*/
|
|
while (!handshake) {
|
|
wfe();
|
|
smp_mb();
|
|
}
|
|
|
|
/* Let's put ourself down. */
|
|
mcpm_cpu_power_down();
|
|
|
|
/* should never get here */
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* Stack isolation. To ensure 'current' remains valid, we just use another
|
|
* piece of our thread's stack space which should be fairly lightly used.
|
|
* The selected area starts just above the thread_info structure located
|
|
* at the very bottom of the stack, aligned to a cache line, and indexed
|
|
* with the cluster number.
|
|
*/
|
|
#define STACK_SIZE 512
|
|
extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
|
|
static int bL_switchpoint(unsigned long _arg)
|
|
{
|
|
unsigned int mpidr = read_mpidr();
|
|
unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
void *stack = current_thread_info() + 1;
|
|
stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
|
|
stack += clusterid * STACK_SIZE + STACK_SIZE;
|
|
call_with_stack(bL_do_switch, (void *)_arg, stack);
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* Generic switcher interface
|
|
*/
|
|
|
|
static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
|
|
static int bL_switcher_cpu_pairing[NR_CPUS];
|
|
|
|
/*
|
|
* bL_switch_to - Switch to a specific cluster for the current CPU
|
|
* @new_cluster_id: the ID of the cluster to switch to.
|
|
*
|
|
* This function must be called on the CPU to be switched.
|
|
* Returns 0 on success, else a negative status code.
|
|
*/
|
|
static int bL_switch_to(unsigned int new_cluster_id)
|
|
{
|
|
unsigned int mpidr, this_cpu, that_cpu;
|
|
unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
|
|
struct completion inbound_alive;
|
|
long volatile *handshake_ptr;
|
|
int ipi_nr, ret;
|
|
|
|
this_cpu = smp_processor_id();
|
|
ob_mpidr = read_mpidr();
|
|
ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
|
|
ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
|
|
BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
|
|
|
|
if (new_cluster_id == ob_cluster)
|
|
return 0;
|
|
|
|
that_cpu = bL_switcher_cpu_pairing[this_cpu];
|
|
ib_mpidr = cpu_logical_map(that_cpu);
|
|
ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
|
|
ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
|
|
|
|
pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
|
|
this_cpu, ob_mpidr, ib_mpidr);
|
|
|
|
this_cpu = smp_processor_id();
|
|
|
|
/* Close the gate for our entry vectors */
|
|
mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
|
|
mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
|
|
|
|
/* Install our "inbound alive" notifier. */
|
|
init_completion(&inbound_alive);
|
|
ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
|
|
ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
|
|
mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
|
|
|
|
/*
|
|
* Let's wake up the inbound CPU now in case it requires some delay
|
|
* to come online, but leave it gated in our entry vector code.
|
|
*/
|
|
ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
|
|
if (ret) {
|
|
pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Raise a SGI on the inbound CPU to make sure it doesn't stall
|
|
* in a possible WFI, such as in bL_power_down().
|
|
*/
|
|
gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
|
|
|
|
/*
|
|
* Wait for the inbound to come up. This allows for other
|
|
* tasks to be scheduled in the mean time.
|
|
*/
|
|
wait_for_completion(&inbound_alive);
|
|
mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
|
|
|
|
/*
|
|
* From this point we are entering the switch critical zone
|
|
* and can't take any interrupts anymore.
