6db4831e98
Android 14
5108 lines
137 KiB
C
5108 lines
137 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Copyright (c) 2021 MediaTek Inc.
|
|
*/
|
|
|
|
#include <linux/init.h> /* For init/exit macros */
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h> /* For MODULE_ marcros */
|
|
#include <linux/platform_device.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/cdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kdev_t.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/time.h>
|
|
#ifdef CONFIG_OF
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#endif
|
|
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <linux/mfd/mt6397/rtc_misc.h>
|
|
#include <mt-plat/mtk_boot.h>
|
|
|
|
#include <mt-plat/mtk_boot_reason.h>
|
|
|
|
#include <mach/mt_battery_meter.h>
|
|
#include <mt-plat/battery_common.h>
|
|
#include <mt-plat/battery_meter.h>
|
|
#include <mt-plat/battery_meter_hal.h>
|
|
#ifdef MTK_MULTI_BAT_PROFILE_SUPPORT
|
|
#include <mach/mt_battery_meter_table_multi_profile.h>
|
|
#else
|
|
#include <mach/mt_battery_meter_table.h>
|
|
#endif
|
|
|
|
#include <mt-plat/upmu_common.h>
|
|
|
|
/* ============================================================ // */
|
|
/* define */
|
|
/* ============================================================ // */
|
|
#define PROFILE_SIZE 4
|
|
|
|
static DEFINE_MUTEX(FGADC_mutex);
|
|
|
|
int Enable_FGADC_LOG;
|
|
|
|
/* ============================================================ // */
|
|
/* global variable */
|
|
/* ============================================================ // */
|
|
BATTERY_METER_CONTROL battery_meter_ctrl;
|
|
|
|
enum kal_bool gFG_Is_Charging;
|
|
signed int g_auxadc_solution;
|
|
unsigned int g_spm_timer = 600;
|
|
bool bat_spm_timeout;
|
|
unsigned int _g_bat_sleep_total_time = NORMAL_WAKEUP_PERIOD;
|
|
#ifdef MTK_ENABLE_AGING_ALGORITHM
|
|
unsigned int suspend_time;
|
|
#endif
|
|
signed int g_booting_vbat;
|
|
#if !defined(CONFIG_POWER_EXT)
|
|
static unsigned int temperature_change = 1;
|
|
#endif
|
|
|
|
/* ////////////////////////////////////////////////////////////////////////// */
|
|
/* // PMIC AUXADC Related Variable */
|
|
/* ////////////////////////////////////////////////////////////////////////// */
|
|
int g_R_BAT_SENSE; /* R_BAT_SENSE; */
|
|
int g_R_I_SENSE; /* R_I_SENSE; */
|
|
int g_R_CHARGER_1; /* R_CHARGER_1; */
|
|
int g_R_CHARGER_2; /* R_CHARGER_2; */
|
|
|
|
int fg_qmax_update_for_aging_flag = 1;
|
|
|
|
/* HW FG */
|
|
signed int gFG_DOD0;
|
|
signed int gFG_DOD1;
|
|
signed int gFG_columb;
|
|
signed int gFG_voltage;
|
|
signed int gFG_current;
|
|
signed int gFG_capacity;
|
|
signed int gFG_capacity_by_c;
|
|
signed int gFG_capacity_by_c_init;
|
|
signed int gFG_capacity_by_v;
|
|
signed int gFG_capacity_by_v_init;
|
|
signed int gFG_temp = 100;
|
|
signed int gFG_resistance_bat;
|
|
signed int gFG_compensate_value;
|
|
signed int gFG_ori_voltage;
|
|
signed int gFG_BATT_CAPACITY;
|
|
signed int gFG_voltage_init;
|
|
signed int gFG_current_auto_detect_R_fg_total;
|
|
signed int gFG_current_auto_detect_R_fg_count;
|
|
signed int gFG_current_auto_detect_R_fg_result;
|
|
signed int gFG_15_vlot = 3700;
|
|
signed int gFG_BATT_CAPACITY_init_high_current = 1200;
|
|
signed int gFG_BATT_CAPACITY_aging = 1200;
|
|
|
|
/* voltage mode */
|
|
signed int gfg_percent_check_point = 50;
|
|
signed int volt_mode_update_timer;
|
|
signed int volt_mode_update_time_out = 6; /* 1mins */
|
|
|
|
/* EM */
|
|
signed int g_fg_dbg_bat_volt;
|
|
signed int g_fg_dbg_bat_current;
|
|
signed int g_fg_dbg_bat_zcv;
|
|
signed int g_fg_dbg_bat_temp;
|
|
signed int g_fg_dbg_bat_r;
|
|
signed int g_fg_dbg_bat_car;
|
|
signed int g_fg_dbg_bat_qmax;
|
|
signed int g_fg_dbg_d0;
|
|
signed int g_fg_dbg_d1;
|
|
signed int g_fg_dbg_percentage;
|
|
signed int g_fg_dbg_percentage_fg;
|
|
signed int g_fg_dbg_percentage_voltmode;
|
|
|
|
signed int FGvbatVoltageBuffer[FG_VBAT_AVERAGE_SIZE];
|
|
signed int FGbatteryIndex;
|
|
signed int FGbatteryVoltageSum;
|
|
signed int gFG_voltage_AVG;
|
|
signed int gFG_vbat_offset;
|
|
#ifdef Q_MAX_BY_CURRENT
|
|
signed int FGCurrentBuffer[FG_CURRENT_AVERAGE_SIZE];
|
|
signed int FGCurrentIndex;
|
|
signed int FGCurrentSum;
|
|
signed int gFG_current_AVG;
|
|
#endif
|
|
signed int g_tracking_point; /* CUST_TRACKING_POINT; */
|
|
signed int g_rtc_fg_soc;
|
|
signed int g_I_SENSE_offset;
|
|
|
|
/* SW FG */
|
|
signed int oam_v_ocv_init;
|
|
signed int oam_v_ocv_1;
|
|
signed int oam_v_ocv_2;
|
|
signed int oam_r_1;
|
|
signed int oam_r_2;
|
|
signed int oam_d0;
|
|
signed int oam_i_ori;
|
|
signed int oam_i_1;
|
|
signed int oam_i_2;
|
|
signed int oam_car_1;
|
|
signed int oam_car_2;
|
|
signed int oam_d_1 = 1;
|
|
signed int oam_d_2 = 1;
|
|
signed int oam_d_3 = 1;
|
|
signed int oam_d_3_pre;
|
|
signed int oam_d_4;
|
|
signed int oam_d_4_pre;
|
|
signed int oam_d_5;
|
|
signed int oam_init_i;
|
|
signed int oam_run_i;
|
|
signed int d5_count;
|
|
signed int d5_count_time = 60;
|
|
signed int d5_count_time_rate = 1;
|
|
signed int g_d_hw_ocv;
|
|
signed int g_vol_bat_hw_ocv;
|
|
signed int g_hw_ocv_before_sleep;
|
|
struct timespec g_rtc_time_before_sleep, xts_before_sleep;
|
|
signed int g_sw_vbat_temp;
|
|
struct timespec last_oam_run_time;
|
|
|
|
/* aging mechanism */
|
|
#ifdef MTK_ENABLE_AGING_ALGORITHM
|
|
|
|
#ifdef SOC_BY_HW_FG
|
|
static signed int aging_ocv_1;
|
|
static signed int aging_ocv_2;
|
|
static signed int aging_car_1;
|
|
static signed int aging_car_2;
|
|
static signed int aging_dod_1;
|
|
static signed int aging_dod_2;
|
|
#ifdef MD_SLEEP_CURRENT_CHECK
|
|
static signed int columb_before_sleep = 0x123456;
|
|
#endif
|
|
#endif
|
|
/* static time_t aging_resume_time_1 = 0; */
|
|
/* static time_t aging_resume_time_2 = 0; */
|
|
|
|
#ifndef SELF_DISCHARGE_CHECK_THRESHOLD
|
|
#define SELF_DISCHARGE_CHECK_THRESHOLD 10
|
|
#endif
|
|
|
|
#ifndef OCV_RECOVER_TIME
|
|
#define OCV_RECOVER_TIME 2100
|
|
#endif
|
|
|
|
#ifndef DOD1_ABOVE_THRESHOLD
|
|
#define DOD1_ABOVE_THRESHOLD 30
|
|
#endif
|
|
|
|
#ifndef DOD2_BELOW_THRESHOLD
|
|
#define DOD2_BELOW_THRESHOLD 70
|
|
#endif
|
|
|
|
#ifndef MIN_DOD_DIFF_THRESHOLD
|
|
#define MIN_DOD_DIFF_THRESHOLD 60
|
|
#endif
|
|
|
|
#ifndef MIN_AGING_FACTOR
|
|
#define MIN_AGING_FACTOR 90
|
|
#endif
|
|
|
|
#endif /* aging mechanism */
|
|
|
|
/* battery info */
|
|
#ifdef MTK_BATTERY_LIFETIME_DATA_SUPPORT
|
|
|
|
signed int gFG_battery_cycle;
|
|
signed int gFG_aging_factor = 100;
|
|
signed int gFG_columb_sum;
|
|
signed int gFG_pre_columb_count;
|
|
|
|
signed int gFG_max_voltage;
|
|
signed int gFG_min_voltage = 10000;
|
|
signed int gFG_max_current;
|
|
signed int gFG_min_current;
|
|
signed int gFG_max_temperature = -20;
|
|
signed int gFG_min_temperature = 100;
|
|
|
|
#endif /* battery info */
|
|
|
|
/*extern char *saved_command_line;*/
|
|
/* Temperature window size */
|
|
#define TEMP_AVERAGE_SIZE 30
|
|
|
|
enum kal_bool gFG_Is_offset_init;
|
|
|
|
void battery_meter_reset_sleep_time(void)
|
|
{
|
|
_g_bat_sleep_total_time = 0;
|
|
}
|
|
|
|
#ifdef MTK_MULTI_BAT_PROFILE_SUPPORT
|
|
/*extern int IMM_GetOneChannelValue_Cali(int Channel, int *voltage);*/
|
|
unsigned int g_fg_battery_id;
|
|
|
|
#ifdef MTK_GET_BATTERY_ID_BY_AUXADC
|
|
void fgauge_get_profile_id(void)
|
|
{
|
|
int id_volt = 0;
|
|
int id = 0;
|
|
int ret = 0;
|
|
|
|
ret = IMM_GetOneChannelValue_Cali(BATTERY_ID_CHANNEL_NUM, &id_volt);
|
|
if (ret != 0)
|
|
bm_print(BM_LOG_CRTI,
|
|
"[%s]id_volt read fail\n", __func__);
|
|
else
|
|
bm_print(BM_LOG_CRTI, "[%s]id_volt = %d\n",
|
|
__func__, id_volt);
|
|
|
|
if ((sizeof(g_battery_id_voltage) / sizeof(signed int)) !=
|
|
TOTAL_BATTERY_NUMBER) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s]error! voltage range incorrect!\n", __func__);
|
|
return;
|
|
}
|
|
|
|
for (id = 0; id < TOTAL_BATTERY_NUMBER; id++) {
|
|
if (id_volt < g_battery_id_voltage[id]) {
|
|
g_fg_battery_id = id;
|
|
break;
|
|
} else if (g_battery_id_voltage[id] == -1) {
|
|
g_fg_battery_id = TOTAL_BATTERY_NUMBER - 1;
|
|
}
|
|
}
|
|
|
|
bm_print(BM_LOG_CRTI, "[%s]Battery id (%d)\n",
|
|
__func__, g_fg_battery_id);
|
|
}
|
|
#elif defined(MTK_GET_BATTERY_ID_BY_GPIO)
|
|
void fgauge_get_profile_id(void)
|
|
{
|
|
g_fg_battery_id = 0;
|
|
}
|
|
#else
|
|
void fgauge_get_profile_id(void)
|
|
{
|
|
g_fg_battery_id = 0;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* ============================================================ // */
|
|
/* function prototype */
|
|
/* ============================================================ // */
|
|
struct battery_meter_custom_data batt_meter_cust_data;
|
|
|
|
int __batt_meter_init_cust_data_from_cust_header(void)
|
|
{
|
|
battery_log(BAT_LOG_CRTI,
|
|
"%s\n", __func__);
|
|
|
|
/* mt_battery_meter_table.h */
|
|
#if (BAT_NTC_10 == 1)
|
|
batt_meter_cust_data.bat_ntc = 10;
|
|
#elif (BAT_NTC_47 == 1)
|
|
batt_meter_cust_data.bat_ntc = 47;
|
|
#endif
|
|
|
|
#if defined(RBAT_PULL_UP_R)
|
|
batt_meter_cust_data.rbat_pull_up_r = RBAT_PULL_UP_R;
|
|
#endif
|
|
#if defined(RBAT_PULL_UP_VOLT)
|
|
batt_meter_cust_data.rbat_pull_up_volt = RBAT_PULL_UP_VOLT;
|
|
#endif
|
|
|
|
/* mt_battery_meter.h */
|
|
|
|
/* ADC resister */
|
|
#if defined(R_BAT_SENSE)
|
|
batt_meter_cust_data.r_bat_sense = R_BAT_SENSE;
|
|
g_R_BAT_SENSE = R_BAT_SENSE;
|
|
#endif
|
|
#if defined(R_I_SENSE)
|
|
batt_meter_cust_data.r_i_sense = R_I_SENSE;
|
|
g_R_I_SENSE = R_I_SENSE;
|
|
#endif
|
|
#if defined(R_CHARGER_1)
|
|
batt_meter_cust_data.r_charger_1 = R_CHARGER_1;
|
|
g_R_CHARGER_1 = R_CHARGER_1;
|
|
#endif
|
|
#if defined(R_CHARGER_2)
|
|
batt_meter_cust_data.r_charger_2 = R_CHARGER_2;
|
|
g_R_CHARGER_2 = R_CHARGER_2;
|
|
#endif
|
|
|
|
#if defined(TEMPERATURE_T0)
|
|
batt_meter_cust_data.temperature_t0 = TEMPERATURE_T0;
|
|
#endif
|
|
#if defined(TEMPERATURE_T1)
|
|
batt_meter_cust_data.temperature_t1 = TEMPERATURE_T1;
|
|
#endif
|
|
#if defined(TEMPERATURE_T2)
|
|
batt_meter_cust_data.temperature_t2 = TEMPERATURE_T2;
|
|
#endif
|
|
#if defined(TEMPERATURE_T3)
|
|
batt_meter_cust_data.temperature_t3 = TEMPERATURE_T3;
|
|
#endif
|
|
#if defined(TEMPERATURE_T)
|
|
batt_meter_cust_data.temperature_t = TEMPERATURE_T;
|
|
#endif
|
|
#if defined(FG_METER_RESISTANCE)
|
|
batt_meter_cust_data.fg_meter_resistance = FG_METER_RESISTANCE;
|
|
#endif
|
|
|
|
/* Qmax for battery */
|
|
#if defined(Q_MAX_POS_50)
|
|
batt_meter_cust_data.q_max_pos_50 = Q_MAX_POS_50;
|
|
#endif
|
|
#if defined(Q_MAX_POS_25)
|
|
batt_meter_cust_data.q_max_pos_25 = Q_MAX_POS_25;
|
|
#endif
|
|
#if defined(Q_MAX_POS_0)
|
|
batt_meter_cust_data.q_max_pos_0 = Q_MAX_POS_0;
|
|
#endif
|
|
#if defined(Q_MAX_NEG_10)
|
|
batt_meter_cust_data.q_max_neg_10 = Q_MAX_NEG_10;
|
|
#endif
|
|
#if defined(Q_MAX_POS_50_H_CURRENT)
|
|
batt_meter_cust_data.q_max_pos_50_h_current = Q_MAX_POS_50_H_CURRENT;
|
|
#endif
|
|
#if defined(Q_MAX_POS_25_H_CURRENT)
|
|
batt_meter_cust_data.q_max_pos_25_h_current = Q_MAX_POS_25_H_CURRENT;
|
|
#endif
|
|
#if defined(Q_MAX_POS_0_H_CURRENT)
|
|
batt_meter_cust_data.q_max_pos_0_h_current = Q_MAX_POS_0_H_CURRENT;
|
|
#endif
|
|
#if defined(Q_MAX_NEG_10_H_CURRENT)
|
|
batt_meter_cust_data.q_max_neg_10_h_current = Q_MAX_NEG_10_H_CURRENT;
|
|
#endif
|
|
#if defined(OAM_D5)
|
|
batt_meter_cust_data.oam_d5 = OAM_D5; /* 1 : D5, 0: D2 */
|
|
#endif
|
|
|
|
#if defined(CHANGE_TRACKING_POINT)
|
|
batt_meter_cust_data.change_tracking_point = 1;
|
|
#else /* #if defined(CHANGE_TRACKING_POINT) */
|
|
batt_meter_cust_data.change_tracking_point = 0;
|
|
#endif /* #if defined(CHANGE_TRACKING_POINT) */
|
|
|
|
#if defined(CUST_TRACKING_POINT)
|
|
batt_meter_cust_data.cust_tracking_point = CUST_TRACKING_POINT;
|
|
g_tracking_point = CUST_TRACKING_POINT;
|
|
#endif
|
|
#if defined(CUST_R_SENSE)
|
|
batt_meter_cust_data.cust_r_sense = CUST_R_SENSE;
|
|
#endif
|
|
#if defined(CUST_HW_CC)
|
|
batt_meter_cust_data.cust_hw_cc = CUST_HW_CC;
|
|
#endif
|
|
#if defined(AGING_TUNING_VALUE)
|
|
batt_meter_cust_data.aging_tuning_value = AGING_TUNING_VALUE;
|
|
#endif
|
|
#if defined(CUST_R_FG_OFFSET)
|
|
batt_meter_cust_data.cust_r_fg_offset = CUST_R_FG_OFFSET;
|
|
#endif
|
|
#if defined(OCV_BOARD_COMPESATE)
|
|
batt_meter_cust_data.ocv_board_compesate = OCV_BOARD_COMPESATE;
|
|
#endif
|
|
#if defined(R_FG_BOARD_BASE)
|
|
batt_meter_cust_data.r_fg_board_base = R_FG_BOARD_BASE;
|
|
#endif
|
|
#if defined(R_FG_BOARD_SLOPE)
|
|
batt_meter_cust_data.r_fg_board_slope = R_FG_BOARD_SLOPE;
|
|
#endif
|
|
#if defined(CAR_TUNE_VALUE)
|
|
batt_meter_cust_data.car_tune_value = CAR_TUNE_VALUE;
|
|
#endif
|
|
|
|
/* HW Fuel gague */
|
|
#if defined(CURRENT_DETECT_R_FG)
|
|
batt_meter_cust_data.current_detect_r_fg = CURRENT_DETECT_R_FG;
|
|
#endif
|
|
#if defined(MinErrorOffset)
|
|
batt_meter_cust_data.minerroroffset = MinErrorOffset;
|
|
#endif
|
|
#if defined(FG_VBAT_AVERAGE_SIZE)
|
|
batt_meter_cust_data.fg_vbat_average_size = FG_VBAT_AVERAGE_SIZE;
|
|
#endif
|
|
#if defined(R_FG_VALUE)
|
|
batt_meter_cust_data.r_fg_value = R_FG_VALUE;
|
|
#endif
|
|
#if defined(CUST_POWERON_DELTA_CAPACITY_TOLRANCE)
|
|
batt_meter_cust_data.cust_poweron_delta_capacity_tolrance =
|
|
CUST_POWERON_DELTA_CAPACITY_TOLRANCE;
|
|
#endif
|
|
#if defined(CUST_POWERON_LOW_CAPACITY_TOLRANCE)
|
|
batt_meter_cust_data.cust_poweron_low_capacity_tolrance =
|
|
CUST_POWERON_LOW_CAPACITY_TOLRANCE;
|
|
#endif
|
|
#if defined(CUST_POWERON_MAX_VBAT_TOLRANCE)
|
|
batt_meter_cust_data.cust_poweron_max_vbat_tolrance =
|
|
CUST_POWERON_MAX_VBAT_TOLRANCE;
|
|
#endif
|
|
#if defined(CUST_POWERON_DELTA_VBAT_TOLRANCE)
|
|
batt_meter_cust_data.cust_poweron_delta_vbat_tolrance =
|
|
CUST_POWERON_DELTA_VBAT_TOLRANCE;
|
|
#endif
|
|
#if defined(CUST_POWERON_DELTA_HW_SW_OCV_CAPACITY_TOLRANCE)
|
|
batt_meter_cust_data.cust_poweron_delta_hw_sw_ocv_capacity_tolrance =
|
|
CUST_POWERON_DELTA_HW_SW_OCV_CAPACITY_TOLRANCE;
|
|
#endif
|
|
|
|
#if defined(FIXED_TBAT_25)
|
|
batt_meter_cust_data.fixed_tbat_25 = 1;
|
|
#else /* #if defined(FIXED_TBAT_25) */
|
|
batt_meter_cust_data.fixed_tbat_25 = 0;
|
|
#endif /* #if defined(FIXED_TBAT_25) */
|
|
|
|
/* Dynamic change wake up period of battery thread when suspend */
|
|
#if defined(VBAT_NORMAL_WAKEUP)
|
|
batt_meter_cust_data.vbat_normal_wakeup = VBAT_NORMAL_WAKEUP;
|
|
#endif
|
|
#if defined(VBAT_LOW_POWER_WAKEUP)
|
|
batt_meter_cust_data.vbat_low_power_wakeup = VBAT_LOW_POWER_WAKEUP;
|
|
#endif
|
|
#if defined(NORMAL_WAKEUP_PERIOD)
|
|
batt_meter_cust_data.normal_wakeup_period = NORMAL_WAKEUP_PERIOD;
|
|
_g_bat_sleep_total_time = NORMAL_WAKEUP_PERIOD;
|
|
#endif
|
|
#if defined(LOW_POWER_WAKEUP_PERIOD)
|
|
batt_meter_cust_data.low_power_wakeup_period = LOW_POWER_WAKEUP_PERIOD;
|
|
#endif
|
|
#if defined(CLOSE_POWEROFF_WAKEUP_PERIOD)
|
|
batt_meter_cust_data.close_poweroff_wakeup_period =
|
|
CLOSE_POWEROFF_WAKEUP_PERIOD;
|
|
#endif
|
|
|
|
#if defined(IS_BATTERY_REMOVE_BY_PMIC)
|
|
batt_meter_cust_data.vbat_remove_detection = 1;
|
|
#else /* #if defined(IS_BATTERY_REMOVE_BY_PMIC) */
|
|
batt_meter_cust_data.vbat_remove_detection = 0;
|
|
#endif /* #if defined(IS_BATTERY_REMOVE_BY_PMIC) */
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(BATTERY_DTS_SUPPORT) && defined(CONFIG_OF)
|
|
static void __batt_meter_parse_node(const struct device_node *np,
|
|
const char *node_srting, int *cust_val)
|
|
{
|
|
u32 val;
|
|
|
|
if (of_property_read_u32(np, node_srting, &val) == 0) {
|
|
(*cust_val) = (int)val;
|
|
bm_print(BM_LOG_FULL, "Get %s: %d\n", node_srting, (*cust_val));
|
|
} else {
|
|
bm_print(BM_LOG_CRTI, "Get %s failed\n", node_srting);
|
|
}
|
|
}
|
|
|
|
static void __batt_meter_parse_table(const struct device_node *np,
|
|
const char *node_srting,
|
|
struct battery_profile_struct *profile_p)
|
|
{
|
|
int addr, val, idx, saddles;
|
|
|
|
/*the number of battery table is */
|
|
/* the same as the number of r table */
|
|
saddles = fgauge_get_saddles();
|
|
idx = 0;
|
|
bm_print(BM_LOG_CRTI, "%s: %s, %d\n", __func__, node_srting,
|
|
saddles);
|
|
|
|
while (!of_property_read_u32_index(np, node_srting, idx, &addr)) {
|
|
idx++;
|
|
if (!of_property_read_u32_index(np, node_srting, idx, &val)) {
|
|
battery_log(
|
|
BAT_LOG_CRTI,
|
|
"%s: addr: %d, val: %d\n", __func__,
|
|
addr, val);
|
|
}
|
|
profile_p->percentage = addr;
|
|
profile_p->voltage = val;
|
|
|
|
/* dump parsing data */
|
|
#if 0
|
|
msleep(20);
|
|
bm_print(BM_LOG_CRTI,
|
|
"%s>> %s[%d]: <%d, %d>\n",
|
|
__func__,
|
|
node_srting, (idx/2), profile_p->percentage,
|
|
profile_p->voltage);
|
|
#endif
|
|
|
|
profile_p++;
|
|
if ((idx++) >= (saddles * 2))
|
|
break;
|
|
}
|
|
|
|
/* error handle */
|
|
if (idx == 0) {
|
|
battery_log(BAT_LOG_CRTI, "[%s] cannot find %s in dts\n",
|
|
__func__, node_srting);
|
|
return;
|
|
}
|
|
|
|
/* use last data to fill with the rest array */
|
|
/* if raw data is less than temp array */
|
|
/* error handle */
|
|
profile_p--;
|
|
|
|
while (idx < (saddles * 2)) {
|
|
profile_p++;
|
|
profile_p->percentage = addr;
|
|
profile_p->voltage = val;
|
|
idx = idx + 2;
|
|
|
|
/* dump parsing data */
|
|
#if 0
|
|
msleep(20);
|
|
bm_print(BM_LOG_CRTI,
|
|
"%s>> %s[%d]: <%d, %d>\n",
|
|
__func__,
|
|
node_srting, (idx/2) - 1, profile_p->percentage,
|
|
profile_p->voltage);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
int __batt_meter_init_cust_data_from_dt(void)
|
|
{
|
|
struct device_node *np;
|
|
int num;
|
|
unsigned int idx, addr, val;
|
|
|
|
/* check customer setting */
|
|
np = of_find_compatible_node(NULL, NULL, "mediatek,bat_meter");
|
|
if (!np) {
|
|
battery_log(BAT_LOG_CRTI,
|
|
"Failed to find device-tree node: bat_meter\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
__batt_meter_parse_node(np, "rbat_pull_up_r",
|
|
&batt_meter_cust_data.rbat_pull_up_r);
|
|
|
|
__batt_meter_parse_node(np, "rbat_pull_up_volt",
|
|
&batt_meter_cust_data.rbat_pull_up_volt);
|
|
|
|
__batt_meter_parse_node(np, "batt_temperature_table_num", &num);
|
|
|
|
idx = 0;
|
|
while (!of_property_read_u32_index(np, "batt_temperature_table", idx,
|
|
&addr)) {
|
|
idx++;
|
|
if (!of_property_read_u32_index(np, "batt_temperature_table",
|
|
idx, &val)) {
|
|
battery_log(
|
|
BAT_LOG_CRTI,
|
|
"batt_temperature_table: addr: %d, val: %d\n",
|
|
addr, val);
|
|
}
|
|
Batt_Temperature_Table[idx / 2].BatteryTemp = addr;
|
|
Batt_Temperature_Table[idx / 2].TemperatureR = val;
|
|
|
|
idx++;
|
|
if (idx >= num * 2)
|
|
break;
|
|
}
|
|
|
|
__batt_meter_parse_node(np, "battery_profile_t0_num", &num);
|
|
|
|
__batt_meter_parse_table(
|
|
np, "battery_profile_t0",
|
|
fgauge_get_profile(batt_meter_cust_data.temperature_t0));
|
|
|
|
__batt_meter_parse_node(np, "battery_profile_t1_num", &num);
|
|
|
|
__batt_meter_parse_table(
|
|
np, "battery_profile_t1",
|
|
fgauge_get_profile(batt_meter_cust_data.temperature_t1));
