6db4831e98
Android 14
441 lines
12 KiB
C
441 lines
12 KiB
C
/*
|
|
* OMAP4 SMP source file. It contains platform specific functions
|
|
* needed for the linux smp kernel.
|
|
*
|
|
* Copyright (C) 2009 Texas Instruments, Inc.
|
|
*
|
|
* Author:
|
|
* Santosh Shilimkar <santosh.shilimkar@ti.com>
|
|
*
|
|
* Platform file needed for the OMAP4 SMP. This file is based on arm
|
|
* realview smp platform.
|
|
* * Copyright (c) 2002 ARM Limited.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/device.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irqchip/arm-gic.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <asm/smp_scu.h>
|
|
#include <asm/virt.h>
|
|
|
|
#include "omap-secure.h"
|
|
#include "omap-wakeupgen.h"
|
|
#include <asm/cputype.h>
|
|
|
|
#include "soc.h"
|
|
#include "iomap.h"
|
|
#include "common.h"
|
|
#include "clockdomain.h"
|
|
#include "pm.h"
|
|
|
|
#define CPU_MASK 0xff0ffff0
|
|
#define CPU_CORTEX_A9 0x410FC090
|
|
#define CPU_CORTEX_A15 0x410FC0F0
|
|
|
|
#define OMAP5_CORE_COUNT 0x2
|
|
|
|
#define AUX_CORE_BOOT0_GP_RELEASE 0x020
|
|
#define AUX_CORE_BOOT0_HS_RELEASE 0x200
|
|
|
|
struct omap_smp_config {
|
|
unsigned long cpu1_rstctrl_pa;
|
|
void __iomem *cpu1_rstctrl_va;
|
|
void __iomem *scu_base;
|
|
void __iomem *wakeupgen_base;
|
|
void *startup_addr;
|
|
};
|
|
|
|
static struct omap_smp_config cfg;
|
|
|
|
static const struct omap_smp_config omap443x_cfg __initconst = {
|
|
.cpu1_rstctrl_pa = 0x4824380c,
|
|
.startup_addr = omap4_secondary_startup,
|
|
};
|
|
|
|
static const struct omap_smp_config omap446x_cfg __initconst = {
|
|
.cpu1_rstctrl_pa = 0x4824380c,
|
|
.startup_addr = omap4460_secondary_startup,
|
|
};
|
|
|
|
static const struct omap_smp_config omap5_cfg __initconst = {
|
|
.cpu1_rstctrl_pa = 0x48243810,
|
|
.startup_addr = omap5_secondary_startup,
|
|
};
|
|
|
|
static DEFINE_SPINLOCK(boot_lock);
|
|
|
|
void __iomem *omap4_get_scu_base(void)
|
|
{
|
|
return cfg.scu_base;
|
|
}
|
|
|
|
#ifdef CONFIG_OMAP5_ERRATA_801819
|
|
void omap5_erratum_workaround_801819(void)
|
|
{
|
|
u32 acr, revidr;
|
|
u32 acr_mask;
|
|
|
|
/* REVIDR[3] indicates erratum fix available on silicon */
|
|
asm volatile ("mrc p15, 0, %0, c0, c0, 6" : "=r" (revidr));
|
|
if (revidr & (0x1 << 3))
|
|
return;
|
|
|
|
asm volatile ("mrc p15, 0, %0, c1, c0, 1" : "=r" (acr));
|
|
/*
|
|
* BIT(27) - Disables streaming. All write-allocate lines allocate in
|
|
* the L1 or L2 cache.
|
|
* BIT(25) - Disables streaming. All write-allocate lines allocate in
|
|
* the L1 cache.
|
|
*/
|
|
acr_mask = (0x3 << 25) | (0x3 << 27);
|
|
/* do we already have it done.. if yes, skip expensive smc */
|
|
if ((acr & acr_mask) == acr_mask)
|
|
return;
|
|
|
|
acr |= acr_mask;
|
|
omap_smc1(OMAP5_DRA7_MON_SET_ACR_INDEX, acr);
|
|
|
|
pr_debug("%s: ARM erratum workaround 801819 applied on CPU%d\n",
|
|
__func__, smp_processor_id());
|
|
}
|
|
#else
|
|
static inline void omap5_erratum_workaround_801819(void) { }
|
|
#endif
|
|
|
|
#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
|
|
/*
|
|
* Configure ACR and enable ACTLR[0] (Enable invalidates of BTB with
|
|
* ICIALLU) to activate the workaround for secondary Core.
|
|
* NOTE: it is assumed that the primary core's configuration is done
|
|
* by the boot loader (kernel will detect a misconfiguration and complain
|
|
* if this is not done).
