6db4831e98
Android 14
1329 lines
34 KiB
C
1329 lines
34 KiB
C
/*
|
|
* Device probing and sysfs code.
|
|
*
|
|
* Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/firewire.h>
|
|
#include <linux/firewire-constants.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/random.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/string.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <linux/atomic.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include "core.h"
|
|
|
|
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
|
|
{
|
|
ci->p = p + 1;
|
|
ci->end = ci->p + (p[0] >> 16);
|
|
}
|
|
EXPORT_SYMBOL(fw_csr_iterator_init);
|
|
|
|
int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
|
|
{
|
|
*key = *ci->p >> 24;
|
|
*value = *ci->p & 0xffffff;
|
|
|
|
return ci->p++ < ci->end;
|
|
}
|
|
EXPORT_SYMBOL(fw_csr_iterator_next);
|
|
|
|
static const u32 *search_leaf(const u32 *directory, int search_key)
|
|
{
|
|
struct fw_csr_iterator ci;
|
|
int last_key = 0, key, value;
|
|
|
|
fw_csr_iterator_init(&ci, directory);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
if (last_key == search_key &&
|
|
key == (CSR_DESCRIPTOR | CSR_LEAF))
|
|
return ci.p - 1 + value;
|
|
|
|
last_key = key;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
|
|
{
|
|
unsigned int quadlets, i;
|
|
char c;
|
|
|
|
if (!size || !buf)
|
|
return -EINVAL;
|
|
|
|
quadlets = min(block[0] >> 16, 256U);
|
|
if (quadlets < 2)
|
|
return -ENODATA;
|
|
|
|
if (block[1] != 0 || block[2] != 0)
|
|
/* unknown language/character set */
|
|
return -ENODATA;
|
|
|
|
block += 3;
|
|
quadlets -= 2;
|
|
for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
|
|
c = block[i / 4] >> (24 - 8 * (i % 4));
|
|
if (c == '\0')
|
|
break;
|
|
buf[i] = c;
|
|
}
|
|
buf[i] = '\0';
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* fw_csr_string() - reads a string from the configuration ROM
|
|
* @directory: e.g. root directory or unit directory
|
|
* @key: the key of the preceding directory entry
|
|
* @buf: where to put the string
|
|
* @size: size of @buf, in bytes
|
|
*
|
|
* The string is taken from a minimal ASCII text descriptor leaf after
|
|
* the immediate entry with @key. The string is zero-terminated.
|
|
* An overlong string is silently truncated such that it and the
|
|
* zero byte fit into @size.
|
|
*
|
|
* Returns strlen(buf) or a negative error code.
|
|
*/
|
|
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
|
|
{
|
|
const u32 *leaf = search_leaf(directory, key);
|
|
if (!leaf)
|
|
return -ENOENT;
|
|
|
|
return textual_leaf_to_string(leaf, buf, size);
|
|
}
|
|
EXPORT_SYMBOL(fw_csr_string);
|
|
|
|
static void get_ids(const u32 *directory, int *id)
|
|
{
|
|
struct fw_csr_iterator ci;
|
|
int key, value;
|
|
|
|
fw_csr_iterator_init(&ci, directory);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
switch (key) {
|
|
case CSR_VENDOR: id[0] = value; break;
|
|
case CSR_MODEL: id[1] = value; break;
|
|
case CSR_SPECIFIER_ID: id[2] = value; break;
|
|
case CSR_VERSION: id[3] = value; break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void get_modalias_ids(struct fw_unit *unit, int *id)
|
|
{
|
|
get_ids(&fw_parent_device(unit)->config_rom[5], id);
|
|
get_ids(unit->directory, id);
|
|
}
|
|
|
|
static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
|
|
{
|
|
int match = 0;
|
|
|
|
if (id[0] == id_table->vendor_id)
|
|
match |= IEEE1394_MATCH_VENDOR_ID;
|
|
if (id[1] == id_table->model_id)
|
|
match |= IEEE1394_MATCH_MODEL_ID;
|
|
if (id[2] == id_table->specifier_id)
|
|
match |= IEEE1394_MATCH_SPECIFIER_ID;
|
|
if (id[3] == id_table->version)
|
|
match |= IEEE1394_MATCH_VERSION;
|
|
|
|
return (match & id_table->match_flags) == id_table->match_flags;
|
|
}
|
|
|
|
static const struct ieee1394_device_id *unit_match(struct device *dev,
|
|
struct device_driver *drv)
|
|
{
|
|
const struct ieee1394_device_id *id_table =
|
|
container_of(drv, struct fw_driver, driver)->id_table;
|
|
int id[] = {0, 0, 0, 0};
|
|
|
|
get_modalias_ids(fw_unit(dev), id);
|
|
|
|
for (; id_table->match_flags != 0; id_table++)
|
|
if (match_ids(id_table, id))
|
|
return id_table;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool is_fw_unit(struct device *dev);
|
|
|
|
static int fw_unit_match(struct device *dev, struct device_driver *drv)
|
|
{
|
|
/* We only allow binding to fw_units. */
|
|
return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
|
|
}
|
|
|
|
static int fw_unit_probe(struct device *dev)
|
|
{
|
|
struct fw_driver *driver =
|
|
container_of(dev->driver, struct fw_driver, driver);
|
|
|
|
return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