|
|
*/
|
|
local_irq_disable();
|
|
local_fiq_disable();
|
|
trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
|
|
|
|
/* redirect GIC's SGIs to our counterpart */
|
|
gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
|
|
|
|
tick_suspend_local();
|
|
|
|
ret = cpu_pm_enter();
|
|
|
|
/* we can not tolerate errors at this point */
|
|
if (ret)
|
|
panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
|
|
|
|
/* Swap the physical CPUs in the logical map for this logical CPU. */
|
|
cpu_logical_map(this_cpu) = ib_mpidr;
|
|
cpu_logical_map(that_cpu) = ob_mpidr;
|
|
|
|
/* Let's do the actual CPU switch. */
|
|
ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
|
|
if (ret > 0)
|
|
panic("%s: cpu_suspend() returned %d\n", __func__, ret);
|
|
|
|
/* We are executing on the inbound CPU at this point */
|
|
mpidr = read_mpidr();
|
|
pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
|
|
BUG_ON(mpidr != ib_mpidr);
|
|
|
|
mcpm_cpu_powered_up();
|
|
|
|
ret = cpu_pm_exit();
|
|
|
|
tick_resume_local();
|
|
|
|
trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
|
|
local_fiq_enable();
|
|
local_irq_enable();
|
|
|
|
*handshake_ptr = 1;
|
|
dsb_sev();
|
|
|
|
if (ret)
|
|
pr_err("%s exiting with error %d\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
struct bL_thread {
|
|
spinlock_t lock;
|
|
struct task_struct *task;
|
|
wait_queue_head_t wq;
|
|
int wanted_cluster;
|
|
struct completion started;
|
|
bL_switch_completion_handler completer;
|
|
void *completer_cookie;
|
|
};
|
|
|
|
static struct bL_thread bL_threads[NR_CPUS];
|
|
|
|
static int bL_switcher_thread(void *arg)
|
|
{
|
|
struct bL_thread *t = arg;
|
|
struct sched_param param = { .sched_priority = 1 };
|
|
int cluster;
|
|
bL_switch_completion_handler completer;
|
|
void *completer_cookie;
|
|
|
|
sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
|
|
complete(&t->started);
|
|
|
|
do {
|
|
if (signal_pending(current))
|
|
flush_signals(current);
|
|
wait_event_interruptible(t->wq,
|
|
t->wanted_cluster != -1 ||
|
|
kthread_should_stop());
|
|
|
|
spin_lock(&t->lock);
|
|
cluster = t->wanted_cluster;
|
|
completer = t->completer;
|
|
completer_cookie = t->completer_cookie;
|
|
t->wanted_cluster = -1;
|
|
t->completer = NULL;
|
|
spin_unlock(&t->lock);
|
|
|
|
if (cluster != -1) {
|
|
bL_switch_to(cluster);
|
|
|
|
if (completer)
|
|
completer(completer_cookie);
|
|
}
|
|
} while (!kthread_should_stop());
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
task = kthread_create_on_node(bL_switcher_thread, arg,
|
|
cpu_to_node(cpu), "kswitcher_%d", cpu);
|
|
if (!IS_ERR(task)) {
|
|
kthread_bind(task, cpu);
|
|
wake_up_process(task);
|
|
} else
|
|
pr_err("%s failed for CPU %d\n", __func__, cpu);
|
|
return task;
|
|
}
|
|
|
|
/*
|
|
* bL_switch_request_cb - Switch to a specific cluster for the given CPU,
|
|
* with completion notification via a callback
|
|
*
|
|
* @cpu: the CPU to switch
|
|
* @new_cluster_id: the ID of the cluster to switch to.
|
|
* @completer: switch completion callback. if non-NULL,
|
|
* @completer(@completer_cookie) will be called on completion of
|
|
* the switch, in non-atomic context.
|
|
* @completer_cookie: opaque context argument for @completer.
|
|
*
|
|
* This function causes a cluster switch on the given CPU by waking up
|
|
* the appropriate switcher thread. This function may or may not return
|
|
* before the switch has occurred.
|
|
*
|
|
* If a @completer callback function is supplied, it will be called when
|
|
* the switch is complete. This can be used to determine asynchronously
|
|
* when the switch is complete, regardless of when bL_switch_request()
|
|
* returns. When @completer is supplied, no new switch request is permitted
|
|
* for the affected CPU until after the switch is complete, and @completer
|
|
* has returned.
|
|
*/
|
|
int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
|
|
bL_switch_completion_handler completer,
|
|
void *completer_cookie)
|
|
{
|
|
struct bL_thread *t;
|
|
|
|
if (cpu >= ARRAY_SIZE(bL_threads)) {
|
|
pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
|
|
return -EINVAL;
|
|
}
|
|
|
|
t = &bL_threads[cpu];
|
|
|
|
if (IS_ERR(t->task))
|
|
return PTR_ERR(t->task);
|
|
if (!t->task)
|
|
return -ESRCH;
|
|
|
|
spin_lock(&t->lock);
|
|
if (t->completer) {
|
|
spin_unlock(&t->lock);
|
|
return -EBUSY;
|
|
}
|
|
t->completer = completer;
|
|
t->completer_cookie = completer_cookie;
|
|
t->wanted_cluster = new_cluster_id;
|
|
spin_unlock(&t->lock);
|
|
wake_up(&t->wq);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bL_switch_request_cb);
|
|
|
|
/*
|
|
* Activation and configuration code.
