kernel_samsung_a34x-permissive/drivers/video/backlight/pwm_bl.c
2024-04-28 15:51:13 +02:00

679 lines
17 KiB
C

/*
* linux/drivers/video/backlight/pwm_bl.c
*
* simple PWM based backlight control, board code has to setup
* 1) pin configuration so PWM waveforms can output
* 2) platform_data being correctly configured
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/fb.h>
#include <linux/backlight.h>
#include <linux/err.h>
#include <linux/pwm.h>
#include <linux/pwm_backlight.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
struct pwm_bl_data {
struct pwm_device *pwm;
struct device *dev;
unsigned int period;
unsigned int lth_brightness;
unsigned int *levels;
bool enabled;
struct regulator *power_supply;
struct gpio_desc *enable_gpio;
unsigned int scale;
bool legacy;
unsigned int post_pwm_on_delay;
unsigned int pwm_off_delay;
int (*notify)(struct device *,
int brightness);
void (*notify_after)(struct device *,
int brightness);
int (*check_fb)(struct device *, struct fb_info *);
void (*exit)(struct device *);
};
static void pwm_backlight_power_on(struct pwm_bl_data *pb, int brightness)
{
int err;
if (pb->enabled)
return;
err = regulator_enable(pb->power_supply);
if (err < 0)
dev_err(pb->dev, "failed to enable power supply\n");
pwm_enable(pb->pwm);
if (pb->post_pwm_on_delay)
msleep(pb->post_pwm_on_delay);
if (pb->enable_gpio)
gpiod_set_value_cansleep(pb->enable_gpio, 1);
pb->enabled = true;
}
static void pwm_backlight_power_off(struct pwm_bl_data *pb)
{
if (!pb->enabled)
return;
if (pb->enable_gpio)
gpiod_set_value_cansleep(pb->enable_gpio, 0);
if (pb->pwm_off_delay)
msleep(pb->pwm_off_delay);
pwm_config(pb->pwm, 0, pb->period);
pwm_disable(pb->pwm);
regulator_disable(pb->power_supply);
pb->enabled = false;
}
static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness)
{
unsigned int lth = pb->lth_brightness;
u64 duty_cycle;
if (pb->levels)
duty_cycle = pb->levels[brightness];
else
duty_cycle = brightness;
duty_cycle *= pb->period - lth;
do_div(duty_cycle, pb->scale);
return duty_cycle + lth;
}
static int pwm_backlight_update_status(struct backlight_device *bl)
{
struct pwm_bl_data *pb = bl_get_data(bl);
int brightness = bl->props.brightness;
int duty_cycle;
if (bl->props.power != FB_BLANK_UNBLANK ||
bl->props.fb_blank != FB_BLANK_UNBLANK ||
bl->props.state & BL_CORE_FBBLANK)
brightness = 0;
if (pb->notify)
brightness = pb->notify(pb->dev, brightness);
if (brightness > 0) {
duty_cycle = compute_duty_cycle(pb, brightness);
pwm_config(pb->pwm, duty_cycle, pb->period);
pwm_backlight_power_on(pb, brightness);
} else
pwm_backlight_power_off(pb);
if (pb->notify_after)
pb->notify_after(pb->dev, brightness);
return 0;
}
static int pwm_backlight_check_fb(struct backlight_device *bl,
struct fb_info *info)
{
struct pwm_bl_data *pb = bl_get_data(bl);
return !pb->check_fb || pb->check_fb(pb->dev, info);
}
static const struct backlight_ops pwm_backlight_ops = {
.update_status = pwm_backlight_update_status,
.check_fb = pwm_backlight_check_fb,
};
#ifdef CONFIG_OF
#define PWM_LUMINANCE_SCALE 10000 /* luminance scale */
/* An integer based power function */
static u64 int_pow(u64 base, int exp)
{
u64 result = 1;
while (exp) {
if (exp & 1)
result *= base;
exp >>= 1;
base *= base;
}
return result;
}
/*
* CIE lightness to PWM conversion.
*
* The CIE 1931 lightness formula is what actually describes how we perceive
* light:
* Y = (L* / 902.3) if L* ≤ 0.08856
* Y = ((L* + 16) / 116)^3 if L* > 0.08856
*
* Where Y is the luminance, the amount of light coming out of the screen, and
* is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
* perceives the screen to be, and is a number between 0 and 100.
*
* The following function does the fixed point maths needed to implement the
* above formula.
