6db4831e98
Android 14
362 lines
11 KiB
C
362 lines
11 KiB
C
/*
|
|
* Copyright (C) 2000,2001,2002,2003,2004 Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/kernel_stat.h>
|
|
|
|
#include <asm/errno.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/signal.h>
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/sibyte/bcm1480_regs.h>
|
|
#include <asm/sibyte/bcm1480_int.h>
|
|
#include <asm/sibyte/bcm1480_scd.h>
|
|
|
|
#include <asm/sibyte/sb1250_uart.h>
|
|
#include <asm/sibyte/sb1250.h>
|
|
|
|
/*
|
|
* These are the routines that handle all the low level interrupt stuff.
|
|
* Actions handled here are: initialization of the interrupt map, requesting of
|
|
* interrupt lines by handlers, dispatching if interrupts to handlers, probing
|
|
* for interrupt lines
|
|
*/
|
|
|
|
#ifdef CONFIG_PCI
|
|
extern unsigned long ht_eoi_space;
|
|
#endif
|
|
|
|
/* Store the CPU id (not the logical number) */
|
|
int bcm1480_irq_owner[BCM1480_NR_IRQS];
|
|
|
|
static DEFINE_RAW_SPINLOCK(bcm1480_imr_lock);
|
|
|
|
void bcm1480_mask_irq(int cpu, int irq)
|
|
{
|
|
unsigned long flags, hl_spacing;
|
|
u64 cur_ints;
|
|
|
|
raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
|
|
hl_spacing = 0;
|
|
if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
|
|
hl_spacing = BCM1480_IMR_HL_SPACING;
|
|
irq -= BCM1480_NR_IRQS_HALF;
|
|
}
|
|
cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
|
|
cur_ints |= (((u64) 1) << irq);
|
|
____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
|
|
raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
|
|
}
|
|
|
|
void bcm1480_unmask_irq(int cpu, int irq)
|
|
{
|
|
unsigned long flags, hl_spacing;
|
|
u64 cur_ints;
|
|
|
|
raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
|
|
hl_spacing = 0;
|
|
if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
|
|
hl_spacing = BCM1480_IMR_HL_SPACING;
|
|
irq -= BCM1480_NR_IRQS_HALF;
|
|
}
|
|
cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
|
|
cur_ints &= ~(((u64) 1) << irq);
|
|
____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
|
|
raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static int bcm1480_set_affinity(struct irq_data *d, const struct cpumask *mask,
|
|
bool force)
|
|
{
|
|
unsigned int irq_dirty, irq = d->irq;
|
|
int i = 0, old_cpu, cpu, int_on, k;
|
|
u64 cur_ints;
|
|
unsigned long flags;
|
|
|
|
i = cpumask_first_and(mask, cpu_online_mask);
|
|
|
|
/* Convert logical CPU to physical CPU */
|
|
cpu = cpu_logical_map(i);
|
|
|
|
/* Protect against other affinity changers and IMR manipulation */
|
|
raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
|
|
|
|
/* Swizzle each CPU's IMR (but leave the IP selection alone) */
|
|
old_cpu = bcm1480_irq_owner[irq];
|
|
irq_dirty = irq;
|
|
if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
|
|
irq_dirty -= BCM1480_NR_IRQS_HALF;
|
|
}
|
|
|
|
for (k=0; k<2; k++) { /* Loop through high and low interrupt mask register */
|
|
cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
|
|
int_on = !(cur_ints & (((u64) 1) << irq_dirty));
|
|
if (int_on) {
|
|
/* If it was on, mask it */
|
|
cur_ints |= (((u64) 1) << irq_dirty);
|
|
____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
|
|
}
|
|
bcm1480_irq_owner[irq] = cpu;
|
|
if (int_on) {
|
|
