kernel_samsung_a34x-permissive/security/keys/keyctl.c
2024-04-28 15:51:13 +02:00

1818 lines
44 KiB
C

/* Userspace key control operations
*
* Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/slab.h>
#include <linux/syscalls.h>
#include <linux/key.h>
#include <linux/keyctl.h>
#include <linux/fs.h>
#include <linux/capability.h>
#include <linux/cred.h>
#include <linux/string.h>
#include <linux/err.h>
#include <linux/vmalloc.h>
#include <linux/security.h>
#include <linux/uio.h>
#include <linux/uaccess.h>
#include <keys/request_key_auth-type.h>
#include "internal.h"
#define KEY_MAX_DESC_SIZE 4096
static int key_get_type_from_user(char *type,
const char __user *_type,
unsigned len)
{
int ret;
ret = strncpy_from_user(type, _type, len);
if (ret < 0)
return ret;
if (ret == 0 || ret >= len)
return -EINVAL;
if (type[0] == '.')
return -EPERM;
type[len - 1] = '\0';
return 0;
}
/*
* Extract the description of a new key from userspace and either add it as a
* new key to the specified keyring or update a matching key in that keyring.
*
* If the description is NULL or an empty string, the key type is asked to
* generate one from the payload.
*
* The keyring must be writable so that we can attach the key to it.
*
* If successful, the new key's serial number is returned, otherwise an error
* code is returned.
*/
SYSCALL_DEFINE5(add_key, const char __user *, _type,
const char __user *, _description,
const void __user *, _payload,
size_t, plen,
key_serial_t, ringid)
{
key_ref_t keyring_ref, key_ref;
char type[32], *description;
void *payload;
long ret;
ret = -EINVAL;
if (plen > 1024 * 1024 - 1)
goto error;
/* draw all the data into kernel space */
ret = key_get_type_from_user(type, _type, sizeof(type));
if (ret < 0)
goto error;
description = NULL;
if (_description) {
description = strndup_user(_description, KEY_MAX_DESC_SIZE);
if (IS_ERR(description)) {
ret = PTR_ERR(description);
goto error;
}
if (!*description) {
kfree(description);
description = NULL;
} else if ((description[0] == '.') &&
(strncmp(type, "keyring", 7) == 0)) {
ret = -EPERM;
goto error2;
}
}
/* pull the payload in if one was supplied */
payload = NULL;
if (plen) {
ret = -ENOMEM;
payload = kvmalloc(plen, GFP_KERNEL);
if (!payload)
goto error2;
ret = -EFAULT;
if (copy_from_user(payload, _payload, plen) != 0)
goto error3;
}
/* find the target keyring (which must be writable) */
keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
if (IS_ERR(keyring_ref)) {
ret = PTR_ERR(keyring_ref);
goto error3;
}
/* create or update the requested key and add it to the target
* keyring */
key_ref = key_create_or_update(keyring_ref, type, description,
payload, plen, KEY_PERM_UNDEF,
KEY_ALLOC_IN_QUOTA);
if (!IS_ERR(key_ref)) {
ret = key_ref_to_ptr(key_ref)->serial;
key_ref_put(key_ref);
}
else {
ret = PTR_ERR(key_ref);
}
key_ref_put(keyring_ref);
error3:
kvfree_sensitive(payload, plen);
error2:
kfree(description);
error:
return ret;
}
/*
* Search the process keyrings and keyring trees linked from those for a
* matching key. Keyrings must have appropriate Search permission to be
* searched.
*
* If a key is found, it will be attached to the destination keyring if there's
* one specified and the serial number of the key will be returned.
*
* If no key is found, /sbin/request-key will be invoked if _callout_info is
* non-NULL in an attempt to create a key. The _callout_info string will be
* passed to /sbin/request-key to aid with completing the request. If the
* _callout_info string is "" then it will be changed to "-".
*/
SYSCALL_DEFINE4(request_key, const char __user *, _type,
const char __user *, _description,
const char __user *, _callout_info,
key_serial_t, destringid)
{
struct key_type *ktype;
struct key *key;
key_ref_t dest_ref;
size_t callout_len;
char type[32], *description, *callout_info;
long ret;
/* pull the type into kernel space */
ret = key_get_type_from_user(type, _type, sizeof(type));
if (ret < 0)
goto error;
/* pull the description into kernel space */
description = strndup_user(_description, KEY_MAX_DESC_SIZE);
if (IS_ERR(description)) {
ret = PTR_ERR(description);
goto error;
}
/* pull the callout info into kernel space */
callout_info = NULL;
callout_len = 0;
if (_callout_info) {
callout_info = strndup_user(_callout_info, PAGE_SIZE);
if (IS_ERR(callout_info)) {
ret = PTR_ERR(callout_info);
goto error2;
}
callout_len = strlen(callout_info);
}
/* get the destination keyring if specified */
dest_ref = NULL;
if (destringid) {
dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
KEY_NEED_WRITE);
if (IS_ERR(dest_ref)) {
ret = PTR_ERR(dest_ref);
goto error3;
}
}
/* find the key type */
ktype = key_type_lookup(type);
if (IS_ERR(ktype)) {
ret = PTR_ERR(ktype);
goto error4;
}
/* do the search */
key = request_key_and_link(ktype, description, callout_info,
callout_len, NULL, key_ref_to_ptr(dest_ref),
KEY_ALLOC_IN_QUOTA);
if (IS_ERR(key)) {
ret = PTR_ERR(key);
goto error5;
}
/* wait for the key to finish being constructed */
ret = wait_for_key_construction(key, 1);
if (ret < 0)
goto error6;
ret = key->serial;
error6:
key_put(key);
error5:
key_type_put(ktype);
error4:
key_ref_put(dest_ref);
error3:
kfree(callout_info);
error2:
kfree(description);
error:
return ret;
}
/*
* Get the ID of the specified process keyring.
