kernel_samsung_a34x-permissive/drivers/net/ethernet/cavium/liquidio/octeon_device.c
2024-04-28 15:51:13 +02:00

1476 lines
38 KiB
C

/**********************************************************************
* Author: Cavium, Inc.
*
* Contact: support@cavium.com
* Please include "LiquidIO" in the subject.
*
* Copyright (c) 2003-2016 Cavium, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more details.
***********************************************************************/
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include "liquidio_common.h"
#include "octeon_droq.h"
#include "octeon_iq.h"
#include "response_manager.h"
#include "octeon_device.h"
#include "octeon_main.h"
#include "octeon_network.h"
#include "cn66xx_regs.h"
#include "cn66xx_device.h"
#include "cn23xx_pf_device.h"
#include "cn23xx_vf_device.h"
/** Default configuration
* for CN66XX OCTEON Models.
*/
static struct octeon_config default_cn66xx_conf = {
.card_type = LIO_210SV,
.card_name = LIO_210SV_NAME,
/** IQ attributes */
.iq = {
.max_iqs = CN6XXX_CFG_IO_QUEUES,
.pending_list_size =
(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
.instr_type = OCTEON_64BYTE_INSTR,
.db_min = CN6XXX_DB_MIN,
.db_timeout = CN6XXX_DB_TIMEOUT,
}
,
/** OQ attributes */
.oq = {
.max_oqs = CN6XXX_CFG_IO_QUEUES,
.refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD,
.oq_intr_pkt = CN6XXX_OQ_INTR_PKT,
.oq_intr_time = CN6XXX_OQ_INTR_TIME,
.pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR,
}
,
.num_nic_ports = DEFAULT_NUM_NIC_PORTS_66XX,
.num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
.num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
.def_rx_buf_size = CN6XXX_OQ_BUF_SIZE,
/* For ethernet interface 0: Port cfg Attributes */
.nic_if_cfg[0] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
/* SKB size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = CN6XXX_OQ_BUF_SIZE,
.base_queue = BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 0,
},
.nic_if_cfg[1] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
/* SKB size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = CN6XXX_OQ_BUF_SIZE,
.base_queue = BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 1,
},
/** Miscellaneous attributes */
.misc = {
/* Host driver link query interval */
.oct_link_query_interval = 100,
/* Octeon link query interval */
.host_link_query_interval = 500,
.enable_sli_oq_bp = 0,
/* Control queue group */
.ctrlq_grp = 1,
}
,
};
/** Default configuration
* for CN68XX OCTEON Model.
*/
static struct octeon_config default_cn68xx_conf = {
.card_type = LIO_410NV,
.card_name = LIO_410NV_NAME,
/** IQ attributes */
.iq = {
.max_iqs = CN6XXX_CFG_IO_QUEUES,
.pending_list_size =
(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
.instr_type = OCTEON_64BYTE_INSTR,
.db_min = CN6XXX_DB_MIN,
.db_timeout = CN6XXX_DB_TIMEOUT,
}
,
/** OQ attributes */
.oq = {
.max_oqs = CN6XXX_CFG_IO_QUEUES,
.refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD,
.oq_intr_pkt = CN6XXX_OQ_INTR_PKT,
.oq_intr_time = CN6XXX_OQ_INTR_TIME,
.pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR,
}
,
.num_nic_ports = DEFAULT_NUM_NIC_PORTS_68XX,
.num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
.num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
.def_rx_buf_size = CN6XXX_OQ_BUF_SIZE,
.nic_if_cfg[0] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
/* SKB size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = CN6XXX_OQ_BUF_SIZE,
.base_queue = BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 0,
},
.nic_if_cfg[1] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
/* SKB size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = CN6XXX_OQ_BUF_SIZE,
.base_queue = BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 1,
},
.nic_if_cfg[2] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
/* SKB size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = CN6XXX_OQ_BUF_SIZE,
.base_queue = BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 2,
},
.nic_if_cfg[3] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
/* SKB size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = CN6XXX_OQ_BUF_SIZE,
.base_queue = BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 3,
},
/** Miscellaneous attributes */
.misc = {
/* Host driver link query interval */
.oct_link_query_interval = 100,
/* Octeon link query interval */
.host_link_query_interval = 500,
.enable_sli_oq_bp = 0,
/* Control queue group */
.ctrlq_grp = 1,
}
,
};
/** Default configuration
* for CN68XX OCTEON Model.