|
|
*/
|
|
|
|
static DEFINE_MUTEX(bL_switcher_activation_lock);
|
|
static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
|
|
static unsigned int bL_switcher_active;
|
|
static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
|
|
static cpumask_t bL_switcher_removed_logical_cpus;
|
|
|
|
int bL_switcher_register_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(&bL_activation_notifier, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
|
|
|
|
int bL_switcher_unregister_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
|
|
|
|
static int bL_activation_notify(unsigned long val)
|
|
{
|
|
int ret;
|
|
|
|
ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
|
|
if (ret & NOTIFY_STOP_MASK)
|
|
pr_err("%s: notifier chain failed with status 0x%x\n",
|
|
__func__, ret);
|
|
return notifier_to_errno(ret);
|
|
}
|
|
|
|
static void bL_switcher_restore_cpus(void)
|
|
{
|
|
int i;
|
|
|
|
for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
|
|
struct device *cpu_dev = get_cpu_device(i);
|
|
int ret = device_online(cpu_dev);
|
|
if (ret)
|
|
dev_err(cpu_dev, "switcher: unable to restore CPU\n");
|
|
}
|
|
}
|
|
|
|
static int bL_switcher_halve_cpus(void)
|
|
{
|
|
int i, j, cluster_0, gic_id, ret;
|
|
unsigned int cpu, cluster, mask;
|
|
cpumask_t available_cpus;
|
|
|
|
/* First pass to validate what we have */
|
|
mask = 0;
|
|
for_each_online_cpu(i) {
|
|
cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
|
|
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
|
|
if (cluster >= 2) {
|
|
pr_err("%s: only dual cluster systems are supported\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
|
|
return -EINVAL;
|
|
mask |= (1 << cluster);
|
|
}
|
|
if (mask != 3) {
|
|
pr_err("%s: no CPU pairing possible\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Now let's do the pairing. We match each CPU with another CPU
|
|
* from a different cluster. To get a uniform scheduling behavior
|
|
* without fiddling with CPU topology and compute capacity data,
|
|
* we'll use logical CPUs initially belonging to the same cluster.
|
|
*/
|
|
memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
|
|
cpumask_copy(&available_cpus, cpu_online_mask);
|
|
cluster_0 = -1;
|
|
for_each_cpu(i, &available_cpus) {
|
|
int match = -1;
|
|
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
|
|
if (cluster_0 == -1)
|
|
cluster_0 = cluster;
|
|
if (cluster != cluster_0)
|
|
continue;
|
|
cpumask_clear_cpu(i, &available_cpus);
|
|
for_each_cpu(j, &available_cpus) {
|
|
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
|
|
/*
|
|
* Let's remember the last match to create "odd"
|
|
* pairings on purpose in order for other code not
|
|
* to assume any relation between physical and
|
|
* logical CPU numbers.
|
|
*/
|
|
if (cluster != cluster_0)
|
|
match = j;
|
|
}
|
|
if (match != -1) {
|
|
bL_switcher_cpu_pairing[i] = match;
|
|
cpumask_clear_cpu(match, &available_cpus);
|
|
pr_info("CPU%d paired with CPU%d\n", i, match);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now we disable the unwanted CPUs i.e. everything that has no
|
|
* pairing information (that includes the pairing counterparts).
