6db4831e98
Android 14
688 lines
20 KiB
C
688 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright 2019 Google LLC
|
|
*/
|
|
|
|
/**
|
|
* DOC: The Keyslot Manager
|
|
*
|
|
* Many devices with inline encryption support have a limited number of "slots"
|
|
* into which encryption contexts may be programmed, and requests can be tagged
|
|
* with a slot number to specify the key to use for en/decryption.
|
|
*
|
|
* As the number of slots are limited, and programming keys is expensive on
|
|
* many inline encryption hardware, we don't want to program the same key into
|
|
* multiple slots - if multiple requests are using the same key, we want to
|
|
* program just one slot with that key and use that slot for all requests.
|
|
*
|
|
* The keyslot manager manages these keyslots appropriately, and also acts as
|
|
* an abstraction between the inline encryption hardware and the upper layers.
|
|
*
|
|
* Lower layer devices will set up a keyslot manager in their request queue
|
|
* and tell it how to perform device specific operations like programming/
|
|
* evicting keys from keyslots.
|
|
*
|
|
* Upper layers will call keyslot_manager_get_slot_for_key() to program a
|
|
* key into some slot in the inline encryption hardware.
|
|
*/
|
|
#include <crypto/algapi.h>
|
|
#include <linux/keyslot-manager.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/blkdev.h>
|
|
|
|
struct keyslot {
|
|
atomic_t slot_refs;
|
|
struct list_head idle_slot_node;
|
|
struct hlist_node hash_node;
|
|
struct blk_crypto_key key;
|
|
};
|
|
|
|
struct keyslot_manager {
|
|
unsigned int num_slots;
|
|
struct keyslot_mgmt_ll_ops ksm_ll_ops;
|
|
unsigned int features;
|
|
unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX];
|
|
unsigned int max_dun_bytes_supported;
|
|
void *ll_priv_data;
|
|
|
|
#ifdef CONFIG_PM
|
|
/* Device for runtime power management (NULL if none) */
|
|
struct device *dev;
|
|
#endif
|
|
|
|
/* Protects programming and evicting keys from the device */
|
|
struct rw_semaphore lock;
|
|
/*
|
|
* Above rw_semaphore maybe nested when used a dm stack layer
|
|
* which is with inline encryption
|
|
*/
|
|
unsigned int lock_flags;
|
|
|
|
/* List of idle slots, with least recently used slot at front */
|
|
wait_queue_head_t idle_slots_wait_queue;
|
|
struct list_head idle_slots;
|
|
spinlock_t idle_slots_lock;
|
|
|
|
/*
|
|
* Hash table which maps key hashes to keyslots, so that we can find a
|
|
* key's keyslot in O(1) time rather than O(num_slots). Protected by
|
|
* 'lock'. A cryptographic hash function is used so that timing attacks
|
|
* can't leak information about the raw keys.
|
|
*/
|
|
struct hlist_head *slot_hashtable;
|
|
unsigned int slot_hashtable_size;
|
|
|
|
/* Per-keyslot data */
|
|
struct keyslot slots[];
|
|
};
|
|
|
|
static inline bool keyslot_manager_is_passthrough(struct keyslot_manager *ksm)
|
|
{
|
|
return ksm->num_slots == 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm,
|
|
struct device *dev)
|
|
{
|
|
ksm->dev = dev;
|
|
}
|
|
|
|
/* If there's an underlying device and it's suspended, resume it. */
|
|
static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm)
|
|
{
|
|
if (ksm->dev)
|
|
pm_runtime_get_sync(ksm->dev);
|
|
}
|
|
|
|
static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm)
|
|
{
|
|
if (ksm->dev)
|
|
pm_runtime_put_sync(ksm->dev);
|
|
}
|
|
#else /* CONFIG_PM */
|
|
static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm,
|
|
struct device *dev)
|
|
{
|
|
}
|
|
|
|
static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm)
|
|
{
|
|
}
|
|
|
|
static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm)
|
|
{
|
|
}
|
|
#endif /* !CONFIG_PM */
|
|
|
|
static inline void keyslot_manager_hw_enter(struct keyslot_manager *ksm)
|
|
{
|
|
/*
|
|
* Calling into the driver requires ksm->lock held and the device
|
|
* resumed. But we must resume the device first, since that can acquire
|
|
* and release ksm->lock via keyslot_manager_reprogram_all_keys().