|
|
*
|
|
* In General Purpose(GP) devices, ACR bit settings can only be done
|
|
* by ROM code in "secure world" using the smc call and there is no
|
|
* option to update the "firmware" on such devices. This also works for
|
|
* High security(HS) devices, as a backup option in case the
|
|
* "update" is not done in the "security firmware".
|
|
*/
|
|
static void omap5_secondary_harden_predictor(void)
|
|
{
|
|
u32 acr, acr_mask;
|
|
|
|
asm volatile ("mrc p15, 0, %0, c1, c0, 1" : "=r" (acr));
|
|
|
|
/*
|
|
* ACTLR[0] (Enable invalidates of BTB with ICIALLU)
|
|
*/
|
|
acr_mask = BIT(0);
|
|
|
|
/* Do we already have it done.. if yes, skip expensive smc */
|
|
if ((acr & acr_mask) == acr_mask)
|
|
return;
|
|
|
|
acr |= acr_mask;
|
|
omap_smc1(OMAP5_DRA7_MON_SET_ACR_INDEX, acr);
|
|
|
|
pr_debug("%s: ARM ACR setup for CVE_2017_5715 applied on CPU%d\n",
|
|
__func__, smp_processor_id());
|
|
}
|
|
#else
|
|
static inline void omap5_secondary_harden_predictor(void) { }
|
|
#endif
|
|
|
|
static void omap4_secondary_init(unsigned int cpu)
|
|
{
|
|
/*
|
|
* Configure ACTRL and enable NS SMP bit access on CPU1 on HS device.
|
|
* OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA
|
|
* init and for CPU1, a secure PPA API provided. CPU0 must be ON
|
|
* while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+.
|
|
* OMAP443X GP devices- SMP bit isn't accessible.
|
|
* OMAP446X GP devices - SMP bit access is enabled on both CPUs.
|
|
*/
|
|
if (soc_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP))
|
|
omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX,
|
|
4, 0, 0, 0, 0, 0);
|
|
|
|
if (soc_is_omap54xx() || soc_is_dra7xx()) {
|
|
/*
|
|
* Configure the CNTFRQ register for the secondary cpu's which
|
|
* indicates the frequency of the cpu local timers.
|
|
*/
|
|
set_cntfreq();
|
|
/* Configure ACR to disable streaming WA for 801819 */
|
|
omap5_erratum_workaround_801819();
|
|
/* Enable ACR to allow for ICUALLU workaround */
|
|
omap5_secondary_harden_predictor();
|
|
}
|
|
|
|
/*
|
|
* Synchronise with the boot thread.
|
|
*/
|
|
spin_lock(&boot_lock);
|
|
spin_unlock(&boot_lock);
|
|
}
|
|
|
|
static int omap4_boot_secondary(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
static struct clockdomain *cpu1_clkdm;
|
|
static bool booted;
|
|
static struct powerdomain *cpu1_pwrdm;
|
|
|
|
/*
|
|
* Set synchronisation state between this boot processor
|
|
* and the secondary one
|
|
*/
|
|
spin_lock(&boot_lock);
|
|
|
|
/*
|
|
* Update the AuxCoreBoot0 with boot state for secondary core.
|
|
* omap4_secondary_startup() routine will hold the secondary core till
|
|
* the AuxCoreBoot1 register is updated with cpu state
|
|
* A barrier is added to ensure that write buffer is drained
|
|
*/
|
|
if (omap_secure_apis_support())
|
|
omap_modify_auxcoreboot0(AUX_CORE_BOOT0_HS_RELEASE,
|
|
0xfffffdff);
|
|
else
|
|
writel_relaxed(AUX_CORE_BOOT0_GP_RELEASE,
|
|
cfg.wakeupgen_base + OMAP_AUX_CORE_BOOT_0);
|
|
|
|
if (!cpu1_clkdm && !cpu1_pwrdm) {
|
|
cpu1_clkdm = clkdm_lookup("mpu1_clkdm");
|
|
cpu1_pwrdm = pwrdm_lookup("cpu1_pwrdm");
|
|
}
|
|
|
|
/*
|
|
* The SGI(Software Generated Interrupts) are not wakeup capable
|
|
* from low power states. This is known limitation on OMAP4 and
|
|
* needs to be worked around by using software forced clockdomain
|
|
* wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to
|
|
* software force wakeup. The clockdomain is then put back to
|
|
* hardware supervised mode.