*
* The requested keyring must have search permission to be found.
*
* If successful, the ID of the requested keyring will be returned.
*/
long keyctl_get_keyring_ID(key_serial_t id, int create)
{
key_ref_t key_ref;
unsigned long lflags;
long ret;
lflags = create ? KEY_LOOKUP_CREATE : 0;
key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
if (IS_ERR(key_ref)) {
ret = PTR_ERR(key_ref);
goto error;
}
ret = key_ref_to_ptr(key_ref)->serial;
key_ref_put(key_ref);
error:
return ret;
}
/*
* Join a (named) session keyring.
*
* Create and join an anonymous session keyring or join a named session
* keyring, creating it if necessary. A named session keyring must have Search
* permission for it to be joined. Session keyrings without this permit will
* be skipped over. It is not permitted for userspace to create or join
* keyrings whose name begin with a dot.
*
* If successful, the ID of the joined session keyring will be returned.
*/
long keyctl_join_session_keyring(const char __user *_name)
{
char *name;
long ret;
/* fetch the name from userspace */
name = NULL;
if (_name) {
name = strndup_user(_name, KEY_MAX_DESC_SIZE);
if (IS_ERR(name)) {
ret = PTR_ERR(name);
goto error;
}
ret = -EPERM;
if (name[0] == '.')
goto error_name;
}
/* join the session */
ret = join_session_keyring(name);
error_name:
kfree(name);
error:
return ret;
}
/*
* Update a key's data payload from the given data.
*
* The key must grant the caller Write permission and the key type must support
* updating for this to work. A negative key can be positively instantiated
* with this call.
*
* If successful, 0 will be returned. If the key type does not support
* updating, then -EOPNOTSUPP will be returned.
*/
long keyctl_update_key(key_serial_t id,
const void __user *_payload,
size_t plen)
{
key_ref_t key_ref;
void *payload;
long ret;
ret = -EINVAL;
if (plen > PAGE_SIZE)
goto error;
/* pull the payload in if one was supplied */
payload = NULL;
if (plen) {
ret = -ENOMEM;
payload = kvmalloc(plen, GFP_KERNEL);
if (!payload)
goto error;
ret = -EFAULT;
if (copy_from_user(payload, _payload, plen) != 0)
goto error2;
}
/* find the target key (which must be writable) */
key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
if (IS_ERR(key_ref)) {
ret = PTR_ERR(key_ref);
goto error2;
}
/* update the key */
ret = key_update(key_ref, payload, plen);
key_ref_put(key_ref);
error2:
kvfree_sensitive(payload, plen);
error:
return ret;
}
/*
* Revoke a key.
*
* The key must be grant the caller Write or Setattr permission for this to
* work. The key type should give up its quota claim when revoked. The key
* and any links to the key will be automatically garbage collected after a
* certain amount of time (/proc/sys/kernel/keys/gc_delay).
*
* Keys with KEY_FLAG_KEEP set should not be revoked.
*
* If successful, 0 is returned.
*/
long keyctl_revoke_key(key_serial_t id)
{
key_ref_t key_ref;
struct key *key;
long ret;
key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
if (IS_ERR(key_ref)) {
ret = PTR_ERR(key_ref);
if (ret != -EACCES)
goto error;
key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
if (IS_ERR(key_ref)) {
ret = PTR_ERR(key_ref);
goto error;
}
}
key = key_ref_to_ptr(key_ref);
ret = 0;
if (test_bit(KEY_FLAG_KEEP, &key->flags))
ret = -EPERM;
else
key_revoke(key);
key_ref_put(key_ref);
error:
return ret;
}
/*
* Invalidate a key.
*
* The key must be grant the caller Invalidate permission for this to work.
* The key and any links to the key will be automatically garbage collected
* immediately.
*
* Keys with KEY_FLAG_KEEP set should not be invalidated.
*
* If successful, 0 is returned.
*/
long keyctl_invalidate_key(key_serial_t id)
{
key_ref_t key_ref;
struct key *key;
long ret;
kenter("%d", id);
key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
if (IS_ERR(key_ref)) {
ret = PTR_ERR(key_ref);
/* Root is permitted to invalidate certain special keys */
if (capable(CAP_SYS_ADMIN)) {
key_ref = lookup_user_key(id, 0, 0);
if (IS_ERR(key_ref))
goto error;
if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
&key_ref_to_ptr(key_ref)->flags))
goto invalidate;
goto error_put;
}
goto error;
}
invalidate:
key = key_ref_to_ptr(key_ref);
ret = 0;
if (test_bit(KEY_FLAG_KEEP, &key->flags))
ret = -EPERM;
else
key_invalidate(key);
error_put:
key_ref_put(key_ref);
error:
kleave(" = %ld", ret);
return ret;
}
/*
* Clear the specified keyring, creating an empty process keyring if one of the
* special keyring IDs is used.
*
* The keyring must grant the caller Write permission and not have
* KEY_FLAG_KEEP set for this to work. If successful, 0 will be returned.
*/
long keyctl_keyring_clear(key_serial_t ringid)
{
key_ref_t keyring_ref;
struct key *keyring;
long ret;
keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
if (IS_ERR(keyring_ref)) {
ret = PTR_ERR(keyring_ref);
/* Root is permitted to invalidate certain special keyrings */
if (capable(CAP_SYS_ADMIN)) {
keyring_ref = lookup_user_key(ringid, 0, 0);
if (IS_ERR(keyring_ref))
goto error;
if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
&key_ref_to_ptr(keyring_ref)->flags))
goto clear;
goto error_put;
}
goto error;
}
clear:
keyring = key_ref_to_ptr(keyring_ref);
if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
ret = -EPERM;
else
ret = keyring_clear(keyring);
error_put:
key_ref_put(keyring_ref);
error:
return ret;
}
/*
* Create a link from a keyring to a key if there's no matching key in the
* keyring, otherwise replace the link to the matching key with a link to the
* new key.