*/
static struct octeon_config default_cn68xx_210nv_conf = {
.card_type = LIO_210NV,
.card_name = LIO_210NV_NAME,
/** IQ attributes */
.iq = {
.max_iqs = CN6XXX_CFG_IO_QUEUES,
.pending_list_size =
(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
.instr_type = OCTEON_64BYTE_INSTR,
.db_min = CN6XXX_DB_MIN,
.db_timeout = CN6XXX_DB_TIMEOUT,
}
,
/** OQ attributes */
.oq = {
.max_oqs = CN6XXX_CFG_IO_QUEUES,
.refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD,
.oq_intr_pkt = CN6XXX_OQ_INTR_PKT,
.oq_intr_time = CN6XXX_OQ_INTR_TIME,
.pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR,
}
,
.num_nic_ports = DEFAULT_NUM_NIC_PORTS_68XX_210NV,
.num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
.num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
.def_rx_buf_size = CN6XXX_OQ_BUF_SIZE,
.nic_if_cfg[0] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
/* SKB size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = CN6XXX_OQ_BUF_SIZE,
.base_queue = BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 0,
},
.nic_if_cfg[1] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
/* SKB size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = CN6XXX_OQ_BUF_SIZE,
.base_queue = BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 1,
},
/** Miscellaneous attributes */
.misc = {
/* Host driver link query interval */
.oct_link_query_interval = 100,
/* Octeon link query interval */
.host_link_query_interval = 500,
.enable_sli_oq_bp = 0,
/* Control queue group */
.ctrlq_grp = 1,
}
,
};
static struct octeon_config default_cn23xx_conf = {
.card_type = LIO_23XX,
.card_name = LIO_23XX_NAME,
/** IQ attributes */
.iq = {
.max_iqs = CN23XX_CFG_IO_QUEUES,
.pending_list_size = (CN23XX_DEFAULT_IQ_DESCRIPTORS *
CN23XX_CFG_IO_QUEUES),
.instr_type = OCTEON_64BYTE_INSTR,
.db_min = CN23XX_DB_MIN,
.db_timeout = CN23XX_DB_TIMEOUT,
.iq_intr_pkt = CN23XX_DEF_IQ_INTR_THRESHOLD,
},
/** OQ attributes */
.oq = {
.max_oqs = CN23XX_CFG_IO_QUEUES,
.pkts_per_intr = CN23XX_OQ_PKTSPER_INTR,
.refill_threshold = CN23XX_OQ_REFIL_THRESHOLD,
.oq_intr_pkt = CN23XX_OQ_INTR_PKT,
.oq_intr_time = CN23XX_OQ_INTR_TIME,
},
.num_nic_ports = DEFAULT_NUM_NIC_PORTS_23XX,
.num_def_rx_descs = CN23XX_DEFAULT_OQ_DESCRIPTORS,
.num_def_tx_descs = CN23XX_DEFAULT_IQ_DESCRIPTORS,
.def_rx_buf_size = CN23XX_OQ_BUF_SIZE,
/* For ethernet interface 0: Port cfg Attributes */
.nic_if_cfg[0] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = CN23XX_DEFAULT_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = CN23XX_DEFAULT_IQ_DESCRIPTORS,
/* SKB size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = CN23XX_OQ_BUF_SIZE,
.base_queue = BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 0,
},
.nic_if_cfg[1] = {
/* Max Txqs: Half for each of the two ports :max_iq/2 */
.max_txqs = MAX_TXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_txqs */
.num_txqs = DEF_TXQS_PER_INTF,
/* Max Rxqs: Half for each of the two ports :max_oq/2 */
.max_rxqs = MAX_RXQS_PER_INTF,
/* Actual configured value. Range could be: 1...max_rxqs */
.num_rxqs = DEF_RXQS_PER_INTF,
/* Num of desc for rx rings */
.num_rx_descs = CN23XX_DEFAULT_OQ_DESCRIPTORS,
/* Num of desc for tx rings */
.num_tx_descs = CN23XX_DEFAULT_IQ_DESCRIPTORS,
/* SKB size, We need not change buf size even for Jumbo frames.
* Octeon can send jumbo frames in 4 consecutive descriptors,
*/
.rx_buf_size = CN23XX_OQ_BUF_SIZE,
.base_queue = BASE_QUEUE_NOT_REQUESTED,
.gmx_port_id = 1,
},
.misc = {
/* Host driver link query interval */
.oct_link_query_interval = 100,
/* Octeon link query interval */
.host_link_query_interval = 500,