|
|
*/
|
|
keyslot_manager_pm_get(ksm);
|
|
if (!ksm->lock_flags)
|
|
down_write(&ksm->lock);
|
|
else
|
|
down_write_nested(&ksm->lock, ksm->lock_flags);
|
|
}
|
|
|
|
static inline void keyslot_manager_hw_exit(struct keyslot_manager *ksm)
|
|
{
|
|
up_write(&ksm->lock);
|
|
keyslot_manager_pm_put(ksm);
|
|
}
|
|
|
|
/**
|
|
* keyslot_manager_create() - Create a keyslot manager
|
|
* @dev: Device for runtime power management (NULL if none)
|
|
* @num_slots: The number of key slots to manage.
|
|
* @ksm_ll_ops: The struct keyslot_mgmt_ll_ops for the device that this keyslot
|
|
* manager will use to perform operations like programming and
|
|
* evicting keys.
|
|
* @features: The supported features as a bitmask of BLK_CRYPTO_FEATURE_* flags.
|
|
* Most drivers should set BLK_CRYPTO_FEATURE_STANDARD_KEYS here.
|
|
* @crypto_mode_supported: Array of size BLK_ENCRYPTION_MODE_MAX of
|
|
* bitmasks that represents whether a crypto mode
|
|
* and data unit size are supported. The i'th bit
|
|
* of crypto_mode_supported[crypto_mode] is set iff
|
|
* a data unit size of (1 << i) is supported. We
|
|
* only support data unit sizes that are powers of
|
|
* 2.
|
|
* @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops.
|
|
*
|
|
* Allocate memory for and initialize a keyslot manager. Called by e.g.
|
|
* storage drivers to set up a keyslot manager in their request_queue.
|
|
*
|
|
* Context: May sleep
|
|
* Return: Pointer to constructed keyslot manager or NULL on error.
|
|
*/
|
|
struct keyslot_manager *keyslot_manager_create(
|
|
struct device *dev,
|
|
unsigned int num_slots,
|
|
const struct keyslot_mgmt_ll_ops *ksm_ll_ops,
|
|
unsigned int features,
|
|
const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX],
|
|
void *ll_priv_data)
|
|
{
|
|
struct keyslot_manager *ksm;
|
|
unsigned int slot;
|
|
unsigned int i;
|
|
|
|
if (num_slots == 0)
|
|
return NULL;
|
|
|
|
/* Check that all ops are specified */
|
|
if (ksm_ll_ops->keyslot_program == NULL ||
|
|
ksm_ll_ops->keyslot_evict == NULL)
|
|
return NULL;
|
|
|
|
ksm = kvzalloc(struct_size(ksm, slots, num_slots), GFP_KERNEL);
|
|
if (!ksm)
|
|
return NULL;
|
|
|
|
ksm->num_slots = num_slots;
|
|
ksm->ksm_ll_ops = *ksm_ll_ops;
|
|
ksm->features = features;
|
|
memcpy(ksm->crypto_mode_supported, crypto_mode_supported,
|
|
sizeof(ksm->crypto_mode_supported));
|
|
ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
|
|
ksm->ll_priv_data = ll_priv_data;
|
|
keyslot_manager_set_dev(ksm, dev);
|
|
|
|
init_rwsem(&ksm->lock);
|
|
|
|
init_waitqueue_head(&ksm->idle_slots_wait_queue);
|
|
INIT_LIST_HEAD(&ksm->idle_slots);
|
|
|
|
for (slot = 0; slot < num_slots; slot++) {
|
|
list_add_tail(&ksm->slots[slot].idle_slot_node,
|
|
&ksm->idle_slots);
|
|
}
|
|
|
|
spin_lock_init(&ksm->idle_slots_lock);
|
|
|
|
ksm->slot_hashtable_size = roundup_pow_of_two(num_slots);
|
|
ksm->slot_hashtable = kvmalloc_array(ksm->slot_hashtable_size,
|
|
sizeof(ksm->slot_hashtable[0]),
|
|
GFP_KERNEL);
|
|
if (!ksm->slot_hashtable)
|
|
goto err_free_ksm;
|
|
for (i = 0; i < ksm->slot_hashtable_size; i++)
|
|
INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);
|
|
|
|
return ksm;
|
|
|
|
err_free_ksm:
|
|
keyslot_manager_destroy(ksm);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(keyslot_manager_create);
|
|
|
|
void keyslot_manager_set_max_dun_bytes(struct keyslot_manager *ksm,
|
|
unsigned int max_dun_bytes)
|
|
{
|
|
ksm->max_dun_bytes_supported = max_dun_bytes;
|
|
}
|
|
EXPORT_SYMBOL_GPL(keyslot_manager_set_max_dun_bytes);
|
|
|
|
static inline struct hlist_head *
|
|
hash_bucket_for_key(struct keyslot_manager *ksm,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