*
* The key must grant the caller Link permission and the the keyring must grant
* the caller Write permission. Furthermore, if an additional link is created,
* the keyring's quota will be extended.
*
* If successful, 0 will be returned.
*/
long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
{
key_ref_t keyring_ref, key_ref;
long ret;
keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
if (IS_ERR(keyring_ref)) {
ret = PTR_ERR(keyring_ref);
goto error;
}
key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
if (IS_ERR(key_ref)) {
ret = PTR_ERR(key_ref);
goto error2;
}
ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
key_ref_put(key_ref);
error2:
key_ref_put(keyring_ref);
error:
return ret;
}
/*
* Unlink a key from a keyring.
*
* The keyring must grant the caller Write permission for this to work; the key
* itself need not grant the caller anything. If the last link to a key is
* removed then that key will be scheduled for destruction.
*
* Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked.
*
* If successful, 0 will be returned.
*/
long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
{
key_ref_t keyring_ref, key_ref;
struct key *keyring, *key;
long ret;
keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
if (IS_ERR(keyring_ref)) {
ret = PTR_ERR(keyring_ref);
goto error;
}
key_ref = lookup_user_key(id, KEY_LOOKUP_FOR_UNLINK, 0);
if (IS_ERR(key_ref)) {
ret = PTR_ERR(key_ref);
goto error2;
}
keyring = key_ref_to_ptr(keyring_ref);
key = key_ref_to_ptr(key_ref);
if (test_bit(KEY_FLAG_KEEP, &keyring->flags) &&
test_bit(KEY_FLAG_KEEP, &key->flags))
ret = -EPERM;
else
ret = key_unlink(keyring, key);
key_ref_put(key_ref);
error2:
key_ref_put(keyring_ref);
error:
return ret;
}
/*
* Return a description of a key to userspace.
*
* The key must grant the caller View permission for this to work.
*
* If there's a buffer, we place up to buflen bytes of data into it formatted
* in the following way:
*
* type;uid;gid;perm;description<NUL>
*
* If successful, we return the amount of description available, irrespective
* of how much we may have copied into the buffer.
*/
long keyctl_describe_key(key_serial_t keyid,
char __user *buffer,
size_t buflen)
{
struct key *key, *instkey;
key_ref_t key_ref;
char *infobuf;
long ret;
int desclen, infolen;
key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
if (IS_ERR(key_ref)) {
/* viewing a key under construction is permitted if we have the
* authorisation token handy */
if (PTR_ERR(key_ref) == -EACCES) {
instkey = key_get_instantiation_authkey(keyid);
if (!IS_ERR(instkey)) {
key_put(instkey);
key_ref = lookup_user_key(keyid,
KEY_LOOKUP_PARTIAL,
0);
if (!IS_ERR(key_ref))
goto okay;
}
}
ret = PTR_ERR(key_ref);
goto error;
}
okay:
key = key_ref_to_ptr(key_ref);
desclen = strlen(key->description);
/* calculate how much information we're going to return */
ret = -ENOMEM;
infobuf = kasprintf(GFP_KERNEL,
"%s;%d;%d;%08x;",
key->type->name,
from_kuid_munged(current_user_ns(), key->uid),
from_kgid_munged(current_user_ns(), key->gid),
key->perm);
if (!infobuf)
goto error2;
infolen = strlen(infobuf);
ret = infolen + desclen + 1;
/* consider returning the data */
if (buffer && buflen >= ret) {
if (copy_to_user(buffer, infobuf, infolen) != 0 ||
copy_to_user(buffer + infolen, key->description,
desclen + 1) != 0)
ret = -EFAULT;
}
kfree(infobuf);
error2:
key_ref_put(key_ref);
error:
return ret;
}
/*
* Search the specified keyring and any keyrings it links to for a matching
* key. Only keyrings that grant the caller Search permission will be searched
* (this includes the starting keyring). Only keys with Search permission can
* be found.
*
* If successful, the found key will be linked to the destination keyring if
* supplied and the key has Link permission, and the found key ID will be
* returned.
*/
long keyctl_keyring_search(key_serial_t ringid,
const char __user *_type,
const char __user *_description,
key_serial_t destringid)
{
struct key_type *ktype;
key_ref_t keyring_ref, key_ref, dest_ref;
char type[32], *description;
long ret;
/* pull the type and description into kernel space */
ret = key_get_type_from_user(type, _type, sizeof(type));
if (ret < 0)
goto error;
description = strndup_user(_description, KEY_MAX_DESC_SIZE);
if (IS_ERR(description)) {
ret = PTR_ERR(description);
goto error;
}
/* get the keyring at which to begin the search */
keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
if (IS_ERR(keyring_ref)) {
ret = PTR_ERR(keyring_ref);
goto error2;
}
/* get the destination keyring if specified */
dest_ref = NULL;
if (destringid) {
dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
KEY_NEED_WRITE);
if (IS_ERR(dest_ref)) {
ret = PTR_ERR(dest_ref);
goto error3;
}
}
/* find the key type */
ktype = key_type_lookup(type);
if (IS_ERR(ktype)) {
ret = PTR_ERR(ktype);
goto error4;
}
/* do the search */
key_ref = keyring_search(keyring_ref, ktype, description);
if (IS_ERR(key_ref)) {
ret = PTR_ERR(key_ref);
/* treat lack or presence of a negative key the same */
if (ret == -EAGAIN)
ret = -ENOKEY;
goto error5;
}
/* link the resulting key to the destination keyring if we can */
if (dest_ref) {
ret = key_permission(key_ref, KEY_NEED_LINK);
if (ret < 0)
goto error6;
ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
if (ret < 0)
goto error6;
}
ret = key_ref_to_ptr(key_ref)->serial;
error6:
key_ref_put(key_ref);
error5:
key_type_put(ktype);
error4:
key_ref_put(dest_ref);
error3:
key_ref_put(keyring_ref);
error2:
kfree(description);
error:
return ret;
}
/*
* Call the read method
*/
static long __keyctl_read_key(struct key *key, char *buffer, size_t buflen)
{
long ret;
down_read(&key->sem);
ret = key_validate(key);
if (ret == 0)
ret = key->type->read(key, buffer, buflen);
up_read(&key->sem);
return ret;
}
/*
* Read a key's payload.