|
|
* More details can be found in OMAP4430 TRM - Version J
|
|
* Section :
|
|
* 4.3.4.2 Power States of CPU0 and CPU1
|
|
*/
|
|
if (booted && cpu1_pwrdm && cpu1_clkdm) {
|
|
/*
|
|
* GIC distributor control register has changed between
|
|
* CortexA9 r1pX and r2pX. The Control Register secure
|
|
* banked version is now composed of 2 bits:
|
|
* bit 0 == Secure Enable
|
|
* bit 1 == Non-Secure Enable
|
|
* The Non-Secure banked register has not changed
|
|
* Because the ROM Code is based on the r1pX GIC, the CPU1
|
|
* GIC restoration will cause a problem to CPU0 Non-Secure SW.
|
|
* The workaround must be:
|
|
* 1) Before doing the CPU1 wakeup, CPU0 must disable
|
|
* the GIC distributor
|
|
* 2) CPU1 must re-enable the GIC distributor on
|
|
* it's wakeup path.
|
|
*/
|
|
if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
|
|
local_irq_disable();
|
|
gic_dist_disable();
|
|
}
|
|
|
|
/*
|
|
* Ensure that CPU power state is set to ON to avoid CPU
|
|
* powerdomain transition on wfi
|
|
*/
|
|
clkdm_deny_idle_nolock(cpu1_clkdm);
|
|
pwrdm_set_next_pwrst(cpu1_pwrdm, PWRDM_POWER_ON);
|
|
clkdm_allow_idle_nolock(cpu1_clkdm);
|
|
|
|
if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
|
|
while (gic_dist_disabled()) {
|
|
udelay(1);
|
|
cpu_relax();
|
|
}
|
|
gic_timer_retrigger();
|
|
local_irq_enable();
|
|
}
|
|
} else {
|
|
dsb_sev();
|
|
booted = true;
|
|
}
|
|
|
|
arch_send_wakeup_ipi_mask(cpumask_of(cpu));
|
|
|
|
/*
|
|
* Now the secondary core is starting up let it run its
|
|
* calibrations, then wait for it to finish
|
|
*/
|
|
spin_unlock(&boot_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialise the CPU possible map early - this describes the CPUs
|
|
* which may be present or become present in the system.
|
|
*/
|
|
static void __init omap4_smp_init_cpus(void)
|
|
{
|
|
unsigned int i = 0, ncores = 1, cpu_id;
|
|
|
|
/* Use ARM cpuid check here, as SoC detection will not work so early */
|
|
cpu_id = read_cpuid_id() & CPU_MASK;
|
|
if (cpu_id == CPU_CORTEX_A9) {
|
|
/*
|
|
* Currently we can't call ioremap here because
|
|
* SoC detection won't work until after init_early.
|
|
*/
|
|
cfg.scu_base = OMAP2_L4_IO_ADDRESS(scu_a9_get_base());
|
|
BUG_ON(!cfg.scu_base);
|
|
ncores = scu_get_core_count(cfg.scu_base);
|
|
} else if (cpu_id == CPU_CORTEX_A15) {
|
|
ncores = OMAP5_CORE_COUNT;
|
|
}
|
|
|
|
/* sanity check */
|
|
if (ncores > nr_cpu_ids) {
|
|
pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
|
|
ncores, nr_cpu_ids);
|
|
ncores = nr_cpu_ids;
|
|
}
|
|
|
|
for (i = 0; i < ncores; i++)
|
|
set_cpu_possible(i, true);
|
|
}
|
|
|
|
/*
|
|
* For now, just make sure the start-up address is not within the booting
|
|
* kernel space as that means we just overwrote whatever secondary_startup()
|
|
* code there was.
|
|
*/
|
|
static bool __init omap4_smp_cpu1_startup_valid(unsigned long addr)
|
|
{
|
|
if ((addr >= __pa(PAGE_OFFSET)) && (addr <= __pa(__bss_start)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* We may need to reset CPU1 before configuring, otherwise kexec boot can end
|
|
* up trying to use old kernel startup address or suspend-resume will
|
|
* occasionally fail to bring up CPU1 on 4430 if CPU1 fails to enter deeper
|
|
* idle states.