return &ksm->slot_hashtable[blk_crypto_key_hash(key) &
|
|
(ksm->slot_hashtable_size - 1)];
|
|
}
|
|
|
|
static void remove_slot_from_lru_list(struct keyslot_manager *ksm, int slot)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ksm->idle_slots_lock, flags);
|
|
list_del(&ksm->slots[slot].idle_slot_node);
|
|
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
|
|
}
|
|
|
|
static int find_keyslot(struct keyslot_manager *ksm,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
const struct hlist_head *head = hash_bucket_for_key(ksm, key);
|
|
const struct keyslot *slotp;
|
|
|
|
hlist_for_each_entry(slotp, head, hash_node) {
|
|
if (slotp->key.hash == key->hash &&
|
|
slotp->key.crypto_mode == key->crypto_mode &&
|
|
slotp->key.size == key->size &&
|
|
slotp->key.data_unit_size == key->data_unit_size &&
|
|
!crypto_memneq(slotp->key.raw, key->raw, key->size))
|
|
return slotp - ksm->slots;
|
|
}
|
|
return -ENOKEY;
|
|
}
|
|
|
|
static int find_and_grab_keyslot(struct keyslot_manager *ksm,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
int slot;
|
|
|
|
slot = find_keyslot(ksm, key);
|
|
if (slot < 0)
|
|
return slot;
|
|
if (atomic_inc_return(&ksm->slots[slot].slot_refs) == 1) {
|
|
/* Took first reference to this slot; remove it from LRU list */
|
|
remove_slot_from_lru_list(ksm, slot);
|
|
}
|
|
return slot;
|
|
}
|
|
|
|
/**
|
|
* keyslot_manager_get_slot_for_key() - Program a key into a keyslot.
|
|
* @ksm: The keyslot manager to program the key into.
|
|
* @key: Pointer to the key object to program, including the raw key, crypto
|
|
* mode, and data unit size.
|
|
*
|
|
* Get a keyslot that's been programmed with the specified key. If one already
|
|
* exists, return it with incremented refcount. Otherwise, wait for a keyslot
|
|
* to become idle and program it.
|
|
*
|
|
* Context: Process context. Takes and releases ksm->lock.
|
|
* Return: The keyslot on success, else a -errno value.
|
|
*/
|
|
int keyslot_manager_get_slot_for_key(struct keyslot_manager *ksm,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
int slot;
|
|
int err;
|
|
struct keyslot *idle_slot;
|
|
|
|
if (keyslot_manager_is_passthrough(ksm))
|
|
return 0;
|
|
|
|
down_read(&ksm->lock);
|
|
slot = find_and_grab_keyslot(ksm, key);
|
|
up_read(&ksm->lock);
|
|
if (slot != -ENOKEY)
|
|
return slot;
|
|
|
|
for (;;) {
|
|
keyslot_manager_hw_enter(ksm);
|
|
slot = find_and_grab_keyslot(ksm, key);
|
|
if (slot != -ENOKEY) {
|
|
keyslot_manager_hw_exit(ksm);
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* If we're here, that means there wasn't a slot that was
|
|
* already programmed with the key. So try to program it.
|
|
*/
|
|
if (!list_empty(&ksm->idle_slots))
|
|
break;
|
|
|
|
keyslot_manager_hw_exit(ksm);
|
|
wait_event(ksm->idle_slots_wait_queue,
|
|
!list_empty(&ksm->idle_slots));
|
|
}
|
|
|
|
idle_slot = list_first_entry(&ksm->idle_slots, struct keyslot,
|
|
idle_slot_node);
|
|
slot = idle_slot - ksm->slots;
|
|
|
|
err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
|
|
if (err) {
|
|
wake_up(&ksm->idle_slots_wait_queue);
|
|
keyslot_manager_hw_exit(ksm);
|
|
return err;
|
|
}
|
|
|
|
/* Move this slot to the hash list for the new key. */
|
|
if (idle_slot->key.crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
|
|
hlist_del(&idle_slot->hash_node);
|
|
hlist_add_head(&idle_slot->hash_node, hash_bucket_for_key(ksm, key));
|
|
|
|
atomic_set(&idle_slot->slot_refs, 1);
|
|
idle_slot->key = *key;
|
|
|
|
remove_slot_from_lru_list(ksm, slot);
|
|
|
|
keyslot_manager_hw_exit(ksm);
|
|
return slot;
|
|
}
|
|
|
|
/**
|
|
* keyslot_manager_get_slot() - Increment the refcount on the specified slot.