*
* The key must either grant the caller Read permission, or it must grant the
* caller Search permission when searched for from the process keyrings.
*
* If successful, we place up to buflen bytes of data into the buffer, if one
* is provided, and return the amount of data that is available in the key,
* irrespective of how much we copied into the buffer.
*/
long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
{
struct key *key;
key_ref_t key_ref;
long ret;
char *key_data = NULL;
size_t key_data_len;
/* find the key first */
key_ref = lookup_user_key(keyid, 0, 0);
if (IS_ERR(key_ref)) {
ret = -ENOKEY;
goto out;
}
key = key_ref_to_ptr(key_ref);
ret = key_read_state(key);
if (ret < 0)
goto key_put_out; /* Negatively instantiated */
/* see if we can read it directly */
ret = key_permission(key_ref, KEY_NEED_READ);
if (ret == 0)
goto can_read_key;
if (ret != -EACCES)
goto key_put_out;
/* we can't; see if it's searchable from this process's keyrings
* - we automatically take account of the fact that it may be
* dangling off an instantiation key
*/
if (!is_key_possessed(key_ref)) {
ret = -EACCES;
goto key_put_out;
}
/* the key is probably readable - now try to read it */
can_read_key:
if (!key->type->read) {
ret = -EOPNOTSUPP;
goto key_put_out;
}
if (!buffer || !buflen) {
/* Get the key length from the read method */
ret = __keyctl_read_key(key, NULL, 0);
goto key_put_out;
}
/*
* Read the data with the semaphore held (since we might sleep)
* to protect against the key being updated or revoked.
*
* Allocating a temporary buffer to hold the keys before
* transferring them to user buffer to avoid potential
* deadlock involving page fault and mmap_sem.
*
* key_data_len = (buflen <= PAGE_SIZE)
* ? buflen : actual length of key data
*
* This prevents allocating arbitrary large buffer which can
* be much larger than the actual key length. In the latter case,
* at least 2 passes of this loop is required.
*/
key_data_len = (buflen <= PAGE_SIZE) ? buflen : 0;
for (;;) {
if (key_data_len) {
key_data = kvmalloc(key_data_len, GFP_KERNEL);
if (!key_data) {
ret = -ENOMEM;
goto key_put_out;
}
}
ret = __keyctl_read_key(key, key_data, key_data_len);
/*
* Read methods will just return the required length without
* any copying if the provided length isn't large enough.
*/
if (ret <= 0 || ret > buflen)
break;
/*
* The key may change (unlikely) in between 2 consecutive
* __keyctl_read_key() calls. In this case, we reallocate
* a larger buffer and redo the key read when
* key_data_len < ret <= buflen.
*/
if (ret > key_data_len) {
if (unlikely(key_data))
kvfree_sensitive(key_data, key_data_len);
key_data_len = ret;
continue; /* Allocate buffer */
}
if (copy_to_user(buffer, key_data, ret))
ret = -EFAULT;
break;
}
kvfree_sensitive(key_data, key_data_len);
key_put_out:
key_put(key);
out:
return ret;
}
/*
* Change the ownership of a key
*
* The key must grant the caller Setattr permission for this to work, though
* the key need not be fully instantiated yet. For the UID to be changed, or
* for the GID to be changed to a group the caller is not a member of, the
* caller must have sysadmin capability. If either uid or gid is -1 then that
* attribute is not changed.
*
* If the UID is to be changed, the new user must have sufficient quota to
* accept the key. The quota deduction will be removed from the old user to
* the new user should the attribute be changed.
*
* If successful, 0 will be returned.