.enable_sli_oq_bp = 0,
/* Control queue group */
.ctrlq_grp = 1,
}
};
static struct octeon_config_ptr {
u32 conf_type;
} oct_conf_info[MAX_OCTEON_DEVICES] = {
{
OCTEON_CONFIG_TYPE_DEFAULT,
}, {
OCTEON_CONFIG_TYPE_DEFAULT,
}, {
OCTEON_CONFIG_TYPE_DEFAULT,
}, {
OCTEON_CONFIG_TYPE_DEFAULT,
},
};
static char oct_dev_state_str[OCT_DEV_STATES + 1][32] = {
"BEGIN", "PCI-ENABLE-DONE", "PCI-MAP-DONE", "DISPATCH-INIT-DONE",
"IQ-INIT-DONE", "SCBUFF-POOL-INIT-DONE", "RESPLIST-INIT-DONE",
"DROQ-INIT-DONE", "MBOX-SETUP-DONE", "MSIX-ALLOC-VECTOR-DONE",
"INTR-SET-DONE", "IO-QUEUES-INIT-DONE", "CONSOLE-INIT-DONE",
"HOST-READY", "CORE-READY", "RUNNING", "IN-RESET",
"INVALID"
};
static char oct_dev_app_str[CVM_DRV_APP_COUNT + 1][32] = {
"BASE", "NIC", "UNKNOWN"};
static struct octeon_device *octeon_device[MAX_OCTEON_DEVICES];
static atomic_t adapter_refcounts[MAX_OCTEON_DEVICES];
static atomic_t adapter_fw_states[MAX_OCTEON_DEVICES];
static u32 octeon_device_count;
/* locks device array (i.e. octeon_device[]) */
static spinlock_t octeon_devices_lock;
static struct octeon_core_setup core_setup[MAX_OCTEON_DEVICES];
static void oct_set_config_info(int oct_id, int conf_type)
{
if (conf_type < 0 || conf_type > (NUM_OCTEON_CONFS - 1))
conf_type = OCTEON_CONFIG_TYPE_DEFAULT;
oct_conf_info[oct_id].conf_type = conf_type;
}
void octeon_init_device_list(int conf_type)
{
int i;
memset(octeon_device, 0, (sizeof(void *) * MAX_OCTEON_DEVICES));
for (i = 0; i < MAX_OCTEON_DEVICES; i++)
oct_set_config_info(i, conf_type);
spin_lock_init(&octeon_devices_lock);
}
static void *__retrieve_octeon_config_info(struct octeon_device *oct,
u16 card_type)
{
u32 oct_id = oct->octeon_id;
void *ret = NULL;
switch (oct_conf_info[oct_id].conf_type) {
case OCTEON_CONFIG_TYPE_DEFAULT:
if (oct->chip_id == OCTEON_CN66XX) {
ret = &default_cn66xx_conf;
} else if ((oct->chip_id == OCTEON_CN68XX) &&
(card_type == LIO_210NV)) {
ret = &default_cn68xx_210nv_conf;
} else if ((oct->chip_id == OCTEON_CN68XX) &&
(card_type == LIO_410NV)) {
ret = &default_cn68xx_conf;
} else if (oct->chip_id == OCTEON_CN23XX_PF_VID) {
ret = &default_cn23xx_conf;
} else if (oct->chip_id == OCTEON_CN23XX_VF_VID) {
ret = &default_cn23xx_conf;
}
break;
default:
break;
}
return ret;
}
static int __verify_octeon_config_info(struct octeon_device *oct, void *conf)
{
switch (oct->chip_id) {
case OCTEON_CN66XX:
case OCTEON_CN68XX:
return lio_validate_cn6xxx_config_info(oct, conf);
case OCTEON_CN23XX_PF_VID:
case OCTEON_CN23XX_VF_VID:
return 0;
default:
break;
}
return 1;
}
void *oct_get_config_info(struct octeon_device *oct, u16 card_type)
{
void *conf = NULL;
conf = __retrieve_octeon_config_info(oct, card_type);
if (!conf)
return NULL;
if (__verify_octeon_config_info(oct, conf)) {
dev_err(&oct->pci_dev->dev, "Configuration verification failed\n");
return NULL;
}
return conf;
}
char *lio_get_state_string(atomic_t *state_ptr)
{
s32 istate = (s32)atomic_read(state_ptr);
if (istate > OCT_DEV_STATES || istate < 0)
return oct_dev_state_str[OCT_DEV_STATE_INVALID];
return oct_dev_state_str[istate];
}
static char *get_oct_app_string(u32 app_mode)
{
if (app_mode <= CVM_DRV_APP_END)
return oct_dev_app_str[app_mode - CVM_DRV_APP_START];
return oct_dev_app_str[CVM_DRV_INVALID_APP - CVM_DRV_APP_START];
}
void octeon_free_device_mem(struct octeon_device *oct)
{
int i;
for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
if (oct->io_qmask.oq & BIT_ULL(i))
vfree(oct->droq[i]);
}
for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
if (oct->io_qmask.iq & BIT_ULL(i))
vfree(oct->instr_queue[i]);
}
i = oct->octeon_id;
vfree(oct);
octeon_device[i] = NULL;