/* unmask for the new CPU */
|
|
cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
|
|
cur_ints &= ~(((u64) 1) << irq_dirty);
|
|
____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*****************************************************************************/
|
|
|
|
static void disable_bcm1480_irq(struct irq_data *d)
|
|
{
|
|
unsigned int irq = d->irq;
|
|
|
|
bcm1480_mask_irq(bcm1480_irq_owner[irq], irq);
|
|
}
|
|
|
|
static void enable_bcm1480_irq(struct irq_data *d)
|
|
{
|
|
unsigned int irq = d->irq;
|
|
|
|
bcm1480_unmask_irq(bcm1480_irq_owner[irq], irq);
|
|
}
|
|
|
|
|
|
static void ack_bcm1480_irq(struct irq_data *d)
|
|
{
|
|
unsigned int irq_dirty, irq = d->irq;
|
|
u64 pending;
|
|
int k;
|
|
|
|
/*
|
|
* If the interrupt was an HT interrupt, now is the time to
|
|
* clear it. NOTE: we assume the HT bridge was set up to
|
|
* deliver the interrupts to all CPUs (which makes affinity
|
|
* changing easier for us)
|
|
*/
|
|
irq_dirty = irq;
|
|
if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
|
|
irq_dirty -= BCM1480_NR_IRQS_HALF;
|
|
}
|
|
for (k=0; k<2; k++) { /* Loop through high and low LDT interrupts */
|
|
pending = __raw_readq(IOADDR(A_BCM1480_IMR_REGISTER(bcm1480_irq_owner[irq],
|
|
R_BCM1480_IMR_LDT_INTERRUPT_H + (k*BCM1480_IMR_HL_SPACING))));
|
|
pending &= ((u64)1 << (irq_dirty));
|
|
if (pending) {
|
|
#ifdef CONFIG_SMP
|
|
int i;
|
|
for (i=0; i<NR_CPUS; i++) {
|
|
/*
|
|
* Clear for all CPUs so an affinity switch
|
|
* doesn't find an old status
|
|
*/
|
|
__raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(cpu_logical_map(i),
|
|
R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
|
|
}
|
|
#else
|
|
__raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
|
|
#endif
|
|
|
|
/*
|
|
* Generate EOI. For Pass 1 parts, EOI is a nop. For
|
|
* Pass 2, the LDT world may be edge-triggered, but
|
|
* this EOI shouldn't hurt. If they are
|
|
* level-sensitive, the EOI is required.
|
|
*/
|
|
#ifdef CONFIG_PCI
|
|
if (ht_eoi_space)
|
|
*(uint32_t *)(ht_eoi_space+(irq<<16)+(7<<2)) = 0;
|
|
#endif
|
|
}
|
|
}
|
|
bcm1480_mask_irq(bcm1480_irq_owner[irq], irq);
|
|
}
|
|
|
|
static struct irq_chip bcm1480_irq_type = {
|
|
.name = "BCM1480-IMR",
|
|
.irq_mask_ack = ack_bcm1480_irq,
|
|
.irq_mask = disable_bcm1480_irq,
|
|
.irq_unmask = enable_bcm1480_irq,
|
|
#ifdef CONFIG_SMP
|
|
.irq_set_affinity = bcm1480_set_affinity
|
|
#endif
|
|
};
|
|
|
|
void __init init_bcm1480_irqs(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BCM1480_NR_IRQS; i++) {
|
|
irq_set_chip_and_handler(i, &bcm1480_irq_type,
|
|
handle_level_irq);
|
|
bcm1480_irq_owner[i] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* init_IRQ is called early in the boot sequence from init/main.c. It
|
|
* is responsible for setting up the interrupt mapper and installing the
|
|
* handler that will be responsible for dispatching interrupts to the
|
|
* "right" place.
|
|
*/
|
|
/*
|
|
* For now, map all interrupts to IP[2]. We could save
|
|
* some cycles by parceling out system interrupts to different
|
|
* IP lines, but keep it simple for bringup. We'll also direct
|
|
* all interrupts to a single CPU; we should probably route
|
|
* PCI and LDT to one cpu and everything else to the other
|
|
* to balance the load a bit.