|
|
|
|
__batt_meter_parse_node(np, "battery_profile_t2_num", &num);
|
|
|
|
__batt_meter_parse_table(
|
|
np, "battery_profile_t2",
|
|
fgauge_get_profile(batt_meter_cust_data.temperature_t2));
|
|
|
|
__batt_meter_parse_node(np, "battery_profile_t3_num", &num);
|
|
|
|
__batt_meter_parse_table(
|
|
np, "battery_profile_t3",
|
|
fgauge_get_profile(batt_meter_cust_data.temperature_t3));
|
|
|
|
__batt_meter_parse_node(np, "r_profile_t0_num", &num);
|
|
|
|
__batt_meter_parse_table(
|
|
np, "r_profile_t0",
|
|
(BATTERY_PROFILE_STRUCT *)fgauge_get_profile_r_table(
|
|
batt_meter_cust_data.temperature_t0));
|
|
|
|
__batt_meter_parse_node(np, "r_profile_t1_num", &num);
|
|
|
|
__batt_meter_parse_table(
|
|
np, "r_profile_t1",
|
|
(BATTERY_PROFILE_STRUCT *)fgauge_get_profile_r_table(
|
|
batt_meter_cust_data.temperature_t1));
|
|
|
|
__batt_meter_parse_node(np, "r_profile_t2_num", &num);
|
|
|
|
__batt_meter_parse_table(
|
|
np, "r_profile_t2",
|
|
(BATTERY_PROFILE_STRUCT *)fgauge_get_profile_r_table(
|
|
batt_meter_cust_data.temperature_t2));
|
|
|
|
__batt_meter_parse_node(np, "r_profile_t3_num", &num);
|
|
|
|
__batt_meter_parse_table(
|
|
np, "r_profile_t3",
|
|
(BATTERY_PROFILE_STRUCT *)fgauge_get_profile_r_table(
|
|
batt_meter_cust_data.temperature_t3));
|
|
|
|
__batt_meter_parse_node(np, "r_bat_sense",
|
|
&batt_meter_cust_data.r_bat_sense);
|
|
|
|
__batt_meter_parse_node(np, "r_i_sense",
|
|
&batt_meter_cust_data.r_i_sense);
|
|
|
|
__batt_meter_parse_node(np, "r_charger_1",
|
|
&batt_meter_cust_data.r_charger_1);
|
|
|
|
__batt_meter_parse_node(np, "r_charger_2",
|
|
&batt_meter_cust_data.r_charger_2);
|
|
|
|
__batt_meter_parse_node(np, "temperature_t0",
|
|
&batt_meter_cust_data.temperature_t0);
|
|
|
|
__batt_meter_parse_node(np, "temperature_t1",
|
|
&batt_meter_cust_data.temperature_t1);
|
|
|
|
__batt_meter_parse_node(np, "temperature_t2",
|
|
&batt_meter_cust_data.temperature_t2);
|
|
|
|
__batt_meter_parse_node(np, "temperature_t3",
|
|
&batt_meter_cust_data.temperature_t3);
|
|
|
|
__batt_meter_parse_node(np, "temperature_t",
|
|
&batt_meter_cust_data.temperature_t);
|
|
|
|
__batt_meter_parse_node(np, "fg_meter_resistance",
|
|
&batt_meter_cust_data.fg_meter_resistance);
|
|
|
|
__batt_meter_parse_node(np, "q_max_pos_50",
|
|
&batt_meter_cust_data.q_max_pos_50);
|
|
|
|
__batt_meter_parse_node(np, "q_max_pos_25",
|
|
&batt_meter_cust_data.q_max_pos_25);
|
|
|
|
__batt_meter_parse_node(np, "q_max_pos_0",
|
|
&batt_meter_cust_data.q_max_pos_0);
|
|
|
|
__batt_meter_parse_node(np, "q_max_neg_10",
|
|
&batt_meter_cust_data.q_max_neg_10);
|
|
|
|
__batt_meter_parse_node(np, "q_max_pos_50_h_current",
|
|
&batt_meter_cust_data.q_max_pos_50_h_current);
|
|
|
|
__batt_meter_parse_node(np, "q_max_pos_25_h_current",
|
|
&batt_meter_cust_data.q_max_pos_25_h_current);
|
|
|
|
__batt_meter_parse_node(np, "q_max_pos_0_h_current",
|
|
&batt_meter_cust_data.q_max_pos_0_h_current);
|
|
|
|
__batt_meter_parse_node(np, "oam_d5", &batt_meter_cust_data.oam_d5);
|
|
|
|
__batt_meter_parse_node(np, "change_tracking_point",
|
|
&batt_meter_cust_data.change_tracking_point);
|
|
|
|
__batt_meter_parse_node(np, "cust_tracking_point",
|
|
&batt_meter_cust_data.cust_tracking_point);
|
|
|
|
__batt_meter_parse_node(np, "cust_r_sense",
|
|
&batt_meter_cust_data.cust_r_sense);
|
|
|
|
__batt_meter_parse_node(np, "cust_hw_cc",
|
|
&batt_meter_cust_data.cust_hw_cc);
|
|
|
|
__batt_meter_parse_node(np, "aging_tuning_value",
|
|
&batt_meter_cust_data.aging_tuning_value);
|
|
|
|
__batt_meter_parse_node(np, "cust_r_fg_offset",
|
|
&batt_meter_cust_data.cust_r_fg_offset);
|
|
|
|
__batt_meter_parse_node(np, "ocv_board_compesate",
|
|
&batt_meter_cust_data.ocv_board_compesate);
|
|
|
|
__batt_meter_parse_node(np, "r_fg_board_base",
|
|
&batt_meter_cust_data.r_fg_board_base);
|
|
|
|
__batt_meter_parse_node(np, "r_fg_board_slope",
|
|
&batt_meter_cust_data.r_fg_board_slope);
|
|
|
|
__batt_meter_parse_node(np, "car_tune_value",
|
|
&batt_meter_cust_data.car_tune_value);
|
|
|
|
__batt_meter_parse_node(np, "current_detect_r_fg",
|
|
&batt_meter_cust_data.current_detect_r_fg);
|
|
|
|
__batt_meter_parse_node(np, "minerroroffset",
|
|
&batt_meter_cust_data.minerroroffset);
|
|
|
|
__batt_meter_parse_node(np, "fg_vbat_average_size",
|
|
&batt_meter_cust_data.fg_vbat_average_size);
|
|
|
|
__batt_meter_parse_node(np, "r_fg_value",
|
|
&batt_meter_cust_data.r_fg_value);
|
|
|
|
__batt_meter_parse_node(
|
|
np, "cust_poweron_delta_capacity_tolrance",
|
|
&batt_meter_cust_data.cust_poweron_delta_capacity_tolrance);
|
|
|
|
__batt_meter_parse_node(
|
|
np, "cust_poweron_low_capacity_tolrance",
|
|
&batt_meter_cust_data.cust_poweron_low_capacity_tolrance);
|
|
|
|
__batt_meter_parse_node(
|
|
np, "cust_poweron_max_vbat_tolrance",
|
|
&batt_meter_cust_data.cust_poweron_max_vbat_tolrance);
|
|
|
|
__batt_meter_parse_node(
|
|
np, "cust_poweron_delta_vbat_tolrance",
|
|
&batt_meter_cust_data.cust_poweron_delta_vbat_tolrance);
|
|
|
|
__batt_meter_parse_node(
|
|
np, "cust_poweron_delta_hw_sw_ocv_capacity_tolrance",
|
|
&batt_meter_cust_data
|
|
.cust_poweron_delta_hw_sw_ocv_capacity_tolrance);
|
|
|
|
__batt_meter_parse_node(np, "fixed_tbat_25",
|
|
&batt_meter_cust_data.fixed_tbat_25);
|
|
|
|
__batt_meter_parse_node(np, "vbat_normal_wakeup",
|
|
&batt_meter_cust_data.vbat_normal_wakeup);
|
|
|
|
__batt_meter_parse_node(np, "vbat_low_power_wakeup",
|
|
&batt_meter_cust_data.vbat_low_power_wakeup);
|
|
|
|
__batt_meter_parse_node(np, "normal_wakeup_period",
|
|
&batt_meter_cust_data.normal_wakeup_period);
|
|
|
|
__batt_meter_parse_node(np, "low_power_wakeup_period",
|
|
&batt_meter_cust_data.low_power_wakeup_period);
|
|
|
|
__batt_meter_parse_node(
|
|
np, "close_poweroff_wakeup_period",
|
|
&batt_meter_cust_data.close_poweroff_wakeup_period);
|
|
|
|
__batt_meter_parse_node(np, "vbat_remove_detection",
|
|
&batt_meter_cust_data.vbat_remove_detection);
|
|
|
|
of_node_put(np);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int batt_meter_init_cust_data(void)
|
|
{
|
|
static int init_done;
|
|
|
|
if (init_done == 1)
|
|
return 0;
|
|
init_done = 1;
|
|
|
|
__batt_meter_init_cust_data_from_cust_header();
|
|
|
|
#if defined(BATTERY_DTS_SUPPORT) && defined(CONFIG_OF)
|
|
bm_print(BM_LOG_CRTI, "battery meter custom init by DTS\n");
|
|
__batt_meter_init_cust_data_from_dt();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ============================================================ // */
|
|
int get_r_fg_value(void)
|
|
{
|
|
return batt_meter_cust_data.r_fg_value +
|
|
batt_meter_cust_data.cust_r_fg_offset;
|
|
}
|
|
|
|
#ifdef MTK_MULTI_BAT_PROFILE_SUPPORT
|
|
int BattThermistorConverTemp(int Res)
|
|
{
|
|
int i = 0;
|
|
int RES1 = 0, RES2 = 0;
|
|
int TBatt_Value = -200, TMP1 = 0, TMP2 = 0;
|
|
|
|
BATT_TEMPERATURE *batt_temperature_table =
|
|
&Batt_Temperature_Table[g_fg_battery_id];
|
|
|
|
if (Res >= batt_temperature_table[0].TemperatureR) {
|
|
TBatt_Value = -20;
|
|
} else if (Res <= batt_temperature_table[16].TemperatureR) {
|
|
TBatt_Value = 60;
|
|
} else {
|
|
RES1 = batt_temperature_table[0].TemperatureR;
|
|
TMP1 = batt_temperature_table[0].BatteryTemp;
|
|
|
|
for (i = 0; i <= 16; i++) {
|
|
if (Res < batt_temperature_table[i].TemperatureR) {
|
|
RES1 = batt_temperature_table[i].TemperatureR;
|
|
TMP1 = batt_temperature_table[i].BatteryTemp;
|
|
} else {
|
|
RES2 = batt_temperature_table[i].TemperatureR;
|
|
TMP2 = batt_temperature_table[i].BatteryTemp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
TBatt_Value = (((Res - RES2) * TMP1) + ((RES1 - Res) * TMP2)) /
|
|
(RES1 - RES2);
|
|
}
|
|
|
|
return TBatt_Value;
|
|
}
|
|
|
|
signed int fgauge_get_Q_max(signed short temperature)
|
|
{
|
|
signed int ret_Q_max = 0;
|
|
signed int low_temperature = 0, high_temperature = 0;
|
|
signed int low_Q_max = 0, high_Q_max = 0;
|
|
|
|
if (temperature <= batt_meter_cust_data.temperature_t1) {
|
|
low_temperature = (-10);
|
|
low_Q_max = g_Q_MAX_NEG_10[g_fg_battery_id];
|
|
high_temperature = batt_meter_cust_data.temperature_t1;
|
|
high_Q_max = g_Q_MAX_POS_0[g_fg_battery_id];
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else if (temperature <= batt_meter_cust_data.temperature_t2) {
|
|
low_temperature = batt_meter_cust_data.temperature_t1;
|
|
low_Q_max = g_Q_MAX_POS_0[g_fg_battery_id];
|
|
high_temperature = batt_meter_cust_data.temperature_t2;
|
|
high_Q_max = g_Q_MAX_POS_25[g_fg_battery_id];
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else {
|
|
low_temperature = batt_meter_cust_data.temperature_t2;
|
|
low_Q_max = g_Q_MAX_POS_25[g_fg_battery_id];
|
|
high_temperature = batt_meter_cust_data.temperature_t3;
|
|
high_Q_max = g_Q_MAX_POS_50[g_fg_battery_id];
|
|
|
|
if (temperature > high_temperature)
|
|
temperature = high_temperature;
|
|
}
|
|
|
|
ret_Q_max =
|
|
low_Q_max +
|
|
(((temperature - low_temperature) * (high_Q_max - low_Q_max)) /
|
|
(high_temperature - low_temperature));
|
|
|
|
bm_print(BM_LOG_FULL, "[%s] Q_max = %d\r\n",
|
|
__func__, ret_Q_max);
|
|
|
|
return ret_Q_max;
|
|
}
|
|
|
|
signed int fgauge_get_Q_max_high_current(signed short temperature)
|
|
{
|
|
signed int ret_Q_max = 0;
|
|
signed int low_temperature = 0, high_temperature = 0;
|
|
signed int low_Q_max = 0, high_Q_max = 0;
|
|
|
|
if (temperature <= batt_meter_cust_data.temperature_t1) {
|
|
low_temperature = (-10);
|
|
low_Q_max = g_Q_MAX_NEG_10_H_CURRENT[g_fg_battery_id];
|
|
high_temperature = batt_meter_cust_data.temperature_t1;
|
|
high_Q_max = g_Q_MAX_POS_0_H_CURRENT[g_fg_battery_id];
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else if (temperature <= batt_meter_cust_data.temperature_t2) {
|
|
low_temperature = batt_meter_cust_data.temperature_t1;
|
|
low_Q_max = g_Q_MAX_POS_0_H_CURRENT[g_fg_battery_id];
|
|
high_temperature = batt_meter_cust_data.temperature_t2;
|
|
high_Q_max = g_Q_MAX_POS_25_H_CURRENT[g_fg_battery_id];
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else {
|
|
low_temperature = batt_meter_cust_data.temperature_t2;
|
|
low_Q_max = g_Q_MAX_POS_25_H_CURRENT[g_fg_battery_id];
|
|
high_temperature = batt_meter_cust_data.temperature_t3;
|
|
high_Q_max = g_Q_MAX_POS_50_H_CURRENT[g_fg_battery_id];
|
|
|
|
if (temperature > high_temperature)
|
|
temperature = high_temperature;
|
|
}
|
|
|
|
ret_Q_max =
|
|
low_Q_max +
|
|
(((temperature - low_temperature) * (high_Q_max - low_Q_max)) /
|
|
(high_temperature - low_temperature));
|
|
|
|
bm_print(BM_LOG_FULL, "[%s] Q_max = %d\r\n",
|
|
__func__, ret_Q_max);
|
|
|
|
return ret_Q_max;
|
|
}
|
|
|
|
#else
|
|
|
|
int BattThermistorConverTemp(int Res)
|
|
{
|
|
int i = 0;
|
|
int RES1 = 0, RES2 = 0;
|
|
int TBatt_Value = -200, TMP1 = 0, TMP2 = 0;
|
|
|
|
if (Res >= Batt_Temperature_Table[0].TemperatureR) {
|
|
TBatt_Value = -20;
|
|
} else if (Res <= Batt_Temperature_Table[16].TemperatureR) {
|
|
TBatt_Value = 60;
|
|
} else {
|
|
RES1 = Batt_Temperature_Table[0].TemperatureR;
|
|
TMP1 = Batt_Temperature_Table[0].BatteryTemp;
|
|
|
|
for (i = 0; i <= 16; i++) {
|
|
if (Res < Batt_Temperature_Table[i].TemperatureR) {
|
|
RES1 = Batt_Temperature_Table[i].TemperatureR;
|
|
TMP1 = Batt_Temperature_Table[i].BatteryTemp;
|
|
|
|
} else {
|
|
RES2 = Batt_Temperature_Table[i].TemperatureR;
|
|
TMP2 = Batt_Temperature_Table[i].BatteryTemp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
TBatt_Value = (((Res - RES2) * TMP1) + ((RES1 - Res) * TMP2)) /
|
|
(RES1 - RES2);
|
|
}
|
|
|
|
return TBatt_Value;
|
|
}
|
|
|
|
signed int fgauge_get_Q_max(signed short temperature)
|
|
{
|
|
signed int ret_Q_max = 0;
|
|
signed int low_temperature = 0, high_temperature = 0;
|
|
signed int low_Q_max = 0, high_Q_max = 0;
|
|
|
|
if (temperature <= batt_meter_cust_data.temperature_t1) {
|
|
low_temperature = (-10);
|
|
low_Q_max = batt_meter_cust_data.q_max_neg_10;
|
|
high_temperature = batt_meter_cust_data.temperature_t1;
|
|
high_Q_max = batt_meter_cust_data.q_max_pos_0;
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else if (temperature <= batt_meter_cust_data.temperature_t2) {
|
|
low_temperature = batt_meter_cust_data.temperature_t1;
|
|
low_Q_max = batt_meter_cust_data.q_max_pos_0;
|
|
high_temperature = batt_meter_cust_data.temperature_t2;
|
|
high_Q_max = batt_meter_cust_data.q_max_pos_25;
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else {
|
|
low_temperature = batt_meter_cust_data.temperature_t2;
|
|
low_Q_max = batt_meter_cust_data.q_max_pos_25;
|
|
high_temperature = batt_meter_cust_data.temperature_t3;
|
|
high_Q_max = batt_meter_cust_data.q_max_pos_50;
|
|
|
|
if (temperature > high_temperature)
|
|
temperature = high_temperature;
|
|
}
|
|
|
|
ret_Q_max =
|
|
low_Q_max +
|
|
(((temperature - low_temperature) * (high_Q_max - low_Q_max)) /
|
|
(high_temperature - low_temperature));
|
|
|
|
bm_print(BM_LOG_FULL, "[%s] Q_max = %d\r\n", __func__,
|
|
ret_Q_max);
|
|
|
|
return ret_Q_max;
|
|
}
|
|
|
|
signed int fgauge_get_Q_max_high_current(signed short temperature)
|
|
{
|
|
signed int ret_Q_max = 0;
|
|
signed int low_temperature = 0, high_temperature = 0;
|
|
signed int low_Q_max = 0, high_Q_max = 0;
|
|
|
|
if (temperature <= batt_meter_cust_data.temperature_t1) {
|
|
low_temperature = (-10);
|
|
low_Q_max = batt_meter_cust_data.q_max_neg_10_h_current;
|
|
high_temperature = batt_meter_cust_data.temperature_t1;
|
|
high_Q_max = batt_meter_cust_data.q_max_pos_0_h_current;
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else if (temperature <= batt_meter_cust_data.temperature_t2) {
|
|
low_temperature = batt_meter_cust_data.temperature_t1;
|
|
low_Q_max = batt_meter_cust_data.q_max_pos_0_h_current;
|
|
high_temperature = batt_meter_cust_data.temperature_t2;
|
|
high_Q_max = batt_meter_cust_data.q_max_pos_25_h_current;
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else {
|
|
low_temperature = batt_meter_cust_data.temperature_t2;
|
|
low_Q_max = batt_meter_cust_data.q_max_pos_25_h_current;
|
|
high_temperature = batt_meter_cust_data.temperature_t3;
|
|
high_Q_max = batt_meter_cust_data.q_max_pos_50_h_current;
|
|
|
|
if (temperature > high_temperature)
|
|
temperature = high_temperature;
|
|
}
|
|
|
|
ret_Q_max =
|
|
low_Q_max +
|
|
(((temperature - low_temperature) * (high_Q_max - low_Q_max)) /
|
|
(high_temperature - low_temperature));
|
|
|
|
bm_print(BM_LOG_FULL, "[%s] Q_max = %d\r\n",
|
|
__func__, ret_Q_max);
|
|
|
|
return ret_Q_max;
|
|
}
|
|
|
|
#endif
|
|
|
|
int BattVoltToTemp(int dwVolt)
|
|
{
|
|
unsigned long long TRes_temp;
|
|
unsigned long long TRes;
|
|
int sBaTTMP = -100;
|
|
|
|
/* TRes_temp = ((long long)RBAT_PULL_UP_R*(long long)dwVolt) */
|
|
/* (RBAT_PULL_UP_VOLT-dwVolt); */
|
|
/* TRes = (TRes_temp * (long long)RBAT_PULL_DOWN_R)/((long */
|
|
/* long)RBAT_PULL_DOWN_R - TRes_temp); */
|
|
|
|
TRes_temp = (batt_meter_cust_data.rbat_pull_up_r * (long long)dwVolt);
|
|
do_div(TRes_temp, (batt_meter_cust_data.rbat_pull_up_volt - dwVolt));
|
|
|
|
#ifdef RBAT_PULL_DOWN_R
|
|
TRes = (TRes_temp * RBAT_PULL_DOWN_R);
|
|
do_div(TRes, abs(RBAT_PULL_DOWN_R - TRes_temp));
|
|
#else
|
|
TRes = TRes_temp;
|
|
#endif
|
|
|
|
/* convert register to temperature */
|
|
sBaTTMP = BattThermistorConverTemp((int)TRes);
|
|
|
|
return sBaTTMP;
|
|
}
|
|
|
|
int force_get_tbat(enum kal_bool update)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT) || defined(FIXED_TBAT_25)
|
|
bm_print(BM_LOG_CRTI, "[%s] fixed TBAT=25 t\n", __func__);
|
|
return 25;
|
|
#else
|
|
int bat_temperature_volt = 0;
|
|
int bat_temperature_val = 0;
|
|
static int pre_bat_temperature_val = -1;
|
|
int fg_r_value = 0;
|
|
signed int fg_current_temp = 0;
|
|
enum kal_bool fg_current_state = KAL_FALSE;
|
|
int bat_temperature_volt_temp = 0;
|
|
int ret = 0;
|
|
|
|
if (batt_meter_cust_data.fixed_tbat_25) {
|
|
bm_print(BM_LOG_CRTI, "[%s] fixed TBAT=25 t\n", __func__);
|
|
return 25;
|
|
}
|
|
|
|
if (update == KAL_TRUE || pre_bat_temperature_val == -1) {
|
|
/* Get V_BAT_Temperature */
|
|
bat_temperature_volt = 2;
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_BAT_TEMP,
|
|
&bat_temperature_volt);
|
|
|
|
if (bat_temperature_volt != 0) {
|
|
#if defined(SOC_BY_HW_FG)
|
|
fg_r_value = get_r_fg_value();
|
|
|
|
ret = battery_meter_ctrl(
|
|
BATTERY_METER_CMD_GET_HW_FG_CURRENT,
|
|
&fg_current_temp);
|
|
ret = battery_meter_ctrl(
|
|
BATTERY_METER_CMD_GET_HW_FG_CURRENT_SIGN,
|
|
&fg_current_state);
|
|
fg_current_temp = fg_current_temp / 10;
|
|
|
|
if (fg_current_state == KAL_TRUE) {
|
|
bat_temperature_volt_temp =
|
|
bat_temperature_volt;
|
|
bat_temperature_volt =
|
|
bat_temperature_volt -
|
|
((fg_current_temp * fg_r_value) / 1000);
|
|
} else {
|
|
bat_temperature_volt_temp =
|
|
bat_temperature_volt;
|
|
bat_temperature_volt =
|
|
bat_temperature_volt +
|
|
((fg_current_temp * fg_r_value) / 1000);
|
|
}
|
|
#endif
|
|
|
|
bat_temperature_val =
|
|
BattVoltToTemp(bat_temperature_volt);
|
|
}
|
|
#ifdef CONFIG_MTK_BIF_SUPPORT
|
|
battery_charging_control(CHARGING_CMD_GET_BIF_TBAT,
|
|
&bat_temperature_val);
|
|
#endif
|
|
bm_print(BM_LOG_CRTI, "[%s] %d,%d,%d,%d,%d,%d\n",
|
|
__func__,
|
|
bat_temperature_volt_temp, bat_temperature_volt,
|
|
fg_current_state, fg_current_temp, fg_r_value,
|
|
bat_temperature_val);
|
|
pre_bat_temperature_val = bat_temperature_val;
|
|
|
|
if (bat_temperature_val > 55)
|
|
pr_notice("[%s] %d,%d,%d,%d,%d,%d\n",
|
|
__func__,
|
|
bat_temperature_volt_temp,
|
|
bat_temperature_volt, fg_current_state,
|
|
fg_current_temp, fg_r_value,
|
|
bat_temperature_val);
|
|
|
|
} else {
|
|
bat_temperature_val = pre_bat_temperature_val;
|
|
}
|
|
return bat_temperature_val;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(force_get_tbat);
|
|
|
|
#ifdef MTK_MULTI_BAT_PROFILE_SUPPORT
|
|
int fgauge_get_saddles(void)
|
|
{
|
|
return sizeof(battery_profile_temperature) /
|
|
sizeof(BATTERY_PROFILE_STRUCT);
|
|
}
|
|
|
|
int fgauge_get_saddles_r_table(void)
|
|
{
|
|
return sizeof(r_profile_temperature) / sizeof(R_PROFILE_STRUCT);
|
|
}
|
|
|
|
struct battery_profile_struct *fgauge_get_profile(unsigned int temperature)
|
|
{
|
|
switch (temperature) {
|
|
case batt_meter_cust_data.temperature_t0:
|
|
return &battery_profile_t0[g_fg_battery_id][0];
|
|
/*break;*/
|
|
case batt_meter_cust_data.temperature_t1:
|
|
return &battery_profile_t1[g_fg_battery_id][0];
|
|
/*break;*/
|
|
case batt_meter_cust_data.temperature_t2:
|
|
return &battery_profile_t2[g_fg_battery_id][0];
|
|
/*break;*/
|
|
case batt_meter_cust_data.temperature_t3:
|
|
return &battery_profile_t3[g_fg_battery_id][0];
|
|
/*break;*/
|
|
case batt_meter_cust_data.temperature_t:
|
|
return &battery_profile_temperature[0];
|
|
/*break;*/
|
|
default:
|
|
return NULL;
|
|
/*break;*/
|
|
}
|
|
}
|
|
|
|