*/
static u64 cie1931(unsigned int lightness, unsigned int scale)
{
u64 retval;
lightness *= 100;
if (lightness <= (8 * scale)) {
retval = DIV_ROUND_CLOSEST_ULL(lightness * 10, 9023);
} else {
retval = int_pow((lightness + (16 * scale)) / 116, 3);
retval = DIV_ROUND_CLOSEST_ULL(retval, (scale * scale));
}
return retval;
}
/*
* Create a default correction table for PWM values to create linear brightness
* for LED based backlights using the CIE1931 algorithm.
*/
static
int pwm_backlight_brightness_default(struct device *dev,
struct platform_pwm_backlight_data *data,
unsigned int period)
{
unsigned int i;
u64 retval;
/*
* Once we have 4096 levels there's little point going much higher...
* neither interactive sliders nor animation benefits from having
* more values in the table.
*/
data->max_brightness =
min((int)DIV_ROUND_UP(period, fls(period)), 4096);
data->levels = devm_kcalloc(dev, data->max_brightness,
sizeof(*data->levels), GFP_KERNEL);
if (!data->levels)
return -ENOMEM;
/* Fill the table using the cie1931 algorithm */
for (i = 0; i < data->max_brightness; i++) {
retval = cie1931((i * PWM_LUMINANCE_SCALE) /
data->max_brightness, PWM_LUMINANCE_SCALE) *
period;
retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
if (retval > UINT_MAX)
return -EINVAL;
data->levels[i] = (unsigned int)retval;
}
data->dft_brightness = data->max_brightness / 2;
data->max_brightness--;
return 0;
}
static int pwm_backlight_parse_dt(struct device *dev,
struct platform_pwm_backlight_data *data)
{
struct device_node *node = dev->of_node;
unsigned int num_levels = 0;
unsigned int levels_count;
unsigned int num_steps = 0;
struct property *prop;
unsigned int *table;
int length;
u32 value;
int ret;
if (!node)
return -ENODEV;
memset(data, 0, sizeof(*data));
/*
* These values are optional and set as 0 by default, the out values
* are modified only if a valid u32 value can be decoded.
*/
of_property_read_u32(node, "post-pwm-on-delay-ms",
&data->post_pwm_on_delay);
of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay);
data->enable_gpio = -EINVAL;
/*
* Determine the number of brightness levels, if this property is not
* set a default table of brightness levels will be used.
*/
prop = of_find_property(node, "brightness-levels", &length);
if (!prop)
return 0;
data->max_brightness = length / sizeof(u32);
/* read brightness levels from DT property */
if (data->max_brightness > 0) {
size_t size = sizeof(*data->levels) * data->max_brightness;
unsigned int i, j, n = 0;
data->levels = devm_kzalloc(dev, size, GFP_KERNEL);
if (!data->levels)
return -ENOMEM;
ret = of_property_read_u32_array(node, "brightness-levels",
data->levels,
data->max_brightness);
if (ret < 0)
return ret;
ret = of_property_read_u32(node, "default-brightness-level",
&value);
if (ret < 0)
return ret;
data->dft_brightness = value;
/*
* This property is optional, if is set enables linear
* interpolation between each of the values of brightness levels
* and creates a new pre-computed table.
*/
of_property_read_u32(node, "num-interpolated-steps",
&num_steps);
/*
* Make sure that there is at least two entries in the
* brightness-levels table, otherwise we can't interpolate
* between two points.
*/
if (num_steps) {
if (data->max_brightness < 2) {
dev_err(dev, "can't interpolate\n");
return -EINVAL;
}
/*
* Recalculate the number of brightness levels, now
* taking in consideration the number of interpolated
* steps between two levels.
*/
for (i = 0; i < data->max_brightness - 1; i++) {
if ((data->levels[i + 1] - data->levels[i]) /
num_steps)
num_levels += num_steps;
else
num_levels++;
}
num_levels++;
dev_dbg(dev, "new number of brightness levels: %d\n",
num_levels);
/*
* Create a new table of brightness levels with all the
* interpolated steps.
*/
size = sizeof(*table) * num_levels;
table = devm_kzalloc(dev, size, GFP_KERNEL);
if (!table)
return -ENOMEM;
/* Fill the interpolated table. */
levels_count = 0;
for (i = 0; i < data->max_brightness - 1; i++) {
value = data->levels[i];
n = (data->levels[i + 1] - value) / num_steps;
if (n > 0) {
for (j = 0; j < num_steps; j++) {
table[levels_count] = value;
value += n;
levels_count++;
}
} else {
table[levels_count] = data->levels[i];
levels_count++;
}
}
table[levels_count] = data->levels[i];
/*
* As we use interpolation lets remove current
* brightness levels table and replace for the
* new interpolated table.