|
|
}
|
|
|
|
static int fw_unit_remove(struct device *dev)
|
|
{
|
|
struct fw_driver *driver =
|
|
container_of(dev->driver, struct fw_driver, driver);
|
|
|
|
return driver->remove(fw_unit(dev)), 0;
|
|
}
|
|
|
|
static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
|
|
{
|
|
int id[] = {0, 0, 0, 0};
|
|
|
|
get_modalias_ids(unit, id);
|
|
|
|
return snprintf(buffer, buffer_size,
|
|
"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
|
|
id[0], id[1], id[2], id[3]);
|
|
}
|
|
|
|
static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
char modalias[64];
|
|
|
|
get_modalias(unit, modalias, sizeof(modalias));
|
|
|
|
if (add_uevent_var(env, "MODALIAS=%s", modalias))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct bus_type fw_bus_type = {
|
|
.name = "firewire",
|
|
.match = fw_unit_match,
|
|
.probe = fw_unit_probe,
|
|
.remove = fw_unit_remove,
|
|
};
|
|
EXPORT_SYMBOL(fw_bus_type);
|
|
|
|
int fw_device_enable_phys_dma(struct fw_device *device)
|
|
{
|
|
int generation = device->generation;
|
|
|
|
/* device->node_id, accessed below, must not be older than generation */
|
|
smp_rmb();
|
|
|
|
return device->card->driver->enable_phys_dma(device->card,
|
|
device->node_id,
|
|
generation);
|
|
}
|
|
EXPORT_SYMBOL(fw_device_enable_phys_dma);
|
|
|
|
struct config_rom_attribute {
|
|
struct device_attribute attr;
|
|
u32 key;
|
|
};
|
|
|
|
static ssize_t show_immediate(struct device *dev,
|
|
struct device_attribute *dattr, char *buf)
|
|
{
|
|
struct config_rom_attribute *attr =
|
|
container_of(dattr, struct config_rom_attribute, attr);
|
|
struct fw_csr_iterator ci;
|
|
const u32 *dir;
|
|
int key, value, ret = -ENOENT;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
|
|
if (is_fw_unit(dev))
|
|
dir = fw_unit(dev)->directory;
|
|
else
|
|
dir = fw_device(dev)->config_rom + 5;
|
|
|
|
fw_csr_iterator_init(&ci, dir);
|
|
while (fw_csr_iterator_next(&ci, &key, &value))
|
|
if (attr->key == key) {
|
|
ret = snprintf(buf, buf ? PAGE_SIZE : 0,
|
|
"0x%06x\n", value);
|
|
break;
|
|
}
|
|
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define IMMEDIATE_ATTR(name, key) \
|
|
{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
|
|
|
|
static ssize_t show_text_leaf(struct device *dev,
|
|
struct device_attribute *dattr, char *buf)
|
|
{
|
|
struct config_rom_attribute *attr =
|
|
container_of(dattr, struct config_rom_attribute, attr);
|
|
const u32 *dir;
|
|
size_t bufsize;
|
|
char dummy_buf[2];
|
|
int ret;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
|
|
if (is_fw_unit(dev))
|
|
dir = fw_unit(dev)->directory;
|
|
else
|
|
dir = fw_device(dev)->config_rom + 5;
|
|
|
|
if (buf) {
|
|
bufsize = PAGE_SIZE - 1;
|
|
} else {
|
|
buf = dummy_buf;
|
|
bufsize = 1;
|
|
}
|
|
|
|
ret = fw_csr_string(dir, attr->key, buf, bufsize);
|
|
|
|
if (ret >= 0) {
|
|
/* Strip trailing whitespace and add newline. */
|
|
while (ret > 0 && isspace(buf[ret - 1]))
|
|
ret--;
|
|
strcpy(buf + ret, "\n");
|
|
ret++;
|
|
}
|
|
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define TEXT_LEAF_ATTR(name, key) \
|
|
{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
|
|
|
|
static struct config_rom_attribute config_rom_attributes[] = {
|
|
IMMEDIATE_ATTR(vendor, CSR_VENDOR),
|
|
IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
|
|
IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
|
|
IMMEDIATE_ATTR(version, CSR_VERSION),
|
|
IMMEDIATE_ATTR(model, CSR_MODEL),
|
|
TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
|
|
TEXT_LEAF_ATTR(model_name, CSR_MODEL),
|
|
TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
|
|
};
|
|
|
|
static void init_fw_attribute_group(struct device *dev,
|
|
struct device_attribute *attrs,
|
|
struct fw_attribute_group *group)
|
|
{
|
|
struct device_attribute *attr;
|
|
int i, j;
|
|
|
|
for (j = 0; attrs[j].attr.name != NULL; j++)
|
|
group->attrs[j] = &attrs[j].attr;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
|
|
attr = &config_rom_attributes[i].attr;
|
|
if (attr->show(dev, attr, NULL) < 0)
|
|
continue;
|
|
group->attrs[j++] = &attr->attr;
|
|
}
|
|
|
|
group->attrs[j] = NULL;
|
|
group->groups[0] = &group->group;
|
|
group->groups[1] = NULL;
|
|
group->group.attrs = group->attrs;
|
|
dev->groups = (const struct attribute_group **) group->groups;
|
|
}
|
|
|
|
static ssize_t modalias_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
int length;
|
|
|
|
length = get_modalias(unit, buf, PAGE_SIZE);
|
|
strcpy(buf + length, "\n");
|
|
|
|
return length + 1;
|
|
}
|
|
|
|
static ssize_t rom_index_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev->parent);