struct r_profile_struct *fgauge_get_profile_r_table(unsigned int temperature)
|
|
{
|
|
switch (temperature) {
|
|
case batt_meter_cust_data.temperature_t0:
|
|
return &r_profile_t0[g_fg_battery_id][0];
|
|
/*break;*/
|
|
case batt_meter_cust_data.temperature_t1:
|
|
return &r_profile_t1[g_fg_battery_id][0];
|
|
/*break;*/
|
|
case batt_meter_cust_data.temperature_t2:
|
|
return &r_profile_t2[g_fg_battery_id][0];
|
|
/*break;*/
|
|
case batt_meter_cust_data.temperature_t3:
|
|
return &r_profile_t3[g_fg_battery_id][0];
|
|
/*break;*/
|
|
case batt_meter_cust_data.temperature_t:
|
|
return &r_profile_temperature[0];
|
|
/*break;*/
|
|
default:
|
|
return NULL;
|
|
/*break;*/
|
|
}
|
|
}
|
|
#else
|
|
int fgauge_get_saddles(void)
|
|
{
|
|
return sizeof(battery_profile_t2) / sizeof(BATTERY_PROFILE_STRUCT);
|
|
}
|
|
|
|
int fgauge_get_saddles_r_table(void)
|
|
{
|
|
return sizeof(r_profile_t2) / sizeof(R_PROFILE_STRUCT);
|
|
}
|
|
|
|
struct battery_profile_struct *fgauge_get_profile(unsigned int temperature)
|
|
{
|
|
if (temperature == batt_meter_cust_data.temperature_t0)
|
|
return &battery_profile_t0[0];
|
|
|
|
if (temperature == batt_meter_cust_data.temperature_t1)
|
|
return &battery_profile_t1[0];
|
|
|
|
if (temperature == batt_meter_cust_data.temperature_t2)
|
|
return &battery_profile_t2[0];
|
|
|
|
if (temperature == batt_meter_cust_data.temperature_t3)
|
|
return &battery_profile_t3[0];
|
|
|
|
if (temperature == batt_meter_cust_data.temperature_t)
|
|
return &battery_profile_temperature[0];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct r_profile_struct *fgauge_get_profile_r_table(unsigned int temperature)
|
|
{
|
|
if (temperature == batt_meter_cust_data.temperature_t0)
|
|
return &r_profile_t0[0];
|
|
|
|
if (temperature == batt_meter_cust_data.temperature_t1)
|
|
return &r_profile_t1[0];
|
|
|
|
if (temperature == batt_meter_cust_data.temperature_t2)
|
|
return &r_profile_t2[0];
|
|
|
|
if (temperature == batt_meter_cust_data.temperature_t3)
|
|
return &r_profile_t3[0];
|
|
|
|
if (temperature == batt_meter_cust_data.temperature_t)
|
|
return &r_profile_temperature[0];
|
|
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
signed int fgauge_read_capacity_by_v(signed int voltage)
|
|
{
|
|
int i = 0, saddles = 0;
|
|
struct battery_profile_struct *profile_p;
|
|
signed int ret_percent = 0;
|
|
|
|
profile_p = fgauge_get_profile(batt_meter_cust_data.temperature_t);
|
|
if (profile_p == NULL) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FGADC] fgauge get ZCV profile : fail !\r\n");
|
|
return 100;
|
|
}
|
|
|
|
saddles = fgauge_get_saddles();
|
|
|
|
if (voltage > (profile_p + 0)->voltage)
|
|
return 100; /* battery capacity, not dod */
|
|
|
|
if (voltage < (profile_p + saddles - 1)->voltage)
|
|
return 0; /* battery capacity, not dod */
|
|
|
|
for (i = 0; i < saddles - 1; i++) {
|
|
if ((voltage <= (profile_p + i)->voltage) &&
|
|
(voltage >= (profile_p + i + 1)->voltage)) {
|
|
ret_percent = (profile_p + i)->percentage +
|
|
(((((profile_p + i)->voltage) - voltage) *
|
|
(((profile_p + i + 1)->percentage) -
|
|
((profile_p + i)->percentage))) /
|
|
(((profile_p + i)->voltage) -
|
|
((profile_p + i + 1)->voltage)));
|
|
|
|
break;
|
|
}
|
|
}
|
|
ret_percent = 100 - ret_percent;
|
|
|
|
return ret_percent;
|
|
}
|
|
|
|
signed int fgauge_read_v_by_capacity(int bat_capacity)
|
|
{
|
|
int i = 0, saddles = 0;
|
|
struct battery_profile_struct *profile_p;
|
|
signed int ret_volt = 0;
|
|
|
|
profile_p = fgauge_get_profile(batt_meter_cust_data.temperature_t);
|
|
if (profile_p == NULL) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] fgauge get ZCV profile : fail !\r\n",
|
|
__func__);
|
|
return 3700;
|
|
}
|
|
|
|
saddles = fgauge_get_saddles();
|
|
|
|
if (bat_capacity < (profile_p + 0)->percentage)
|
|
return 3700;
|
|
|
|
if (bat_capacity > (profile_p + saddles - 1)->percentage)
|
|
return 3700;
|
|
|
|
for (i = 0; i < saddles - 1; i++) {
|
|
if ((bat_capacity >= (profile_p + i)->percentage) &&
|
|
(bat_capacity <= (profile_p + i + 1)->percentage)) {
|
|
ret_volt = (profile_p + i)->voltage -
|
|
(((bat_capacity -
|
|
((profile_p + i)->percentage)) *
|
|
(((profile_p + i)->voltage) -
|
|
((profile_p + i + 1)->voltage))) /
|
|
(((profile_p + i + 1)->percentage) -
|
|
((profile_p + i)->percentage)));
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret_volt;
|
|
}
|
|
|
|
signed int fgauge_read_d_by_v(signed int volt_bat)
|
|
{
|
|
int i = 0, saddles = 0;
|
|
struct battery_profile_struct *profile_p;
|
|
signed int ret_d = 0;
|
|
|
|
profile_p = fgauge_get_profile(batt_meter_cust_data.temperature_t);
|
|
if (profile_p == NULL) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FGADC] fgauge get ZCV profile : fail !\r\n");
|
|
return 100;
|
|
}
|
|
|
|
saddles = fgauge_get_saddles();
|
|
|
|
if (volt_bat > (profile_p + 0)->voltage)
|
|
return 0;
|
|
|
|
if (volt_bat < (profile_p + saddles - 1)->voltage)
|
|
return 100;
|
|
|
|
for (i = 0; i < saddles - 1; i++) {
|
|
if ((volt_bat <= (profile_p + i)->voltage) &&
|
|
(volt_bat >= (profile_p + i + 1)->voltage)) {
|
|
ret_d = (profile_p + i)->percentage +
|
|
(((((profile_p + i)->voltage) - volt_bat) *
|
|
(((profile_p + i + 1)->percentage) -
|
|
((profile_p + i)->percentage))) /
|
|
(((profile_p + i)->voltage) -
|
|
((profile_p + i + 1)->voltage)));
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret_d;
|
|
}
|
|
|
|
signed int fgauge_read_v_by_d(int d_val)
|
|
{
|
|
int i = 0, saddles = 0;
|
|
struct battery_profile_struct *profile_p;
|
|
signed int ret_volt = 0;
|
|
|
|
profile_p = fgauge_get_profile(batt_meter_cust_data.temperature_t);
|
|
if (profile_p == NULL) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[fgauge_read_v_by_capacity] fgauge get ZCV profile : fail !\r\n");
|
|
return 3700;
|
|
}
|
|
|
|
saddles = fgauge_get_saddles();
|
|
|
|
if (d_val < (profile_p + 0)->percentage)
|
|
return 3700;
|
|
|
|
if (d_val > (profile_p + saddles - 1)->percentage)
|
|
return 3700;
|
|
|
|
for (i = 0; i < saddles - 1; i++) {
|
|
if ((d_val >= (profile_p + i)->percentage) &&
|
|
(d_val <= (profile_p + i + 1)->percentage)) {
|
|
ret_volt = (profile_p + i)->voltage -
|
|
(((d_val - ((profile_p + i)->percentage)) *
|
|
(((profile_p + i)->voltage) -
|
|
((profile_p + i + 1)->voltage))) /
|
|
(((profile_p + i + 1)->percentage) -
|
|
((profile_p + i)->percentage)));
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret_volt;
|
|
}
|
|
|
|
signed int fgauge_read_r_bat_by_v(signed int voltage)
|
|
{
|
|
int i = 0, saddles = 0;
|
|
struct r_profile_struct *profile_p;
|
|
signed int ret_r = 0;
|
|
|
|
profile_p =
|
|
fgauge_get_profile_r_table(batt_meter_cust_data.temperature_t);
|
|
if (profile_p == NULL) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FGADC] fgauge get R-Table profile : fail !\r\n");
|
|
return 170;
|
|
}
|
|
|
|
saddles = fgauge_get_saddles_r_table();
|
|
|
|
if (voltage > (profile_p + 0)->voltage)
|
|
return (profile_p + 0)->resistance;
|
|
|
|
if (voltage < (profile_p + saddles - 1)->voltage)
|
|
return (profile_p + saddles - 1)->resistance;
|
|
|
|
for (i = 0; i < saddles - 1; i++) {
|
|
if ((voltage <= (profile_p + i)->voltage) &&
|
|
(voltage >= (profile_p + i + 1)->voltage)) {
|
|
ret_r = (profile_p + i)->resistance +
|
|
(((((profile_p + i)->voltage) - voltage) *
|
|
(((profile_p + i + 1)->resistance) -
|
|
((profile_p + i)->resistance))) /
|
|
(((profile_p + i)->voltage) -
|
|
((profile_p + i + 1)->voltage)));
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret_r;
|
|
}
|
|
|
|
void fgauge_construct_battery_profile_init(void)
|
|
{
|
|
struct battery_profile_struct *temp_profile_p;
|
|
struct battery_profile_struct *profile_p[PROFILE_SIZE];
|
|
int i, j, saddles, profile_index;
|
|
signed int low_p = 0, high_p = 0, now_p = 0, low_vol = 0, high_vol = 0;
|
|
|
|
profile_p[0] = fgauge_get_profile(batt_meter_cust_data.temperature_t0);
|
|
profile_p[1] = fgauge_get_profile(batt_meter_cust_data.temperature_t1);
|
|
profile_p[2] = fgauge_get_profile(batt_meter_cust_data.temperature_t2);
|
|
profile_p[3] = fgauge_get_profile(batt_meter_cust_data.temperature_t3);
|
|
saddles = fgauge_get_saddles();
|
|
temp_profile_p = kmalloc(51 * sizeof(*temp_profile_p), GFP_KERNEL);
|
|
|
|
if (temp_profile_p != NULL)
|
|
memset(temp_profile_p, 0, 51 * sizeof(*temp_profile_p));
|
|
|
|
for (i = 0; i < PROFILE_SIZE; i++) {
|
|
profile_index = 0;
|
|
for (j = 0; j * 2 <= 100; j++) {
|
|
while (profile_index < saddles && profile_index >= 0) {
|
|
if (((profile_p[i] + profile_index)
|
|
->percentage) < j * 2) {
|
|
profile_index++;
|
|
continue;
|
|
} else if (((profile_p[i] + profile_index)
|
|
->percentage) == j * 2) {
|
|
if (temp_profile_p != NULL) {
|
|
(temp_profile_p + j)->voltage =
|
|
(profile_p[i] +
|
|
profile_index)
|
|
->voltage;
|
|
(temp_profile_p +
|
|
j)->percentage =
|
|
(profile_p[i] +
|
|
profile_index)
|
|
->percentage;
|
|
}
|
|
break;
|
|
}
|
|
low_p = (profile_p[i] + profile_index -
|
|
1)->percentage;
|
|
high_p = (profile_p[i] + profile_index)
|
|
->percentage;
|
|
now_p = j * 2;
|
|
low_vol =
|
|
(profile_p[i] + profile_index)->voltage;
|
|
high_vol = (profile_p[i] + profile_index -
|
|
1)->voltage;
|
|
if (temp_profile_p != NULL) {
|
|
(temp_profile_p + j)->voltage =
|
|
(low_vol * 1000 +
|
|
((high_vol - low_vol) * 1000 *
|
|
(now_p - low_p) /
|
|
(high_p - low_p))) /
|
|
1000;
|
|
(temp_profile_p + j)->percentage =
|
|
j * 2;
|
|
}
|
|
|
|
break;
|
|
}
|
|
if (temp_profile_p != NULL) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"new battery_profile[%d,%d] <%d,%d>\n",
|
|
i, j, (temp_profile_p + j)->percentage,
|
|
(temp_profile_p + j)->voltage);
|
|
}
|
|
}
|
|
|
|
for (j = 0; j * 2 <= 100; j++) {
|
|
if (temp_profile_p != NULL) {
|
|
(profile_p[i] + j)->voltage =
|
|
(temp_profile_p + j)->voltage;
|
|
(profile_p[i] + j)->percentage =
|
|
(temp_profile_p + j)->percentage;
|
|
}
|
|
}
|
|
}
|
|
if (temp_profile_p != NULL)
|
|
kfree(temp_profile_p);
|
|
}
|
|
|
|
void fgauge_construct_battery_profile(
|
|
signed int temperature, struct battery_profile_struct *temp_profile_p)
|
|
{
|
|
struct battery_profile_struct *low_profile_p;
|
|
struct battery_profile_struct *high_profile_p;
|
|
signed int low_temperature, high_temperature;
|
|
int i, saddles;
|
|
signed int temp_v_1 = 0, temp_v_2 = 0;
|
|
|
|
if (temperature <= batt_meter_cust_data.temperature_t1) {
|
|
low_profile_p =
|
|
fgauge_get_profile(batt_meter_cust_data.temperature_t0);
|
|
high_profile_p =
|
|
fgauge_get_profile(batt_meter_cust_data.temperature_t1);
|
|
low_temperature = (-10);
|
|
high_temperature = batt_meter_cust_data.temperature_t1;
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else if (temperature <= batt_meter_cust_data.temperature_t2) {
|
|
low_profile_p =
|
|
fgauge_get_profile(batt_meter_cust_data.temperature_t1);
|
|
high_profile_p =
|
|
fgauge_get_profile(batt_meter_cust_data.temperature_t2);
|
|
low_temperature = batt_meter_cust_data.temperature_t1;
|
|
high_temperature = batt_meter_cust_data.temperature_t2;
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else {
|
|
low_profile_p =
|
|
fgauge_get_profile(batt_meter_cust_data.temperature_t2);
|
|
high_profile_p =
|
|
fgauge_get_profile(batt_meter_cust_data.temperature_t3);
|
|
low_temperature = batt_meter_cust_data.temperature_t2;
|
|
high_temperature = batt_meter_cust_data.temperature_t3;
|
|
|
|
if (temperature > high_temperature)
|
|
temperature = high_temperature;
|
|
}
|
|
|
|
saddles = fgauge_get_saddles();
|
|
|
|
for (i = 0; i < saddles; i++) {
|
|
if (((high_profile_p + i)->voltage) >
|
|
((low_profile_p + i)->voltage)) {
|
|
temp_v_1 = (high_profile_p + i)->voltage;
|
|
temp_v_2 = (low_profile_p + i)->voltage;
|
|
|
|
(temp_profile_p + i)->voltage =
|
|
temp_v_2 +
|
|
(((temperature - low_temperature) *
|
|
(temp_v_1 - temp_v_2)) /
|
|
(high_temperature - low_temperature));
|
|
} else {
|
|
temp_v_1 = (low_profile_p + i)->voltage;
|
|
temp_v_2 = (high_profile_p + i)->voltage;
|
|
|
|
(temp_profile_p + i)->voltage =
|
|
temp_v_2 +
|
|
(((high_temperature - temperature) *
|
|
(temp_v_1 - temp_v_2)) /
|
|
(high_temperature - low_temperature));
|
|
}
|
|
|
|
(temp_profile_p + i)->percentage =
|
|
(high_profile_p + i)->percentage;
|
|
#if 0
|
|
(temp_profile_p + i)->voltage = temp_v_2 +
|
|
(((temperature - low_temperature) * (temp_v_1 - temp_v_2)
|
|
) / (high_temperature - low_temperature)
|
|
);
|
|
#endif
|
|
}
|
|
|
|
/* Dumpt new battery profile */
|
|
/* for (i = 0; i < saddles; i++) { */
|
|
/* bm_print(BM_LOG_CRTI, "<DOD,Voltage> at %d = <%d,%d>\r\n", */
|
|
/* temperature, (temp_profile_p + i)->percentage, */
|
|
/* (temp_profile_p + i)->voltage); */
|
|
/* } */
|
|
}
|
|
|
|
void fgauge_construct_r_table_profile(signed int temperature,
|
|
struct r_profile_struct *temp_profile_p)
|
|
{
|
|
struct r_profile_struct *low_profile_p;
|
|
struct r_profile_struct *high_profile_p;
|
|
signed int low_temperature, high_temperature;
|
|
int i, saddles;
|
|
signed int temp_v_1 = 0, temp_v_2 = 0;
|
|
signed int temp_r_1 = 0, temp_r_2 = 0;
|
|
|
|
if (temperature <= batt_meter_cust_data.temperature_t1) {
|
|
low_profile_p = fgauge_get_profile_r_table(
|
|
batt_meter_cust_data.temperature_t0);
|
|
high_profile_p = fgauge_get_profile_r_table(
|
|
batt_meter_cust_data.temperature_t1);
|
|
low_temperature = (-10);
|
|
high_temperature = batt_meter_cust_data.temperature_t1;
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else if (temperature <= batt_meter_cust_data.temperature_t2) {
|
|
low_profile_p = fgauge_get_profile_r_table(
|
|
batt_meter_cust_data.temperature_t1);
|
|
high_profile_p = fgauge_get_profile_r_table(
|
|
batt_meter_cust_data.temperature_t2);
|
|
low_temperature = batt_meter_cust_data.temperature_t1;
|
|
high_temperature = batt_meter_cust_data.temperature_t2;
|
|
|
|
if (temperature < low_temperature)
|
|
temperature = low_temperature;
|
|
|
|
} else {
|
|
low_profile_p = fgauge_get_profile_r_table(
|
|
batt_meter_cust_data.temperature_t2);
|
|
high_profile_p = fgauge_get_profile_r_table(
|
|
batt_meter_cust_data.temperature_t3);
|
|
low_temperature = batt_meter_cust_data.temperature_t2;
|
|
high_temperature = batt_meter_cust_data.temperature_t3;
|
|
|
|
if (temperature > high_temperature)
|
|
temperature = high_temperature;
|
|
}
|
|
|
|
saddles = fgauge_get_saddles_r_table();
|
|
|
|
/* Interpolation for V_BAT */
|
|
for (i = 0; i < saddles; i++) {
|
|
if (((high_profile_p + i)->voltage) >
|
|
((low_profile_p + i)->voltage)) {
|
|
temp_v_1 = (high_profile_p + i)->voltage;
|
|
temp_v_2 = (low_profile_p + i)->voltage;
|
|
|
|
(temp_profile_p + i)->voltage =
|
|
temp_v_2 +
|
|
(((temperature - low_temperature) *
|
|
(temp_v_1 - temp_v_2)) /
|
|
(high_temperature - low_temperature));
|
|
} else {
|
|
temp_v_1 = (low_profile_p + i)->voltage;
|
|
temp_v_2 = (high_profile_p + i)->voltage;
|
|
|
|
(temp_profile_p + i)->voltage =
|
|
temp_v_2 +
|
|
(((high_temperature - temperature) *
|
|
(temp_v_1 - temp_v_2)) /
|
|
(high_temperature - low_temperature));
|
|
}
|
|
}
|
|
|
|
/* Interpolation for R_BAT */
|
|
for (i = 0; i < saddles; i++) {
|
|
if (((high_profile_p + i)->resistance) >
|
|
((low_profile_p + i)->resistance)) {
|
|
temp_r_1 = (high_profile_p + i)->resistance;
|
|
temp_r_2 = (low_profile_p + i)->resistance;
|
|
|
|
(temp_profile_p + i)->resistance =
|
|
temp_r_2 +
|
|
(((temperature - low_temperature) *
|
|
(temp_r_1 - temp_r_2)) /
|
|
(high_temperature - low_temperature));
|
|
} else {
|
|
temp_r_1 = (low_profile_p + i)->resistance;
|
|
temp_r_2 = (high_profile_p + i)->resistance;
|
|
|
|
(temp_profile_p + i)->resistance =
|
|
temp_r_2 +
|
|
(((high_temperature - temperature) *
|
|
(temp_r_1 - temp_r_2)) /
|
|
(high_temperature - low_temperature));
|
|
}
|
|
}
|
|
|
|
/* Dumpt new r-table profile */
|
|
#if defined(BATTERY_DEBUG)
|
|
for (i = 0; i < saddles; i++) {
|
|
bm_print(BM_LOG_CRTI, "<Rbat,VBAT> at %d = <%d,%d>\r\n",
|
|
temperature, (temp_profile_p + i)->resistance,
|
|
(temp_profile_p + i)->voltage);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void fgauge_construct_table_by_temp(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
#else
|
|
unsigned int i;
|
|
static signed int init_temp = KAL_TRUE;
|
|
static signed int curr_temp, last_temp, avg_temp;
|
|
static signed int battTempBuffer[TEMP_AVERAGE_SIZE];
|
|
static signed int temperature_sum;
|
|
|
|
static unsigned char tempIndex;
|
|
|
|
curr_temp = battery_meter_get_battery_temperature();
|
|
|
|
/* Temperature window init */
|
|
if (init_temp == KAL_TRUE) {
|
|
for (i = 0; i < TEMP_AVERAGE_SIZE; i++)
|
|
battTempBuffer[i] = curr_temp;
|
|
|
|
last_temp = curr_temp;
|
|
temperature_sum = curr_temp * TEMP_AVERAGE_SIZE;
|
|
init_temp = KAL_FALSE;
|
|
}
|
|
/* Temperature sliding window */
|
|
temperature_sum -= battTempBuffer[tempIndex];
|
|
temperature_sum += curr_temp;
|
|
battTempBuffer[tempIndex] = curr_temp;
|
|
avg_temp = (temperature_sum) / TEMP_AVERAGE_SIZE;
|
|
|
|
if (avg_temp != last_temp) {
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[%s] reconstruct table by temperature change from (%d) to (%d)\r\n",
|
|
__func__, last_temp, avg_temp);
|
|
fgauge_construct_r_table_profile(
|
|
curr_temp, fgauge_get_profile_r_table(
|
|
batt_meter_cust_data.temperature_t));
|
|
fgauge_construct_battery_profile(
|
|
curr_temp,
|
|
fgauge_get_profile(batt_meter_cust_data.temperature_t));
|
|
last_temp = avg_temp;
|
|
temperature_change = 1;
|
|
}
|
|
|
|
tempIndex = (tempIndex + 1) % TEMP_AVERAGE_SIZE;
|
|
|
|
#endif
|
|
}
|
|
|
|
void fg_qmax_update_for_aging(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
#else
|
|
enum kal_bool hw_charging_done = bat_is_charging_full();
|
|
|
|
if (hw_charging_done ==
|
|
KAL_TRUE) { /* charging full, g_HW_Charging_Done == 1 */
|
|
if (gFG_DOD0 > 85) {
|
|
if (gFG_columb < 0)
|
|
gFG_columb =
|
|
gFG_columb -
|
|
gFG_columb * 2; /* absolute value */
|
|
|
|
gFG_BATT_CAPACITY_aging =
|
|
(((gFG_columb * 1000) + (5 * gFG_DOD0)) /
|
|
gFG_DOD0) /
|
|
10;
|
|
|
|
/* tuning */
|
|
gFG_BATT_CAPACITY_aging =
|
|
(gFG_BATT_CAPACITY_aging * 100) /
|
|
batt_meter_cust_data.aging_tuning_value;
|
|
|
|
if (gFG_BATT_CAPACITY_aging == 0) {
|
|
gFG_BATT_CAPACITY_aging = fgauge_get_Q_max(
|
|
battery_meter_get_battery_temperature());
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] error, restore gFG_BATT_CAPACITY_aging (%d)\n",
|
|
__func__, gFG_BATT_CAPACITY_aging);
|
|
}
|
|
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] need update : gFG_columb=%d, gFG_DOD0=%d, new_qmax=%d\r\n",
|
|
__func__, gFG_columb, gFG_DOD0,
|
|
gFG_BATT_CAPACITY_aging);
|
|
} else {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] no update : gFG_columb=%d, gFG_DOD0=%d, new_qmax=%d\r\n",
|
|
__func__, gFG_columb, gFG_DOD0,
|
|