*/
long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
{
struct key_user *newowner, *zapowner = NULL;
struct key *key;
key_ref_t key_ref;
long ret;
kuid_t uid;
kgid_t gid;
uid = make_kuid(current_user_ns(), user);
gid = make_kgid(current_user_ns(), group);
ret = -EINVAL;
if ((user != (uid_t) -1) && !uid_valid(uid))
goto error;
if ((group != (gid_t) -1) && !gid_valid(gid))
goto error;
ret = 0;
if (user == (uid_t) -1 && group == (gid_t) -1)
goto error;
key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
KEY_NEED_SETATTR);
if (IS_ERR(key_ref)) {
ret = PTR_ERR(key_ref);
goto error;
}
key = key_ref_to_ptr(key_ref);
/* make the changes with the locks held to prevent chown/chown races */
ret = -EACCES;
down_write(&key->sem);
if (!capable(CAP_SYS_ADMIN)) {
/* only the sysadmin can chown a key to some other UID */
if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
goto error_put;
/* only the sysadmin can set the key's GID to a group other
* than one of those that the current process subscribes to */
if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
goto error_put;
}
/* change the UID */
if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
ret = -ENOMEM;
newowner = key_user_lookup(uid);
if (!newowner)
goto error_put;
/* transfer the quota burden to the new user */
if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
key_quota_root_maxkeys : key_quota_maxkeys;
unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
key_quota_root_maxbytes : key_quota_maxbytes;
spin_lock(&newowner->lock);
if (newowner->qnkeys + 1 > maxkeys ||
newowner->qnbytes + key->quotalen > maxbytes ||
newowner->qnbytes + key->quotalen <
newowner->qnbytes)
goto quota_overrun;
newowner->qnkeys++;
newowner->qnbytes += key->quotalen;
spin_unlock(&newowner->lock);
spin_lock(&key->user->lock);
key->user->qnkeys--;
key->user->qnbytes -= key->quotalen;
spin_unlock(&key->user->lock);
}
atomic_dec(&key->user->nkeys);
atomic_inc(&newowner->nkeys);
if (key->state != KEY_IS_UNINSTANTIATED) {
atomic_dec(&key->user->nikeys);
atomic_inc(&newowner->nikeys);
}
zapowner = key->user;
key->user = newowner;
key->uid = uid;
}
/* change the GID */
if (group != (gid_t) -1)
key->gid = gid;
ret = 0;
error_put:
up_write(&key->sem);
key_put(key);
if (zapowner)
key_user_put(zapowner);
error:
return ret;
quota_overrun:
spin_unlock(&newowner->lock);
zapowner = newowner;
ret = -EDQUOT;
goto error_put;
}
/*
* Change the permission mask on a key.
*
* The key must grant the caller Setattr permission for this to work, though
* the key need not be fully instantiated yet. If the caller does not have
* sysadmin capability, it may only change the permission on keys that it owns.
*/
long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
{
struct key *key;
key_ref_t key_ref;
long ret;
ret = -EINVAL;
if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
goto error;
key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
KEY_NEED_SETATTR);
if (IS_ERR(key_ref)) {
ret = PTR_ERR(key_ref);
goto error;
}
key = key_ref_to_ptr(key_ref);
/* make the changes with the locks held to prevent chown/chmod races */
ret = -EACCES;
down_write(&key->sem);
/* if we're not the sysadmin, we can only change a key that we own */
if (capable(CAP_SYS_ADMIN) || uid_eq(key->uid, current_fsuid())) {
key->perm = perm;
ret = 0;
}
up_write(&key->sem);
key_put(key);
error:
return ret;
}
/*
* Get the destination keyring for instantiation and check that the caller has
* Write permission on it.
*/
static long get_instantiation_keyring(key_serial_t ringid,
struct request_key_auth *rka,
struct key **_dest_keyring)
{
key_ref_t dkref;
*_dest_keyring = NULL;
/* just return a NULL pointer if we weren't asked to make a link */
if (ringid == 0)
return 0;
/* if a specific keyring is nominated by ID, then use that */
if (ringid > 0) {
dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
if (IS_ERR(dkref))
return PTR_ERR(dkref);
*_dest_keyring = key_ref_to_ptr(dkref);
return 0;
}
if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
return -EINVAL;
/* otherwise specify the destination keyring recorded in the
* authorisation key (any KEY_SPEC_*_KEYRING) */
if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
*_dest_keyring = key_get(rka->dest_keyring);
return 0;
}
return -ENOKEY;
}
/*
* Change the request_key authorisation key on the current process.
*/
static int keyctl_change_reqkey_auth(struct key *key)
{
struct cred *new;
new = prepare_creds();
if (!new)
return -ENOMEM;
key_put(new->request_key_auth);
new->request_key_auth = key_get(key);
return commit_creds(new);
}
/*
* Instantiate a key with the specified payload and link the key into the
* destination keyring if one is given.
*
* The caller must have the appropriate instantiation permit set for this to
* work (see keyctl_assume_authority). No other permissions are required.
*
* If successful, 0 will be returned.
*/
long keyctl_instantiate_key_common(key_serial_t id,
struct iov_iter *from,
key_serial_t ringid)
{
const struct cred *cred = current_cred();
struct request_key_auth *rka;
struct key *instkey, *dest_keyring;
size_t plen = from ? iov_iter_count(from) : 0;
void *payload;
long ret;
kenter("%d,,%zu,%d", id, plen, ringid);
if (!plen)
from = NULL;
ret = -EINVAL;
if (plen > 1024 * 1024 - 1)
goto error;
/* the appropriate instantiation authorisation key must have been
* assumed before calling this */
ret = -EPERM;
instkey = cred->request_key_auth;
if (!instkey)
goto error;
rka = instkey->payload.data[0];
if (rka->target_key->serial != id)
goto error;
/* pull the payload in if one was supplied */
payload = NULL;
if (from) {
ret = -ENOMEM;
payload = kvmalloc(plen, GFP_KERNEL);
if (!payload)
goto error;
ret = -EFAULT;
if (!copy_from_iter_full(payload, plen, from))
goto error2;
}
/* find the destination keyring amongst those belonging to the
* requesting task */
ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
if (ret < 0)
goto error2;
/* instantiate the key and link it into a keyring */
ret = key_instantiate_and_link(rka->target_key, payload, plen,
dest_keyring, instkey);
key_put(dest_keyring);
/* discard the assumed authority if it's just been disabled by
* instantiation of the key */
if (ret == 0)
keyctl_change_reqkey_auth(NULL);
error2:
kvfree_sensitive(payload, plen);
error:
return ret;
}
/*
* Instantiate a key with the specified payload and link the key into the
* destination keyring if one is given.
*
* The caller must have the appropriate instantiation permit set for this to
* work (see keyctl_assume_authority). No other permissions are required.
*
* If successful, 0 will be returned.