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%d\n",
|
|
(int)(unit->directory - device->config_rom));
|
|
}
|
|
|
|
static struct device_attribute fw_unit_attributes[] = {
|
|
__ATTR_RO(modalias),
|
|
__ATTR_RO(rom_index),
|
|
__ATTR_NULL,
|
|
};
|
|
|
|
static ssize_t config_rom_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
size_t length;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
length = device->config_rom_length * 4;
|
|
memcpy(buf, device->config_rom, length);
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return length;
|
|
}
|
|
|
|
static ssize_t guid_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
int ret;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
|
|
device->config_rom[3], device->config_rom[4]);
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t is_local_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
|
|
return sprintf(buf, "%u\n", device->is_local);
|
|
}
|
|
|
|
static int units_sprintf(char *buf, const u32 *directory)
|
|
{
|
|
struct fw_csr_iterator ci;
|
|
int key, value;
|
|
int specifier_id = 0;
|
|
int version = 0;
|
|
|
|
fw_csr_iterator_init(&ci, directory);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
switch (key) {
|
|
case CSR_SPECIFIER_ID:
|
|
specifier_id = value;
|
|
break;
|
|
case CSR_VERSION:
|
|
version = value;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
|
|
}
|
|
|
|
static ssize_t units_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
struct fw_csr_iterator ci;
|
|
int key, value, i = 0;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
fw_csr_iterator_init(&ci, &device->config_rom[5]);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
if (key != (CSR_UNIT | CSR_DIRECTORY))
|
|
continue;
|
|
i += units_sprintf(&buf[i], ci.p + value - 1);
|
|
if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
|
|
break;
|
|
}
|
|
up_read(&fw_device_rwsem);
|
|
|
|
if (i)
|
|
buf[i - 1] = '\n';
|
|
|
|
return i;
|
|
}
|
|
|
|
static struct device_attribute fw_device_attributes[] = {
|
|
__ATTR_RO(config_rom),
|
|
__ATTR_RO(guid),
|
|
__ATTR_RO(is_local),
|
|
__ATTR_RO(units),
|
|
__ATTR_NULL,
|
|
};
|
|
|
|
static int read_rom(struct fw_device *device,
|
|
int generation, int index, u32 *data)
|
|
{
|
|
u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
|
|
int i, rcode;
|
|
|
|
/* device->node_id, accessed below, must not be older than generation */
|
|
smp_rmb();
|
|
|
|
for (i = 10; i < 100; i += 10) {
|
|
rcode = fw_run_transaction(device->card,
|
|
TCODE_READ_QUADLET_REQUEST, device->node_id,
|
|
generation, device->max_speed, offset, data, 4);
|
|
if (rcode != RCODE_BUSY)
|
|
break;
|
|
msleep(i);
|
|
}
|
|
be32_to_cpus(data);
|
|
|
|
return rcode;
|
|
}
|
|
|
|
#define MAX_CONFIG_ROM_SIZE 256
|
|
|
|
/*
|
|
* Read the bus info block, perform a speed probe, and read all of the rest of
|
|
* the config ROM. We do all this with a cached bus generation. If the bus
|
|
* generation changes under us, read_config_rom will fail and get retried.
|
|
* It's better to start all over in this case because the node from which we
|
|
* are reading the ROM may have changed the ROM during the reset.
|
|
* Returns either a result code or a negative error code.
|
|
*/
|
|
static int read_config_rom(struct fw_device *device, int generation)
|
|
{
|
|
struct fw_card *card = device->card;
|
|
const u32 *old_rom, *new_rom;
|
|
u32 *rom, *stack;
|
|
u32 sp, key;
|
|
int i, end, length, ret;
|
|
|
|
rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
|
|
sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
|
|
if (rom == NULL)
|
|
return -ENOMEM;
|
|
|
|
stack = &rom[MAX_CONFIG_ROM_SIZE];
|
|
memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
|
|
|
|
device->max_speed = SCODE_100;
|
|
|
|
/* First read the bus info block. */
|
|
for (i = 0; i < 5; i++) {
|
|
ret = read_rom(device, generation, i, &rom[i]);
|
|
if (ret != RCODE_COMPLETE)
|
|
goto out;
|
|
/*
|
|
* As per IEEE1212 7.2, during initialization, devices can
|
|
* reply with a 0 for the first quadlet of the config
|
|
* rom to indicate that they are booting (for example,
|
|
* if the firmware is on the disk of a external
|
|
* harddisk). In that case we just fail, and the
|
|
* retry mechanism will try again later.
|
|
*/
|
|
if (i == 0 && rom[i] == 0) {
|
|
ret = RCODE_BUSY;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
device->max_speed = device->node->max_speed;
|
|
|
|
/*
|
|
* Determine the speed of
|
|
* - devices with link speed less than PHY speed,
|
|
* - devices with 1394b PHY (unless only connected to 1394a PHYs),
|
|
* - all devices if there are 1394b repeaters.