gFG_BATT_CAPACITY_aging);
|
|
}
|
|
} else {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[%s] hw_charging_done=%d\r\n",
|
|
__func__, hw_charging_done);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if defined(SW_OAM_INIT_V2)
|
|
char bootbuf[100];
|
|
void sw_oam_init_v2(void)
|
|
{
|
|
int ret = 0;
|
|
int plugout_status = 0;
|
|
int type = 0;
|
|
|
|
/* use get_hw_ocv-------------------------------------------------- */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_OCV, &gFG_voltage);
|
|
gFG_capacity_by_v = fgauge_read_capacity_by_v(gFG_voltage);
|
|
|
|
#if defined(CONFIG_POWER_EXT)
|
|
g_rtc_fg_soc = gFG_capacity_by_v;
|
|
#else
|
|
g_rtc_fg_soc = mtk_misc_get_spare_fg_value();
|
|
#endif
|
|
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_BATTERY_PLUG_STATUS,
|
|
&plugout_status);
|
|
|
|
if (plugout_status == 0 && bat_is_charger_exist() == KAL_FALSE) {
|
|
if (g_rtc_fg_soc == 0) {
|
|
/* g_booting_vbat */
|
|
gFG_capacity_by_v = gFG_capacity_by_v_init;
|
|
type = 1;
|
|
} else {
|
|
gFG_capacity_by_v = g_rtc_fg_soc;
|
|
type = 2;
|
|
}
|
|
} else {
|
|
if ((abs(gFG_capacity_by_v - g_rtc_fg_soc) >
|
|
batt_meter_cust_data
|
|
.cust_poweron_delta_capacity_tolrance) &&
|
|
(abs(gFG_capacity_by_v - gFG_capacity_by_v_init) <
|
|
abs(gFG_capacity_by_v_init - g_rtc_fg_soc))) {
|
|
if (abs(gFG_capacity_by_v - gFG_capacity_by_v_init) >
|
|
batt_meter_cust_data
|
|
.cust_poweron_delta_hw_sw_ocv_capacity_tolrance) {
|
|
gFG_capacity_by_v = gFG_capacity_by_v_init;
|
|
type = 3;
|
|
} else {
|
|
/* use hw ocv; */
|
|
type = 4;
|
|
}
|
|
|
|
} else {
|
|
if ((abs(g_rtc_fg_soc - gFG_capacity_by_v_init) >
|
|
batt_meter_cust_data
|
|
.cust_poweron_delta_hw_sw_ocv_capacity_tolrance) ||
|
|
g_rtc_fg_soc == 0) {
|
|
gFG_capacity_by_v = gFG_capacity_by_v_init;
|
|
type = 5;
|
|
} else {
|
|
gFG_capacity_by_v = g_rtc_fg_soc;
|
|
type = 6;
|
|
}
|
|
}
|
|
}
|
|
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] swocv:%d(%d) hwocv:%d(%d) rtc:%d plugout_status=%d chr:%d type:%d f:%d %d %d\n",
|
|
__func__, g_booting_vbat, gFG_capacity_by_v_init, gFG_voltage,
|
|
gFG_capacity_by_v, g_rtc_fg_soc, plugout_status,
|
|
bat_is_charger_exist(), type, gFG_capacity_by_v,
|
|
batt_meter_cust_data.cust_poweron_delta_capacity_tolrance,
|
|
batt_meter_cust_data
|
|
.cust_poweron_delta_hw_sw_ocv_capacity_tolrance);
|
|
|
|
sprintf(bootbuf,
|
|
"[%s] swocv:%d(%d) hwocv:%d(%d) rtc:%d plugout_status=%d chr:%d type:%d f:%d %d %d\n",
|
|
__func__, g_booting_vbat, gFG_capacity_by_v_init, gFG_voltage,
|
|
gFG_capacity_by_v, g_rtc_fg_soc, plugout_status,
|
|
bat_is_charger_exist(), type, gFG_capacity_by_v,
|
|
batt_meter_cust_data.cust_poweron_delta_capacity_tolrance,
|
|
batt_meter_cust_data
|
|
.cust_poweron_delta_hw_sw_ocv_capacity_tolrance);
|
|
}
|
|
#endif
|
|
|
|
void dod_init(void)
|
|
{
|
|
#if defined(SOC_BY_HW_FG)
|
|
int ret = 0;
|
|
|
|
#if defined(IS_BATTERY_REMOVE_BY_PMIC)
|
|
signed int gFG_capacity_by_sw_ocv = gFG_capacity_by_v;
|
|
#endif /* #if defined(IS_BATTERY_REMOVE_BY_PMIC) */
|
|
|
|
/* use get_hw_ocv-------------------------------------------------- */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_OCV, &gFG_voltage);
|
|
gFG_capacity_by_v = fgauge_read_capacity_by_v(gFG_voltage);
|
|
|
|
bm_print(BM_LOG_CRTI, "[FGADC] get_hw_ocv=%d, HW_SOC=%d, SW_SOC = %d\n",
|
|
gFG_voltage, gFG_capacity_by_v, gFG_capacity_by_v_init);
|
|
#if defined(EXTERNAL_SWCHR_SUPPORT)
|
|
/* compare with hw_ocv & sw_ocv, */
|
|
/* check if less than or equal to 5% tolerance */
|
|
if ((abs(gFG_capacity_by_v_init - gFG_capacity_by_v) > 5) &&
|
|
(bat_is_charger_exist() == KAL_TRUE)) {
|
|
gFG_capacity_by_v = gFG_capacity_by_v_init;
|
|
}
|
|
#endif
|
|
#if defined(HW_FG_FORCE_USE_SW_OCV)
|
|
gFG_capacity_by_v = gFG_capacity_by_v_init;
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FGADC] HW_FG_FORCE_USE_SW_OCV : HW_SOC=%d, SW_SOC = %d\n",
|
|
gFG_capacity_by_v, gFG_capacity_by_v_init);
|
|
#endif
|
|
/* ---------------------------------------------------------------- */
|
|
#endif
|
|
|
|
#if defined(CONFIG_POWER_EXT)
|
|
g_rtc_fg_soc = gFG_capacity_by_v;
|
|
#else
|
|
g_rtc_fg_soc = mtk_misc_get_spare_fg_value();
|
|
#endif
|
|
|
|
#if defined(IS_BATTERY_REMOVE_BY_PMIC)
|
|
if (is_battery_remove_pmic() == 0 && (g_rtc_fg_soc != 0) &&
|
|
batt_meter_cust_data.vbat_remove_detection) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FGADC]is_battery_remove()==0 , use rtc_fg_soc%d\n",
|
|
g_rtc_fg_soc);
|
|
gFG_capacity_by_v = g_rtc_fg_soc;
|
|
} else {
|
|
|
|
#if defined(INIT_SOC_BY_SW_SOC)
|
|
if (((g_rtc_fg_soc != 0) &&
|
|
(((abs(g_rtc_fg_soc - gFG_capacity_by_v)) <=
|
|
batt_meter_cust_data
|
|
.cust_poweron_delta_capacity_tolrance) ||
|
|
(abs(gFG_capacity_by_v_init - g_rtc_fg_soc) <
|
|
abs(gFG_capacity_by_v - gFG_capacity_by_v_init)))) ||
|
|
((g_rtc_fg_soc != 0) &&
|
|
(get_boot_reason() == BR_WDT_BY_PASS_PWK ||
|
|
get_boot_reason() == BR_WDT ||
|
|
get_boot_reason() == BR_TOOL_BY_PASS_PWK ||
|
|
get_boot_reason() == BR_2SEC_REBOOT ||
|
|
get_boot_mode() == RECOVERY_BOOT)))
|
|
#else
|
|
if (((g_rtc_fg_soc != 0) &&
|
|
(((abs(g_rtc_fg_soc - gFG_capacity_by_v)) <
|
|
batt_meter_cust_data
|
|
.cust_poweron_delta_capacity_tolrance)) &&
|
|
((gFG_capacity_by_v >
|
|
batt_meter_cust_data
|
|
.cust_poweron_low_capacity_tolrance ||
|
|
bat_is_charger_exist() == KAL_TRUE))) ||
|
|
((g_rtc_fg_soc != 0) &&
|
|
(get_boot_reason() == BR_WDT_BY_PASS_PWK ||
|
|
get_boot_reason() == BR_WDT ||
|
|
get_boot_reason() == BR_TOOL_BY_PASS_PWK ||
|
|
get_boot_reason() == BR_2SEC_REBOOT ||
|
|
get_boot_mode() == RECOVERY_BOOT)))
|
|
#endif
|
|
{
|
|
gFG_capacity_by_v = g_rtc_fg_soc;
|
|
} else {
|
|
if (abs(gFG_capacity_by_v - gFG_capacity_by_sw_ocv) >
|
|
batt_meter_cust_data
|
|
.cust_poweron_delta_hw_sw_ocv_capacity_tolrance) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] gFG_capacity_by_v=%d, gFG_capacity_by_sw_ocv=%d use SWOCV\n",
|
|
gFG_capacity_by_v,
|
|
gFG_capacity_by_sw_ocv);
|
|
gFG_capacity_by_v = gFG_capacity_by_sw_ocv;
|
|
} else {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] gFG_capacity_by_v=%d, gFG_capacity_by_sw_ocv=%d use HWOCV\n",
|
|
gFG_capacity_by_v,
|
|
gFG_capacity_by_sw_ocv);
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
#if defined(SOC_BY_HW_FG)
|
|
#if defined(INIT_SOC_BY_SW_SOC)
|
|
if (((g_rtc_fg_soc != 0) &&
|
|
(((abs(g_rtc_fg_soc - gFG_capacity_by_v)) <=
|
|
batt_meter_cust_data.cust_poweron_delta_capacity_tolrance) ||
|
|
(abs(gFG_capacity_by_v_init - g_rtc_fg_soc) <
|
|
abs(gFG_capacity_by_v - gFG_capacity_by_v_init)))) ||
|
|
((g_rtc_fg_soc != 0) && (get_boot_reason() == BR_WDT_BY_PASS_PWK ||
|
|
get_boot_reason() == BR_WDT ||
|
|
get_boot_reason() == BR_TOOL_BY_PASS_PWK ||
|
|
get_boot_reason() == BR_2SEC_REBOOT ||
|
|
get_boot_mode() == RECOVERY_BOOT)))
|
|
#else
|
|
if (((g_rtc_fg_soc != 0) &&
|
|
(((abs(g_rtc_fg_soc - gFG_capacity_by_v)) <
|
|
batt_meter_cust_data.cust_poweron_delta_capacity_tolrance)) &&
|
|
((gFG_capacity_by_v >
|
|
batt_meter_cust_data
|
|
.cust_poweron_low_capacity_tolrance ||
|
|
bat_is_charger_exist() == KAL_TRUE))) ||
|
|
((g_rtc_fg_soc != 0) && (get_boot_reason() == BR_WDT_BY_PASS_PWK ||
|
|
get_boot_reason() == BR_WDT ||
|
|
get_boot_reason() == BR_TOOL_BY_PASS_PWK ||
|
|
get_boot_reason() == BR_2SEC_REBOOT ||
|
|
get_boot_mode() == RECOVERY_BOOT)))
|
|
#endif
|
|
{
|
|
gFG_capacity_by_v = g_rtc_fg_soc;
|
|
}
|
|
#elif defined(SOC_BY_SW_FG)
|
|
if (((g_rtc_fg_soc != 0) &&
|
|
(((abs(g_rtc_fg_soc - gFG_capacity_by_v)) <
|
|
batt_meter_cust_data.cust_poweron_delta_capacity_tolrance) ||
|
|
(abs(g_rtc_fg_soc - g_booting_vbat) <
|
|
batt_meter_cust_data.cust_poweron_delta_capacity_tolrance)) &&
|
|
((gFG_capacity_by_v >
|
|
batt_meter_cust_data
|
|
.cust_poweron_low_capacity_tolrance ||
|
|
bat_is_charger_exist() == KAL_TRUE))) ||
|
|
((g_rtc_fg_soc != 0) && (get_boot_reason() == BR_WDT_BY_PASS_PWK ||
|
|
get_boot_reason() == BR_WDT ||
|
|
get_boot_reason() == BR_TOOL_BY_PASS_PWK ||
|
|
get_boot_reason() == BR_2SEC_REBOOT ||
|
|
get_boot_mode() == RECOVERY_BOOT))) {
|
|
gFG_capacity_by_v = g_rtc_fg_soc;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(SW_OAM_INIT_V2)
|
|
sw_oam_init_v2();
|
|
#endif
|
|
|
|
bm_print(BM_LOG_CRTI, "[FGADC] g_rtc_fg_soc=%d, gFG_capacity_by_v=%d\n",
|
|
g_rtc_fg_soc, gFG_capacity_by_v);
|
|
|
|
if (gFG_capacity_by_v == 0 && bat_is_charger_exist() == KAL_TRUE) {
|
|
gFG_capacity_by_v = 1;
|
|
|
|
bm_print(BM_LOG_CRTI, "[FGADC] gFG_capacity_by_v=%d\n",
|
|
gFG_capacity_by_v);
|
|
}
|
|
gFG_capacity = gFG_capacity_by_v;
|
|
gFG_capacity_by_c_init = gFG_capacity;
|
|
gFG_capacity_by_c = gFG_capacity;
|
|
|
|
gFG_DOD0 = 100 - gFG_capacity;
|
|
gFG_DOD1 = gFG_DOD0;
|
|
|
|
gfg_percent_check_point = gFG_capacity;
|
|
|
|
if (batt_meter_cust_data.change_tracking_point) {
|
|
gFG_15_vlot =
|
|
fgauge_read_v_by_capacity((100 - g_tracking_point));
|
|
bm_print(BM_LOG_CRTI, "[FGADC] gFG_15_vlot = %dmV\n",
|
|
gFG_15_vlot);
|
|
} else {
|
|
/* gFG_15_vlot = fgauge_read_v_by_capacity(86); //14% */
|
|
gFG_15_vlot =
|
|
fgauge_read_v_by_capacity((100 - g_tracking_point));
|
|
bm_print(BM_LOG_CRTI, "[FGADC] gFG_15_vlot = %dmV\n",
|
|
gFG_15_vlot);
|
|
if ((gFG_15_vlot > 3800) || (gFG_15_vlot < 3600)) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] gFG_15_vlot(%d) over range, reset to 3700\n",
|
|
gFG_15_vlot);
|
|
gFG_15_vlot = 3700;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ============================================================ // SW FG */
|
|
signed int mtk_imp_tracking(signed int ori_voltage, signed int ori_current,
|
|
signed int recursion_time)
|
|
{
|
|
signed int ret_compensate_value = 0;
|
|
signed int temp_voltage_1 = ori_voltage;
|
|
signed int temp_voltage_2 = temp_voltage_1;
|
|
int i = 0;
|
|
|
|
for (i = 0; i < recursion_time; i++) {
|
|
gFG_resistance_bat = fgauge_read_r_bat_by_v(temp_voltage_2);
|
|
ret_compensate_value =
|
|
((ori_current) * (gFG_resistance_bat +
|
|
batt_meter_cust_data.r_fg_value)) /
|
|
1000;
|
|
ret_compensate_value = (ret_compensate_value + (10 / 2)) / 10;
|
|
temp_voltage_2 = temp_voltage_1 + ret_compensate_value;
|
|
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[%s] temp_voltage_2=%d,temp_voltage_1=%d,ret_compensate_value=%d,gFG_resistance_bat=%d\n",
|
|
__func__, temp_voltage_2,
|
|
temp_voltage_1,
|
|
ret_compensate_value,
|
|
gFG_resistance_bat);
|
|
}
|
|
|
|
gFG_resistance_bat = fgauge_read_r_bat_by_v(temp_voltage_2);
|
|
ret_compensate_value =
|
|
((ori_current) *
|
|
(gFG_resistance_bat + batt_meter_cust_data.r_fg_value +
|
|
batt_meter_cust_data.fg_meter_resistance)) /
|
|
1000;
|
|
ret_compensate_value = (ret_compensate_value + (10 / 2)) / 10;
|
|
|
|
gFG_compensate_value = ret_compensate_value;
|
|
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[%s] temp_voltage_2=%d,temp_voltage_1=%d,ret_compensate_value=%d,gFG_resistance_bat=%d\n",
|
|
__func__,
|
|
temp_voltage_2,
|
|
temp_voltage_1,
|
|
ret_compensate_value,
|
|
gFG_resistance_bat);
|
|
|
|
return ret_compensate_value;
|
|
}
|
|
|
|
void oam_init(void)
|
|
{
|
|
int ret = 0;
|
|
signed int vbat_capacity = 0;
|
|
enum kal_bool charging_enable = KAL_FALSE;
|
|
|
|
/*stop charging for vbat measurement */
|
|
battery_charging_control(CHARGING_CMD_ENABLE, &charging_enable);
|
|
|
|
msleep(50);
|
|
|
|
g_booting_vbat = 5; /* set avg times */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_OCV, &gFG_voltage);
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_BAT_SENSE,
|
|
&g_booting_vbat);
|
|
|
|
gFG_capacity_by_v = fgauge_read_capacity_by_v(gFG_voltage);
|
|
vbat_capacity = fgauge_read_capacity_by_v(g_booting_vbat);
|
|
|
|
if (bat_is_charger_exist() == KAL_TRUE) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[oam_init_inf] gFG_capacity_by_v=%d, vbat_capacity=%d,\n",
|
|
gFG_capacity_by_v, vbat_capacity);
|
|
|
|
/* to avoid plug in cable without battery, */
|
|
/* then plug in battery */
|
|
/* to make hw soc = 100% */
|
|
/* if the difference bwtween ZCV and vbat is too large, */
|
|
/* using vbat instead ZCV */
|
|
if (((gFG_capacity_by_v == 100) &&
|
|
(vbat_capacity <
|
|
batt_meter_cust_data.cust_poweron_max_vbat_tolrance)) ||
|
|
(abs(gFG_capacity_by_v - vbat_capacity) >
|
|
batt_meter_cust_data.cust_poweron_delta_vbat_tolrance)) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] fg_vbat=(%d), vbat=(%d), set fg_vat as vat\n",
|
|
__func__, gFG_voltage, g_booting_vbat);
|
|
|
|
gFG_voltage = g_booting_vbat;
|
|
gFG_capacity_by_v = vbat_capacity;
|
|
}
|
|
}
|
|
|
|
gFG_capacity_by_v_init = gFG_capacity_by_v;
|
|
|
|
dod_init();
|
|
|
|
gFG_BATT_CAPACITY_aging = fgauge_get_Q_max(force_get_tbat(KAL_FALSE));
|
|
|
|
/* oam_v_ocv_1 = gFG_voltage; */
|
|
/* oam_v_ocv_2 = gFG_voltage; */
|
|
|
|
oam_v_ocv_init = fgauge_read_v_by_d(gFG_DOD0);
|
|
oam_v_ocv_2 = oam_v_ocv_1 = oam_v_ocv_init;
|
|
g_vol_bat_hw_ocv = gFG_voltage;
|
|
|
|
/* vbat = 5; //set avg times */
|
|
/* ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_BAT_SENSE, */
|
|
/* &vbat); */
|
|
/* oam_r_1 = fgauge_read_r_bat_by_v(vbat); */
|
|
oam_r_1 = fgauge_read_r_bat_by_v(gFG_voltage);
|
|
oam_r_2 = oam_r_1;
|
|
|
|
oam_d0 = gFG_DOD0;
|
|
oam_d_5 = oam_d0;
|
|
oam_i_ori = gFG_current;
|
|
g_d_hw_ocv = oam_d0;
|
|
|
|
if (oam_init_i == 0) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] oam_v_ocv_1,oam_v_ocv_2,oam_r_1,oam_r_2,oam_d0,oam_i_ori\n",
|
|
__func__);
|
|
oam_init_i = 1;
|
|
}
|
|
|
|
bm_print(BM_LOG_CRTI, "[%s] %d,%d,%d,%d,%d,%d\n", __func__,
|
|
oam_v_ocv_1, oam_v_ocv_2, oam_r_1, oam_r_2, oam_d0, oam_i_ori);
|
|
|
|
bm_print(BM_LOG_CRTI,
|
|
"[%s] hw_OCV, hw_D0, RTC, D0, oam_OCV_init, tbat\n",
|
|
__func__);
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] oam_OCV1, oam_OCV2, vbat, I1, I2, R1, R2, Car1, Car2,qmax, tbat\n",
|
|
__func__);
|
|
bm_print(BM_LOG_CRTI, "[oam_result_inf] D1, D2, D3, D4, D5, UI_SOC\n");
|
|
|
|
bm_print(BM_LOG_CRTI, "[%s] %d, %d, %d, %d, %d, %d\n",
|
|
__func__,
|
|
gFG_voltage, (100 - fgauge_read_capacity_by_v(gFG_voltage)),
|
|
g_rtc_fg_soc, gFG_DOD0, oam_v_ocv_init,
|
|
force_get_tbat(KAL_FALSE));
|
|
}
|
|
|
|
void oam_run(void)
|
|
{
|
|
int vol_bat = 0;
|
|
/* int vol_bat_hw_ocv=0; */
|
|
/* int d_hw_ocv=0; */
|
|
int charging_current = 0;
|
|
int ret = 0;
|
|
/* unsigned int now_time; */
|
|
struct timespec now_time;
|
|
signed int delta_time = 0;
|
|
|
|
/* now_time = rtc_read_hw_time(); */
|
|
getrawmonotonic(&now_time);
|
|
|
|
/* delta_time = now_time - last_oam_run_time; */
|
|
delta_time = now_time.tv_sec - last_oam_run_time.tv_sec;
|
|
|
|
bm_print(BM_LOG_CRTI, "[oam_run_time] delta time=%d\n", delta_time);
|
|
|
|
#if defined(SW_OAM_INIT_V2)
|
|
bm_print(BM_LOG_CRTI, "[oam_run_time] bootbuf[%s]", bootbuf);
|
|
#endif
|
|
|
|
last_oam_run_time = now_time;
|
|
|
|
/* Reconstruct table if temp changed; */
|
|
fgauge_construct_table_by_temp();
|
|
|
|
vol_bat = 15; /* set avg times */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_BAT_SENSE,
|
|
&vol_bat);
|
|
|
|
/* ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_OCV, */
|
|
/* &vol_bat_hw_ocv); */
|
|
/* d_hw_ocv = fgauge_read_d_by_v(vol_bat_hw_ocv); */
|
|
|
|
oam_i_1 = (((oam_v_ocv_1 - vol_bat) * 1000) * 10) / oam_r_1; /* 0.1mA */
|
|
oam_i_2 = (((oam_v_ocv_2 - vol_bat) * 1000) * 10) / oam_r_2; /* 0.1mA */
|
|
|
|
oam_car_1 = (oam_i_1 * delta_time / 3600) + oam_car_1; /* 0.1mAh */
|
|
oam_car_2 = (oam_i_2 * delta_time / 3600) + oam_car_2; /* 0.1mAh */
|
|
|
|
oam_d_1 = oam_d0 + (oam_car_1 * 100 / 10) / gFG_BATT_CAPACITY_aging;
|
|
if (oam_d_1 < 0)
|
|
oam_d_1 = 0;
|
|
if (oam_d_1 > 100)
|
|
oam_d_1 = 100;
|
|
|
|
oam_d_2 = oam_d0 + (oam_car_2 * 100 / 10) / gFG_BATT_CAPACITY_aging;
|
|
if (oam_d_2 < 0)
|
|
oam_d_2 = 0;
|
|
if (oam_d_2 > 100)
|
|
oam_d_2 = 100;
|
|
|
|
oam_v_ocv_1 = vol_bat + mtk_imp_tracking(vol_bat, oam_i_2, 5);
|
|
|
|
oam_d_3 = fgauge_read_d_by_v(oam_v_ocv_1);
|
|
if (oam_d_3 < 0)
|
|
oam_d_3 = 0;
|
|
if (oam_d_3 > 100)
|
|
oam_d_3 = 100;
|
|
|
|
oam_r_1 = fgauge_read_r_bat_by_v(oam_v_ocv_1);
|
|
|
|
oam_v_ocv_2 = fgauge_read_v_by_d(oam_d_2);
|
|
oam_r_2 = fgauge_read_r_bat_by_v(oam_v_ocv_2);
|
|
|
|
#if 0
|
|
oam_d_4 = (oam_d_2 + oam_d_3) / 2;
|
|
#else
|
|
oam_d_4 = oam_d_3;
|
|
#endif
|
|
|
|
gFG_columb = oam_car_2 / 10; /* mAh */
|
|
|
|
if ((oam_i_1 < 0) || (oam_i_2 < 0))
|
|
gFG_Is_Charging = KAL_TRUE;
|
|
else
|
|
gFG_Is_Charging = KAL_FALSE;
|
|
|
|
#if 0
|
|
if (gFG_Is_Charging == KAL_FALSE) {
|
|
d5_count_time = 60;
|
|
} else {
|
|
charging_current = get_charging_setting_current();
|
|
charging_current = charging_current / 100;
|
|
d5_count_time_rate =
|
|
(((gFG_BATT_CAPACITY_aging * 60 * 60 / 100 /
|
|
(charging_current - 50)) * 10) +
|
|
5) / 10;
|
|
|
|
if (d5_count_time_rate < 1)
|
|
d5_count_time_rate = 1;
|
|
|
|
d5_count_time = d5_count_time_rate;
|
|
}
|
|
#else
|
|
d5_count_time = 60;
|
|
#endif
|
|
d5_count = d5_count + delta_time;
|
|
if (d5_count >= d5_count_time) {
|
|
if (gFG_Is_Charging == KAL_FALSE) {
|
|
if (oam_d_3 > oam_d_5)
|
|
oam_d_5 = oam_d_5 + 1;
|
|
else if (oam_d_4 > oam_d_5)
|
|
oam_d_5 = oam_d_5 + 1;
|
|
|
|
} else {
|
|
if (oam_d_5 > oam_d_3)
|
|
oam_d_5 = oam_d_5 - 1;
|
|
else if (oam_d_4 < oam_d_5)
|
|
oam_d_5 = oam_d_5 - 1;
|
|
}
|
|
d5_count = 0;
|
|
oam_d_3_pre = oam_d_3;
|
|
oam_d_4_pre = oam_d_4;
|
|
}
|
|
|
|
bm_print(BM_LOG_CRTI, "[%s] %d,%d,%d,%d,%d,%d,%d,%d\n", __func__,
|
|
d5_count, d5_count_time, oam_d_3_pre, oam_d_3, oam_d_4_pre, oam_d_4,
|
|
oam_d_5, charging_current);
|
|
|
|
if (oam_run_i == 0)
|
|
oam_run_i = 1;
|
|
|
|
bm_print(BM_LOG_FULL,
|
|
"[%s] %d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n",
|
|
__func__,
|
|
oam_i_1, oam_i_2, oam_car_1, oam_car_2, oam_d_1, oam_d_2,
|
|
oam_v_ocv_1, oam_d_3, oam_r_1, oam_v_ocv_2, oam_r_2, vol_bat,
|
|
g_vol_bat_hw_ocv, g_d_hw_ocv);
|
|
|
|
bm_print(BM_LOG_FULL, "[oam_total] %d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n",
|
|
gFG_capacity_by_c, gFG_capacity_by_v, gfg_percent_check_point,
|
|
oam_d_1, oam_d_2, oam_d_3, oam_d_4, oam_d_5,
|
|
gFG_capacity_by_c_init, g_d_hw_ocv);
|
|
|
|
bm_print(BM_LOG_CRTI, "[oam_total_s] %d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n",
|
|
gFG_capacity_by_c, /* 1 */
|
|
gFG_capacity_by_v, /* 2 */
|
|
gfg_percent_check_point, /* 3 */
|
|
(100 - oam_d_1), /* 4 */
|
|
(100 - oam_d_2), /* 5 */
|
|
(100 - oam_d_3), /* 6 */
|
|
(100 - oam_d_4), /* 9 */
|
|
(100 - oam_d_5), /* 10 */
|
|
gFG_capacity_by_c_init, /* 7 */
|
|
(100 - g_d_hw_ocv) /* 8 */
|
|
);
|
|
|
|
bm_print(BM_LOG_FULL, "[oam_total_s_err] %d,%d,%d,%d,%d,%d,%d\n",
|
|
(gFG_capacity_by_c - gFG_capacity_by_v),
|
|
(gFG_capacity_by_c - gfg_percent_check_point),
|
|
(gFG_capacity_by_c - (100 - oam_d_1)),
|
|