*/
long keyctl_instantiate_key(key_serial_t id,
const void __user *_payload,
size_t plen,
key_serial_t ringid)
{
if (_payload && plen) {
struct iovec iov;
struct iov_iter from;
int ret;
ret = import_single_range(WRITE, (void __user *)_payload, plen,
&iov, &from);
if (unlikely(ret))
return ret;
return keyctl_instantiate_key_common(id, &from, ringid);
}
return keyctl_instantiate_key_common(id, NULL, ringid);
}
/*
* Instantiate a key with the specified multipart payload and link the key into
* the destination keyring if one is given.
*
* The caller must have the appropriate instantiation permit set for this to
* work (see keyctl_assume_authority). No other permissions are required.
*
* If successful, 0 will be returned.
*/
long keyctl_instantiate_key_iov(key_serial_t id,
const struct iovec __user *_payload_iov,
unsigned ioc,
key_serial_t ringid)
{
struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
struct iov_iter from;
long ret;
if (!_payload_iov)
ioc = 0;
ret = import_iovec(WRITE, _payload_iov, ioc,
ARRAY_SIZE(iovstack), &iov, &from);
if (ret < 0)
return ret;
ret = keyctl_instantiate_key_common(id, &from, ringid);
kfree(iov);
return ret;
}
/*
* Negatively instantiate the key with the given timeout (in seconds) and link
* the key into the destination keyring if one is given.
*
* The caller must have the appropriate instantiation permit set for this to
* work (see keyctl_assume_authority). No other permissions are required.
*
* The key and any links to the key will be automatically garbage collected
* after the timeout expires.
*
* Negative keys are used to rate limit repeated request_key() calls by causing
* them to return -ENOKEY until the negative key expires.
*
* If successful, 0 will be returned.
*/
long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
{
return keyctl_reject_key(id, timeout, ENOKEY, ringid);
}
/*
* Negatively instantiate the key with the given timeout (in seconds) and error
* code and link the key into the destination keyring if one is given.
*
* The caller must have the appropriate instantiation permit set for this to
* work (see keyctl_assume_authority). No other permissions are required.
*
* The key and any links to the key will be automatically garbage collected
* after the timeout expires.
*
* Negative keys are used to rate limit repeated request_key() calls by causing
* them to return the specified error code until the negative key expires.
*
* If successful, 0 will be returned.
*/
long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
key_serial_t ringid)
{
const struct cred *cred = current_cred();
struct request_key_auth *rka;
struct key *instkey, *dest_keyring;
long ret;
kenter("%d,%u,%u,%d", id, timeout, error, ringid);
/* must be a valid error code and mustn't be a kernel special */
if (error <= 0 ||
error >= MAX_ERRNO ||
error == ERESTARTSYS ||
error == ERESTARTNOINTR ||
error == ERESTARTNOHAND ||
error == ERESTART_RESTARTBLOCK)
return -EINVAL;
/* the appropriate instantiation authorisation key must have been
* assumed before calling this */
ret = -EPERM;
instkey = cred->request_key_auth;
if (!instkey)
goto error;
rka = instkey->payload.data[0];
if (rka->target_key->serial != id)
goto error;
/* find the destination keyring if present (which must also be
* writable) */
ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
if (ret < 0)
goto error;
/* instantiate the key and link it into a keyring */
ret = key_reject_and_link(rka->target_key, timeout, error,
dest_keyring, instkey);
key_put(dest_keyring);
/* discard the assumed authority if it's just been disabled by
* instantiation of the key */
if (ret == 0)
keyctl_change_reqkey_auth(NULL);
error:
return ret;
}
/*
* Read or set the default keyring in which request_key() will cache keys and
* return the old setting.
*
* If a thread or process keyring is specified then it will be created if it
* doesn't yet exist. The old setting will be returned if successful.
*/
long keyctl_set_reqkey_keyring(int reqkey_defl)
{
struct cred *new;
int ret, old_setting;
old_setting = current_cred_xxx(jit_keyring);
if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
return old_setting;
new = prepare_creds();
if (!new)
return -ENOMEM;
switch (reqkey_defl) {
case KEY_REQKEY_DEFL_THREAD_KEYRING:
ret = install_thread_keyring_to_cred(new);
if (ret < 0)
goto error;
goto set;
case KEY_REQKEY_DEFL_PROCESS_KEYRING:
ret = install_process_keyring_to_cred(new);
if (ret < 0)
goto error;
goto set;
case KEY_REQKEY_DEFL_DEFAULT:
case KEY_REQKEY_DEFL_SESSION_KEYRING:
case KEY_REQKEY_DEFL_USER_KEYRING:
case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
goto set;
case KEY_REQKEY_DEFL_NO_CHANGE:
case KEY_REQKEY_DEFL_GROUP_KEYRING:
default:
ret = -EINVAL;
goto error;
}
set:
new->jit_keyring = reqkey_defl;
commit_creds(new);
return old_setting;
error:
abort_creds(new);
return ret;
}
/*
* Set or clear the timeout on a key.
*
* Either the key must grant the caller Setattr permission or else the caller
* must hold an instantiation authorisation token for the key.
*
* The timeout is either 0 to clear the timeout, or a number of seconds from
* the current time. The key and any links to the key will be automatically
* garbage collected after the timeout expires.
*
* Keys with KEY_FLAG_KEEP set should not be timed out.
*
* If successful, 0 is returned.