*/
devm_kfree(dev, data->levels);
data->levels = table;
/*
* Reassign max_brightness value to the new total number
* of brightness levels.
*/
data->max_brightness = num_levels;
}
data->max_brightness--;
}
return 0;
}
static const struct of_device_id pwm_backlight_of_match[] = {
{ .compatible = "pwm-backlight" },
{ }
};
MODULE_DEVICE_TABLE(of, pwm_backlight_of_match);
#else
static int pwm_backlight_parse_dt(struct device *dev,
struct platform_pwm_backlight_data *data)
{
return -ENODEV;
}
static
int pwm_backlight_brightness_default(struct device *dev,
struct platform_pwm_backlight_data *data,
unsigned int period)
{
return -ENODEV;
}
#endif
static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
{
struct device_node *node = pb->dev->of_node;
/* Not booted with device tree or no phandle link to the node */
if (!node || !node->phandle)
return FB_BLANK_UNBLANK;
/*
* If the driver is probed from the device tree and there is a
* phandle link pointing to the backlight node, it is safe to
* assume that another driver will enable the backlight at the
* appropriate time. Therefore, if it is disabled, keep it so.
*/
/* if the enable GPIO is disabled, do not enable the backlight */
if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0)
return FB_BLANK_POWERDOWN;
/* The regulator is disabled, do not enable the backlight */
if (!regulator_is_enabled(pb->power_supply))
return FB_BLANK_POWERDOWN;
/* The PWM is disabled, keep it like this */
if (!pwm_is_enabled(pb->pwm))
return FB_BLANK_POWERDOWN;
return FB_BLANK_UNBLANK;
}
static int pwm_backlight_probe(struct platform_device *pdev)
{
struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev);
struct platform_pwm_backlight_data defdata;
struct backlight_properties props;
struct backlight_device *bl;
struct device_node *node = pdev->dev.of_node;
struct pwm_bl_data *pb;
struct pwm_state state;
struct pwm_args pargs;
unsigned int i;
int ret;
if (!data) {
ret = pwm_backlight_parse_dt(&pdev->dev, &defdata);
if (ret < 0) {
dev_err(&pdev->dev, "failed to find platform data\n");
return ret;
}
data = &defdata;
}
if (data->init) {
ret = data->init(&pdev->dev);
if (ret < 0)
return ret;
}
pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL);
if (!pb) {
ret = -ENOMEM;
goto err_alloc;
}
pb->notify = data->notify;
pb->notify_after = data->notify_after;
pb->check_fb = data->check_fb;
pb->exit = data->exit;
pb->dev = &pdev->dev;
pb->enabled = false;
pb->post_pwm_on_delay = data->post_pwm_on_delay;
pb->pwm_off_delay = data->pwm_off_delay;
pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable",
GPIOD_ASIS);
if (IS_ERR(pb->enable_gpio)) {
ret = PTR_ERR(pb->enable_gpio);
goto err_alloc;
}
/*
* Compatibility fallback for drivers still using the integer GPIO
* platform data. Must go away soon.
*/
if (!pb->enable_gpio && gpio_is_valid(data->enable_gpio)) {
ret = devm_gpio_request_one(&pdev->dev, data->enable_gpio,
GPIOF_OUT_INIT_HIGH, "enable");
if (ret < 0) {
dev_err(&pdev->dev, "failed to request GPIO#%d: %d\n",
data->enable_gpio, ret);
goto err_alloc;
}
pb->enable_gpio = gpio_to_desc(data->enable_gpio);
}
/*
* If the GPIO is not known to be already configured as output, that
* is, if gpiod_get_direction returns either 1 or -EINVAL, change the
* direction to output and set the GPIO as active.
* Do not force the GPIO to active when it was already output as it
* could cause backlight flickering or we would enable the backlight too
* early. Leave the decision of the initial backlight state for later.