(gFG_capacity_by_c - (100 - oam_d_2)),
|
|
(gFG_capacity_by_c - (100 - oam_d_3)),
|
|
(gFG_capacity_by_c - (100 - oam_d_4)),
|
|
(gFG_capacity_by_c - (100 - oam_d_5)));
|
|
|
|
bm_print(BM_LOG_CRTI, "[oam_init_inf] %d, %d, %d, %d, %d, %d\n",
|
|
gFG_voltage, (100 - fgauge_read_capacity_by_v(gFG_voltage)),
|
|
g_rtc_fg_soc, gFG_DOD0, oam_v_ocv_init,
|
|
force_get_tbat(KAL_FALSE));
|
|
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[oam_run_inf] %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d\n",
|
|
oam_v_ocv_1, oam_v_ocv_2, vol_bat, oam_i_1, oam_i_2, oam_r_1,
|
|
oam_r_2, oam_car_1, oam_car_2, gFG_BATT_CAPACITY_aging,
|
|
force_get_tbat(KAL_FALSE), oam_d0);
|
|
|
|
bm_print(BM_LOG_CRTI, "[oam_result_inf] %d, %d, %d, %d, %d, %d\n",
|
|
oam_d_1, oam_d_2, oam_d_3, oam_d_4, oam_d_5,
|
|
BMT_status.UI_SOC);
|
|
|
|
/* set gFG_current always positive */
|
|
if (oam_i_2 > 0)
|
|
gFG_current = oam_i_2;
|
|
else
|
|
gFG_current = -oam_i_2;
|
|
}
|
|
|
|
/* ============================================================ // */
|
|
|
|
void table_init(void)
|
|
{
|
|
struct battery_profile_struct *profile_p;
|
|
struct r_profile_struct *profile_p_r_table;
|
|
|
|
int temperature = force_get_tbat(KAL_FALSE);
|
|
|
|
/* Re-constructure r-table profile according to current temperature */
|
|
profile_p_r_table =
|
|
fgauge_get_profile_r_table(batt_meter_cust_data.temperature_t);
|
|
if (profile_p_r_table == NULL) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] fgauge_get_profile_r_table : create table fail !\r\n");
|
|
}
|
|
fgauge_construct_r_table_profile(temperature, profile_p_r_table);
|
|
|
|
/* Re-constructure battery profile according to current temperature */
|
|
profile_p = fgauge_get_profile(batt_meter_cust_data.temperature_t);
|
|
if (profile_p == NULL)
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] fgauge_get_profile : create table fail !\r\n");
|
|
|
|
fgauge_construct_battery_profile(temperature, profile_p);
|
|
}
|
|
|
|
signed int auxadc_algo_run(void)
|
|
{
|
|
signed int val = 0;
|
|
|
|
gFG_voltage = battery_meter_get_battery_voltage(KAL_FALSE);
|
|
val = fgauge_read_capacity_by_v(gFG_voltage);
|
|
|
|
bm_print(BM_LOG_CRTI, "[%s] %d,%d\n", __func__, gFG_voltage, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
#if defined(SOC_BY_HW_FG)
|
|
void update_fg_dbg_tool_value(void)
|
|
{
|
|
g_fg_dbg_bat_volt = gFG_voltage_init;
|
|
|
|
if (gFG_Is_Charging == KAL_TRUE)
|
|
g_fg_dbg_bat_current = 1 - gFG_current - 1;
|
|
else
|
|
g_fg_dbg_bat_current = gFG_current;
|
|
|
|
g_fg_dbg_bat_zcv = gFG_voltage;
|
|
|
|
g_fg_dbg_bat_temp = gFG_temp;
|
|
|
|
g_fg_dbg_bat_r = gFG_resistance_bat;
|
|
|
|
g_fg_dbg_bat_car = gFG_columb;
|
|
|
|
g_fg_dbg_bat_qmax = gFG_BATT_CAPACITY_aging;
|
|
|
|
g_fg_dbg_d0 = gFG_DOD0;
|
|
|
|
g_fg_dbg_d1 = gFG_DOD1;
|
|
|
|
g_fg_dbg_percentage = bat_get_ui_percentage();
|
|
|
|
g_fg_dbg_percentage_fg = gFG_capacity_by_c;
|
|
|
|
g_fg_dbg_percentage_voltmode = gfg_percent_check_point;
|
|
}
|
|
|
|
signed int fgauge_compensate_battery_voltage(signed int ori_voltage)
|
|
{
|
|
signed int ret_compensate_value = 0;
|
|
|
|
gFG_ori_voltage = ori_voltage;
|
|
gFG_resistance_bat = fgauge_read_r_bat_by_v(ori_voltage); /* Ohm */
|
|
ret_compensate_value =
|
|
(gFG_current *
|
|
(gFG_resistance_bat + batt_meter_cust_data.r_fg_value)) /
|
|
1000;
|
|
ret_compensate_value = (ret_compensate_value + (10 / 2)) / 10;
|
|
|
|
if (gFG_Is_Charging == KAL_TRUE)
|
|
ret_compensate_value =
|
|
ret_compensate_value - (ret_compensate_value * 2);
|
|
|
|
gFG_compensate_value = ret_compensate_value;
|
|
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[CompensateVoltage] Ori_voltage:%d, compensate_value:%d, gFG_resistance_bat:%d, gFG_current:%d\r\n",
|
|
ori_voltage, ret_compensate_value, gFG_resistance_bat,
|
|
gFG_current);
|
|
|
|
return ret_compensate_value;
|
|
}
|
|
|
|
signed int
|
|
fgauge_compensate_battery_voltage_recursion(signed int ori_voltage,
|
|
signed int recursion_time)
|
|
{
|
|
signed int ret_compensate_value = 0;
|
|
signed int temp_voltage_1 = ori_voltage;
|
|
signed int temp_voltage_2 = temp_voltage_1;
|
|
int i = 0;
|
|
|
|
for (i = 0; i < recursion_time; i++) {
|
|
gFG_resistance_bat =
|
|
fgauge_read_r_bat_by_v(temp_voltage_2); /* Ohm */
|
|
ret_compensate_value =
|
|
(gFG_current * (gFG_resistance_bat +
|
|
batt_meter_cust_data.r_fg_value)) /
|
|
1000;
|
|
ret_compensate_value = (ret_compensate_value + (10 / 2)) / 10;
|
|
|
|
if (gFG_Is_Charging == KAL_TRUE)
|
|
ret_compensate_value = ret_compensate_value -
|
|
(ret_compensate_value * 2);
|
|
|
|
temp_voltage_2 = temp_voltage_1 + ret_compensate_value;
|
|
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[%s] %d,%d,%d,%d\r\n",
|
|
__func__,
|
|
temp_voltage_1, temp_voltage_2, gFG_resistance_bat,
|
|
ret_compensate_value);
|
|
}
|
|
|
|
gFG_resistance_bat = fgauge_read_r_bat_by_v(temp_voltage_2); /* Ohm */
|
|
ret_compensate_value =
|
|
(gFG_current *
|
|
(gFG_resistance_bat + batt_meter_cust_data.r_fg_value +
|
|
batt_meter_cust_data.fg_meter_resistance)) /
|
|
1000;
|
|
ret_compensate_value = (ret_compensate_value + (10 / 2)) / 10;
|
|
|
|
if (gFG_Is_Charging == KAL_TRUE)
|
|
ret_compensate_value =
|
|
ret_compensate_value - (ret_compensate_value * 2);
|
|
|
|
gFG_compensate_value = ret_compensate_value;
|
|
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[%s] %d,%d,%d,%d\r\n",
|
|
__func__,
|
|
temp_voltage_1, temp_voltage_2, gFG_resistance_bat,
|
|
ret_compensate_value);
|
|
|
|
return ret_compensate_value;
|
|
}
|
|
|
|
signed int fgauge_get_dod0(signed int voltage, signed int temperature,
|
|
enum kal_bool bOcv)
|
|
{
|
|
signed int dod0 = 0;
|
|
int i = 0, saddles = 0, jj = 0;
|
|
struct battery_profile_struct *profile_p;
|
|
struct r_profile_struct *profile_p_r_table;
|
|
int ret = 0;
|
|
|
|
/* R-Table (First Time) */
|
|
/* Re-constructure r-table profile according to current temperature */
|
|
profile_p_r_table =
|
|
fgauge_get_profile_r_table(batt_meter_cust_data.temperature_t);
|
|
if (profile_p_r_table == NULL) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] fgauge_get_profile_r_table : create table fail !\r\n");
|
|
}
|
|
fgauge_construct_r_table_profile(temperature, profile_p_r_table);
|
|
|
|
/* Re-constructure battery profile according to current temperature */
|
|
profile_p = fgauge_get_profile(batt_meter_cust_data.temperature_t);
|
|
if (profile_p == NULL) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] fgauge_get_profile : create table fail !\r\n");
|
|
return 100;
|
|
}
|
|
fgauge_construct_battery_profile(temperature, profile_p);
|
|
|
|
/* Get total saddle points from the battery profile */
|
|
saddles = fgauge_get_saddles();
|
|
|
|
/* If the input voltage is not OCV, compensate to ZCV due to battery */
|
|
/* loading */
|
|
/* Compasate battery voltage from current battery voltage */
|
|
jj = 0;
|
|
if (bOcv == KAL_FALSE) {
|
|
while (gFG_current == 0) {
|
|
ret = battery_meter_ctrl(
|
|
BATTERY_METER_CMD_GET_HW_FG_CURRENT,
|
|
&gFG_current);
|
|
if (jj > 10)
|
|
break;
|
|
jj++;
|
|
}
|
|
/* voltage = voltage + */
|
|
/* fgauge_compensate_battery_voltage(voltage); //mV */
|
|
voltage = voltage + fgauge_compensate_battery_voltage_recursion(
|
|
voltage, 5); /* mV */
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FGADC] compensate_battery_voltage, voltage=%d\r\n",
|
|
voltage);
|
|
}
|
|
/* If battery voltage is less then mimimum profile voltage, */
|
|
/* then return 100 */
|
|
/* If battery voltage is greater then maximum profile voltage, */
|
|
/* then return 0 */
|
|
if (voltage > (profile_p + 0)->voltage)
|
|
return 0;
|
|
|
|
if (voltage < (profile_p + saddles - 1)->voltage)
|
|
return 100;
|
|
|
|
/* get DOD0 according to current temperature */
|
|
for (i = 0; i < saddles - 1; i++) {
|
|
if ((voltage <= (profile_p + i)->voltage) &&
|
|
(voltage >= (profile_p + i + 1)->voltage)) {
|
|
dod0 = (profile_p + i)->percentage +
|
|
(((((profile_p + i)->voltage) - voltage) *
|
|
(((profile_p + i + 1)->percentage) -
|
|
((profile_p + i)->percentage))) /
|
|
(((profile_p + i)->voltage) -
|
|
((profile_p + i + 1)->voltage)));
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
return dod0;
|
|
}
|
|
|
|
signed int fgauge_update_dod(void)
|
|
{
|
|
signed int FG_dod_1 = 0;
|
|
int adjust_coulomb_counter = batt_meter_cust_data.car_tune_value;
|
|
#ifdef Q_MAX_BY_CURRENT
|
|
signed int C_0mA = 0;
|
|
signed int C_400mA = 0;
|
|
signed int C_FGCurrent = 0;
|
|
#endif
|
|
|
|
if (gFG_DOD0 > 100) {
|
|
gFG_DOD0 = 100;
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[%s] gFG_DOD0 set to 100, gFG_columb=%d\r\n",
|
|
__func__, gFG_columb);
|
|
} else if (gFG_DOD0 < 0) {
|
|
gFG_DOD0 = 0;
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[%s] gFG_DOD0 set to 0, gFG_columb=%d\r\n",
|
|
__func__, gFG_columb);
|
|
} else {
|
|
}
|
|
|
|
gFG_temp = force_get_tbat(KAL_FALSE);
|
|
|
|
#if !defined(CONFIG_POWER_EXT)
|
|
if (temperature_change == 1) {
|
|
gFG_BATT_CAPACITY = fgauge_get_Q_max(gFG_temp);
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] gFG_BATT_CAPACITY=%d, gFG_BATT_CAPACITY_aging=%d, gFG_BATT_CAPACITY_init_high_current=%d\r\n",
|
|
__func__, gFG_BATT_CAPACITY, gFG_BATT_CAPACITY_aging,
|
|
gFG_BATT_CAPACITY_init_high_current);
|
|
temperature_change = 0;
|
|
}
|
|
#endif
|
|
#if 0
|
|
C_0mA = fgauge_get_Q_max(gFG_temp);
|
|
C_400mA = fgauge_get_Q_max_high_current(gFG_temp);
|
|
C_FGCurrent = C_0mA - (C_0mA - C_400mA) * gFG_current_AVG / 4000;
|
|
if (C_FGCurrent != 0)
|
|
FG_dod_1 =
|
|
gFG_DOD0 - ((gFG_columb * 100) /
|
|
gFG_BATT_CAPACITY_aging) * C_0mA / C_FGCurrent;
|
|
|
|
bm_print(BM_LOG_CRTI,
|
|
"[%s] FG_dod_1=%d, adjust_coulomb_counter=%d, gFG_columb=%d, gFG_DOD0=%d,",
|
|
"gFG_temp=%d, gFG_BATT_CAPACITY=%d, C_0mA=%d, C_400mA=%d, C_FGCurrent=%d, gFG_current_AVG=%d\n",
|
|
__func__, FG_dod_1, adjust_coulomb_counter, gFG_columb,
|
|
gFG_DOD0, gFG_temp, gFG_BATT_CAPACITY, C_0mA, C_400mA,
|
|
C_FGCurrent, gFG_current_AVG);
|
|
#else
|
|
FG_dod_1 = gFG_DOD0 - ((gFG_columb * 100) / gFG_BATT_CAPACITY_aging);
|
|
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[%s] FG_dod_1=%d, adjust_coulomb_counter=%d, gFG_columb=%d, gFG_DOD0=%d,",
|
|
"gFG_temp=%d, gFG_BATT_CAPACITY=%d %d\r\n",
|
|
__func__, FG_dod_1, adjust_coulomb_counter, gFG_columb,
|
|
gFG_DOD0, gFG_temp, gFG_BATT_CAPACITY,
|
|
gFG_BATT_CAPACITY_aging);
|
|
#endif
|
|
if (FG_dod_1 > 100) {
|
|
FG_dod_1 = 100;
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[%s] FG_dod_1 set to 100, gFG_columb=%d\r\n",
|
|
__func__, gFG_columb);
|
|
} else if (FG_dod_1 < 0) {
|
|
FG_dod_1 = 0;
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[%s] FG_dod_1 set to 0, gFG_columb=%d\r\n",
|
|
__func__, gFG_columb);
|
|
} else {
|
|
}
|
|
|
|
return FG_dod_1;
|
|
}
|
|
|
|
signed int fgauge_read_capacity(signed int type)
|
|
{
|
|
signed int voltage;
|
|
signed int temperature;
|
|
signed int dvalue = 0;
|
|
signed int temp_val = 0;
|
|
|
|
if (type == 0) { /* for initialization */
|
|
/* Use voltage to calculate capacity */
|
|
voltage = battery_meter_get_battery_voltage(
|
|
KAL_TRUE); /* in unit of mV */
|
|
temperature = force_get_tbat(KAL_FALSE);
|
|
dvalue = fgauge_get_dod0(voltage, temperature,
|
|
KAL_FALSE); /* need compensate vbat */
|
|
} else {
|
|
/* Use DOD0 and columb counter to calculate capacity */
|
|
dvalue = fgauge_update_dod(); /* DOD1 = DOD0 + (-CAR)/Qmax */
|
|
}
|
|
|
|
gFG_DOD1 = dvalue;
|
|
|
|
temp_val = dvalue;
|
|
dvalue = 100 - temp_val;
|
|
|
|
if (dvalue <= 1) {
|
|
dvalue = 1;
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[%s] dvalue<=1 and set dvalue=1 !!\r\n",
|
|
__func__);
|
|
}
|
|
|
|
return dvalue;
|
|
}
|
|
|
|
void fg_voltage_mode(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
#else
|
|
if (bat_is_charger_exist() == KAL_TRUE) {
|
|
/* SOC only UP when charging */
|
|
if (gFG_capacity_by_v > gfg_percent_check_point)
|
|
gfg_percent_check_point++;
|
|
|
|
} else {
|
|
/* SOC only Done when dis-charging */
|
|
if (gFG_capacity_by_v < gfg_percent_check_point)
|
|
gfg_percent_check_point--;
|
|
}
|
|
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[FGADC_VoltageMothod] gFG_capacity_by_v=%d,gfg_percent_check_point=%d\r\n",
|
|
gFG_capacity_by_v, gfg_percent_check_point);
|
|
#endif
|
|
}
|
|
|
|
void fgauge_algo_run(void)
|
|
{
|
|
int i = 0;
|
|
int ret = 0;
|
|
#ifdef MTK_BATTERY_LIFETIME_DATA_SUPPORT
|
|
int columb_delta = 0;
|
|
int charge_current = 0;
|
|
#endif
|
|
|
|
/* Reconstruct table if temp changed; */
|
|
fgauge_construct_table_by_temp();
|
|
|
|
/* 1. Get Raw Data */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CURRENT,
|
|
&gFG_current);
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CURRENT_SIGN,
|
|
&gFG_Is_Charging);
|
|
|
|
gFG_voltage = battery_meter_get_battery_voltage(KAL_FALSE);
|
|
gFG_voltage_init = gFG_voltage;
|
|
gFG_voltage = gFG_voltage + fgauge_compensate_battery_voltage_recursion(
|
|
gFG_voltage, 5); /* mV */
|
|
gFG_voltage = gFG_voltage + batt_meter_cust_data.ocv_board_compesate;
|
|
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CAR, &gFG_columb);
|
|
|
|
#ifdef MTK_BATTERY_LIFETIME_DATA_SUPPORT
|
|
if (gFG_Is_Charging) {
|
|
charge_current -= gFG_current;
|
|
if (charge_current < gFG_min_current)
|
|
gFG_min_current = charge_current;
|
|
} else {
|
|
if (gFG_current > gFG_max_current)
|
|
gFG_max_current = gFG_current;
|
|
}
|
|
|
|
columb_delta = gFG_pre_columb_count - gFG_columb;
|
|
|
|
if (columb_delta < 0)
|
|
columb_delta =
|
|
columb_delta - 2 * columb_delta; /* absolute value */
|
|
|
|
gFG_pre_columb_count = gFG_columb;
|
|
gFG_columb_sum += columb_delta;
|
|
|
|
/* should we use gFG_BATT_CAPACITY or gFG_BATT_CAPACITY_aging ?? */
|
|
if (gFG_columb_sum >= 2 * gFG_BATT_CAPACITY_aging) {
|
|
gFG_battery_cycle++;
|
|
gFG_columb_sum -= 2 * gFG_BATT_CAPACITY_aging;
|
|
bm_print(BM_LOG_CRTI, "Update battery cycle count to %d. \r\n",
|
|
gFG_battery_cycle);
|
|
}
|
|
bm_print(BM_LOG_FULL, "@@@ bat cycle count %d, columb sum %d. \r\n",
|
|
gFG_battery_cycle, gFG_columb_sum);
|
|
#endif
|
|
|
|
/* add by willcai 2014-12-18 begin */
|
|
if (BMT_status.charger_exist == KAL_FALSE) {
|
|
if (gFG_Is_offset_init == KAL_FALSE) {
|
|
for (i = 0;
|
|
i < batt_meter_cust_data.fg_vbat_average_size; i++)
|
|
FGvbatVoltageBuffer[i] = gFG_voltage;
|
|
|
|
FGbatteryVoltageSum =
|
|
gFG_voltage *
|
|
batt_meter_cust_data.fg_vbat_average_size;
|
|
gFG_voltage_AVG = gFG_voltage;
|
|
gFG_Is_offset_init = KAL_TRUE;
|
|
}
|
|
/* 1.1 Average FG_voltage */
|
|
/**************** Averaging : START ****************/
|
|
if (gFG_voltage >= gFG_voltage_AVG)
|
|
gFG_vbat_offset = (gFG_voltage - gFG_voltage_AVG);
|
|
else
|
|
gFG_vbat_offset = (gFG_voltage_AVG - gFG_voltage);
|
|
|
|
if (gFG_vbat_offset <= batt_meter_cust_data.minerroroffset) {
|
|
FGbatteryVoltageSum -=
|
|
FGvbatVoltageBuffer[FGbatteryIndex];
|
|
FGbatteryVoltageSum += gFG_voltage;
|
|
FGvbatVoltageBuffer[FGbatteryIndex] = gFG_voltage;
|
|
|
|
gFG_voltage_AVG =
|
|
FGbatteryVoltageSum /
|
|
batt_meter_cust_data.fg_vbat_average_size;
|
|
gFG_voltage = gFG_voltage_AVG;
|
|
|
|
FGbatteryIndex++;
|
|
if (FGbatteryIndex >=
|
|
batt_meter_cust_data.fg_vbat_average_size)
|
|
FGbatteryIndex = 0;
|
|
|
|
bm_print(BM_LOG_FULL, "[FG_BUFFER] ");
|
|
for (i = 0;
|
|
i < batt_meter_cust_data.fg_vbat_average_size; i++)
|
|
bm_print(BM_LOG_FULL, "%d,",
|
|
FGvbatVoltageBuffer[i]);
|
|
|
|
bm_print(BM_LOG_FULL, "\r\n");
|
|
} else {
|
|
bm_print(BM_LOG_FULL,
|
|
"[FG] Over MinErrorOffset:V=%d,Avg_V=%d, ",
|
|
gFG_voltage, gFG_voltage_AVG);
|
|
|
|
gFG_voltage = gFG_voltage_AVG;
|
|
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"Avg_V need write back to V : V=%d,Avg_V=%d.\r\n",
|
|
gFG_voltage, gFG_voltage_AVG);
|
|
}
|
|
} else
|
|
gFG_Is_offset_init = KAL_FALSE;
|
|
|
|
#ifdef Q_MAX_BY_CURRENT
|
|
/* 1.2 Average FG_current */
|
|
/**************** Averaging : START ****************/
|
|
if (gFG_current_AVG == 0) {
|
|
for (i = 0; i < FG_CURRENT_AVERAGE_SIZE; i++)
|
|
FGCurrentBuffer[i] = gFG_current;
|
|
|
|
FGCurrentSum = gFG_current * FG_CURRENT_AVERAGE_SIZE;
|
|
gFG_current_AVG = gFG_current;
|
|
} else {
|
|
FGCurrentSum -= FGCurrentBuffer[FGCurrentIndex];
|
|
FGCurrentSum += gFG_current;
|
|
FGCurrentBuffer[FGCurrentIndex] = gFG_current;
|
|
|
|
gFG_current_AVG = FGCurrentSum / FG_CURRENT_AVERAGE_SIZE;
|
|
|
|
FGCurrentIndex++;
|
|
if (FGCurrentIndex >= FG_CURRENT_AVERAGE_SIZE)
|
|
FGCurrentIndex = 0;
|
|
|
|
bm_print(BM_LOG_FULL, "[FG_BUFFER] ");
|
|
for (i = 0; i < FG_CURRENT_AVERAGE_SIZE; i++)
|
|
bm_print(BM_LOG_FULL, "%d,", FGCurrentBuffer[i]);
|
|
|
|
bm_print(BM_LOG_FULL, "\n");
|
|
}
|
|
#endif
|
|
/* 2. Calculate battery capacity by VBAT */
|
|
gFG_capacity_by_v = fgauge_read_capacity_by_v(gFG_voltage);
|
|
|
|
/* 3. Calculate battery capacity by Coulomb Counter */
|
|
gFG_capacity_by_c = fgauge_read_capacity(1);
|
|
|
|
/* 4. voltage mode */
|
|
if (volt_mode_update_timer >= volt_mode_update_time_out) {
|
|
volt_mode_update_timer = 0;
|
|
|
|
fg_voltage_mode();
|
|
} else {
|
|
volt_mode_update_timer++;
|
|
}
|
|
|
|
/* 5. Logging */
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] %d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\r\n",
|
|
gFG_Is_Charging, gFG_current, gFG_columb, gFG_voltage,
|
|
gFG_capacity_by_v, gFG_capacity_by_c, gFG_capacity_by_c_init,
|
|
gFG_BATT_CAPACITY, gFG_BATT_CAPACITY_aging,
|
|
gFG_compensate_value, gFG_ori_voltage,
|
|
batt_meter_cust_data.ocv_board_compesate,
|
|
batt_meter_cust_data.r_fg_board_slope, gFG_voltage_init,
|
|
batt_meter_cust_data.minerroroffset, gFG_DOD0, gFG_DOD1,
|
|
batt_meter_cust_data.car_tune_value,
|
|
batt_meter_cust_data.aging_tuning_value);
|
|
update_fg_dbg_tool_value();
|
|
}
|
|
|
|
void fgauge_algo_run_init(void)
|
|
{
|
|
int i = 0;
|
|
int ret = 0;
|
|
|
|
#ifdef INIT_SOC_BY_SW_SOC
|
|
enum kal_bool charging_enable = KAL_FALSE;
|
|
#if defined(CONFIG_MTK_KERNEL_POWER_OFF_CHARGING) && !defined(SWCHR_POWER_PATH)
|
|
if (get_boot_mode() != LOW_POWER_OFF_CHARGING_BOOT)
|
|
#endif
|
|
/*stop charging for vbat measurement */
|
|
battery_charging_control(CHARGING_CMD_ENABLE, &charging_enable);
|
|
|
|
msleep(50);
|
|
#endif
|
|
/* 1. Get Raw Data */
|
|
gFG_voltage = battery_meter_get_battery_voltage(KAL_TRUE);
|
|
gFG_voltage_init = gFG_voltage;
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CURRENT,
|
|
&gFG_current);
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CURRENT_SIGN,
|
|
&gFG_Is_Charging);
|
|
|
|
gFG_voltage = gFG_voltage + fgauge_compensate_battery_voltage_recursion(
|
|
gFG_voltage, 5); /* mV */
|
|
gFG_voltage = gFG_voltage + batt_meter_cust_data.ocv_board_compesate;
|
|
|
|
bm_print(BM_LOG_CRTI, "[FGADC] SWOCV : %d,%d,%d,%d,%d,%d\n",
|
|