*/
long keyctl_set_timeout(key_serial_t id, unsigned timeout)
{
struct key *key, *instkey;
key_ref_t key_ref;
long ret;
key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
KEY_NEED_SETATTR);
if (IS_ERR(key_ref)) {
/* setting the timeout on a key under construction is permitted
* if we have the authorisation token handy */
if (PTR_ERR(key_ref) == -EACCES) {
instkey = key_get_instantiation_authkey(id);
if (!IS_ERR(instkey)) {
key_put(instkey);
key_ref = lookup_user_key(id,
KEY_LOOKUP_PARTIAL,
0);
if (!IS_ERR(key_ref))
goto okay;
}
}
ret = PTR_ERR(key_ref);
goto error;
}
okay:
key = key_ref_to_ptr(key_ref);
ret = 0;
if (test_bit(KEY_FLAG_KEEP, &key->flags))
ret = -EPERM;
else
key_set_timeout(key, timeout);
key_put(key);
error:
return ret;
}
/*
* Assume (or clear) the authority to instantiate the specified key.
*
* This sets the authoritative token currently in force for key instantiation.
* This must be done for a key to be instantiated. It has the effect of making
* available all the keys from the caller of the request_key() that created a
* key to request_key() calls made by the caller of this function.
*
* The caller must have the instantiation key in their process keyrings with a
* Search permission grant available to the caller.
*
* If the ID given is 0, then the setting will be cleared and 0 returned.
*
* If the ID given has a matching an authorisation key, then that key will be
* set and its ID will be returned. The authorisation key can be read to get
* the callout information passed to request_key().
*/
long keyctl_assume_authority(key_serial_t id)
{
struct key *authkey;
long ret;
/* special key IDs aren't permitted */
ret = -EINVAL;
if (id < 0)
goto error;
/* we divest ourselves of authority if given an ID of 0 */
if (id == 0) {
ret = keyctl_change_reqkey_auth(NULL);
goto error;
}
/* attempt to assume the authority temporarily granted to us whilst we
* instantiate the specified key
* - the authorisation key must be in the current task's keyrings
* somewhere
*/
authkey = key_get_instantiation_authkey(id);
if (IS_ERR(authkey)) {
ret = PTR_ERR(authkey);
goto error;
}
ret = keyctl_change_reqkey_auth(authkey);
if (ret == 0)
ret = authkey->serial;
key_put(authkey);
error:
return ret;
}
/*
* Get a key's the LSM security label.
*
* The key must grant the caller View permission for this to work.
*
* If there's a buffer, then up to buflen bytes of data will be placed into it.
*
* If successful, the amount of information available will be returned,
* irrespective of how much was copied (including the terminal NUL).
*/
long keyctl_get_security(key_serial_t keyid,
char __user *buffer,
size_t buflen)
{
struct key *key, *instkey;
key_ref_t key_ref;
char *context;
long ret;
key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
if (IS_ERR(key_ref)) {
if (PTR_ERR(key_ref) != -EACCES)
return PTR_ERR(key_ref);
/* viewing a key under construction is also permitted if we
* have the authorisation token handy */
instkey = key_get_instantiation_authkey(keyid);
if (IS_ERR(instkey))
return PTR_ERR(instkey);
key_put(instkey);
key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, 0);
if (IS_ERR(key_ref))
return PTR_ERR(key_ref);
}
key = key_ref_to_ptr(key_ref);
ret = security_key_getsecurity(key, &context);
if (ret == 0) {
/* if no information was returned, give userspace an empty
* string */
ret = 1;
if (buffer && buflen > 0 &&
copy_to_user(buffer, "", 1) != 0)
ret = -EFAULT;
} else if (ret > 0) {
/* return as much data as there's room for */
if (buffer && buflen > 0) {
if (buflen > ret)
buflen = ret;
if (copy_to_user(buffer, context, buflen) != 0)
ret = -EFAULT;
}
kfree(context);
}
key_ref_put(key_ref);
return ret;
}
/*
* Attempt to install the calling process's session keyring on the process's
* parent process.
*
* The keyring must exist and must grant the caller LINK permission, and the
* parent process must be single-threaded and must have the same effective
* ownership as this process and mustn't be SUID/SGID.
*
* The keyring will be emplaced on the parent when it next resumes userspace.
*
* If successful, 0 will be returned.
*/
long keyctl_session_to_parent(void)
{
struct task_struct *me, *parent;
const struct cred *mycred, *pcred;
struct callback_head *newwork, *oldwork;
key_ref_t keyring_r;
struct cred *cred;
int ret;
keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
if (IS_ERR(keyring_r))
return PTR_ERR(keyring_r);
ret = -ENOMEM;
/* our parent is going to need a new cred struct, a new tgcred struct
* and new security data, so we allocate them here to prevent ENOMEM in
* our parent */
cred = cred_alloc_blank();
if (!cred)
goto error_keyring;
newwork = &cred->rcu;
cred->session_keyring = key_ref_to_ptr(keyring_r);
keyring_r = NULL;
init_task_work(newwork, key_change_session_keyring);
me = current;
rcu_read_lock();
write_lock_irq(&tasklist_lock);
ret = -EPERM;
oldwork = NULL;
parent = me->real_parent;
/* the parent mustn't be init and mustn't be a kernel thread */
if (parent->pid <= 1 || !parent->mm)
goto unlock;
/* the parent must be single threaded */
if (!thread_group_empty(parent))
goto unlock;
/* the parent and the child must have different session keyrings or
* there's no point */
mycred = current_cred();
pcred = __task_cred(parent);
if (mycred == pcred ||
mycred->session_keyring == pcred->session_keyring) {
ret = 0;
goto unlock;
}
/* the parent must have the same effective ownership and mustn't be
* SUID/SGID */
if (!uid_eq(pcred->uid, mycred->euid) ||
!uid_eq(pcred->euid, mycred->euid) ||
!uid_eq(pcred->suid, mycred->euid) ||
!gid_eq(pcred->gid, mycred->egid) ||
!gid_eq(pcred->egid, mycred->egid) ||
!gid_eq(pcred->sgid, mycred->egid))
goto unlock;
/* the keyrings must have the same UID */
if ((pcred->session_keyring &&
!uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
!uid_eq(mycred->session_keyring->uid, mycred->euid))
goto unlock;
/* cancel an already pending keyring replacement */
oldwork = task_work_cancel(parent, key_change_session_keyring);
/* the replacement session keyring is applied just prior to userspace
* restarting */
ret = task_work_add(parent, newwork, true);
if (!ret)
newwork = NULL;
unlock:
write_unlock_irq(&tasklist_lock);
rcu_read_unlock();
if (oldwork)
put_cred(container_of(oldwork, struct cred, rcu));
if (newwork)
put_cred(cred);
return ret;
error_keyring:
key_ref_put(keyring_r);
return ret;
}
/*
* Apply a restriction to a given keyring.