|
|
* @ksm: The keyslot manager that we want to modify.
|
|
* @slot: The slot to increment the refcount of.
|
|
*
|
|
* This function assumes that there is already an active reference to that slot
|
|
* and simply increments the refcount. This is useful when cloning a bio that
|
|
* already has a reference to a keyslot, and we want the cloned bio to also have
|
|
* its own reference.
|
|
*
|
|
* Context: Any context.
|
|
*/
|
|
void keyslot_manager_get_slot(struct keyslot_manager *ksm, unsigned int slot)
|
|
{
|
|
if (keyslot_manager_is_passthrough(ksm))
|
|
return;
|
|
|
|
if (WARN_ON(slot >= ksm->num_slots))
|
|
return;
|
|
|
|
WARN_ON(atomic_inc_return(&ksm->slots[slot].slot_refs) < 2);
|
|
}
|
|
|
|
/**
|
|
* keyslot_manager_put_slot() - Release a reference to a slot
|
|
* @ksm: The keyslot manager to release the reference from.
|
|
* @slot: The slot to release the reference from.
|
|
*
|
|
* Context: Any context.
|
|
*/
|
|
void keyslot_manager_put_slot(struct keyslot_manager *ksm, unsigned int slot)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (keyslot_manager_is_passthrough(ksm))
|
|
return;
|
|
|
|
if (WARN_ON(slot >= ksm->num_slots))
|
|
return;
|
|
|
|
if (atomic_dec_and_lock_irqsave(&ksm->slots[slot].slot_refs,
|
|
&ksm->idle_slots_lock, flags)) {
|
|
list_add_tail(&ksm->slots[slot].idle_slot_node,
|
|
&ksm->idle_slots);
|
|
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
|
|
wake_up(&ksm->idle_slots_wait_queue);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* keyslot_manager_crypto_mode_supported() - Find out if a crypto_mode /
|
|
* data unit size / is_hw_wrapped_key
|
|
* combination is supported by a ksm.
|
|
* @ksm: The keyslot manager to check
|
|
* @crypto_mode: The crypto mode to check for.
|
|
* @dun_bytes: The number of bytes that will be used to specify the DUN
|
|
* @data_unit_size: The data_unit_size for the mode.
|
|
* @is_hw_wrapped_key: Whether a hardware-wrapped key will be used.
|
|
*
|
|
* Calls and returns the result of the crypto_mode_supported function specified
|
|
* by the ksm.
|
|
*
|
|
* Context: Process context.
|
|
* Return: Whether or not this ksm supports the specified crypto settings.
|
|
*/
|
|
bool keyslot_manager_crypto_mode_supported(struct keyslot_manager *ksm,
|
|
enum blk_crypto_mode_num crypto_mode,
|
|
unsigned int dun_bytes,
|
|
unsigned int data_unit_size,
|
|
bool is_hw_wrapped_key)
|
|
{
|
|
if (!ksm)
|
|
return false;
|
|
if (WARN_ON(crypto_mode >= BLK_ENCRYPTION_MODE_MAX))
|
|
return false;
|
|
if (WARN_ON(!is_power_of_2(data_unit_size)))
|
|
return false;
|
|
if (is_hw_wrapped_key) {
|
|
if (!(ksm->features & BLK_CRYPTO_FEATURE_WRAPPED_KEYS))
|
|
return false;
|
|
} else {
|
|
if (!(ksm->features & BLK_CRYPTO_FEATURE_STANDARD_KEYS))
|
|
return false;
|
|
}
|
|
if (!(ksm->crypto_mode_supported[crypto_mode] & data_unit_size))
|
|
return false;
|
|
|
|
return ksm->max_dun_bytes_supported >= dun_bytes;
|
|
}
|
|
|
|
/**
|
|
* keyslot_manager_evict_key() - Evict a key from the lower layer device.
|
|
* @ksm: The keyslot manager to evict from
|
|
* @key: The key to evict
|
|
*
|
|
* Find the keyslot that the specified key was programmed into, and evict that
|
|
* slot from the lower layer device if that slot is not currently in use.
|
|
*
|
|
* Context: Process context. Takes and releases ksm->lock.
|
|
* Return: 0 on success, -EBUSY if the key is still in use, or another
|
|
* -errno value on other error.