gFG_voltage_init, gFG_voltage, gFG_current, gFG_Is_Charging,
|
|
gFG_resistance_bat, gFG_compensate_value);
|
|
#ifdef INIT_SOC_BY_SW_SOC
|
|
charging_enable = KAL_TRUE;
|
|
battery_charging_control(CHARGING_CMD_ENABLE, &charging_enable);
|
|
#endif
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CAR, &gFG_columb);
|
|
|
|
/* 1.1 Average FG_voltage */
|
|
for (i = 0; i < batt_meter_cust_data.fg_vbat_average_size; i++)
|
|
FGvbatVoltageBuffer[i] = gFG_voltage;
|
|
|
|
FGbatteryVoltageSum =
|
|
gFG_voltage * batt_meter_cust_data.fg_vbat_average_size;
|
|
gFG_voltage_AVG = gFG_voltage;
|
|
|
|
#ifdef Q_MAX_BY_CURRENT
|
|
/* 1.2 Average FG_current */
|
|
for (i = 0; i < FG_CURRENT_AVERAGE_SIZE; i++)
|
|
FGCurrentBuffer[i] = gFG_current;
|
|
|
|
FGCurrentSum = gFG_current * FG_CURRENT_AVERAGE_SIZE;
|
|
gFG_current_AVG = gFG_current;
|
|
#endif
|
|
|
|
/* 2. Calculate battery capacity by VBAT */
|
|
gFG_capacity_by_v = fgauge_read_capacity_by_v(gFG_voltage);
|
|
gFG_capacity_by_v_init = gFG_capacity_by_v;
|
|
|
|
/* 3. Calculate battery capacity by Coulomb Counter */
|
|
gFG_capacity_by_c = fgauge_read_capacity(1);
|
|
|
|
/* 4. update DOD0 */
|
|
|
|
dod_init();
|
|
|
|
gFG_current_auto_detect_R_fg_count = 0;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CURRENT,
|
|
&gFG_current);
|
|
|
|
gFG_current_auto_detect_R_fg_total += gFG_current;
|
|
gFG_current_auto_detect_R_fg_count++;
|
|
}
|
|
|
|
/* double check */
|
|
if (gFG_current_auto_detect_R_fg_total <= 0) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"gFG_current_auto_detect_R_fg_total=0, need double check\n");
|
|
|
|
gFG_current_auto_detect_R_fg_count = 0;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
ret = battery_meter_ctrl(
|
|
BATTERY_METER_CMD_GET_HW_FG_CURRENT,
|
|
&gFG_current);
|
|
|
|
gFG_current_auto_detect_R_fg_total += gFG_current;
|
|
gFG_current_auto_detect_R_fg_count++;
|
|
}
|
|
}
|
|
|
|
gFG_current_auto_detect_R_fg_result =
|
|
gFG_current_auto_detect_R_fg_total /
|
|
gFG_current_auto_detect_R_fg_count;
|
|
#if !defined(DISABLE_RFG_EXIST_CHECK)
|
|
if (gFG_current_auto_detect_R_fg_result <=
|
|
batt_meter_cust_data.current_detect_r_fg) {
|
|
g_auxadc_solution = 1;
|
|
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] Detect NO Rfg, use AUXADC report. (%d=%d/%d)(%d)\r\n",
|
|
gFG_current_auto_detect_R_fg_result,
|
|
gFG_current_auto_detect_R_fg_total,
|
|
gFG_current_auto_detect_R_fg_count, g_auxadc_solution);
|
|
} else {
|
|
if (g_auxadc_solution == 0) {
|
|
g_auxadc_solution = 0;
|
|
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] Detect Rfg, use FG report. (%d=%d/%d)(%d)\r\n",
|
|
gFG_current_auto_detect_R_fg_result,
|
|
gFG_current_auto_detect_R_fg_total,
|
|
gFG_current_auto_detect_R_fg_count,
|
|
g_auxadc_solution);
|
|
} else {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] Detect Rfg, but use AUXADC report. due to g_auxadc_solution=%d \r\n",
|
|
g_auxadc_solution);
|
|
}
|
|
}
|
|
#endif
|
|
/* 5. Logging */
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FGADC] %d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\r\n",
|
|
gFG_Is_Charging, gFG_current, gFG_columb, gFG_voltage,
|
|
gFG_capacity_by_v, gFG_capacity_by_c, gFG_capacity_by_c_init,
|
|
gFG_BATT_CAPACITY, gFG_BATT_CAPACITY_aging,
|
|
gFG_compensate_value, gFG_ori_voltage,
|
|
batt_meter_cust_data.ocv_board_compesate,
|
|
batt_meter_cust_data.r_fg_board_slope, gFG_voltage_init,
|
|
batt_meter_cust_data.minerroroffset, gFG_DOD0, gFG_DOD1,
|
|
batt_meter_cust_data.car_tune_value,
|
|
batt_meter_cust_data.aging_tuning_value);
|
|
update_fg_dbg_tool_value();
|
|
}
|
|
|
|
#ifdef FG_BAT_INT
|
|
unsigned char reset_fg_bat_int = KAL_TRUE;
|
|
void fg_bat_int_handler(void)
|
|
{
|
|
pr_notice("%s\n", __func__);
|
|
reset_fg_bat_int = KAL_TRUE;
|
|
wake_up_bat2();
|
|
}
|
|
#endif
|
|
|
|
void fgauge_initialization(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
#else
|
|
int i = 0;
|
|
unsigned int ret = 0;
|
|
|
|
/* gFG_BATT_CAPACITY_init_high_current = */
|
|
/* fgauge_get_Q_max_high_current(25); */
|
|
/* gFG_BATT_CAPACITY_aging = fgauge_get_Q_max(25); */
|
|
|
|
/* 1. HW initialization */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_HW_FG_INIT, NULL);
|
|
|
|
/* 2. SW algorithm initialization */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_OCV, &gFG_voltage);
|
|
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CURRENT,
|
|
&gFG_current);
|
|
i = 0;
|
|
while (gFG_current == 0) {
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CURRENT,
|
|
&gFG_current);
|
|
if (i > 10) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[%s] gFG_current == 0\n", __func__);
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CAR, &gFG_columb);
|
|
|
|
fgauge_construct_battery_profile_init();
|
|
gFG_temp = force_get_tbat(KAL_FALSE);
|
|
gFG_capacity = fgauge_read_capacity(0);
|
|
|
|
gFG_capacity_by_c_init = gFG_capacity;
|
|
gFG_capacity_by_c = gFG_capacity;
|
|
gFG_capacity_by_v = gFG_capacity;
|
|
|
|
gFG_DOD0 = 100 - gFG_capacity;
|
|
bm_print(BM_LOG_CRTI, "[%s] gFG_DOD0 =%d %d\n",
|
|
__func__, gFG_DOD0, gFG_capacity);
|
|
|
|
gFG_BATT_CAPACITY = fgauge_get_Q_max(gFG_temp);
|
|
|
|
gFG_BATT_CAPACITY_init_high_current =
|
|
fgauge_get_Q_max_high_current(gFG_temp);
|
|
gFG_BATT_CAPACITY_aging = fgauge_get_Q_max(gFG_temp);
|
|
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_DUMP_REGISTER, NULL);
|
|
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] Done HW_OCV:%d FG_Current:%d FG_CAR:%d tmp=%d capacity=%d Qmax=%d\n",
|
|
__func__, gFG_voltage, gFG_current,
|
|
gFG_columb, gFG_temp, gFG_capacity,
|
|
gFG_BATT_CAPACITY);
|
|
|
|
#if defined(FG_BAT_INT)
|
|
pmic_register_interrupt_callback(FG_BAT_INT_L_NO, fg_bat_int_handler);
|
|
pmic_register_interrupt_callback(FG_BAT_INT_H_NO, fg_bat_int_handler);
|
|
#endif
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
signed int get_dynamic_period(int first_use, int first_wakeup_time,
|
|
int battery_capacity_level)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
|
|
return first_wakeup_time;
|
|
|
|
#elif defined(SOC_BY_AUXADC) || defined(SOC_BY_SW_FG)
|
|
|
|
signed int vbat_val = 0;
|
|
|
|
#ifdef CONFIG_MTK_POWER_EXT_DETECT
|
|
if (bat_is_ext_power() == KAL_TRUE)
|
|
return batt_meter_cust_data.normal_wakeup_period;
|
|
#endif
|
|
|
|
vbat_val = g_sw_vbat_temp;
|
|
|
|
/* change wake up period when system suspend. */
|
|
if (vbat_val > batt_meter_cust_data.vbat_normal_wakeup) /* 3.6v */
|
|
g_spm_timer =
|
|
batt_meter_cust_data.normal_wakeup_period; /* 90 min */
|
|
else if (vbat_val >
|
|
batt_meter_cust_data.vbat_low_power_wakeup) /* 3.5v */
|
|
g_spm_timer = batt_meter_cust_data
|
|
.low_power_wakeup_period; /* 5 min */
|
|
else
|
|
g_spm_timer =
|
|
batt_meter_cust_data
|
|
.close_poweroff_wakeup_period; /* 0.5 min */
|
|
|
|
bm_print(BM_LOG_CRTI, "vbat_val=%d, g_spm_timer=%d\n", vbat_val,
|
|
g_spm_timer);
|
|
|
|
return g_spm_timer;
|
|
#else
|
|
|
|
signed int car_instant = 0;
|
|
signed int current_instant = 0;
|
|
static signed int last_time;
|
|
signed int vbat_val = 0;
|
|
int ret = 0;
|
|
|
|
#if defined(FG_BAT_INT)
|
|
#else
|
|
signed int I_sleep = 0;
|
|
signed int new_time = 0;
|
|
signed int ret_val = -1;
|
|
signed int car_wakeup = 0;
|
|
static signed int car_sleep = 0x12345678;
|
|
|
|
#endif
|
|
|
|
vbat_val = g_sw_vbat_temp;
|
|
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CURRENT,
|
|
¤t_instant);
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CAR, &car_instant);
|
|
|
|
if (car_instant < 0)
|
|
car_instant = car_instant - (car_instant * 2);
|
|
|
|
if (BMT_status.UI_SOC != BMT_status.SOC && gDisableGM != KAL_TRUE) {
|
|
last_time = 60;
|
|
g_spm_timer = 60;
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] UISOC:%d SOC:%d vbat:%d current:%d car:%d new_time:%d\n",
|
|
__func__, BMT_status.UI_SOC, BMT_status.SOC, vbat_val,
|
|
current_instant, car_instant, g_spm_timer);
|
|
return g_spm_timer;
|
|
}
|
|
|
|
if (vbat_val > batt_meter_cust_data.vbat_normal_wakeup) { /* 3.6v */
|
|
|
|
#if defined(FG_BAT_INT)
|
|
g_spm_timer = LOW_POWER_WAKEUP_PERIOD * 3;
|
|
#else
|
|
|
|
car_wakeup = car_instant;
|
|
|
|
if (last_time == 0)
|
|
last_time = 1;
|
|
|
|
if (car_sleep > car_wakeup || car_sleep == 0x12345678) {
|
|
car_sleep = car_wakeup;
|
|
bm_print(BM_LOG_CRTI,
|
|
"[%s] reset car_sleep\n", __func__);
|
|
}
|
|
|
|
I_sleep = ((car_wakeup - car_sleep) * 3600) /
|
|
last_time; /* unit: second */
|
|
|
|
if (I_sleep == 0) {
|
|
ret = battery_meter_ctrl(
|
|
BATTERY_METER_CMD_GET_HW_FG_CURRENT, &I_sleep);
|
|
I_sleep = I_sleep / 10;
|
|
}
|
|
|
|
if (I_sleep == 0) {
|
|
new_time = first_wakeup_time;
|
|
} else {
|
|
new_time = ((gFG_BATT_CAPACITY *
|
|
battery_capacity_level * 3600) /
|
|
100) /
|
|
I_sleep;
|
|
}
|
|
ret_val = new_time;
|
|
|
|
if (ret_val == 0)
|
|
ret_val = first_wakeup_time;
|
|
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[%s] car_instant=%d, car_wakeup=%d, car_sleep=%d, I_sleep=%d,",
|
|
"gFG_BATT_CAPACITY=%d, last_time=%d, new_time=%d\r\n",
|
|
__func__, car_instant, car_wakeup, car_sleep, I_sleep,
|
|
gFG_BATT_CAPACITY, last_time, new_time);
|
|
|
|
/* update parameter */
|
|
car_sleep = car_wakeup;
|
|
last_time = ret_val;
|
|
g_spm_timer = ret_val;
|
|
#endif
|
|
} else if (vbat_val >
|
|
batt_meter_cust_data.vbat_low_power_wakeup) { /* 3.5v */
|
|
g_spm_timer = batt_meter_cust_data
|
|
.low_power_wakeup_period; /* 5 min */
|
|
} else {
|
|
g_spm_timer =
|
|
batt_meter_cust_data
|
|
.close_poweroff_wakeup_period; /* 0.5 min */
|
|
}
|
|
|
|
bm_print(BM_LOG_CRTI, "vbat_val=%d, g_spm_timer=%d\n", vbat_val,
|
|
g_spm_timer);
|
|
return g_spm_timer;
|
|
|
|
#endif
|
|
}
|
|
|
|
/* ============================================================ // */
|
|
signed int battery_meter_get_battery_voltage(enum kal_bool update)
|
|
{
|
|
int ret = 0;
|
|
int val = 5;
|
|
static int pre_val = -1;
|
|
|
|
if (update == KAL_TRUE || pre_val == -1) {
|
|
val = 5; /* set avg times */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_BAT_SENSE,
|
|
&val);
|
|
pre_val = val;
|
|
} else {
|
|
val = pre_val;
|
|
}
|
|
g_sw_vbat_temp = val;
|
|
|
|
#ifdef MTK_BATTERY_LIFETIME_DATA_SUPPORT
|
|
if (g_sw_vbat_temp > gFG_max_voltage)
|
|
gFG_max_voltage = g_sw_vbat_temp;
|
|
|
|
if (g_sw_vbat_temp < gFG_min_voltage)
|
|
gFG_min_voltage = g_sw_vbat_temp;
|
|
|
|
#endif
|
|
|
|
return val;
|
|
}
|
|
|
|
signed int battery_meter_get_charging_current_imm(void)
|
|
{
|
|
#ifdef AUXADC_SUPPORT_IMM_CURRENT_MODE
|
|
return PMIC_IMM_GetCurrent();
|
|
#else
|
|
int ret;
|
|
signed int ADC_I_SENSE = 1; /* 1 measure time */
|
|
signed int ADC_BAT_SENSE = 1; /* 1 measure time */
|
|
int ICharging = 0;
|
|
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_BAT_SENSE,
|
|
&ADC_BAT_SENSE);
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_I_SENSE,
|
|
&ADC_I_SENSE);
|
|
|
|
ICharging = (ADC_I_SENSE - ADC_BAT_SENSE + g_I_SENSE_offset) * 1000 /
|
|
batt_meter_cust_data.cust_r_sense;
|
|
return ICharging;
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_get_charging_current(void)
|
|
{
|
|
#ifdef DISABLE_CHARGING_CURRENT_MEASURE
|
|
return 0;
|
|
#elif !defined(EXTERNAL_SWCHR_SUPPORT)
|
|
signed int ADC_BAT_SENSE_tmp[20] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
signed int ADC_BAT_SENSE_sum = 0;
|
|
signed int ADC_BAT_SENSE = 0;
|
|
signed int ADC_I_SENSE_tmp[20] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
signed int ADC_I_SENSE_sum = 0;
|
|
signed int ADC_I_SENSE = 0;
|
|
int repeat = 20;
|
|
int i = 0;
|
|
int j = 0;
|
|
signed int temp = 0;
|
|
int ICharging = 0;
|
|
int ret = 0;
|
|
int val = 1;
|
|
|
|
for (i = 0; i < repeat; i++) {
|
|
val = 1; /* set avg times */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_BAT_SENSE,
|
|
&val);
|
|
ADC_BAT_SENSE_tmp[i] = val;
|
|
|
|
val = 1; /* set avg times */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_I_SENSE,
|
|
&val);
|
|
ADC_I_SENSE_tmp[i] = val;
|
|
|
|
ADC_BAT_SENSE_sum += ADC_BAT_SENSE_tmp[i];
|
|
ADC_I_SENSE_sum += ADC_I_SENSE_tmp[i];
|
|
}
|
|
|
|
/* sorting BAT_SENSE */
|
|
for (i = 0; i < repeat; i++) {
|
|
for (j = i; j < repeat; j++) {
|
|
if (ADC_BAT_SENSE_tmp[j] < ADC_BAT_SENSE_tmp[i]) {
|
|
temp = ADC_BAT_SENSE_tmp[j];
|
|
ADC_BAT_SENSE_tmp[j] = ADC_BAT_SENSE_tmp[i];
|
|
ADC_BAT_SENSE_tmp[i] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
bm_print(BM_LOG_FULL, "[g_Get_I_Charging:BAT_SENSE]\r\n");
|
|
for (i = 0; i < repeat; i++)
|
|
bm_print(BM_LOG_FULL, "%d,", ADC_BAT_SENSE_tmp[i]);
|
|
|
|
bm_print(BM_LOG_FULL, "\r\n");
|
|
|
|
/* sorting I_SENSE */
|
|
for (i = 0; i < repeat; i++) {
|
|
for (j = i; j < repeat; j++) {
|
|
if (ADC_I_SENSE_tmp[j] < ADC_I_SENSE_tmp[i]) {
|
|
temp = ADC_I_SENSE_tmp[j];
|
|
ADC_I_SENSE_tmp[j] = ADC_I_SENSE_tmp[i];
|
|
ADC_I_SENSE_tmp[i] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
bm_print(BM_LOG_FULL, "[g_Get_I_Charging:I_SENSE]\r\n");
|
|
for (i = 0; i < repeat; i++)
|
|
bm_print(BM_LOG_FULL, "%d,", ADC_I_SENSE_tmp[i]);
|
|
|
|
bm_print(BM_LOG_FULL, "\r\n");
|
|
|
|
ADC_BAT_SENSE_sum -= ADC_BAT_SENSE_tmp[0];
|
|
ADC_BAT_SENSE_sum -= ADC_BAT_SENSE_tmp[1];
|
|
ADC_BAT_SENSE_sum -= ADC_BAT_SENSE_tmp[18];
|
|
ADC_BAT_SENSE_sum -= ADC_BAT_SENSE_tmp[19];
|
|
ADC_BAT_SENSE = ADC_BAT_SENSE_sum / (repeat - 4);
|
|
|
|
bm_print(BM_LOG_FULL, "[g_Get_I_Charging] ADC_BAT_SENSE=%d\r\n",
|
|
ADC_BAT_SENSE);
|
|
|
|
ADC_I_SENSE_sum -= ADC_I_SENSE_tmp[0];
|
|
ADC_I_SENSE_sum -= ADC_I_SENSE_tmp[1];
|
|
ADC_I_SENSE_sum -= ADC_I_SENSE_tmp[18];
|
|
ADC_I_SENSE_sum -= ADC_I_SENSE_tmp[19];
|
|
ADC_I_SENSE = ADC_I_SENSE_sum / (repeat - 4);
|
|
|
|
bm_print(BM_LOG_FULL, "[g_Get_I_Charging] ADC_I_SENSE(Before)=%d\r\n",
|
|
ADC_I_SENSE);
|
|
|
|
bm_print(BM_LOG_FULL, "[g_Get_I_Charging] ADC_I_SENSE(After)=%d\r\n",
|
|
ADC_I_SENSE);
|
|
|
|
if (ADC_I_SENSE > ADC_BAT_SENSE) {
|
|
ICharging = (ADC_I_SENSE - ADC_BAT_SENSE + g_I_SENSE_offset) *
|
|
1000 / batt_meter_cust_data.cust_r_sense;
|
|
} else {
|
|
ICharging = 0;
|
|
}
|
|
|
|
return ICharging;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_get_battery_current(void)
|
|
{
|
|
int ret = 0;
|
|
signed int val = 0;
|
|
|
|
if (g_auxadc_solution == 1)
|
|
val = oam_i_2;
|
|
else
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CURRENT,
|
|
&val);
|
|
|
|
return val;
|
|
}
|
|
|
|
enum kal_bool battery_meter_get_battery_current_sign(void)
|
|
{
|
|
int ret = 0;
|
|
enum kal_bool val = 0;
|
|
|
|
if (g_auxadc_solution == 1)
|
|
val = 0; /* discharging */
|
|
else
|
|
ret = battery_meter_ctrl(
|
|
BATTERY_METER_CMD_GET_HW_FG_CURRENT_SIGN, &val);
|
|
|
|
return val;
|
|
}
|
|
|
|
signed int battery_meter_get_car(void)
|
|
{
|
|
int ret = 0;
|
|
signed int val = 0;
|
|
|
|
if (g_auxadc_solution == 1)
|
|
val = oam_car_2;
|
|
else
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CAR, &val);
|
|
|
|
return val;
|
|
}
|
|
|
|
signed int battery_meter_get_battery_temperature(void)
|
|
{
|
|
#ifdef MTK_BATTERY_LIFETIME_DATA_SUPPORT
|
|
signed int batt_temp = force_get_tbat(KAL_TRUE);
|
|
|
|
if (batt_temp > gFG_max_temperature)
|
|
gFG_max_temperature = batt_temp;
|
|
if (batt_temp < gFG_min_temperature)
|
|
gFG_min_temperature = batt_temp;
|
|
|
|
return batt_temp;
|
|
#else
|
|
return force_get_tbat(KAL_TRUE);
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_get_charger_voltage(void)
|
|
{
|
|
int ret = 0;
|
|
int val = 0;
|
|
|
|
val = 5; /* set avg times */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_CHARGER, &val);
|
|
|
|
/* val = (((R_CHARGER_1+R_CHARGER_2)*100*val)/R_CHARGER_2)/100; */
|
|
return val;
|
|
}
|
|
|
|
#if defined(FG_BAT_INT)
|
|
signed int battery_meter_set_columb_interrupt(unsigned int val)
|
|
{
|
|
battery_log(BAT_LOG_FULL, "%s=%d\n", __func__,
|
|
val);
|
|
battery_meter_ctrl(BATTERY_METER_CMD_SET_COLUMB_INTERRUPT, &val);
|
|
return 0;
|
|
}
|
|
#endif /* #if defined(FG_BAT_INT) */
|
|
|
|
signed int battery_meter_get_battery_percentage(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
return 50;
|
|
#else
|
|
|
|
if (bat_is_charger_exist() == KAL_FALSE)
|
|
fg_qmax_update_for_aging_flag = 1;
|
|
|
|
#if defined(SOC_BY_AUXADC)
|
|
return auxadc_algo_run();
|
|
#endif
|
|
|
|
#if defined(SOC_BY_HW_FG)
|
|
if (g_auxadc_solution == 1)
|
|
return auxadc_algo_run();
|
|
/*else {*/
|
|
fgauge_algo_run();
|
|
#if !defined(CUST_CAPACITY_OCV2CV_TRANSFORM)
|
|
/* hw fg, //return gfg_percent_check_point; // voltage mode */
|
|
return gFG_capacity_by_c;
|
|
#else
|
|
/* We keep gFG_capacity_by_c as capacity before compensation */
|
|
/* Compensated capacity is returned for UI SOC tracking */
|
|
return 100 -
|
|
battery_meter_trans_battery_percentage(100 - gFG_capacity_by_c);
|
|
#endif
|
|
/*}*/
|
|
#endif
|
|
|
|
#if defined(SOC_BY_SW_FG)
|
|
oam_run();
|
|
#if !defined(CUST_CAPACITY_OCV2CV_TRANSFORM)
|
|
#if (OAM_D5 == 1)
|
|
return 100 - oam_d_5;
|
|
#else
|
|
return 100 - oam_d_2;
|
|
#endif
|
|
#else
|
|
#if (OAM_D5 == 1)
|
|
return 100 - battery_meter_trans_battery_percentage(oam_d_5);
|
|
#else
|
|
return 100 - battery_meter_trans_battery_percentage(oam_d_2);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_initial(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
return 0;
|
|
#else
|
|
static enum kal_bool meter_initilized;
|
|
|
|
mutex_lock(&FGADC_mutex);
|
|
if (meter_initilized == KAL_FALSE) {
|
|
#ifdef MTK_MULTI_BAT_PROFILE_SUPPORT
|
|
fgauge_get_profile_id();
|
|
#endif
|
|
|
|
#if defined(SOC_BY_AUXADC)
|
|
g_auxadc_solution = 1;
|
|
table_init();
|
|
bm_print(BM_LOG_CRTI,
|
|
"[%s] SOC_BY_AUXADC done\n",
|
|
__func__);
|
|
#endif
|
|
|
|
#if defined(SOC_BY_HW_FG)
|
|
fgauge_initialization();
|
|
fgauge_algo_run_init();
|
|
bm_print(BM_LOG_CRTI,
|
|
"[%s] SOC_BY_HW_FG done\n",
|
|
__func__);
|
|
#endif
|
|
|
|
#if defined(SOC_BY_SW_FG)
|
|
g_auxadc_solution = 1;
|
|
table_init();
|
|
oam_init();
|
|
bm_print(BM_LOG_CRTI,
|
|
"[%s] SOC_BY_SW_FG done\n",
|
|
__func__);
|
|
#endif
|
|
|
|
meter_initilized = KAL_TRUE;
|
|
}
|
|
mutex_unlock(&FGADC_mutex);
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
void reset_parameter_car(void)
|
|
{
|
|
#if defined(SOC_BY_HW_FG)
|
|
int ret = 0;
|
|
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_HW_RESET, NULL);
|
|
gFG_columb = 0;
|
|
|
|
#ifdef MTK_BATTERY_LIFETIME_DATA_SUPPORT
|
|
gFG_pre_columb_count = 0;
|
|
#endif
|
|
|
|
#ifdef MTK_ENABLE_AGING_ALGORITHM
|
|
aging_ocv_1 = 0;
|
|
aging_ocv_2 = 0;
|
|
#ifdef MD_SLEEP_CURRENT_CHECK
|
|
columb_before_sleep = 0x123456;
|
|
#endif
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if defined(SOC_BY_SW_FG)
|
|
oam_car_1 = 0;
|
|
oam_car_2 = 0;
|
|
gFG_columb = 0;
|
|
#endif
|
|
}
|
|
|
|
void reset_parameter_dod_change(void)
|
|
{
|
|
#if defined(SOC_BY_HW_FG)
|