octeon_device_count--;
}
static struct octeon_device *octeon_allocate_device_mem(u32 pci_id,
u32 priv_size)
{
struct octeon_device *oct;
u8 *buf = NULL;
u32 octdevsize = 0, configsize = 0, size;
switch (pci_id) {
case OCTEON_CN68XX:
case OCTEON_CN66XX:
configsize = sizeof(struct octeon_cn6xxx);
break;
case OCTEON_CN23XX_PF_VID:
configsize = sizeof(struct octeon_cn23xx_pf);
break;
case OCTEON_CN23XX_VF_VID:
configsize = sizeof(struct octeon_cn23xx_vf);
break;
default:
pr_err("%s: Unknown PCI Device: 0x%x\n",
__func__,
pci_id);
return NULL;
}
if (configsize & 0x7)
configsize += (8 - (configsize & 0x7));
octdevsize = sizeof(struct octeon_device);
if (octdevsize & 0x7)
octdevsize += (8 - (octdevsize & 0x7));
if (priv_size & 0x7)
priv_size += (8 - (priv_size & 0x7));
size = octdevsize + priv_size + configsize +
(sizeof(struct octeon_dispatch) * DISPATCH_LIST_SIZE);
buf = vzalloc(size);
if (!buf)
return NULL;
oct = (struct octeon_device *)buf;
oct->priv = (void *)(buf + octdevsize);
oct->chip = (void *)(buf + octdevsize + priv_size);
oct->dispatch.dlist = (struct octeon_dispatch *)
(buf + octdevsize + priv_size + configsize);
return oct;
}
struct octeon_device *octeon_allocate_device(u32 pci_id,
u32 priv_size)
{
u32 oct_idx = 0;
struct octeon_device *oct = NULL;
spin_lock(&octeon_devices_lock);
for (oct_idx = 0; oct_idx < MAX_OCTEON_DEVICES; oct_idx++)
if (!octeon_device[oct_idx])
break;
if (oct_idx < MAX_OCTEON_DEVICES) {
oct = octeon_allocate_device_mem(pci_id, priv_size);
if (oct) {
octeon_device_count++;
octeon_device[oct_idx] = oct;
}
}
spin_unlock(&octeon_devices_lock);
if (!oct)
return NULL;
spin_lock_init(&oct->pci_win_lock);
spin_lock_init(&oct->mem_access_lock);
oct->octeon_id = oct_idx;
snprintf(oct->device_name, sizeof(oct->device_name),
"LiquidIO%d", (oct->octeon_id));
return oct;
}
/** Register a device's bus location at initialization time.
* @param octeon_dev - pointer to the octeon device structure.
* @param bus - PCIe bus #
* @param dev - PCIe device #
* @param func - PCIe function #
* @param is_pf - TRUE for PF, FALSE for VF
* @return reference count of device's adapter
*/
int octeon_register_device(struct octeon_device *oct,
int bus, int dev, int func, int is_pf)
{
int idx, refcount;
oct->loc.bus = bus;
oct->loc.dev = dev;
oct->loc.func = func;
oct->adapter_refcount = &adapter_refcounts[oct->octeon_id];
atomic_set(oct->adapter_refcount, 0);
/* Like the reference count, the f/w state is shared 'per-adapter' */
oct->adapter_fw_state = &adapter_fw_states[oct->octeon_id];
atomic_set(oct->adapter_fw_state, FW_NEEDS_TO_BE_LOADED);
spin_lock(&octeon_devices_lock);
for (idx = (int)oct->octeon_id - 1; idx >= 0; idx--) {
if (!octeon_device[idx]) {
dev_err(&oct->pci_dev->dev,
"%s: Internal driver error, missing dev",
__func__);
spin_unlock(&octeon_devices_lock);
atomic_inc(oct->adapter_refcount);
return 1; /* here, refcount is guaranteed to be 1 */
}
/* If another device is at same bus/dev, use its refcounter
* (and f/w state variable).
*/
if ((octeon_device[idx]->loc.bus == bus) &&
(octeon_device[idx]->loc.dev == dev)) {
oct->adapter_refcount =
octeon_device[idx]->adapter_refcount;
oct->adapter_fw_state =
octeon_device[idx]->adapter_fw_state;
break;
}
}
spin_unlock(&octeon_devices_lock);
atomic_inc(oct->adapter_refcount);
refcount = atomic_read(oct->adapter_refcount);
dev_dbg(&oct->pci_dev->dev, "%s: %02x:%02x:%d refcount %u", __func__,
oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
return refcount;
}
/** Deregister a device at de-initialization time.
* @param octeon_dev - pointer to the octeon device structure.