*
* The caller must have Setattr permission to change keyring restrictions.
*
* The requested type name may be a NULL pointer to reject all attempts
* to link to the keyring. In this case, _restriction must also be NULL.
* Otherwise, both _type and _restriction must be non-NULL.
*
* Returns 0 if successful.
*/
long keyctl_restrict_keyring(key_serial_t id, const char __user *_type,
const char __user *_restriction)
{
key_ref_t key_ref;
char type[32];
char *restriction = NULL;
long ret;
key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
if (IS_ERR(key_ref))
return PTR_ERR(key_ref);
ret = -EINVAL;
if (_type) {
if (!_restriction)
goto error;
ret = key_get_type_from_user(type, _type, sizeof(type));
if (ret < 0)
goto error;
restriction = strndup_user(_restriction, PAGE_SIZE);
if (IS_ERR(restriction)) {
ret = PTR_ERR(restriction);
goto error;
}
} else {
if (_restriction)
goto error;
}
ret = keyring_restrict(key_ref, _type ? type : NULL, restriction);
kfree(restriction);
error:
key_ref_put(key_ref);
return ret;
}
/*
* The key control system call
*/
SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
unsigned long, arg4, unsigned long, arg5)
{
switch (option) {
case KEYCTL_GET_KEYRING_ID:
return keyctl_get_keyring_ID((key_serial_t) arg2,
(int) arg3);
case KEYCTL_JOIN_SESSION_KEYRING:
return keyctl_join_session_keyring((const char __user *) arg2);
case KEYCTL_UPDATE:
return keyctl_update_key((key_serial_t) arg2,
(const void __user *) arg3,
(size_t) arg4);
case KEYCTL_REVOKE:
return keyctl_revoke_key((key_serial_t) arg2);
case KEYCTL_DESCRIBE:
return keyctl_describe_key((key_serial_t) arg2,
(char __user *) arg3,
(unsigned) arg4);
case KEYCTL_CLEAR:
return keyctl_keyring_clear((key_serial_t) arg2);
case KEYCTL_LINK:
return keyctl_keyring_link((key_serial_t) arg2,
(key_serial_t) arg3);
case KEYCTL_UNLINK:
return keyctl_keyring_unlink((key_serial_t) arg2,
(key_serial_t) arg3);
case KEYCTL_SEARCH:
return keyctl_keyring_search((key_serial_t) arg2,
(const char __user *) arg3,
(const char __user *) arg4,
(key_serial_t) arg5);
case KEYCTL_READ:
return keyctl_read_key((key_serial_t) arg2,
(char __user *) arg3,
(size_t) arg4);
case KEYCTL_CHOWN:
return keyctl_chown_key((key_serial_t) arg2,
(uid_t) arg3,
(gid_t) arg4);
case KEYCTL_SETPERM:
return keyctl_setperm_key((key_serial_t) arg2,
(key_perm_t) arg3);
case KEYCTL_INSTANTIATE:
return keyctl_instantiate_key((key_serial_t) arg2,
(const void __user *) arg3,
(size_t) arg4,
(key_serial_t) arg5);
case KEYCTL_NEGATE:
return keyctl_negate_key((key_serial_t) arg2,
(unsigned) arg3,
(key_serial_t) arg4);
case KEYCTL_SET_REQKEY_KEYRING:
return keyctl_set_reqkey_keyring(arg2);
case KEYCTL_SET_TIMEOUT:
return keyctl_set_timeout((key_serial_t) arg2,
(unsigned) arg3);
case KEYCTL_ASSUME_AUTHORITY:
return keyctl_assume_authority((key_serial_t) arg2);
case KEYCTL_GET_SECURITY:
return keyctl_get_security((key_serial_t) arg2,
(char __user *) arg3,
(size_t) arg4);
case KEYCTL_SESSION_TO_PARENT:
return keyctl_session_to_parent();
case KEYCTL_REJECT:
return keyctl_reject_key((key_serial_t) arg2,
(unsigned) arg3,
(unsigned) arg4,
(key_serial_t) arg5);
case KEYCTL_INSTANTIATE_IOV:
return keyctl_instantiate_key_iov(
(key_serial_t) arg2,
(const struct iovec __user *) arg3,
(unsigned) arg4,
(key_serial_t) arg5);
case KEYCTL_INVALIDATE:
return keyctl_invalidate_key((key_serial_t) arg2);
case KEYCTL_GET_PERSISTENT:
return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
case KEYCTL_DH_COMPUTE:
return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2,
(char __user *) arg3, (size_t) arg4,
(struct keyctl_kdf_params __user *) arg5);
case KEYCTL_RESTRICT_KEYRING:
return keyctl_restrict_keyring((key_serial_t) arg2,
(const char __user *) arg3,
(const char __user *) arg4);
default:
return -EOPNOTSUPP;
}
}