|
bm_print(BM_LOG_CRTI, "[FGADC] Update DOD0(%d) by %d \r\n", gFG_DOD0,
|
|
gFG_DOD1);
|
|
gFG_DOD0 = gFG_DOD1;
|
|
#endif
|
|
|
|
#if defined(SOC_BY_SW_FG)
|
|
bm_print(BM_LOG_CRTI, "[FGADC] Update oam_d0(%d) by %d \r\n", oam_d0,
|
|
oam_d_5);
|
|
oam_d0 = oam_d_5;
|
|
gFG_DOD0 = oam_d0;
|
|
oam_d_1 = oam_d_5;
|
|
oam_d_2 = oam_d_5;
|
|
oam_d_3 = oam_d_5;
|
|
oam_d_4 = oam_d_5;
|
|
#endif
|
|
}
|
|
|
|
void reset_parameter_dod_full(unsigned int ui_percentage)
|
|
{
|
|
#if defined(SOC_BY_HW_FG)
|
|
bm_print(BM_LOG_CRTI, "[battery_meter_reset]1 DOD0=%d,DOD1=%d,ui=%d\n",
|
|
gFG_DOD0, gFG_DOD1, ui_percentage);
|
|
gFG_DOD0 = 100 - ui_percentage;
|
|
gFG_DOD1 = gFG_DOD0;
|
|
bm_print(BM_LOG_CRTI, "[battery_meter_reset]2 DOD0=%d,DOD1=%d,ui=%d\n",
|
|
gFG_DOD0, gFG_DOD1, ui_percentage);
|
|
#endif
|
|
|
|
#if defined(SOC_BY_SW_FG)
|
|
bm_print(BM_LOG_CRTI,
|
|
"[battery_meter_reset]1 oam_d0=%d,oam_d_5=%d,ui=%d\n", oam_d0,
|
|
oam_d_5, ui_percentage);
|
|
oam_d0 = 100 - ui_percentage;
|
|
gFG_DOD0 = oam_d0;
|
|
gFG_DOD1 = oam_d0;
|
|
oam_d_1 = oam_d0;
|
|
oam_d_2 = oam_d0;
|
|
oam_d_3 = oam_d0;
|
|
oam_d_4 = oam_d0;
|
|
oam_d_5 = oam_d0;
|
|
bm_print(BM_LOG_CRTI,
|
|
"[battery_meter_reset]2 oam_d0=%d,oam_d_5=%d,ui=%d\n", oam_d0,
|
|
oam_d_5, ui_percentage);
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_reset(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
return 0;
|
|
#else
|
|
unsigned int ui_percentage = bat_get_ui_percentage();
|
|
|
|
#if defined(CUST_CAPACITY_OCV2CV_TRANSFORM)
|
|
if (g_USE_UI_SOC == KAL_FALSE) {
|
|
ui_percentage = battery_meter_get_battery_soc();
|
|
g_USE_UI_SOC = KAL_TRUE;
|
|
bm_print(
|
|
BM_LOG_FULL,
|
|
"[CUST_CAPACITY_OCV2CV_TRANSFORM]Use Battery SOC: %d\n",
|
|
ui_percentage);
|
|
}
|
|
#endif
|
|
|
|
reset_parameter_car();
|
|
reset_parameter_dod_full(ui_percentage);
|
|
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_sync(signed int bat_i_sense_offset)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
return 0;
|
|
#else
|
|
g_I_SENSE_offset = bat_i_sense_offset;
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_get_battery_zcv(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
return 3987;
|
|
#else
|
|
return gFG_voltage;
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_get_battery_nPercent_zcv(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
return 3700;
|
|
#else
|
|
/* 15% zcv, 15% can be customized by 100-g_tracking_point */
|
|
return gFG_15_vlot;
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_get_battery_nPercent_UI_SOC(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
return 15;
|
|
#else
|
|
return g_tracking_point; /* tracking point */
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_get_tempR(signed int dwVolt)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
return 0;
|
|
#else
|
|
int TRes;
|
|
|
|
TRes = (batt_meter_cust_data.rbat_pull_up_r * dwVolt) /
|
|
(batt_meter_cust_data.rbat_pull_up_volt - dwVolt);
|
|
|
|
return TRes;
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_get_tempV(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
return 0;
|
|
#else
|
|
int ret = 0;
|
|
int val = 0;
|
|
|
|
val = 1; /* set avg times */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_BAT_TEMP, &val);
|
|
return val;
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_get_VSense(void)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
return 0;
|
|
#else
|
|
int ret = 0;
|
|
int val = 0;
|
|
|
|
val = 1; /* set avg times */
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_ADC_V_I_SENSE, &val);
|
|
return val;
|
|
#endif
|
|
}
|
|
|
|
signed int battery_meter_get_QMAX25(void)
|
|
{
|
|
return batt_meter_cust_data.q_max_pos_25;
|
|
}
|
|
|
|
/* ============================================================ // */
|
|
static ssize_t fgadc_log_write(struct file *filp, const char __user *buff,
|
|
size_t len, loff_t *data)
|
|
{
|
|
char proc_fgadc_data;
|
|
|
|
if ((len <= 0) || copy_from_user(&proc_fgadc_data, buff, 1)) {
|
|
bm_print(BM_LOG_CRTI, "%s error.\n", __func__);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (proc_fgadc_data == '1') {
|
|
bm_print(BM_LOG_CRTI, "enable FGADC driver log system\n");
|
|
Enable_FGADC_LOG = BM_LOG_CRTI;
|
|
} else if (proc_fgadc_data == '2') {
|
|
bm_print(BM_LOG_CRTI, "enable FGADC driver log system:2\n");
|
|
Enable_FGADC_LOG = BM_LOG_FULL;
|
|
} else {
|
|
bm_print(BM_LOG_CRTI, "Disable FGADC driver log system\n");
|
|
Enable_FGADC_LOG = 0;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static const struct file_operations fgadc_proc_fops = {
|
|
.write = fgadc_log_write,
|
|
};
|
|
|
|
int init_proc_log_fg(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
#if 1
|
|
proc_create("fgadc_log", 0644, NULL, &fgadc_proc_fops);
|
|
bm_print(BM_LOG_CRTI, "proc_create fgadc_proc_fops\n");
|
|
#else
|
|
proc_entry_fgadc = create_proc_entry("fgadc_log", 0644, NULL);
|
|
|
|
if (proc_entry_fgadc == NULL) {
|
|
ret = -ENOMEM;
|
|
bm_print(BM_LOG_CRTI,
|
|
"%s: Couldn't create proc entry\n",
|
|
__func__);
|
|
} else {
|
|
proc_entry_fgadc->write_proc = fgadc_log_write;
|
|
bm_print(BM_LOG_CRTI, "%s loaded.\n", __func__);
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef MTK_BATTERY_LIFETIME_DATA_SUPPORT
|
|
|
|
/* ============================================================ // */
|
|
|
|
#ifdef CUSTOM_BATTERY_CYCLE_AGING_DATA
|
|
|
|
signed int get_battery_aging_factor(signed int cycle)
|
|
{
|
|
signed int i, f1, f2, c1, c2;
|
|
signed int saddles;
|
|
|
|
saddles = sizeof(battery_aging_table) / sizeof(BATTERY_CYCLE_STRUCT);
|
|
|
|
for (i = 0; i < saddles; i++) {
|
|
if (battery_aging_table[i].cycle == cycle)
|
|
return battery_aging_table[i].aging_factor;
|
|
|
|
if (battery_aging_table[i].cycle > cycle) {
|
|
if (i == 0)
|
|
return 100;
|
|
|
|
if (battery_aging_table[i].aging_factor >
|
|
battery_aging_table[i - 1].aging_factor) {
|
|
f1 = battery_aging_table[i].aging_factor;
|
|
f2 = battery_aging_table[i - 1].aging_factor;
|
|
c1 = battery_aging_table[i].cycle;
|
|
c2 = battery_aging_table[i - 1].cycle;
|
|
return f2 +
|
|
((cycle - c2) * (f1 - f2)) / (c1 - c2);
|
|
} /*else {*/
|
|
f1 = battery_aging_table[i - 1].aging_factor;
|
|
f2 = battery_aging_table[i].aging_factor;
|
|
c1 = battery_aging_table[i].cycle;
|
|
c2 = battery_aging_table[i - 1].cycle;
|
|
return f2 + ((cycle - c2) * (f1 - f2)) / (c1 - c2);
|
|
/*}*/
|
|
}
|
|
}
|
|
|
|
return battery_aging_table[saddles - 1].aging_factor;
|
|
}
|
|
|
|
#endif
|
|
|
|
static ssize_t show_FG_Battery_Cycle(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] gFG_battery_cycle : %d\n",
|
|
gFG_battery_cycle);
|
|
return sprintf(buf, "%d\n", gFG_battery_cycle);
|
|
}
|
|
|
|
static ssize_t store_FG_Battery_Cycle(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
signed int cycle;
|
|
|
|
#ifdef CUSTOM_BATTERY_CYCLE_AGING_DATA
|
|
signed int aging_capacity;
|
|
signed int factor;
|
|
#endif
|
|
|
|
if (kstrtoint(buf, 0, &cycle) == 1) {
|
|
bm_print(BM_LOG_CRTI, "[FG] update battery cycle count: %d\n",
|
|
cycle);
|
|
gFG_battery_cycle = cycle;
|
|
|
|
#ifdef CUSTOM_BATTERY_CYCLE_AGING_DATA
|
|
/* perform cycle aging calculation */
|
|
|
|
factor = get_battery_aging_factor(gFG_battery_cycle);
|
|
if (factor > 0 && factor < 100) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FG]cycle count to aging factor %d\n",
|
|
factor);
|
|
aging_capacity = gFG_BATT_CAPACITY * factor / 100;
|
|
if (aging_capacity < gFG_BATT_CAPACITY_aging) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FG] update gFG_BATT_CAPACITY_aging to %d\n",
|
|
aging_capacity);
|
|
gFG_BATT_CAPACITY_aging = aging_capacity;
|
|
}
|
|
}
|
|
#endif
|
|
} else {
|
|
bm_print(BM_LOG_CRTI, "[FG] format error!\n");
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_Battery_Cycle, 0664, show_FG_Battery_Cycle,
|
|
store_FG_Battery_Cycle);
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
static ssize_t show_FG_Max_Battery_Voltage(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] gFG_max_voltage : %d\n", gFG_max_voltage);
|
|
return sprintf(buf, "%d\n", gFG_max_voltage);
|
|
}
|
|
|
|
static ssize_t store_FG_Max_Battery_Voltage(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
signed int voltage;
|
|
|
|
if (kstrtoint(buf, 0, &voltage) == 1) {
|
|
if (voltage > gFG_max_voltage) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FG] update battery max voltage: %d\n",
|
|
voltage);
|
|
gFG_max_voltage = voltage;
|
|
}
|
|
} else {
|
|
bm_print(BM_LOG_CRTI, "[FG] format error!\n");
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_Max_Battery_Voltage, 0664, show_FG_Max_Battery_Voltage,
|
|
store_FG_Max_Battery_Voltage);
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
static ssize_t show_FG_Min_Battery_Voltage(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] gFG_min_voltage : %d\n", gFG_min_voltage);
|
|
return sprintf(buf, "%d\n", gFG_min_voltage);
|
|
}
|
|
|
|
static ssize_t store_FG_Min_Battery_Voltage(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
signed int voltage;
|
|
|
|
if (kstrtoint(buf, 0, &voltage) == 1) {
|
|
if (voltage < gFG_min_voltage) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FG] update battery min voltage: %d\n",
|
|
voltage);
|
|
gFG_min_voltage = voltage;
|
|
}
|
|
} else {
|
|
bm_print(BM_LOG_CRTI, "[FG] format error!\n");
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_Min_Battery_Voltage, 0664, show_FG_Min_Battery_Voltage,
|
|
store_FG_Min_Battery_Voltage);
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
static ssize_t show_FG_Max_Battery_Current(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] gFG_max_current : %d\n", gFG_max_current);
|
|
return sprintf(buf, "%d\n", gFG_max_current);
|
|
}
|
|
|
|
static ssize_t store_FG_Max_Battery_Current(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
signed int bat_current;
|
|
|
|
if (kstrtoint(buf, 0, &bat_current) == 1) {
|
|
if (bat_current > gFG_max_current) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FG] update battery max current: %d\n",
|
|
bat_current);
|
|
gFG_max_current = bat_current;
|
|
}
|
|
} else {
|
|
bm_print(BM_LOG_CRTI, "[FG] format error!\n");
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_Max_Battery_Current, 0664, show_FG_Max_Battery_Current,
|
|
store_FG_Max_Battery_Current);
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
static ssize_t show_FG_Min_Battery_Current(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] gFG_min_current : %d\n", gFG_min_current);
|
|
return sprintf(buf, "%d\n", gFG_min_current);
|
|
}
|
|
|
|
static ssize_t store_FG_Min_Battery_Current(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
signed int bat_current;
|
|
|
|
if (kstrtoint(buf, 0, &bat_current) == 1) {
|
|
if (bat_current < gFG_min_current) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FG] update battery min current: %d\n",
|
|
bat_current);
|
|
gFG_min_current = bat_current;
|
|
}
|
|
} else {
|
|
bm_print(BM_LOG_CRTI, "[FG] format error!\n");
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_Min_Battery_Current, 0664, show_FG_Min_Battery_Current,
|
|
store_FG_Min_Battery_Current);
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
static ssize_t show_FG_Max_Battery_Temperature(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG]gFG_max_temperature : %d\n",
|
|
gFG_max_temperature);
|
|
return sprintf(buf, "%d\n", gFG_max_temperature);
|
|
}
|
|
|
|
static ssize_t store_FG_Max_Battery_Temperature(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
signed int temp;
|
|
|
|
if (kstrtoint(buf, 0, &temp) == 1) {
|
|
if (temp > gFG_max_temperature) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FG] update battery max temp: %d\n", temp);
|
|
gFG_max_temperature = temp;
|
|
}
|
|
} else {
|
|
bm_print(BM_LOG_CRTI, "[FG] format error!\n");
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_Max_Battery_Temperature, 0664,
|
|
show_FG_Max_Battery_Temperature,
|
|
store_FG_Max_Battery_Temperature);
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
static ssize_t show_FG_Min_Battery_Temperature(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG]gFG_min_temperature : %d\n",
|
|
gFG_min_temperature);
|
|
return sprintf(buf, "%d\n", gFG_min_temperature);
|
|
}
|
|
|
|
static ssize_t store_FG_Min_Battery_Temperature(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
signed int temp;
|
|
|
|
if (kstrtoint(buf, 0, &temp) == 1) {
|
|
if (temp < gFG_min_temperature) {
|
|
bm_print(BM_LOG_CRTI,
|
|
"[FG] update battery min temp: %d\n", temp);
|
|
gFG_min_temperature = temp;
|
|
}
|
|
} else {
|
|
bm_print(BM_LOG_CRTI, "[FG] format error!\n");
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_Min_Battery_Temperature, 0664,
|
|
show_FG_Min_Battery_Temperature,
|
|
store_FG_Min_Battery_Temperature);
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
static ssize_t show_FG_Aging_Factor(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG]gFG_aging_factor : %d\n", gFG_aging_factor);
|
|
return sprintf(buf, "%d\n", gFG_aging_factor);
|
|
}
|
|
|
|
static ssize_t store_FG_Aging_Factor(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
signed int factor;
|
|
signed int aging_capacity;
|
|
|
|
if (kstrtoint(buf, 0, &factor) == 1) {
|
|
if (factor <= 100 && factor >= 0) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FG] update battery aging factor: old(%d), new(%d)\n",
|
|
gFG_aging_factor, factor);
|
|
|
|
gFG_aging_factor = factor;
|
|
|
|
if (gFG_aging_factor != 100) {
|
|
aging_capacity = gFG_BATT_CAPACITY *
|
|
gFG_aging_factor / 100;
|
|
if (aging_capacity < gFG_BATT_CAPACITY_aging) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[FG] update gFG_BATT_CAPACITY_aging to %d\n",
|
|
aging_capacity);
|
|
gFG_BATT_CAPACITY_aging =
|
|
aging_capacity;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
bm_print(BM_LOG_CRTI, "[FG] format error!\n");
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_Aging_Factor, 0664, show_FG_Aging_Factor,
|
|
store_FG_Aging_Factor);
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
#endif
|
|
|
|
/* ============================================================ */
|
|
static ssize_t show_FG_Current(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
signed int ret = 0;
|
|
signed int fg_current_inout_battery = 0;
|
|
signed int val = 0;
|
|
enum kal_bool is_charging = 0;
|
|
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CURRENT, &val);
|
|
ret = battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CURRENT_SIGN,
|
|
&is_charging);
|
|
|
|
if (is_charging == KAL_TRUE)
|
|
fg_current_inout_battery = 0 - val;
|
|
else
|
|
fg_current_inout_battery = val;
|
|
|
|
bm_print(BM_LOG_CRTI, "[FG] gFG_current_inout_battery : %d\n",
|
|
fg_current_inout_battery);
|
|
return sprintf(buf, "%d\n", fg_current_inout_battery);
|
|
}
|
|
|
|
static ssize_t store_FG_Current(struct device *dev,
|
|
struct device_attribute *attr, const char *buf,
|
|
size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_Current, 0664, show_FG_Current, store_FG_Current);
|
|
|
|
/* ============================================================ */
|
|
static ssize_t show_FG_g_fg_dbg_bat_volt(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_bat_volt : %d\n",
|
|
g_fg_dbg_bat_volt);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_bat_volt);
|
|
}
|
|
|
|
static ssize_t store_FG_g_fg_dbg_bat_volt(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_bat_volt, 0664, show_FG_g_fg_dbg_bat_volt,
|
|
store_FG_g_fg_dbg_bat_volt);
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
static ssize_t show_FG_g_fg_dbg_bat_current(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_bat_current : %d\n",
|
|
g_fg_dbg_bat_current);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_bat_current);
|
|
}
|
|
|
|
static ssize_t store_FG_g_fg_dbg_bat_current(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_bat_current, 0664, show_FG_g_fg_dbg_bat_current,
|
|
store_FG_g_fg_dbg_bat_current);
|
|
/* -------------------------------------------------------------------------- */
|
|
static ssize_t show_FG_g_fg_dbg_bat_zcv(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_bat_zcv : %d\n", g_fg_dbg_bat_zcv);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_bat_zcv);
|
|
}
|
|
|
|
static ssize_t store_FG_g_fg_dbg_bat_zcv(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_bat_zcv, 0664, show_FG_g_fg_dbg_bat_zcv,
|
|
store_FG_g_fg_dbg_bat_zcv);
|
|
/* -------------------------------------------------------------------------- */
|
|
static ssize_t show_FG_g_fg_dbg_bat_temp(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_bat_temp : %d\n",
|
|
g_fg_dbg_bat_temp);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_bat_temp);
|
|
}
|
|
|
|
static ssize_t store_FG_g_fg_dbg_bat_temp(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_bat_temp, 0664, show_FG_g_fg_dbg_bat_temp,
|
|
store_FG_g_fg_dbg_bat_temp);
|
|
/* -------------------------------------------------------------------------- */
|
|
static ssize_t show_FG_g_fg_dbg_bat_r(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_bat_r : %d\n", g_fg_dbg_bat_r);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_bat_r);
|
|
}
|
|
|
|
static ssize_t store_FG_g_fg_dbg_bat_r(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_bat_r, 0664, show_FG_g_fg_dbg_bat_r,
|
|
store_FG_g_fg_dbg_bat_r);
|
|
/* -------------------------------------------------------------------------- */
|
|
static ssize_t show_FG_g_fg_dbg_bat_car(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_bat_car : %d\n", g_fg_dbg_bat_car);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_bat_car);
|
|
}
|
|
|
|
static ssize_t store_FG_g_fg_dbg_bat_car(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_bat_car, 0664, show_FG_g_fg_dbg_bat_car,
|
|
store_FG_g_fg_dbg_bat_car);
|
|
/* -------------------------------------------------------------------------- */
|
|
static ssize_t show_FG_g_fg_dbg_bat_qmax(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_bat_qmax : %d\n",
|
|
g_fg_dbg_bat_qmax);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_bat_qmax);
|
|
}
|
|
|
|
static ssize_t store_FG_g_fg_dbg_bat_qmax(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_bat_qmax, 0664, show_FG_g_fg_dbg_bat_qmax,
|
|
store_FG_g_fg_dbg_bat_qmax);
|
|
/* -------------------------------------------------------------------------- */
|
|
static ssize_t show_FG_g_fg_dbg_d0(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_d0 : %d\n", g_fg_dbg_d0);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_d0);
|
|
}
|
|
|
|
static ssize_t store_FG_g_fg_dbg_d0(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_d0, 0664, show_FG_g_fg_dbg_d0,
|
|
store_FG_g_fg_dbg_d0);
|
|