|
|
*/
|
|
cpumask_clear(&bL_switcher_removed_logical_cpus);
|
|
for_each_online_cpu(i) {
|
|
cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
|
|
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
|
|
|
|
/* Let's take note of the GIC ID for this CPU */
|
|
gic_id = gic_get_cpu_id(i);
|
|
if (gic_id < 0) {
|
|
pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
|
|
bL_switcher_restore_cpus();
|
|
return -EINVAL;
|
|
}
|
|
bL_gic_id[cpu][cluster] = gic_id;
|
|
pr_info("GIC ID for CPU %u cluster %u is %u\n",
|
|
cpu, cluster, gic_id);
|
|
|
|
if (bL_switcher_cpu_pairing[i] != -1) {
|
|
bL_switcher_cpu_original_cluster[i] = cluster;
|
|
continue;
|
|
}
|
|
|
|
ret = device_offline(get_cpu_device(i));
|
|
if (ret) {
|
|
bL_switcher_restore_cpus();
|
|
return ret;
|
|
}
|
|
cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Determine the logical CPU a given physical CPU is grouped on. */
|
|
int bL_switcher_get_logical_index(u32 mpidr)
|
|
{
|
|
int cpu;
|
|
|
|
if (!bL_switcher_active)
|
|
return -EUNATCH;
|
|
|
|
mpidr &= MPIDR_HWID_BITMASK;
|
|
for_each_online_cpu(cpu) {
|
|
int pairing = bL_switcher_cpu_pairing[cpu];
|
|
if (pairing == -1)
|
|
continue;
|
|
if ((mpidr == cpu_logical_map(cpu)) ||
|
|
(mpidr == cpu_logical_map(pairing)))
|
|
return cpu;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
|
|
{
|
|
trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
|
|
}
|
|
|
|
int bL_switcher_trace_trigger(void)
|
|
{
|
|
int ret;
|
|
|
|
preempt_disable();
|
|
|
|
bL_switcher_trace_trigger_cpu(NULL);
|
|
ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
|
|
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
|
|
|
|
static int bL_switcher_enable(void)
|
|
{
|
|
int cpu, ret;
|
|
|
|
mutex_lock(&bL_switcher_activation_lock);
|
|
lock_device_hotplug();
|
|
if (bL_switcher_active) {
|
|
unlock_device_hotplug();
|
|
mutex_unlock(&bL_switcher_activation_lock);
|
|
return 0;
|
|
}
|
|
|
|
pr_info("big.LITTLE switcher initializing\n");
|
|
|
|
ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
|
|
if (ret)
|
|
goto error;
|
|
|
|
ret = bL_switcher_halve_cpus();
|
|
if (ret)
|
|
goto error;
|
|
|
|
bL_switcher_trace_trigger();
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct bL_thread *t = &bL_threads[cpu];
|
|
spin_lock_init(&t->lock);
|
|
init_waitqueue_head(&t->wq);
|
|
init_completion(&t->started);
|
|
t->wanted_cluster = -1;
|
|
t->task = bL_switcher_thread_create(cpu, t);
|
|
}
|
|
|
|
bL_switcher_active = 1;
|
|
bL_activation_notify(BL_NOTIFY_POST_ENABLE);
|
|
pr_info("big.LITTLE switcher initialized\n");
|
|
goto out;
|
|
|
|
error:
|
|
pr_warn("big.LITTLE switcher initialization failed\n");
|
|
bL_activation_notify(BL_NOTIFY_POST_DISABLE);
|
|
|
|
out:
|
|
unlock_device_hotplug();
|
|
mutex_unlock(&bL_switcher_activation_lock);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
|
|
static void bL_switcher_disable(void)
|
|
{
|
|
unsigned int cpu, cluster;
|
|
struct bL_thread *t;
|
|
struct task_struct *task;
|
|
|
|
mutex_lock(&bL_switcher_activation_lock);
|
|
lock_device_hotplug();
|
|
|
|
if (!bL_switcher_active)
|
|
goto out;
|
|
|
|
if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
|
|
bL_activation_notify(BL_NOTIFY_POST_ENABLE);
|
|
goto out;
|
|
}
|
|
|
|
bL_switcher_active = 0;
|
|
|
|
/*
|
|
* To deactivate the switcher, we must shut down the switcher
|
|
* threads to prevent any other requests from being accepted.
|
|
* Then, if the final cluster for given logical CPU is not the
|
|
* same as the original one, we'll recreate a switcher thread
|
|
* just for the purpose of switching the CPU back without any
|
|
* possibility for interference from external requests.