|
|
* Note, we cannot use the bus info block's link_spd as starting point
|
|
* because some buggy firmwares set it lower than necessary and because
|
|
* 1394-1995 nodes do not have the field.
|
|
*/
|
|
if ((rom[2] & 0x7) < device->max_speed ||
|
|
device->max_speed == SCODE_BETA ||
|
|
card->beta_repeaters_present) {
|
|
u32 dummy;
|
|
|
|
/* for S1600 and S3200 */
|
|
if (device->max_speed == SCODE_BETA)
|
|
device->max_speed = card->link_speed;
|
|
|
|
while (device->max_speed > SCODE_100) {
|
|
if (read_rom(device, generation, 0, &dummy) ==
|
|
RCODE_COMPLETE)
|
|
break;
|
|
device->max_speed--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now parse the config rom. The config rom is a recursive
|
|
* directory structure so we parse it using a stack of
|
|
* references to the blocks that make up the structure. We
|
|
* push a reference to the root directory on the stack to
|
|
* start things off.
|
|
*/
|
|
length = i;
|
|
sp = 0;
|
|
stack[sp++] = 0xc0000005;
|
|
while (sp > 0) {
|
|
/*
|
|
* Pop the next block reference of the stack. The
|
|
* lower 24 bits is the offset into the config rom,
|
|
* the upper 8 bits are the type of the reference the
|
|
* block.
|
|
*/
|
|
key = stack[--sp];
|
|
i = key & 0xffffff;
|
|
if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Read header quadlet for the block to get the length. */
|
|
ret = read_rom(device, generation, i, &rom[i]);
|
|
if (ret != RCODE_COMPLETE)
|
|
goto out;
|
|
end = i + (rom[i] >> 16) + 1;
|
|
if (end > MAX_CONFIG_ROM_SIZE) {
|
|
/*
|
|
* This block extends outside the config ROM which is
|
|
* a firmware bug. Ignore this whole block, i.e.
|
|
* simply set a fake block length of 0.
|
|
*/
|
|
fw_err(card, "skipped invalid ROM block %x at %llx\n",
|
|
rom[i],
|
|
i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
|
|
rom[i] = 0;
|
|
end = i;
|
|
}
|
|
i++;
|
|
|
|
/*
|
|
* Now read in the block. If this is a directory
|
|
* block, check the entries as we read them to see if
|
|
* it references another block, and push it in that case.
|
|
*/
|
|
for (; i < end; i++) {
|
|
ret = read_rom(device, generation, i, &rom[i]);
|
|
if (ret != RCODE_COMPLETE)
|
|
goto out;
|
|
|
|
if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
|
|
continue;
|
|
/*
|
|
* Offset points outside the ROM. May be a firmware
|
|
* bug or an Extended ROM entry (IEEE 1212-2001 clause
|
|
* 7.7.18). Simply overwrite this pointer here by a
|
|
* fake immediate entry so that later iterators over
|
|
* the ROM don't have to check offsets all the time.
|
|
*/
|
|
if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
|
|
fw_err(card,
|
|
"skipped unsupported ROM entry %x at %llx\n",
|
|
rom[i],
|
|
i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
|
|
rom[i] = 0;
|
|
continue;
|
|
}
|
|
stack[sp++] = i + rom[i];
|
|
}
|
|
if (length < i)
|
|
length = i;
|
|
}
|
|
|
|
old_rom = device->config_rom;
|
|
new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
|
|
if (new_rom == NULL) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
down_write(&fw_device_rwsem);
|
|
device->config_rom = new_rom;
|
|
device->config_rom_length = length;
|
|
up_write(&fw_device_rwsem);
|
|
|
|
kfree(old_rom);
|
|
ret = RCODE_COMPLETE;
|
|
device->max_rec = rom[2] >> 12 & 0xf;
|
|
device->cmc = rom[2] >> 30 & 1;
|
|
device->irmc = rom[2] >> 31 & 1;
|
|
out:
|
|
kfree(rom);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void fw_unit_release(struct device *dev)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
|
|
fw_device_put(fw_parent_device(unit));
|
|
kfree(unit);
|
|
}
|
|
|
|
static struct device_type fw_unit_type = {
|
|
.uevent = fw_unit_uevent,
|
|
.release = fw_unit_release,
|
|
};
|
|
|
|
static bool is_fw_unit(struct device *dev)
|
|
{
|
|
return dev->type == &fw_unit_type;
|
|
}
|
|
|
|
static void create_units(struct fw_device *device)
|
|
{
|
|
struct fw_csr_iterator ci;
|
|
struct fw_unit *unit;
|
|
int key, value, i;
|
|
|
|
i = 0;
|
|
fw_csr_iterator_init(&ci, &device->config_rom[5]);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
if (key != (CSR_UNIT | CSR_DIRECTORY))
|
|
continue;
|
|
|
|
/*
|
|
* Get the address of the unit directory and try to
|
|
* match the drivers id_tables against it.