|
|
*/
|
|
int keyslot_manager_evict_key(struct keyslot_manager *ksm,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
int slot;
|
|
int err;
|
|
struct keyslot *slotp;
|
|
|
|
if (keyslot_manager_is_passthrough(ksm)) {
|
|
if (ksm->ksm_ll_ops.keyslot_evict) {
|
|
keyslot_manager_hw_enter(ksm);
|
|
err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
|
|
keyslot_manager_hw_exit(ksm);
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
keyslot_manager_hw_enter(ksm);
|
|
|
|
slot = find_keyslot(ksm, key);
|
|
if (slot < 0) {
|
|
err = slot;
|
|
goto out_unlock;
|
|
}
|
|
slotp = &ksm->slots[slot];
|
|
|
|
if (atomic_read(&slotp->slot_refs) != 0) {
|
|
err = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, slot);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
hlist_del(&slotp->hash_node);
|
|
memzero_explicit(&slotp->key, sizeof(slotp->key));
|
|
err = 0;
|
|
out_unlock:
|
|
keyslot_manager_hw_exit(ksm);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* keyslot_manager_reprogram_all_keys() - Re-program all keyslots.
|
|
* @ksm: The keyslot manager
|
|
*
|
|
* Re-program all keyslots that are supposed to have a key programmed. This is
|
|
* intended only for use by drivers for hardware that loses its keys on reset.
|
|
*
|
|
* Context: Process context. Takes and releases ksm->lock.
|
|
*/
|
|
void keyslot_manager_reprogram_all_keys(struct keyslot_manager *ksm)
|
|
{
|
|
unsigned int slot;
|
|
|
|
if (WARN_ON(keyslot_manager_is_passthrough(ksm)))
|
|
return;
|
|
|
|
/* This is for device initialization, so don't resume the device */
|
|
down_write(&ksm->lock);
|
|
for (slot = 0; slot < ksm->num_slots; slot++) {
|
|
const struct keyslot *slotp = &ksm->slots[slot];
|
|
int err;
|
|
|
|
if (slotp->key.crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
|
|
continue;
|
|
|
|
err = ksm->ksm_ll_ops.keyslot_program(ksm, &slotp->key, slot);
|
|
WARN_ON(err);
|
|
}
|
|
up_write(&ksm->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(keyslot_manager_reprogram_all_keys);
|
|
|
|
/**
|
|
* keyslot_manager_private() - return the private data stored with ksm
|
|
* @ksm: The keyslot manager
|
|
*
|
|
* Returns the private data passed to the ksm when it was created.
|
|
*/
|
|
void *keyslot_manager_private(struct keyslot_manager *ksm)
|
|
{
|
|
return ksm->ll_priv_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(keyslot_manager_private);
|
|
|
|
void keyslot_manager_destroy(struct keyslot_manager *ksm)
|
|
{
|
|
if (ksm) {
|
|
kvfree(ksm->slot_hashtable);
|
|
memzero_explicit(ksm, struct_size(ksm, slots, ksm->num_slots));
|
|
kvfree(ksm);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(keyslot_manager_destroy);
|
|
|
|
/**
|
|
* keyslot_manager_create_passthrough() - Create a passthrough keyslot manager
|
|
* @dev: Device for runtime power management (NULL if none)
|
|
* @ksm_ll_ops: The struct keyslot_mgmt_ll_ops
|
|
* @features: Bitmask of BLK_CRYPTO_FEATURE_* flags
|
|
* @crypto_mode_supported: Bitmasks for supported encryption modes
|
|
* @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops.
|
|
*
|
|
* Allocate memory for and initialize a passthrough keyslot manager.
|
|
* Called by e.g. storage drivers to set up a keyslot manager in their
|
|
* request_queue, when the storage driver wants to manage its keys by itself.
|
|
* This is useful for inline encryption hardware that don't have a small fixed
|
|
* number of keyslots, and for layered devices.
|
|
*
|
|
* See keyslot_manager_create() for more details about the parameters.
|
|
*
|
|
* Context: This function may sleep
|
|
* Return: Pointer to constructed keyslot manager or NULL on error.