|
|
*
|
|
* On the second cpu, everything is set to IP5, which is
|
|
* ignored, EXCEPT the mailbox interrupt. That one is
|
|
* set to IP[2] so it is handled. This is needed so we
|
|
* can do cross-cpu function calls, as required by SMP
|
|
*/
|
|
|
|
#define IMR_IP2_VAL K_BCM1480_INT_MAP_I0
|
|
#define IMR_IP3_VAL K_BCM1480_INT_MAP_I1
|
|
#define IMR_IP4_VAL K_BCM1480_INT_MAP_I2
|
|
#define IMR_IP5_VAL K_BCM1480_INT_MAP_I3
|
|
#define IMR_IP6_VAL K_BCM1480_INT_MAP_I4
|
|
|
|
void __init arch_init_irq(void)
|
|
{
|
|
unsigned int i, cpu;
|
|
u64 tmp;
|
|
unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 |
|
|
STATUSF_IP1 | STATUSF_IP0;
|
|
|
|
/* Default everything to IP2 */
|
|
/* Start with _high registers which has no bit 0 interrupt source */
|
|
for (i = 1; i < BCM1480_NR_IRQS_HALF; i++) { /* was I0 */
|
|
for (cpu = 0; cpu < 4; cpu++) {
|
|
__raw_writeq(IMR_IP2_VAL,
|
|
IOADDR(A_BCM1480_IMR_REGISTER(cpu,
|
|
R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + (i << 3)));
|
|
}
|
|
}
|
|
|
|
/* Now do _low registers */
|
|
for (i = 0; i < BCM1480_NR_IRQS_HALF; i++) {
|
|
for (cpu = 0; cpu < 4; cpu++) {
|
|
__raw_writeq(IMR_IP2_VAL,
|
|
IOADDR(A_BCM1480_IMR_REGISTER(cpu,
|
|
R_BCM1480_IMR_INTERRUPT_MAP_BASE_L) + (i << 3)));
|
|
}
|
|
}
|
|
|
|
init_bcm1480_irqs();
|
|
|
|
/*
|
|
* Map the high 16 bits of mailbox_0 registers to IP[3], for
|
|
* inter-cpu messages
|
|
*/
|
|
/* Was I1 */
|
|
for (cpu = 0; cpu < 4; cpu++) {
|
|
__raw_writeq(IMR_IP3_VAL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) +
|
|
(K_BCM1480_INT_MBOX_0_0 << 3)));
|
|
}
|
|
|
|
|
|
/* Clear the mailboxes. The firmware may leave them dirty */
|
|
for (cpu = 0; cpu < 4; cpu++) {
|
|
__raw_writeq(0xffffffffffffffffULL,
|
|
IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_0_CLR_CPU)));
|
|
__raw_writeq(0xffffffffffffffffULL,
|
|
IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_1_CLR_CPU)));
|
|
}
|
|
|
|
|
|
/* Mask everything except the high 16 bit of mailbox_0 registers for all cpus */
|
|
tmp = ~((u64) 0) ^ ( (((u64) 1) << K_BCM1480_INT_MBOX_0_0));
|
|
for (cpu = 0; cpu < 4; cpu++) {
|
|
__raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_H)));
|
|
}
|
|
tmp = ~((u64) 0);
|
|
for (cpu = 0; cpu < 4; cpu++) {
|
|
__raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_L)));
|
|
}
|
|
|
|
/*
|
|
* Note that the timer interrupts are also mapped, but this is
|
|
* done in bcm1480_time_init(). Also, the profiling driver
|
|
* does its own management of IP7.
|
|
*/
|
|
|
|
/* Enable necessary IPs, disable the rest */
|
|
change_c0_status(ST0_IM, imask);
|
|
}
|
|
|
|
extern void bcm1480_mailbox_interrupt(void);
|
|
|
|
static inline void dispatch_ip2(void)
|
|
{
|
|
unsigned long long mask_h, mask_l;
|
|
unsigned int cpu = smp_processor_id();
|
|
unsigned long base;
|
|
|
|
/*
|
|
* Default...we've hit an IP[2] interrupt, which means we've got to
|
|
* check the 1480 interrupt registers to figure out what to do. Need
|
|
* to detect which CPU we're on, now that smp_affinity is supported.
|
|
*/
|
|
base = A_BCM1480_IMR_MAPPER(cpu);
|
|
mask_h = __raw_readq(
|
|
IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_H));
|
|
mask_l = __raw_readq(
|
|
IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_L));
|
|
|
|
if (mask_h) {
|
|
if (mask_h ^ 1)
|
|
do_IRQ(fls64(mask_h) - 1);
|
|
else if (mask_l)
|
|
do_IRQ(63 + fls64(mask_l));
|
|
}
|
|
}
|
|
|
|
asmlinkage void plat_irq_dispatch(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
unsigned int pending;
|
|
|
|
pending = read_c0_cause() & read_c0_status();
|
|
|
|
if (pending & CAUSEF_IP4)
|
|
do_IRQ(K_BCM1480_INT_TIMER_0 + cpu);
|
|
#ifdef CONFIG_SMP
|
|
else if (pending & CAUSEF_IP3)
|
|
bcm1480_mailbox_interrupt();
|
|
#endif
|
|
|
|
else if (pending & CAUSEF_IP2)
|
|
dispatch_ip2();
|
|
}
|