|
|
*/
|
|
unit = kzalloc(sizeof(*unit), GFP_KERNEL);
|
|
if (unit == NULL)
|
|
continue;
|
|
|
|
unit->directory = ci.p + value - 1;
|
|
unit->device.bus = &fw_bus_type;
|
|
unit->device.type = &fw_unit_type;
|
|
unit->device.parent = &device->device;
|
|
dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
|
|
ARRAY_SIZE(fw_unit_attributes) +
|
|
ARRAY_SIZE(config_rom_attributes));
|
|
init_fw_attribute_group(&unit->device,
|
|
fw_unit_attributes,
|
|
&unit->attribute_group);
|
|
|
|
if (device_register(&unit->device) < 0)
|
|
goto skip_unit;
|
|
|
|
fw_device_get(device);
|
|
continue;
|
|
|
|
skip_unit:
|
|
kfree(unit);
|
|
}
|
|
}
|
|
|
|
static int shutdown_unit(struct device *device, void *data)
|
|
{
|
|
device_unregister(device);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* fw_device_rwsem acts as dual purpose mutex:
|
|
* - serializes accesses to fw_device_idr,
|
|
* - serializes accesses to fw_device.config_rom/.config_rom_length and
|
|
* fw_unit.directory, unless those accesses happen at safe occasions
|
|
*/
|
|
DECLARE_RWSEM(fw_device_rwsem);
|
|
|
|
DEFINE_IDR(fw_device_idr);
|
|
int fw_cdev_major;
|
|
|
|
struct fw_device *fw_device_get_by_devt(dev_t devt)
|
|
{
|
|
struct fw_device *device;
|
|
|
|
down_read(&fw_device_rwsem);
|
|
device = idr_find(&fw_device_idr, MINOR(devt));
|
|
if (device)
|
|
fw_device_get(device);
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return device;
|
|
}
|
|
|
|
struct workqueue_struct *fw_workqueue;
|
|
EXPORT_SYMBOL(fw_workqueue);
|
|
|
|
static void fw_schedule_device_work(struct fw_device *device,
|
|
unsigned long delay)
|
|
{
|
|
queue_delayed_work(fw_workqueue, &device->work, delay);
|
|
}
|
|
|
|
/*
|
|
* These defines control the retry behavior for reading the config
|
|
* rom. It shouldn't be necessary to tweak these; if the device
|
|
* doesn't respond to a config rom read within 10 seconds, it's not
|
|
* going to respond at all. As for the initial delay, a lot of
|
|
* devices will be able to respond within half a second after bus
|
|
* reset. On the other hand, it's not really worth being more
|
|
* aggressive than that, since it scales pretty well; if 10 devices
|
|
* are plugged in, they're all getting read within one second.
|
|
*/
|
|
|
|
#define MAX_RETRIES 10
|
|
#define RETRY_DELAY (3 * HZ)
|
|
#define INITIAL_DELAY (HZ / 2)
|
|
#define SHUTDOWN_DELAY (2 * HZ)
|
|
|
|
static void fw_device_shutdown(struct work_struct *work)
|
|
{
|
|
struct fw_device *device =
|
|
container_of(work, struct fw_device, work.work);
|
|
int minor = MINOR(device->device.devt);
|
|
|
|
if (time_before64(get_jiffies_64(),
|
|
device->card->reset_jiffies + SHUTDOWN_DELAY)
|
|
&& !list_empty(&device->card->link)) {
|
|
fw_schedule_device_work(device, SHUTDOWN_DELAY);
|
|
return;
|
|
}
|
|
|
|
if (atomic_cmpxchg(&device->state,
|
|
FW_DEVICE_GONE,
|
|
FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
|
|
return;
|
|
|
|
fw_device_cdev_remove(device);
|
|
device_for_each_child(&device->device, NULL, shutdown_unit);
|
|
device_unregister(&device->device);
|
|
|
|
down_write(&fw_device_rwsem);
|
|
idr_remove(&fw_device_idr, minor);
|
|
up_write(&fw_device_rwsem);
|
|
|
|
fw_device_put(device);
|
|
}
|
|
|
|
static void fw_device_release(struct device *dev)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
struct fw_card *card = device->card;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Take the card lock so we don't set this to NULL while a
|
|
* FW_NODE_UPDATED callback is being handled or while the
|
|
* bus manager work looks at this node.
|
|
*/
|
|
spin_lock_irqsave(&card->lock, flags);
|
|
device->node->data = NULL;
|
|
spin_unlock_irqrestore(&card->lock, flags);
|
|
|
|
fw_node_put(device->node);
|
|
kfree(device->config_rom);
|
|
kfree(device);
|
|
fw_card_put(card);
|
|
}
|
|
|
|
static struct device_type fw_device_type = {
|
|
.release = fw_device_release,
|
|
};
|
|
|
|
static bool is_fw_device(struct device *dev)
|
|
{
|
|
return dev->type == &fw_device_type;
|
|
}
|
|
|
|
static int update_unit(struct device *dev, void *data)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
struct fw_driver *driver = (struct fw_driver *)dev->driver;
|
|
|
|
if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
|
|
device_lock(dev);
|
|
driver->update(unit);
|
|
device_unlock(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fw_device_update(struct work_struct *work)
|
|
{
|
|
struct fw_device *device =
|
|
container_of(work, struct fw_device, work.work);
|
|
|
|
fw_device_cdev_update(device);
|
|
device_for_each_child(&device->device, NULL, update_unit);
|
|
}
|
|
|
|
/*
|
|
* If a device was pending for deletion because its node went away but its
|
|
* bus info block and root directory header matches that of a newly discovered
|
|
* device, revive the existing fw_device.