|
|
*/
|
|
struct keyslot_manager *keyslot_manager_create_passthrough(
|
|
struct device *dev,
|
|
const struct keyslot_mgmt_ll_ops *ksm_ll_ops,
|
|
unsigned int features,
|
|
const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX],
|
|
void *ll_priv_data)
|
|
{
|
|
struct keyslot_manager *ksm;
|
|
|
|
ksm = kzalloc(sizeof(*ksm), GFP_KERNEL);
|
|
if (!ksm)
|
|
return NULL;
|
|
|
|
ksm->ksm_ll_ops = *ksm_ll_ops;
|
|
ksm->features = features;
|
|
memcpy(ksm->crypto_mode_supported, crypto_mode_supported,
|
|
sizeof(ksm->crypto_mode_supported));
|
|
ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
|
|
ksm->ll_priv_data = ll_priv_data;
|
|
keyslot_manager_set_dev(ksm, dev);
|
|
|
|
init_rwsem(&ksm->lock);
|
|
|
|
return ksm;
|
|
}
|
|
EXPORT_SYMBOL_GPL(keyslot_manager_create_passthrough);
|
|
|
|
/**
|
|
* keyslot_manager_intersect_modes() - restrict supported modes by child device
|
|
* @parent: The keyslot manager for parent device
|
|
* @child: The keyslot manager for child device, or NULL
|
|
*
|
|
* Clear any crypto mode support bits in @parent that aren't set in @child.
|
|
* If @child is NULL, then all parent bits are cleared.
|
|
*
|
|
* Only use this when setting up the keyslot manager for a layered device,
|
|
* before it's been exposed yet.
|
|
*/
|
|
void keyslot_manager_intersect_modes(struct keyslot_manager *parent,
|
|
const struct keyslot_manager *child)
|
|
{
|
|
if (child) {
|
|
unsigned int i;
|
|
|
|
parent->features &= child->features;
|
|
parent->max_dun_bytes_supported =
|
|
min(parent->max_dun_bytes_supported,
|
|
child->max_dun_bytes_supported);
|
|
for (i = 0; i < ARRAY_SIZE(child->crypto_mode_supported); i++) {
|
|
parent->crypto_mode_supported[i] &=
|
|
child->crypto_mode_supported[i];
|
|
}
|
|
} else {
|
|
parent->features = 0;
|
|
parent->max_dun_bytes_supported = 0;
|
|
memset(parent->crypto_mode_supported, 0,
|
|
sizeof(parent->crypto_mode_supported));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(keyslot_manager_intersect_modes);
|
|
|
|
/**
|
|
* keyslot_manager_derive_raw_secret() - Derive software secret from wrapped key
|
|
* @ksm: The keyslot manager
|
|
* @wrapped_key: The wrapped key
|
|
* @wrapped_key_size: Size of the wrapped key in bytes
|
|
* @secret: (output) the software secret
|
|
* @secret_size: (output) the number of secret bytes to derive
|
|
*
|
|
* Given a hardware-wrapped key, ask the hardware to derive a secret which
|
|
* software can use for cryptographic tasks other than inline encryption. The
|
|
* derived secret is guaranteed to be cryptographically isolated from the key
|
|
* with which any inline encryption with this wrapped key would actually be
|
|
* done. I.e., both will be derived from the unwrapped key.
|
|
*
|
|
* Return: 0 on success, -EOPNOTSUPP if hardware-wrapped keys are unsupported,
|
|
* or another -errno code.
|
|
*/
|
|
int keyslot_manager_derive_raw_secret(struct keyslot_manager *ksm,
|
|
const u8 *wrapped_key,
|
|
unsigned int wrapped_key_size,
|
|
u8 *secret, unsigned int secret_size)
|
|
{
|
|
int err;
|
|
|
|
if (ksm->ksm_ll_ops.derive_raw_secret) {
|
|
keyslot_manager_hw_enter(ksm);
|
|
err = ksm->ksm_ll_ops.derive_raw_secret(ksm, wrapped_key,
|
|
wrapped_key_size,
|
|
secret, secret_size);
|
|
keyslot_manager_hw_exit(ksm);
|
|
} else {
|
|
err = -EOPNOTSUPP;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(keyslot_manager_derive_raw_secret);
|
|
|
|
/**
|
|
* ksm_lock() - set one-depth nesting of lock class
|
|
* @flags: now, it's only support one depth
|
|
*
|
|
* Some scenarios ksm->lock will be nest such as DM stack layer,
|
|
* although DM's is different with lower device driver's ksm->lock,
|
|
* lockdep recognizes them as a same one, then will trigger deadlock
|
|
* detection, set another lock sub-class could avoid it.
|
|
*
|
|
*/
|
|
inline void ksm_flock(struct keyslot_manager *ksm, unsigned int flags)
|
|
{
|
|
ksm->lock_flags = flags;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ksm_flock);
|