* @return reference count of device's adapter
*/
int octeon_deregister_device(struct octeon_device *oct)
{
int refcount;
atomic_dec(oct->adapter_refcount);
refcount = atomic_read(oct->adapter_refcount);
dev_dbg(&oct->pci_dev->dev, "%s: %04d:%02d:%d refcount %u", __func__,
oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
return refcount;
}
int
octeon_allocate_ioq_vector(struct octeon_device *oct, u32 num_ioqs)
{
struct octeon_ioq_vector *ioq_vector;
int cpu_num;
int size;
int i;
size = sizeof(struct octeon_ioq_vector) * num_ioqs;
oct->ioq_vector = vzalloc(size);
if (!oct->ioq_vector)
return -1;
for (i = 0; i < num_ioqs; i++) {
ioq_vector = &oct->ioq_vector[i];
ioq_vector->oct_dev = oct;
ioq_vector->iq_index = i;
ioq_vector->droq_index = i;
ioq_vector->mbox = oct->mbox[i];
cpu_num = i % num_online_cpus();
cpumask_set_cpu(cpu_num, &ioq_vector->affinity_mask);
if (oct->chip_id == OCTEON_CN23XX_PF_VID)
ioq_vector->ioq_num = i + oct->sriov_info.pf_srn;
else
ioq_vector->ioq_num = i;
}
return 0;
}
void
octeon_free_ioq_vector(struct octeon_device *oct)
{
vfree(oct->ioq_vector);
}
/* this function is only for setting up the first queue */
int octeon_setup_instr_queues(struct octeon_device *oct)
{
u32 num_descs = 0;
u32 iq_no = 0;
union oct_txpciq txpciq;
int numa_node = dev_to_node(&oct->pci_dev->dev);
if (OCTEON_CN6XXX(oct))
num_descs =
CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn6xxx));
else if (OCTEON_CN23XX_PF(oct))
num_descs = CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn23xx_pf));
else if (OCTEON_CN23XX_VF(oct))
num_descs = CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn23xx_vf));
oct->num_iqs = 0;
oct->instr_queue[0] = vzalloc_node(sizeof(*oct->instr_queue[0]),
numa_node);
if (!oct->instr_queue[0])
oct->instr_queue[0] =
vzalloc(sizeof(struct octeon_instr_queue));
if (!oct->instr_queue[0])
return 1;
memset(oct->instr_queue[0], 0, sizeof(struct octeon_instr_queue));
oct->instr_queue[0]->q_index = 0;
oct->instr_queue[0]->app_ctx = (void *)(size_t)0;
oct->instr_queue[0]->ifidx = 0;
txpciq.u64 = 0;
txpciq.s.q_no = iq_no;
txpciq.s.pkind = oct->pfvf_hsword.pkind;
txpciq.s.use_qpg = 0;
txpciq.s.qpg = 0;
if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
/* prevent memory leak */
vfree(oct->instr_queue[0]);
oct->instr_queue[0] = NULL;
return 1;
}
oct->num_iqs++;
return 0;
}
int octeon_setup_output_queues(struct octeon_device *oct)
{
u32 num_descs = 0;
u32 desc_size = 0;
u32 oq_no = 0;
int numa_node = dev_to_node(&oct->pci_dev->dev);
if (OCTEON_CN6XXX(oct)) {
num_descs =
CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn6xxx));
desc_size =
CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn6xxx));
} else if (OCTEON_CN23XX_PF(oct)) {
num_descs = CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn23xx_pf));
desc_size = CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn23xx_pf));
} else if (OCTEON_CN23XX_VF(oct)) {
num_descs = CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn23xx_vf));
desc_size = CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn23xx_vf));
}
oct->num_oqs = 0;
oct->droq[0] = vzalloc_node(sizeof(*oct->droq[0]), numa_node);
if (!oct->droq[0])
oct->droq[0] = vzalloc(sizeof(*oct->droq[0]));
if (!oct->droq[0])
return 1;
if (octeon_init_droq(oct, oq_no, num_descs, desc_size, NULL)) {
vfree(oct->droq[oq_no]);
oct->droq[oq_no] = NULL;
return 1;
}
oct->num_oqs++;
return 0;
}
int octeon_set_io_queues_off(struct octeon_device *oct)
{
int loop = BUSY_READING_REG_VF_LOOP_COUNT;
if (OCTEON_CN6XXX(oct)) {
octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
} else if (oct->chip_id == OCTEON_CN23XX_VF_VID) {
u32 q_no;
/* IOQs will already be in reset.
* If RST bit is set, wait for quiet bit to be set.
* Once quiet bit is set, clear the RST bit.
*/
for (q_no = 0; q_no < oct->sriov_info.rings_per_vf; q_no++) {
u64 reg_val = octeon_read_csr64(
oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) &&
!(reg_val & CN23XX_PKT_INPUT_CTL_QUIET) &&
loop) {
reg_val = octeon_read_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
loop--;
}
if (!loop) {
dev_err(&oct->pci_dev->dev,
"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
q_no);
return -1;
}
reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST;
octeon_write_csr64(oct,
CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
reg_val);
reg_val = octeon_read_csr64(
oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
dev_err(&oct->pci_dev->dev,
"unable to reset qno %u\n", q_no);
return -1;
}
}
}
return 0;
}
void octeon_set_droq_pkt_op(struct octeon_device *oct,
u32 q_no,
u32 enable)
{
u32 reg_val = 0;
/* Disable the i/p and o/p queues for this Octeon. */
if (OCTEON_CN6XXX(oct)) {
reg_val = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
if (enable)
reg_val = reg_val | (1 << q_no);
else
reg_val = reg_val & (~(1 << q_no));
octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, reg_val);
}
}
int octeon_init_dispatch_list(struct octeon_device *oct)
{
u32 i;
oct->dispatch.count = 0;
for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
oct->dispatch.dlist[i].opcode = 0;
INIT_LIST_HEAD(&oct->dispatch.dlist[i].list);
}
for (i = 0; i <= REQTYPE_LAST; i++)
octeon_register_reqtype_free_fn(oct, i, NULL);
spin_lock_init(&oct->dispatch.lock);
return 0;
}
void octeon_delete_dispatch_list(struct octeon_device *oct)
{
u32 i;
struct list_head freelist, *temp, *tmp2;
INIT_LIST_HEAD(&freelist);
spin_lock_bh(&oct->dispatch.lock);
for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
struct list_head *dispatch;
dispatch = &oct->dispatch.dlist[i].list;
while (dispatch->next != dispatch) {
temp = dispatch->next;
list_del(temp);
list_add_tail(temp, &freelist);
}
oct->dispatch.dlist[i].opcode = 0;
}
oct->dispatch.count = 0;
spin_unlock_bh(&oct->dispatch.lock);
list_for_each_safe(temp, tmp2, &freelist) {
list_del(temp);
vfree(temp);
}
}
octeon_dispatch_fn_t
octeon_get_dispatch(struct octeon_device *octeon_dev, u16 opcode,
u16 subcode)
{
u32 idx;
struct list_head *dispatch;
octeon_dispatch_fn_t fn = NULL;
u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
idx = combined_opcode & OCTEON_OPCODE_MASK;
spin_lock_bh(&octeon_dev->dispatch.lock);
if (octeon_dev->dispatch.count == 0) {
spin_unlock_bh(&octeon_dev->dispatch.lock);
return NULL;
}
if (!(octeon_dev->dispatch.dlist[idx].opcode)) {
spin_unlock_bh(&octeon_dev->dispatch.lock);
return NULL;
}
if (octeon_dev->dispatch.dlist[idx].opcode == combined_opcode) {
fn = octeon_dev->dispatch.dlist[idx].dispatch_fn;
} else {
list_for_each(dispatch,
&octeon_dev->dispatch.dlist[idx].list) {
if (((struct octeon_dispatch *)dispatch)->opcode ==
combined_opcode) {
fn = ((struct octeon_dispatch *)
dispatch)->dispatch_fn;
break;
}
}
}
spin_unlock_bh(&octeon_dev->dispatch.lock);
return fn;
}
/* octeon_register_dispatch_fn
* Parameters:
* octeon_id - id of the octeon device.
* opcode - opcode for which driver should call the registered function
* subcode - subcode for which driver should call the registered function
* fn - The function to call when a packet with "opcode" arrives in
* octeon output queues.
* fn_arg - The argument to be passed when calling function "fn".
* Description:
* Registers a function and its argument to be called when a packet
* arrives in Octeon output queues with "opcode".
* Returns:
* Success: 0
* Failure: 1
* Locks:
* No locks are held.
*/
int
octeon_register_dispatch_fn(struct octeon_device *oct,
u16 opcode,
u16 subcode,
octeon_dispatch_fn_t fn, void *fn_arg)
{
u32 idx;
octeon_dispatch_fn_t pfn;
u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
idx = combined_opcode & OCTEON_OPCODE_MASK;
spin_lock_bh(&oct->dispatch.lock);
/* Add dispatch function to first level of lookup table */
if (oct->dispatch.dlist[idx].opcode == 0) {
oct->dispatch.dlist[idx].opcode = combined_opcode;
oct->dispatch.dlist[idx].dispatch_fn = fn;
oct->dispatch.dlist[idx].arg = fn_arg;
oct->dispatch.count++;
spin_unlock_bh(&oct->dispatch.lock);
return 0;
}
spin_unlock_bh(&oct->dispatch.lock);
/* Check if there was a function already registered for this
* opcode/subcode.
*/
pfn = octeon_get_dispatch(oct, opcode, subcode);
if (!pfn) {
struct octeon_dispatch *dispatch;
dev_dbg(&oct->pci_dev->dev,
"Adding opcode to dispatch list linked list\n");
dispatch = (struct octeon_dispatch *)
vmalloc(sizeof(struct octeon_dispatch));
if (!dispatch) {
dev_err(&oct->pci_dev->dev,
"No memory to add dispatch function\n");
return 1;
}
dispatch->opcode = combined_opcode;
dispatch->dispatch_fn = fn;
dispatch->arg = fn_arg;
/* Add dispatch function to linked list of fn ptrs
* at the hashed index.