|
|
* The newly allocated fw_device becomes obsolete instead.
|
|
*/
|
|
static int lookup_existing_device(struct device *dev, void *data)
|
|
{
|
|
struct fw_device *old = fw_device(dev);
|
|
struct fw_device *new = data;
|
|
struct fw_card *card = new->card;
|
|
int match = 0;
|
|
|
|
if (!is_fw_device(dev))
|
|
return 0;
|
|
|
|
down_read(&fw_device_rwsem); /* serialize config_rom access */
|
|
spin_lock_irq(&card->lock); /* serialize node access */
|
|
|
|
if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
|
|
atomic_cmpxchg(&old->state,
|
|
FW_DEVICE_GONE,
|
|
FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
|
|
struct fw_node *current_node = new->node;
|
|
struct fw_node *obsolete_node = old->node;
|
|
|
|
new->node = obsolete_node;
|
|
new->node->data = new;
|
|
old->node = current_node;
|
|
old->node->data = old;
|
|
|
|
old->max_speed = new->max_speed;
|
|
old->node_id = current_node->node_id;
|
|
smp_wmb(); /* update node_id before generation */
|
|
old->generation = card->generation;
|
|
old->config_rom_retries = 0;
|
|
fw_notice(card, "rediscovered device %s\n", dev_name(dev));
|
|
|
|
old->workfn = fw_device_update;
|
|
fw_schedule_device_work(old, 0);
|
|
|
|
if (current_node == card->root_node)
|
|
fw_schedule_bm_work(card, 0);
|
|
|
|
match = 1;
|
|
}
|
|
|
|
spin_unlock_irq(&card->lock);
|
|
up_read(&fw_device_rwsem);
|
|
|
|
return match;
|
|
}
|
|
|
|
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
|
|
|
|
static void set_broadcast_channel(struct fw_device *device, int generation)
|
|
{
|
|
struct fw_card *card = device->card;
|
|
__be32 data;
|
|
int rcode;
|
|
|
|
if (!card->broadcast_channel_allocated)
|
|
return;
|
|
|
|
/*
|
|
* The Broadcast_Channel Valid bit is required by nodes which want to
|
|
* transmit on this channel. Such transmissions are practically
|
|
* exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
|
|
* to be IRM capable and have a max_rec of 8 or more. We use this fact
|
|
* to narrow down to which nodes we send Broadcast_Channel updates.
|
|
*/
|
|
if (!device->irmc || device->max_rec < 8)
|
|
return;
|
|
|
|
/*
|
|
* Some 1394-1995 nodes crash if this 1394a-2000 register is written.
|
|
* Perform a read test first.
|
|
*/
|
|
if (device->bc_implemented == BC_UNKNOWN) {
|
|
rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
|
|
device->node_id, generation, device->max_speed,
|
|
CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
|
|
&data, 4);
|
|
switch (rcode) {
|
|
case RCODE_COMPLETE:
|
|
if (data & cpu_to_be32(1 << 31)) {
|
|
device->bc_implemented = BC_IMPLEMENTED;
|
|
break;
|
|
}
|
|
/* else fall through to case address error */
|
|
case RCODE_ADDRESS_ERROR:
|
|
device->bc_implemented = BC_UNIMPLEMENTED;
|
|
}
|
|
}
|
|
|
|
if (device->bc_implemented == BC_IMPLEMENTED) {
|
|
data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
|
|
BROADCAST_CHANNEL_VALID);
|
|
fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
|
|
device->node_id, generation, device->max_speed,
|
|
CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
|
|
&data, 4);
|
|
}
|
|
}
|
|
|
|
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
|
|
{
|
|
if (is_fw_device(dev))
|
|
set_broadcast_channel(fw_device(dev), (long)gen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fw_device_init(struct work_struct *work)
|
|
{
|
|
struct fw_device *device =
|
|
container_of(work, struct fw_device, work.work);
|
|
struct fw_card *card = device->card;
|
|
struct device *revived_dev;
|
|
int minor, ret;
|
|
|
|
/*
|
|
* All failure paths here set node->data to NULL, so that we
|
|
* don't try to do device_for_each_child() on a kfree()'d
|
|
* device.