*/
if (pb->enable_gpio &&
gpiod_get_direction(pb->enable_gpio) != 0)
gpiod_direction_output(pb->enable_gpio, 1);
pb->power_supply = devm_regulator_get(&pdev->dev, "power");
if (IS_ERR(pb->power_supply)) {
ret = PTR_ERR(pb->power_supply);
goto err_alloc;
}
pb->pwm = devm_pwm_get(&pdev->dev, NULL);
if (IS_ERR(pb->pwm) && PTR_ERR(pb->pwm) != -EPROBE_DEFER && !node) {
dev_err(&pdev->dev, "unable to request PWM, trying legacy API\n");
pb->legacy = true;
pb->pwm = pwm_request(data->pwm_id, "pwm-backlight");
}
if (IS_ERR(pb->pwm)) {
ret = PTR_ERR(pb->pwm);
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "unable to request PWM\n");
goto err_alloc;
}
dev_dbg(&pdev->dev, "got pwm for backlight\n");
if (!data->levels) {
/* Get the PWM period (in nanoseconds) */
pwm_get_state(pb->pwm, &state);
ret = pwm_backlight_brightness_default(&pdev->dev, data,
state.period);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to setup default brightness table\n");
goto err_alloc;
}
}
for (i = 0; i <= data->max_brightness; i++) {
if (data->levels[i] > pb->scale)
pb->scale = data->levels[i];
pb->levels = data->levels;
}
/*
* FIXME: pwm_apply_args() should be removed when switching to
* the atomic PWM API.
*/
pwm_apply_args(pb->pwm);
/*
* The DT case will set the pwm_period_ns field to 0 and store the
* period, parsed from the DT, in the PWM device. For the non-DT case,
* set the period from platform data if it has not already been set
* via the PWM lookup table.
*/
pwm_get_args(pb->pwm, &pargs);
pb->period = pargs.period;
if (!pb->period && (data->pwm_period_ns > 0))
pb->period = data->pwm_period_ns;
pb->lth_brightness = data->lth_brightness * (pb->period / pb->scale);
memset(&props, 0, sizeof(struct backlight_properties));
props.type = BACKLIGHT_RAW;
props.max_brightness = data->max_brightness;
bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
&pwm_backlight_ops, &props);
if (IS_ERR(bl)) {
dev_err(&pdev->dev, "failed to register backlight\n");
ret = PTR_ERR(bl);
if (pb->legacy)
pwm_free(pb->pwm);
goto err_alloc;
}
if (data->dft_brightness > data->max_brightness) {
dev_warn(&pdev->dev,
"invalid default brightness level: %u, using %u\n",
data->dft_brightness, data->max_brightness);
data->dft_brightness = data->max_brightness;
}
bl->props.brightness = data->dft_brightness;
bl->props.power = pwm_backlight_initial_power_state(pb);
backlight_update_status(bl);
platform_set_drvdata(pdev, bl);
return 0;
err_alloc:
if (data->exit)
data->exit(&pdev->dev);
return ret;
}
static int pwm_backlight_remove(struct platform_device *pdev)
{
struct backlight_device *bl = platform_get_drvdata(pdev);
struct pwm_bl_data *pb = bl_get_data(bl);
backlight_device_unregister(bl);
pwm_backlight_power_off(pb);
if (pb->exit)
pb->exit(&pdev->dev);
if (pb->legacy)
pwm_free(pb->pwm);
return 0;
}
static void pwm_backlight_shutdown(struct platform_device *pdev)
{
struct backlight_device *bl = platform_get_drvdata(pdev);
struct pwm_bl_data *pb = bl_get_data(bl);
pwm_backlight_power_off(pb);
}
#ifdef CONFIG_PM_SLEEP
static int pwm_backlight_suspend(struct device *dev)
{
struct backlight_device *bl = dev_get_drvdata(dev);
struct pwm_bl_data *pb = bl_get_data(bl);
if (pb->notify)
pb->notify(pb->dev, 0);
pwm_backlight_power_off(pb);
if (pb->notify_after)
pb->notify_after(pb->dev, 0);
return 0;
}
static int pwm_backlight_resume(struct device *dev)
{
struct backlight_device *bl = dev_get_drvdata(dev);
backlight_update_status(bl);
return 0;
}
#endif
static const struct dev_pm_ops pwm_backlight_pm_ops = {
#ifdef CONFIG_PM_SLEEP
.suspend = pwm_backlight_suspend,
.resume = pwm_backlight_resume,
.poweroff = pwm_backlight_suspend,
.restore = pwm_backlight_resume,
#endif
};
static struct platform_driver pwm_backlight_driver = {
.driver = {
.name = "pwm-backlight",
.pm = &pwm_backlight_pm_ops,
.of_match_table = of_match_ptr(pwm_backlight_of_match),
},
.probe = pwm_backlight_probe,
.remove = pwm_backlight_remove,
.shutdown = pwm_backlight_shutdown,
};
module_platform_driver(pwm_backlight_driver);
MODULE_DESCRIPTION("PWM based Backlight Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:pwm-backlight");