*/
spin_lock_bh(&oct->dispatch.lock);
list_add(&dispatch->list, &oct->dispatch.dlist[idx].list);
oct->dispatch.count++;
spin_unlock_bh(&oct->dispatch.lock);
} else {
if (pfn == fn &&
octeon_get_dispatch_arg(oct, opcode, subcode) == fn_arg)
return 0;
dev_err(&oct->pci_dev->dev,
"Found previously registered dispatch fn for opcode/subcode: %x/%x\n",
opcode, subcode);
return 1;
}
return 0;
}
int octeon_core_drv_init(struct octeon_recv_info *recv_info, void *buf)
{
u32 i;
char app_name[16];
struct octeon_device *oct = (struct octeon_device *)buf;
struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
struct octeon_core_setup *cs = NULL;
u32 num_nic_ports = 0;
if (OCTEON_CN6XXX(oct))
num_nic_ports =
CFG_GET_NUM_NIC_PORTS(CHIP_CONF(oct, cn6xxx));
else if (OCTEON_CN23XX_PF(oct))
num_nic_ports =
CFG_GET_NUM_NIC_PORTS(CHIP_CONF(oct, cn23xx_pf));
if (atomic_read(&oct->status) >= OCT_DEV_RUNNING) {
dev_err(&oct->pci_dev->dev, "Received CORE OK when device state is 0x%x\n",
atomic_read(&oct->status));
goto core_drv_init_err;
}
strncpy(app_name,
get_oct_app_string(
(u32)recv_pkt->rh.r_core_drv_init.app_mode),
sizeof(app_name) - 1);
oct->app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
if (recv_pkt->rh.r_core_drv_init.app_mode == CVM_DRV_NIC_APP) {
oct->fw_info.max_nic_ports =
(u32)recv_pkt->rh.r_core_drv_init.max_nic_ports;
oct->fw_info.num_gmx_ports =
(u32)recv_pkt->rh.r_core_drv_init.num_gmx_ports;
}
if (oct->fw_info.max_nic_ports < num_nic_ports) {
dev_err(&oct->pci_dev->dev,
"Config has more ports than firmware allows (%d > %d).\n",
num_nic_ports, oct->fw_info.max_nic_ports);
goto core_drv_init_err;
}
oct->fw_info.app_cap_flags = recv_pkt->rh.r_core_drv_init.app_cap_flags;
oct->fw_info.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
oct->pfvf_hsword.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
oct->pfvf_hsword.pkind = recv_pkt->rh.r_core_drv_init.pkind;
for (i = 0; i < oct->num_iqs; i++)
oct->instr_queue[i]->txpciq.s.pkind = oct->pfvf_hsword.pkind;
atomic_set(&oct->status, OCT_DEV_CORE_OK);
cs = &core_setup[oct->octeon_id];
if (recv_pkt->buffer_size[0] != (sizeof(*cs) + OCT_DROQ_INFO_SIZE)) {
dev_dbg(&oct->pci_dev->dev, "Core setup bytes expected %u found %d\n",
(u32)sizeof(*cs),
recv_pkt->buffer_size[0]);
}
memcpy(cs, get_rbd(
recv_pkt->buffer_ptr[0]) + OCT_DROQ_INFO_SIZE, sizeof(*cs));
strncpy(oct->boardinfo.name, cs->boardname, OCT_BOARD_NAME);
strncpy(oct->boardinfo.serial_number, cs->board_serial_number,
OCT_SERIAL_LEN);
octeon_swap_8B_data((u64 *)cs, (sizeof(*cs) >> 3));
oct->boardinfo.major = cs->board_rev_major;
oct->boardinfo.minor = cs->board_rev_minor;
dev_info(&oct->pci_dev->dev,
"Running %s (%llu Hz)\n",
app_name, CVM_CAST64(cs->corefreq));
core_drv_init_err:
for (i = 0; i < recv_pkt->buffer_count; i++)
recv_buffer_free(recv_pkt->buffer_ptr[i]);
octeon_free_recv_info(recv_info);
return 0;
}
int octeon_get_tx_qsize(struct octeon_device *oct, u32 q_no)
{
if (oct && (q_no < MAX_OCTEON_INSTR_QUEUES(oct)) &&
(oct->io_qmask.iq & BIT_ULL(q_no)))
return oct->instr_queue[q_no]->max_count;
return -1;
}
int octeon_get_rx_qsize(struct octeon_device *oct, u32 q_no)
{
if (oct && (q_no < MAX_OCTEON_OUTPUT_QUEUES(oct)) &&
(oct->io_qmask.oq & BIT_ULL(q_no)))
return oct->droq[q_no]->max_count;
return -1;
}
/* Retruns the host firmware handshake OCTEON specific configuration */
struct octeon_config *octeon_get_conf(struct octeon_device *oct)
{
struct octeon_config *default_oct_conf = NULL;
/* check the OCTEON Device model & return the corresponding octeon
* configuration
*/
if (OCTEON_CN6XXX(oct)) {
default_oct_conf =
(struct octeon_config *)(CHIP_CONF(oct, cn6xxx));
} else if (OCTEON_CN23XX_PF(oct)) {
default_oct_conf = (struct octeon_config *)
(CHIP_CONF(oct, cn23xx_pf));
} else if (OCTEON_CN23XX_VF(oct)) {
default_oct_conf = (struct octeon_config *)
(CHIP_CONF(oct, cn23xx_vf));
}
return default_oct_conf;
}
/* scratch register address is same in all the OCT-II and CN70XX models */
#define CNXX_SLI_SCRATCH1 0x3C0
/** Get the octeon device pointer.
* @param octeon_id - The id for which the octeon device pointer is required.
* @return Success: Octeon device pointer.
* @return Failure: NULL.
*/
struct octeon_device *lio_get_device(u32 octeon_id)
{
if (octeon_id >= MAX_OCTEON_DEVICES)
return NULL;
else
return octeon_device[octeon_id];
}
u64 lio_pci_readq(struct octeon_device *oct, u64 addr)
{
u64 val64;
unsigned long flags;
u32 val32, addrhi;
spin_lock_irqsave(&oct->pci_win_lock, flags);
/* The windowed read happens when the LSB of the addr is written.