|
|
*/
|
|
|
|
ret = read_config_rom(device, device->generation);
|
|
if (ret != RCODE_COMPLETE) {
|
|
if (device->config_rom_retries < MAX_RETRIES &&
|
|
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
|
|
device->config_rom_retries++;
|
|
fw_schedule_device_work(device, RETRY_DELAY);
|
|
} else {
|
|
if (device->node->link_on)
|
|
fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
|
|
device->node_id,
|
|
fw_rcode_string(ret));
|
|
if (device->node == card->root_node)
|
|
fw_schedule_bm_work(card, 0);
|
|
fw_device_release(&device->device);
|
|
}
|
|
return;
|
|
}
|
|
|
|
revived_dev = device_find_child(card->device,
|
|
device, lookup_existing_device);
|
|
if (revived_dev) {
|
|
put_device(revived_dev);
|
|
fw_device_release(&device->device);
|
|
|
|
return;
|
|
}
|
|
|
|
device_initialize(&device->device);
|
|
|
|
fw_device_get(device);
|
|
down_write(&fw_device_rwsem);
|
|
minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
|
|
GFP_KERNEL);
|
|
up_write(&fw_device_rwsem);
|
|
|
|
if (minor < 0)
|
|
goto error;
|
|
|
|
device->device.bus = &fw_bus_type;
|
|
device->device.type = &fw_device_type;
|
|
device->device.parent = card->device;
|
|
device->device.devt = MKDEV(fw_cdev_major, minor);
|
|
dev_set_name(&device->device, "fw%d", minor);
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
|
|
ARRAY_SIZE(fw_device_attributes) +
|
|
ARRAY_SIZE(config_rom_attributes));
|
|
init_fw_attribute_group(&device->device,
|
|
fw_device_attributes,
|
|
&device->attribute_group);
|
|
|
|
if (device_add(&device->device)) {
|
|
fw_err(card, "failed to add device\n");
|
|
goto error_with_cdev;
|
|
}
|
|
|
|
create_units(device);
|
|
|
|
/*
|
|
* Transition the device to running state. If it got pulled
|
|
* out from under us while we did the initialization work, we
|
|
* have to shut down the device again here. Normally, though,
|
|
* fw_node_event will be responsible for shutting it down when
|
|
* necessary. We have to use the atomic cmpxchg here to avoid
|
|
* racing with the FW_NODE_DESTROYED case in
|
|
* fw_node_event().
|
|
*/
|
|
if (atomic_cmpxchg(&device->state,
|
|
FW_DEVICE_INITIALIZING,
|
|
FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
|
|
device->workfn = fw_device_shutdown;
|
|
fw_schedule_device_work(device, SHUTDOWN_DELAY);
|
|
} else {
|
|
fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
|
|
dev_name(&device->device),
|
|
device->config_rom[3], device->config_rom[4],
|
|
1 << device->max_speed);
|
|
device->config_rom_retries = 0;
|
|
|
|
set_broadcast_channel(device, device->generation);
|
|
|
|
add_device_randomness(&device->config_rom[3], 8);
|
|
}
|
|
|
|
/*
|
|
* Reschedule the IRM work if we just finished reading the
|
|
* root node config rom. If this races with a bus reset we
|
|
* just end up running the IRM work a couple of extra times -
|
|
* pretty harmless.
|
|
*/
|
|
if (device->node == card->root_node)
|
|
fw_schedule_bm_work(card, 0);
|
|
|
|
return;
|
|
|
|
error_with_cdev:
|
|
down_write(&fw_device_rwsem);
|
|
idr_remove(&fw_device_idr, minor);
|
|
up_write(&fw_device_rwsem);
|
|
error:
|
|
fw_device_put(device); /* fw_device_idr's reference */
|
|
|
|
put_device(&device->device); /* our reference */
|
|
}
|
|
|
|
/* Reread and compare bus info block and header of root directory */
|
|
static int reread_config_rom(struct fw_device *device, int generation,
|
|
bool *changed)
|
|
{
|
|
u32 q;
|
|
int i, rcode;
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
rcode = read_rom(device, generation, i, &q);
|
|
if (rcode != RCODE_COMPLETE)
|
|
return rcode;
|
|
|
|
if (i == 0 && q == 0)
|
|
/* inaccessible (see read_config_rom); retry later */
|
|
return RCODE_BUSY;
|
|
|
|
if (q != device->config_rom[i]) {
|
|
*changed = true;
|
|
return RCODE_COMPLETE;
|
|
}
|
|
}
|
|
|
|
*changed = false;
|
|
return RCODE_COMPLETE;
|
|
}
|
|
|
|
static void fw_device_refresh(struct work_struct *work)
|
|
{
|
|
struct fw_device *device =
|
|
container_of(work, struct fw_device, work.work);
|
|
struct fw_card *card = device->card;
|
|
int ret, node_id = device->node_id;
|
|
bool changed;
|
|
|
|
ret = reread_config_rom(device, device->generation, &changed);
|
|
if (ret != RCODE_COMPLETE)
|
|
goto failed_config_rom;
|
|
|
|
if (!changed) {
|
|
if (atomic_cmpxchg(&device->state,
|
|
FW_DEVICE_INITIALIZING,
|
|
FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
|
|
goto gone;
|
|
|
|
fw_device_update(work);
|
|
device->config_rom_retries = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Something changed. We keep things simple and don't investigate
|
|
* further. We just destroy all previous units and create new ones.