|
|
*/
|
|
for_each_online_cpu(cpu) {
|
|
t = &bL_threads[cpu];
|
|
task = t->task;
|
|
t->task = NULL;
|
|
if (!task || IS_ERR(task))
|
|
continue;
|
|
kthread_stop(task);
|
|
/* no more switch may happen on this CPU at this point */
|
|
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
|
|
if (cluster == bL_switcher_cpu_original_cluster[cpu])
|
|
continue;
|
|
init_completion(&t->started);
|
|
t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
|
|
task = bL_switcher_thread_create(cpu, t);
|
|
if (!IS_ERR(task)) {
|
|
wait_for_completion(&t->started);
|
|
kthread_stop(task);
|
|
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
|
|
if (cluster == bL_switcher_cpu_original_cluster[cpu])
|
|
continue;
|
|
}
|
|
/* If execution gets here, we're in trouble. */
|
|
pr_crit("%s: unable to restore original cluster for CPU %d\n",
|
|
__func__, cpu);
|
|
pr_crit("%s: CPU %d can't be restored\n",
|
|
__func__, bL_switcher_cpu_pairing[cpu]);
|
|
cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
|
|
&bL_switcher_removed_logical_cpus);
|
|
}
|
|
|
|
bL_switcher_restore_cpus();
|
|
bL_switcher_trace_trigger();
|
|
|
|
bL_activation_notify(BL_NOTIFY_POST_DISABLE);
|
|
|
|
out:
|
|
unlock_device_hotplug();
|
|
mutex_unlock(&bL_switcher_activation_lock);
|
|
}
|
|
|
|
static ssize_t bL_switcher_active_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", bL_switcher_active);
|
|
}
|
|
|
|
static ssize_t bL_switcher_active_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
|
|
switch (buf[0]) {
|
|
case '0':
|
|
bL_switcher_disable();
|
|
ret = 0;
|
|
break;
|
|
case '1':
|
|
ret = bL_switcher_enable();
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return (ret >= 0) ? count : ret;
|
|
}
|
|
|
|
static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret = bL_switcher_trace_trigger();
|
|
|
|
return ret ? ret : count;
|
|
}
|
|
|
|
static struct kobj_attribute bL_switcher_active_attr =
|
|
__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
|
|
|
|
static struct kobj_attribute bL_switcher_trace_trigger_attr =
|
|
__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
|
|
|
|
static struct attribute *bL_switcher_attrs[] = {
|
|
&bL_switcher_active_attr.attr,
|
|
&bL_switcher_trace_trigger_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group bL_switcher_attr_group = {
|
|
.attrs = bL_switcher_attrs,
|
|
};
|
|
|
|
static struct kobject *bL_switcher_kobj;
|
|
|
|
static int __init bL_switcher_sysfs_init(void)
|
|
{
|
|
int ret;
|
|
|
|
bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
|
|
if (!bL_switcher_kobj)
|
|
return -ENOMEM;
|
|
ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
|
|
if (ret)
|
|
kobject_put(bL_switcher_kobj);
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
bool bL_switcher_get_enabled(void)
|
|
{
|
|
mutex_lock(&bL_switcher_activation_lock);
|
|
|
|
return bL_switcher_active;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
|
|
|
|
void bL_switcher_put_enabled(void)
|
|
{
|
|
mutex_unlock(&bL_switcher_activation_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
|
|
|
|
/*
|
|
* Veto any CPU hotplug operation on those CPUs we've removed
|
|
* while the switcher is active.
|
|
* We're just not ready to deal with that given the trickery involved.
|
|
*/
|
|
static int bL_switcher_cpu_pre(unsigned int cpu)
|
|
{
|
|
int pairing;
|
|
|
|
if (!bL_switcher_active)
|
|
return 0;
|
|
|
|
pairing = bL_switcher_cpu_pairing[cpu];
|
|
|
|
if (pairing == -1)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static bool no_bL_switcher;
|
|
core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
|
|
|
|
static int __init bL_switcher_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (!mcpm_is_available())
|
|
return -ENODEV;
|
|
|
|
cpuhp_setup_state_nocalls(CPUHP_ARM_BL_PREPARE, "arm/bl:prepare",
|
|
bL_switcher_cpu_pre, NULL);
|
|
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "arm/bl:predown",
|
|
NULL, bL_switcher_cpu_pre);
|
|
if (ret < 0) {
|
|
cpuhp_remove_state_nocalls(CPUHP_ARM_BL_PREPARE);
|
|
pr_err("bL_switcher: Failed to allocate a hotplug state\n");
|
|
return ret;
|
|
}
|
|
if (!no_bL_switcher) {
|
|
ret = bL_switcher_enable();
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
ret = bL_switcher_sysfs_init();
|
|
if (ret)
|
|
pr_err("%s: unable to create sysfs entry\n", __func__);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(bL_switcher_init);
|