|
|
*/
|
|
static void __init omap4_smp_maybe_reset_cpu1(struct omap_smp_config *c)
|
|
{
|
|
unsigned long cpu1_startup_pa, cpu1_ns_pa_addr;
|
|
bool needs_reset = false;
|
|
u32 released;
|
|
|
|
if (omap_secure_apis_support())
|
|
released = omap_read_auxcoreboot0() & AUX_CORE_BOOT0_HS_RELEASE;
|
|
else
|
|
released = readl_relaxed(cfg.wakeupgen_base +
|
|
OMAP_AUX_CORE_BOOT_0) &
|
|
AUX_CORE_BOOT0_GP_RELEASE;
|
|
if (released) {
|
|
pr_warn("smp: CPU1 not parked?\n");
|
|
|
|
return;
|
|
}
|
|
|
|
cpu1_startup_pa = readl_relaxed(cfg.wakeupgen_base +
|
|
OMAP_AUX_CORE_BOOT_1);
|
|
|
|
/* Did the configured secondary_startup() get overwritten? */
|
|
if (!omap4_smp_cpu1_startup_valid(cpu1_startup_pa))
|
|
needs_reset = true;
|
|
|
|
/*
|
|
* If omap4 or 5 has NS_PA_ADDR configured, CPU1 may be in a
|
|
* deeper idle state in WFI and will wake to an invalid address.
|
|
*/
|
|
if ((soc_is_omap44xx() || soc_is_omap54xx())) {
|
|
cpu1_ns_pa_addr = omap4_get_cpu1_ns_pa_addr();
|
|
if (!omap4_smp_cpu1_startup_valid(cpu1_ns_pa_addr))
|
|
needs_reset = true;
|
|
} else {
|
|
cpu1_ns_pa_addr = 0;
|
|
}
|
|
|
|
if (!needs_reset || !c->cpu1_rstctrl_va)
|
|
return;
|
|
|
|
pr_info("smp: CPU1 parked within kernel, needs reset (0x%lx 0x%lx)\n",
|
|
cpu1_startup_pa, cpu1_ns_pa_addr);
|
|
|
|
writel_relaxed(1, c->cpu1_rstctrl_va);
|
|
readl_relaxed(c->cpu1_rstctrl_va);
|
|
writel_relaxed(0, c->cpu1_rstctrl_va);
|
|
}
|
|
|
|
static void __init omap4_smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
const struct omap_smp_config *c = NULL;
|
|
|
|
if (soc_is_omap443x())
|
|
c = &omap443x_cfg;
|
|
else if (soc_is_omap446x())
|
|
c = &omap446x_cfg;
|
|
else if (soc_is_dra74x() || soc_is_omap54xx() || soc_is_dra76x())
|
|
c = &omap5_cfg;
|
|
|
|
if (!c) {
|
|
pr_err("%s Unknown SMP SoC?\n", __func__);
|
|
return;
|
|
}
|
|
|
|
/* Must preserve cfg.scu_base set earlier */
|
|
cfg.cpu1_rstctrl_pa = c->cpu1_rstctrl_pa;
|
|
cfg.startup_addr = c->startup_addr;
|
|
cfg.wakeupgen_base = omap_get_wakeupgen_base();
|
|
|
|
if (soc_is_dra74x() || soc_is_omap54xx() || soc_is_dra76x()) {
|
|
if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE)
|
|
cfg.startup_addr = omap5_secondary_hyp_startup;
|
|
omap5_erratum_workaround_801819();
|
|
}
|
|
|
|
cfg.cpu1_rstctrl_va = ioremap(cfg.cpu1_rstctrl_pa, 4);
|
|
if (!cfg.cpu1_rstctrl_va)
|
|
return;
|
|
|
|
/*
|
|
* Initialise the SCU and wake up the secondary core using
|
|
* wakeup_secondary().
|
|
*/
|
|
if (cfg.scu_base)
|
|
scu_enable(cfg.scu_base);
|
|
|
|
omap4_smp_maybe_reset_cpu1(&cfg);
|
|
|
|
/*
|
|
* Write the address of secondary startup routine into the
|
|
* AuxCoreBoot1 where ROM code will jump and start executing
|
|
* on secondary core once out of WFE
|
|
* A barrier is added to ensure that write buffer is drained
|
|
*/
|
|
if (omap_secure_apis_support())
|
|
omap_auxcoreboot_addr(__pa_symbol(cfg.startup_addr));
|
|
else
|
|
writel_relaxed(__pa_symbol(cfg.startup_addr),
|
|
cfg.wakeupgen_base + OMAP_AUX_CORE_BOOT_1);
|
|
}
|
|
|
|
const struct smp_operations omap4_smp_ops __initconst = {
|
|
.smp_init_cpus = omap4_smp_init_cpus,
|
|
.smp_prepare_cpus = omap4_smp_prepare_cpus,
|
|
.smp_secondary_init = omap4_secondary_init,
|
|
.smp_boot_secondary = omap4_boot_secondary,
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
.cpu_die = omap4_cpu_die,
|
|
.cpu_kill = omap4_cpu_kill,
|
|
#endif
|
|
};
|