* So write MSB first
*/
addrhi = (addr >> 32);
if ((oct->chip_id == OCTEON_CN66XX) ||
(oct->chip_id == OCTEON_CN68XX) ||
(oct->chip_id == OCTEON_CN23XX_PF_VID))
addrhi |= 0x00060000;
writel(addrhi, oct->reg_list.pci_win_rd_addr_hi);
/* Read back to preserve ordering of writes */
val32 = readl(oct->reg_list.pci_win_rd_addr_hi);
writel(addr & 0xffffffff, oct->reg_list.pci_win_rd_addr_lo);
val32 = readl(oct->reg_list.pci_win_rd_addr_lo);
val64 = readq(oct->reg_list.pci_win_rd_data);
spin_unlock_irqrestore(&oct->pci_win_lock, flags);
return val64;
}
void lio_pci_writeq(struct octeon_device *oct,
u64 val,
u64 addr)
{
u32 val32;
unsigned long flags;
spin_lock_irqsave(&oct->pci_win_lock, flags);
writeq(addr, oct->reg_list.pci_win_wr_addr);
/* The write happens when the LSB is written. So write MSB first. */
writel(val >> 32, oct->reg_list.pci_win_wr_data_hi);
/* Read the MSB to ensure ordering of writes. */
val32 = readl(oct->reg_list.pci_win_wr_data_hi);
writel(val & 0xffffffff, oct->reg_list.pci_win_wr_data_lo);
spin_unlock_irqrestore(&oct->pci_win_lock, flags);
}
int octeon_mem_access_ok(struct octeon_device *oct)
{
u64 access_okay = 0;
u64 lmc0_reset_ctl;
/* Check to make sure a DDR interface is enabled */
if (OCTEON_CN23XX_PF(oct)) {
lmc0_reset_ctl = lio_pci_readq(oct, CN23XX_LMC0_RESET_CTL);
access_okay =
(lmc0_reset_ctl & CN23XX_LMC0_RESET_CTL_DDR3RST_MASK);
} else {
lmc0_reset_ctl = lio_pci_readq(oct, CN6XXX_LMC0_RESET_CTL);
access_okay =
(lmc0_reset_ctl & CN6XXX_LMC0_RESET_CTL_DDR3RST_MASK);
}
return access_okay ? 0 : 1;
}
int octeon_wait_for_ddr_init(struct octeon_device *oct, u32 *timeout)
{
int ret = 1;
u32 ms;
if (!timeout)
return ret;
for (ms = 0; (ret != 0) && ((*timeout == 0) || (ms <= *timeout));
ms += HZ / 10) {
ret = octeon_mem_access_ok(oct);
/* wait 100 ms */
if (ret)
schedule_timeout_uninterruptible(HZ / 10);
}
return ret;
}
/** Get the octeon id assigned to the octeon device passed as argument.
* This function is exported to other modules.
* @param dev - octeon device pointer passed as a void *.
* @return octeon device id
*/
int lio_get_device_id(void *dev)
{
struct octeon_device *octeon_dev = (struct octeon_device *)dev;
u32 i;
for (i = 0; i < MAX_OCTEON_DEVICES; i++)
if (octeon_device[i] == octeon_dev)
return octeon_dev->octeon_id;
return -1;
}
void lio_enable_irq(struct octeon_droq *droq, struct octeon_instr_queue *iq)
{
u64 instr_cnt;
u32 pkts_pend;
struct octeon_device *oct = NULL;
/* the whole thing needs to be atomic, ideally */
if (droq) {
pkts_pend = (u32)atomic_read(&droq->pkts_pending);
spin_lock_bh(&droq->lock);
writel(droq->pkt_count - pkts_pend, droq->pkts_sent_reg);
droq->pkt_count = pkts_pend;
/* this write needs to be flushed before we release the lock */
mmiowb();
spin_unlock_bh(&droq->lock);
oct = droq->oct_dev;
}
if (iq) {
spin_lock_bh(&iq->lock);
writel(iq->pkts_processed, iq->inst_cnt_reg);
iq->pkt_in_done -= iq->pkts_processed;
iq->pkts_processed = 0;
/* this write needs to be flushed before we release the lock */
mmiowb();
spin_unlock_bh(&iq->lock);
oct = iq->oct_dev;
}
/*write resend. Writing RESEND in SLI_PKTX_CNTS should be enough
*to trigger tx interrupts as well, if they are pending.
*/
if (oct && (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))) {
if (droq)
writeq(CN23XX_INTR_RESEND, droq->pkts_sent_reg);
/*we race with firmrware here. read and write the IN_DONE_CNTS*/
else if (iq) {
instr_cnt = readq(iq->inst_cnt_reg);
writeq(((instr_cnt & 0xFFFFFFFF00000000ULL) |
CN23XX_INTR_RESEND),
iq->inst_cnt_reg);
}
}
}