|
|
*/
|
|
device_for_each_child(&device->device, NULL, shutdown_unit);
|
|
|
|
ret = read_config_rom(device, device->generation);
|
|
if (ret != RCODE_COMPLETE)
|
|
goto failed_config_rom;
|
|
|
|
fw_device_cdev_update(device);
|
|
create_units(device);
|
|
|
|
/* Userspace may want to re-read attributes. */
|
|
kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
|
|
|
|
if (atomic_cmpxchg(&device->state,
|
|
FW_DEVICE_INITIALIZING,
|
|
FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
|
|
goto gone;
|
|
|
|
fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
|
|
device->config_rom_retries = 0;
|
|
goto out;
|
|
|
|
failed_config_rom:
|
|
if (device->config_rom_retries < MAX_RETRIES &&
|
|
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
|
|
device->config_rom_retries++;
|
|
fw_schedule_device_work(device, RETRY_DELAY);
|
|
return;
|
|
}
|
|
|
|
fw_notice(card, "giving up on refresh of device %s: %s\n",
|
|
dev_name(&device->device), fw_rcode_string(ret));
|
|
gone:
|
|
atomic_set(&device->state, FW_DEVICE_GONE);
|
|
device->workfn = fw_device_shutdown;
|
|
fw_schedule_device_work(device, SHUTDOWN_DELAY);
|
|
out:
|
|
if (node_id == card->root_node->node_id)
|
|
fw_schedule_bm_work(card, 0);
|
|
}
|
|
|
|
static void fw_device_workfn(struct work_struct *work)
|
|
{
|
|
struct fw_device *device = container_of(to_delayed_work(work),
|
|
struct fw_device, work);
|
|
device->workfn(work);
|
|
}
|
|
|
|
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
|
|
{
|
|
struct fw_device *device;
|
|
|
|
switch (event) {
|
|
case FW_NODE_CREATED:
|
|
/*
|
|
* Attempt to scan the node, regardless whether its self ID has
|
|
* the L (link active) flag set or not. Some broken devices
|
|
* send L=0 but have an up-and-running link; others send L=1
|
|
* without actually having a link.
|
|
*/
|
|
create:
|
|
device = kzalloc(sizeof(*device), GFP_ATOMIC);
|
|
if (device == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Do minimal initialization of the device here, the
|
|
* rest will happen in fw_device_init().
|
|
*
|
|
* Attention: A lot of things, even fw_device_get(),
|
|
* cannot be done before fw_device_init() finished!
|
|
* You can basically just check device->state and
|
|
* schedule work until then, but only while holding
|
|
* card->lock.
|
|
*/
|
|
atomic_set(&device->state, FW_DEVICE_INITIALIZING);
|
|
device->card = fw_card_get(card);
|
|
device->node = fw_node_get(node);
|
|
device->node_id = node->node_id;
|
|
device->generation = card->generation;
|
|
device->is_local = node == card->local_node;
|
|
mutex_init(&device->client_list_mutex);
|
|
INIT_LIST_HEAD(&device->client_list);
|
|
|
|
/*
|
|
* Set the node data to point back to this device so
|
|
* FW_NODE_UPDATED callbacks can update the node_id
|
|
* and generation for the device.
|
|
*/
|
|
node->data = device;
|
|
|
|
/*
|
|
* Many devices are slow to respond after bus resets,
|
|
* especially if they are bus powered and go through
|
|
* power-up after getting plugged in. We schedule the
|
|
* first config rom scan half a second after bus reset.
|
|
*/
|
|
device->workfn = fw_device_init;
|
|
INIT_DELAYED_WORK(&device->work, fw_device_workfn);
|
|
fw_schedule_device_work(device, INITIAL_DELAY);
|
|
break;
|
|
|
|
case FW_NODE_INITIATED_RESET:
|
|
case FW_NODE_LINK_ON:
|
|
device = node->data;
|
|
if (device == NULL)
|
|
goto create;
|
|
|
|
device->node_id = node->node_id;
|
|
smp_wmb(); /* update node_id before generation */
|
|
device->generation = card->generation;
|
|
if (atomic_cmpxchg(&device->state,
|
|
FW_DEVICE_RUNNING,
|
|
FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
|
|
device->workfn = fw_device_refresh;
|
|
fw_schedule_device_work(device,
|
|
device->is_local ? 0 : INITIAL_DELAY);
|
|
}
|
|
break;
|
|
|
|
case FW_NODE_UPDATED:
|
|
device = node->data;
|
|
if (device == NULL)
|
|
break;
|
|
|
|
device->node_id = node->node_id;
|
|
smp_wmb(); /* update node_id before generation */
|
|
device->generation = card->generation;
|
|
if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
|
|
device->workfn = fw_device_update;
|
|
fw_schedule_device_work(device, 0);
|
|
}
|
|
break;
|
|
|
|
case FW_NODE_DESTROYED:
|
|
case FW_NODE_LINK_OFF:
|
|
if (!node->data)
|
|
break;
|
|
|
|
/*
|
|
* Destroy the device associated with the node. There
|
|
* are two cases here: either the device is fully
|
|
* initialized (FW_DEVICE_RUNNING) or we're in the
|
|
* process of reading its config rom
|
|
* (FW_DEVICE_INITIALIZING). If it is fully
|
|
* initialized we can reuse device->work to schedule a
|
|
* full fw_device_shutdown(). If not, there's work
|
|
* scheduled to read it's config rom, and we just put
|
|
* the device in shutdown state to have that code fail
|
|
* to create the device.
|
|
*/
|
|
device = node->data;
|
|
if (atomic_xchg(&device->state,
|
|
FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
|
|
device->workfn = fw_device_shutdown;
|
|
fw_schedule_device_work(device,
|
|
list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
|
|
}
|
|
break;
|
|
}
|
|
}
|