/* -------------------------------------------------------------------------- */
|
|
static ssize_t show_FG_g_fg_dbg_d1(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_d1 : %d\n", g_fg_dbg_d1);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_d1);
|
|
}
|
|
|
|
static ssize_t store_FG_g_fg_dbg_d1(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_d1, 0664, show_FG_g_fg_dbg_d1,
|
|
store_FG_g_fg_dbg_d1);
|
|
/* -------------------------------------------------------------------------- */
|
|
static ssize_t show_FG_g_fg_dbg_percentage(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_percentage : %d\n",
|
|
g_fg_dbg_percentage);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_percentage);
|
|
}
|
|
|
|
static ssize_t store_FG_g_fg_dbg_percentage(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_percentage, 0664, show_FG_g_fg_dbg_percentage,
|
|
store_FG_g_fg_dbg_percentage);
|
|
/* -------------------------------------------------------------------------- */
|
|
static ssize_t show_FG_g_fg_dbg_percentage_fg(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_percentage_fg : %d\n",
|
|
g_fg_dbg_percentage_fg);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_percentage_fg);
|
|
}
|
|
|
|
static ssize_t store_FG_g_fg_dbg_percentage_fg(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_percentage_fg, 0664,
|
|
show_FG_g_fg_dbg_percentage_fg,
|
|
store_FG_g_fg_dbg_percentage_fg);
|
|
/* -------------------------------------------------------------------------- */
|
|
static ssize_t
|
|
show_FG_g_fg_dbg_percentage_voltmode(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[FG] g_fg_dbg_percentage_voltmode : %d\n",
|
|
g_fg_dbg_percentage_voltmode);
|
|
return sprintf(buf, "%d\n", g_fg_dbg_percentage_voltmode);
|
|
}
|
|
|
|
static ssize_t
|
|
store_FG_g_fg_dbg_percentage_voltmode(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static DEVICE_ATTR(FG_g_fg_dbg_percentage_voltmode, 0664,
|
|
show_FG_g_fg_dbg_percentage_voltmode,
|
|
store_FG_g_fg_dbg_percentage_voltmode);
|
|
|
|
/* ============================================================ // */
|
|
static int battery_meter_probe(struct platform_device *dev)
|
|
{
|
|
int ret_device_file = 0;
|
|
battery_meter_ctrl = bm_ctrl_cmd;
|
|
|
|
bm_print(BM_LOG_CRTI, "[%s] probe\n", __func__);
|
|
|
|
batt_meter_init_cust_data();
|
|
|
|
/* select battery meter control method */
|
|
battery_meter_ctrl = bm_ctrl_cmd;
|
|
|
|
/* LOG System Set */
|
|
init_proc_log_fg();
|
|
|
|
/* last_oam_run_time = rtc_read_hw_time(); */
|
|
get_monotonic_boottime(&last_oam_run_time);
|
|
/* Create File For FG UI DEBUG */
|
|
ret_device_file = device_create_file(&(dev->dev), &dev_attr_FG_Current);
|
|
ret_device_file =
|
|
device_create_file(&(dev->dev), &dev_attr_FG_g_fg_dbg_bat_volt);
|
|
ret_device_file = device_create_file(&(dev->dev),
|
|
&dev_attr_FG_g_fg_dbg_bat_current);
|
|
ret_device_file =
|
|
device_create_file(&(dev->dev), &dev_attr_FG_g_fg_dbg_bat_zcv);
|
|
ret_device_file =
|
|
device_create_file(&(dev->dev), &dev_attr_FG_g_fg_dbg_bat_temp);
|
|
ret_device_file =
|
|
device_create_file(&(dev->dev), &dev_attr_FG_g_fg_dbg_bat_r);
|
|
ret_device_file =
|
|
device_create_file(&(dev->dev), &dev_attr_FG_g_fg_dbg_bat_car);
|
|
ret_device_file =
|
|
device_create_file(&(dev->dev), &dev_attr_FG_g_fg_dbg_bat_qmax);
|
|
ret_device_file =
|
|
device_create_file(&(dev->dev), &dev_attr_FG_g_fg_dbg_d0);
|
|
ret_device_file =
|
|
device_create_file(&(dev->dev), &dev_attr_FG_g_fg_dbg_d1);
|
|
ret_device_file = device_create_file(&(dev->dev),
|
|
&dev_attr_FG_g_fg_dbg_percentage);
|
|
ret_device_file = device_create_file(
|
|
&(dev->dev), &dev_attr_FG_g_fg_dbg_percentage_fg);
|
|
ret_device_file = device_create_file(
|
|
&(dev->dev), &dev_attr_FG_g_fg_dbg_percentage_voltmode);
|
|
|
|
#ifdef MTK_BATTERY_LIFETIME_DATA_SUPPORT
|
|
ret_device_file =
|
|
device_create_file(&(dev->dev), &dev_attr_FG_Battery_Cycle);
|
|
ret_device_file =
|
|
device_create_file(&(dev->dev), &dev_attr_FG_Aging_Factor);
|
|
ret_device_file = device_create_file(&(dev->dev),
|
|
&dev_attr_FG_Max_Battery_Voltage);
|
|
ret_device_file = device_create_file(&(dev->dev),
|
|
&dev_attr_FG_Min_Battery_Voltage);
|
|
ret_device_file = device_create_file(&(dev->dev),
|
|
&dev_attr_FG_Max_Battery_Current);
|
|
ret_device_file = device_create_file(&(dev->dev),
|
|
&dev_attr_FG_Min_Battery_Current);
|
|
ret_device_file = device_create_file(
|
|
&(dev->dev), &dev_attr_FG_Max_Battery_Temperature);
|
|
ret_device_file = device_create_file(
|
|
&(dev->dev), &dev_attr_FG_Min_Battery_Temperature);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int battery_meter_remove(struct platform_device *dev)
|
|
{
|
|
bm_print(BM_LOG_CRTI, "[%s]\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
static void battery_meter_shutdown(struct platform_device *dev)
|
|
{
|
|
}
|
|
|
|
static int battery_meter_suspend(struct platform_device *dev,
|
|
pm_message_t state)
|
|
{
|
|
|
|
#if defined(FG_BAT_INT)
|
|
#if defined(CONFIG_POWER_EXT)
|
|
#elif defined(SOC_BY_HW_FG)
|
|
if (reset_fg_bat_int == KAL_TRUE) {
|
|
battery_meter_set_columb_interrupt(gFG_BATT_CAPACITY / 100);
|
|
reset_fg_bat_int = KAL_FALSE;
|
|
} else {
|
|
battery_meter_set_columb_interrupt(0x1ffff);
|
|
}
|
|
#endif
|
|
#endif /* #if defined(FG_BAT_INT) */
|
|
|
|
/* -- hibernation path */
|
|
if (state.event == PM_EVENT_FREEZE) {
|
|
pr_debug("[%s] %p:%p\n", __func__, battery_meter_ctrl,
|
|
&bm_ctrl_cmd);
|
|
battery_meter_ctrl = bm_ctrl_cmd;
|
|
}
|
|
/* -- end of hibernation path */
|
|
#if defined(CONFIG_POWER_EXT)
|
|
|
|
#elif defined(SOC_BY_SW_FG) || defined(SOC_BY_HW_FG)
|
|
{
|
|
#ifdef MTK_POWER_EXT_DETECT
|
|
if (bat_is_ext_power() == KAL_TRUE)
|
|
return 0;
|
|
#endif
|
|
get_monotonic_boottime(&xts_before_sleep);
|
|
get_monotonic_boottime(&g_rtc_time_before_sleep);
|
|
if (_g_bat_sleep_total_time >= g_spm_timer)
|
|
_g_bat_sleep_total_time = 0;
|
|
|
|
battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_OCV,
|
|
&g_hw_ocv_before_sleep);
|
|
}
|
|
#endif
|
|
bm_print(BM_LOG_CRTI, "[%s]\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
#if defined(SOC_BY_HW_FG)
|
|
#ifdef MTK_ENABLE_AGING_ALGORITHM
|
|
void battery_aging_check(void)
|
|
{
|
|
signed int hw_ocv_after_sleep;
|
|
struct timespec xts;
|
|
signed int vbat;
|
|
signed int qmax_aging = 0;
|
|
signed int dod_gap = 10;
|
|
signed int columb_after_sleep = 0;
|
|
#if defined(MD_SLEEP_CURRENT_CHECK)
|
|
signed int DOD_hwocv;
|
|
signed int DOD_now;
|
|
signed int suspend_current = 0;
|
|
#endif
|
|
|
|
battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_OCV, &hw_ocv_after_sleep);
|
|
vbat = battery_meter_get_battery_voltage(KAL_TRUE);
|
|
bm_print(BM_LOG_CRTI, "@@@ HW_OCV_D3=%d, HW_OCV_D1=%d, VBAT=%d\n",
|
|
hw_ocv_after_sleep, g_hw_ocv_before_sleep, vbat);
|
|
|
|
/* gauge correct */
|
|
battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CAR,
|
|
&columb_after_sleep);
|
|
/* update columb counter to get DOD_now. */
|
|
|
|
get_monotonic_boottime(&xts);
|
|
suspend_time += abs(xts.tv_sec - xts_before_sleep.tv_sec);
|
|
_g_bat_sleep_total_time += abs(xts.tv_sec - xts_before_sleep.tv_sec);
|
|
#if defined(MD_SLEEP_CURRENT_CHECK)
|
|
bm_print(BM_LOG_CRTI, "sleeptime=(%d)s, car_be = %d, car_af = %d\n",
|
|
suspend_time, columb_before_sleep, columb_after_sleep);
|
|
if (columb_before_sleep == 0x123456) {
|
|
columb_before_sleep = columb_after_sleep;
|
|
suspend_time = 0;
|
|
return;
|
|
}
|
|
if (hw_ocv_after_sleep != g_hw_ocv_before_sleep) {
|
|
if (suspend_time > OCV_RECOVER_TIME) { /* 35 mins */
|
|
suspend_current =
|
|
abs(columb_after_sleep - columb_before_sleep) *
|
|
3600 / suspend_time;
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[aging check]sleeptime = %d, HW_OCV_D3=%d, car_be = %d, car_af = %d, suspend cur = %d ",
|
|
suspend_time, hw_ocv_after_sleep,
|
|
columb_before_sleep, columb_after_sleep,
|
|
suspend_current);
|
|
if (suspend_current < 10) { /* 10mA */
|
|
columb_before_sleep = columb_after_sleep;
|
|
suspend_time = 0;
|
|
bm_print(BM_LOG_CRTI, "1\n");
|
|
} else {
|
|
columb_before_sleep = columb_after_sleep;
|
|
suspend_time = 0;
|
|
bm_print(BM_LOG_CRTI, "0\n");
|
|
return;
|
|
}
|
|
} else {
|
|
return;
|
|
}
|
|
} else {
|
|
return;
|
|
}
|
|
#endif
|
|
/* aging */
|
|
#if !defined(MD_SLEEP_CURRENT_CHECK)
|
|
if (suspend_time > OCV_RECOVER_TIME)
|
|
#endif
|
|
{
|
|
if (aging_ocv_1 == 0) {
|
|
aging_ocv_1 = hw_ocv_after_sleep;
|
|
aging_car_1 = columb_after_sleep;
|
|
/* aging_resume_time_1 = time_after_sleep.tv_sec; */
|
|
|
|
if (fgauge_read_d_by_v(aging_ocv_1) >
|
|
DOD1_ABOVE_THRESHOLD) {
|
|
aging_ocv_1 = 0;
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[aging check] reset and find next aging_ocv1 for better precision\n");
|
|
}
|
|
} else if (aging_ocv_2 == 0) {
|
|
aging_ocv_2 = hw_ocv_after_sleep;
|
|
aging_car_2 = columb_after_sleep;
|
|
/* aging_resume_time_2 = time_after_sleep.tv_sec; */
|
|
|
|
if (fgauge_read_d_by_v(aging_ocv_2) <
|
|
DOD2_BELOW_THRESHOLD) {
|
|
aging_ocv_2 = 0;
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[aging check] reset and find next aging_ocv2 for better precision\n");
|
|
}
|
|
} else {
|
|
aging_ocv_1 = aging_ocv_2;
|
|
aging_car_1 = aging_car_2;
|
|
/* aging_resume_time_1 = aging_resume_time_2; */
|
|
|
|
aging_ocv_2 = hw_ocv_after_sleep;
|
|
aging_car_2 = columb_after_sleep;
|
|
/* aging_resume_time_2 = time_after_sleep.tv_sec; */
|
|
}
|
|
}
|
|
|
|
if (aging_ocv_2 > 0) {
|
|
aging_dod_1 = fgauge_read_d_by_v(aging_ocv_1);
|
|
aging_dod_2 = fgauge_read_d_by_v(aging_ocv_2);
|
|
|
|
/* check dod region to avoid hwocv error margin */
|
|
dod_gap = MIN_DOD_DIFF_THRESHOLD;
|
|
|
|
/* check if DOD gap bigger than setting */
|
|
if (aging_dod_2 > aging_dod_1 &&
|
|
(aging_dod_2 - aging_dod_1) >= dod_gap) {
|
|
/* do aging calculation */
|
|
qmax_aging = (100 * (aging_car_1 - aging_car_2)) /
|
|
(aging_dod_2 - aging_dod_1);
|
|
|
|
/* update if aging over 10%. */
|
|
if (gFG_BATT_CAPACITY > qmax_aging &&
|
|
((gFG_BATT_CAPACITY - qmax_aging) >
|
|
(gFG_BATT_CAPACITY / (100 - MIN_AGING_FACTOR)))) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[aging check] before apply aging, qmax_aging(%d) qmax_now(%d) ocv1(%d) dod1(%d) car1(%d) ocv2(%d) dod2(%d) car2(%d)\n",
|
|
qmax_aging, gFG_BATT_CAPACITY,
|
|
aging_ocv_1, aging_dod_1, aging_car_1,
|
|
aging_ocv_2, aging_dod_2, aging_car_2);
|
|
|
|
#ifdef MTK_BATTERY_LIFETIME_DATA_SUPPORT
|
|
gFG_aging_factor =
|
|
((gFG_BATT_CAPACITY - qmax_aging) *
|
|
100) /
|
|
gFG_BATT_CAPACITY;
|
|
#endif
|
|
|
|
if (gFG_BATT_CAPACITY_aging > qmax_aging) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[aging check] new qmax_aging %d old qmax_aging %d\n",
|
|
qmax_aging,
|
|
gFG_BATT_CAPACITY_aging);
|
|
gFG_BATT_CAPACITY_aging = qmax_aging;
|
|
gFG_DOD0 = aging_dod_2;
|
|
gFG_DOD1 = gFG_DOD0;
|
|
reset_parameter_car();
|
|
} else {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[aging check] current qmax_aging %d is smaller than calculated qmax_aging %d\n",
|
|
gFG_BATT_CAPACITY_aging,
|
|
qmax_aging);
|
|
}
|
|
} else {
|
|
aging_ocv_2 = 0;
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[aging check] show no degrade, qmax_aging(%d) qmax_now(%d) ocv1(%d) dod1(%d) car1(%d) ocv2(%d) dod2(%d) car2(%d)\n",
|
|
qmax_aging, gFG_BATT_CAPACITY,
|
|
aging_ocv_1, aging_dod_1, aging_car_1,
|
|
aging_ocv_2, aging_dod_2, aging_car_2);
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[aging check] reset and find next aging_ocv2\n");
|
|
}
|
|
} else {
|
|
aging_ocv_2 = 0;
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[aging check] reset and find next aging_ocv2\n");
|
|
}
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[aging check] qmax_aging(%d) qmax_now(%d) ocv1(%d) dod1(%d) car1(%d) ocv2(%d) dod2(%d) car2(%d)\n",
|
|
qmax_aging, gFG_BATT_CAPACITY, aging_ocv_1, aging_dod_1,
|
|
aging_car_1, aging_ocv_2, aging_dod_2, aging_car_2);
|
|
}
|
|
#if defined(MD_SLEEP_CURRENT_CHECK)
|
|
/* self-discharging */
|
|
if (hw_ocv_after_sleep < vbat) {
|
|
bm_print(BM_LOG_CRTI, "Ignore HW_OCV : smaller than VBAT\n");
|
|
} else {
|
|
|
|
DOD_hwocv = fgauge_read_d_by_v(hw_ocv_after_sleep);
|
|
|
|
battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_FG_CAR,
|
|
&gFG_columb);
|
|
/* update columb counter to get DOD_now. */
|
|
DOD_now = 100 - fgauge_read_capacity(1);
|
|
|
|
if (DOD_hwocv > DOD_now &&
|
|
(DOD_hwocv - DOD_now > SELF_DISCHARGE_CHECK_THRESHOLD)) {
|
|
gFG_DOD0 = DOD_hwocv;
|
|
gFG_DOD1 = gFG_DOD0;
|
|
reset_parameter_car();
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[self-discharge check] reset to HWOCV. dod_ocv(%d) dod_now(%d)\n",
|
|
DOD_hwocv, DOD_now);
|
|
}
|
|
bm_print(BM_LOG_CRTI,
|
|
"[self-discharge check] dod_ocv(%d) dod_now(%d)\n",
|
|
DOD_hwocv, DOD_now);
|
|
bm_print(BM_LOG_CRTI,
|
|
"be_ocv=(%d), af_ocv=(%d), D0=(%d), car=(%d)\n",
|
|
g_hw_ocv_before_sleep, hw_ocv_after_sleep, gFG_DOD0,
|
|
gFG_columb);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
static int battery_meter_resume(struct platform_device *dev)
|
|
{
|
|
#if defined(CONFIG_POWER_EXT)
|
|
|
|
#elif defined(SOC_BY_SW_FG) || defined(SOC_BY_HW_FG)
|
|
#if defined(SOC_BY_SW_FG)
|
|
signed int hw_ocv_after_sleep;
|
|
signed int DOD_hwocv;
|
|
struct timespec now_time;
|
|
#endif
|
|
signed int sleep_interval;
|
|
struct timespec rtc_time_after_sleep;
|
|
#ifdef MTK_POWER_EXT_DETECT
|
|
if (bat_is_ext_power() == KAL_TRUE)
|
|
return 0;
|
|
#endif
|
|
|
|
get_monotonic_boottime(&rtc_time_after_sleep);
|
|
sleep_interval =
|
|
rtc_time_after_sleep.tv_sec - g_rtc_time_before_sleep.tv_sec;
|
|
|
|
_g_bat_sleep_total_time += sleep_interval;
|
|
battery_log(
|
|
BAT_LOG_CRTI,
|
|
"[%s]sleep interval=%d sleep time = %d, g_spm_timer = %d\n",
|
|
__func__, sleep_interval, _g_bat_sleep_total_time, g_spm_timer);
|
|
|
|
#if defined(SOC_BY_HW_FG)
|
|
#ifdef MTK_ENABLE_AGING_ALGORITHM
|
|
if (bat_is_charger_exist() == KAL_FALSE)
|
|
battery_aging_check();
|
|
|
|
#endif
|
|
#endif
|
|
|
|
/* trigger gauge update if accumulated */
|
|
/* sleep time more than give period */
|
|
if (_g_bat_sleep_total_time >= g_spm_timer)
|
|
bat_spm_timeout = true;
|
|
|
|
#if defined(SOC_BY_SW_FG)
|
|
/* trigger gauge update if oam_run() */
|
|
/* not run in the last 30s kernel active time */
|
|
getrawmonotonic(&now_time);
|
|
if (now_time.tv_sec - last_oam_run_time.tv_sec > 30) {
|
|
bat_spm_timeout = true;
|
|
pr_debug(
|
|
"[battery_meter] trigger oam_run() for 30s threshold.\n");
|
|
}
|
|
|
|
battery_meter_ctrl(BATTERY_METER_CMD_GET_HW_OCV, &hw_ocv_after_sleep);
|
|
|
|
/* try to calibrate D0 by HWOCV */
|
|
/* if battery has no loading for more than 30mins */
|
|
if (sleep_interval > 1800 && bat_is_charger_exist() == KAL_FALSE) {
|
|
|
|
DOD_hwocv = fgauge_read_d_by_v(hw_ocv_after_sleep);
|
|
|
|
if (hw_ocv_after_sleep < g_hw_ocv_before_sleep) {
|
|
oam_d0 = DOD_hwocv;
|
|
oam_v_ocv_2 = oam_v_ocv_1 = hw_ocv_after_sleep;
|
|
oam_car_1 = 0;
|
|
oam_car_2 = 0;
|
|
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[self-discharge check] reset to HWOCV. dod_ocv(%d) dod_now(%d)\n",
|
|
DOD_hwocv, oam_d_2);
|
|
|
|
} else {
|
|
/* 0.1mAh */
|
|
oam_car_1 = oam_car_1 + (40 * sleep_interval / 3600);
|
|
/* 0.1mAh */
|
|
oam_car_2 = oam_car_2 + (40 * sleep_interval / 3600);
|
|
}
|
|
bm_print(BM_LOG_CRTI,
|
|
"[self-discharge check] dod_ocv(%d) dod_now(%d)\n",
|
|
DOD_hwocv, oam_d_2);
|
|
} else {
|
|
/* 0.1mAh */
|
|
oam_car_1 = oam_car_1 + (40 * sleep_interval / 3600);
|
|
/* 0.1mAh */
|
|
oam_car_2 = oam_car_2 + (40 * sleep_interval / 3600);
|
|
}
|
|
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"sleeptime=(%d:%d)s, be_ocv=(%d), af_ocv=(%d), D0=(%d), car1=(%d), car2=(%d)\n",
|
|
_g_bat_sleep_total_time, sleep_interval, g_hw_ocv_before_sleep,
|
|
hw_ocv_after_sleep, oam_d0, oam_car_1, oam_car_2);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(FG_BAT_INT)
|
|
#if defined(CONFIG_POWER_EXT)
|
|
#elif defined(SOC_BY_HW_FG)
|
|
/*battery_meter_set_columb_interrupt(0);*/
|
|
#endif
|
|
#endif
|
|
/* #if defined(FG_BAT_INT) */
|
|
|
|
bm_print(BM_LOG_CRTI, "[%s]\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
/* ----------------------------------------------------- */
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id mt_bat_meter_of_match[] = {
|
|
{
|
|
.compatible = "mediatek,bat_meter",
|
|
},
|
|
{},
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, mt_bat_meter_of_match);
|
|
#endif
|
|
struct platform_device battery_meter_device = {
|
|
.name = "battery_meter", .id = -1,
|
|
};
|
|
|
|
static struct platform_driver battery_meter_driver = {
|
|
.probe = battery_meter_probe,
|
|
.remove = battery_meter_remove,
|
|
.shutdown = battery_meter_shutdown,
|
|
.suspend = battery_meter_suspend,
|
|
.resume = battery_meter_resume,
|
|
.driver = {
|
|
|
|
|
|
.name = "battery_meter",
|
|
},
|
|
};
|
|
|
|
static int battery_meter_dts_probe(struct platform_device *dev)
|
|
{
|
|
int ret = 0;
|
|
/* struct proc_dir_entry *entry = NULL; */
|
|
|
|
battery_log(BAT_LOG_CRTI,
|
|
"******** %s!! ********\n", __func__);
|
|
|
|
battery_meter_device.dev.of_node = dev->dev.of_node;
|
|
ret = platform_device_register(&battery_meter_device);
|
|
if (ret) {
|
|
battery_log(
|
|
BAT_LOG_CRTI,
|
|
"****[%s] Unable to register device (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver battery_meter_dts_driver = {
|
|
.probe = battery_meter_dts_probe,
|
|
.remove = NULL,
|
|
.shutdown = NULL,
|
|
.suspend = NULL,
|
|
.resume = NULL,
|
|
.driver = {
|
|
|
|
|
|
.name = "battery_meter_dts",
|
|
#ifdef CONFIG_OF
|
|
.of_match_table = mt_bat_meter_of_match,
|
|
#endif
|
|
},
|
|
};
|
|
|
|
static int __init battery_meter_init(void)
|
|
{
|
|
int ret;
|
|
|
|
#ifdef CONFIG_OF
|
|
/* */
|
|
#else
|
|
ret = platform_device_register(&battery_meter_device);
|
|
if (ret) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[battery_meter_driver]Unable to register device(%d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
ret = platform_driver_register(&battery_meter_driver);
|
|
if (ret) {
|
|
bm_print(
|
|
BM_LOG_CRTI,
|
|
"[battery_meter_driver]Unable to register driver(%d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
#ifdef CONFIG_OF
|
|
ret = platform_driver_register(&battery_meter_dts_driver);
|
|
#endif
|
|
bm_print(BM_LOG_CRTI, "[battery_meter_driver] Initialization : DONE\n");
|
|
|
|
return 0;
|
|
}
|
|
#ifdef BATTERY_MODULE_INIT
|
|
/* #if 0 */
|
|
/* late_initcall(battery_meter_init); */
|
|
device_initcall(battery_meter_init);
|
|
#else
|
|
static void __exit battery_meter_exit(void)
|
|
{
|
|
}
|
|
module_init(battery_meter_init);
|
|
/* module_exit(battery_meter_exit); */
|
|
#endif
|
|
|
|
MODULE_AUTHOR("James Lo");
|
|
MODULE_DESCRIPTION("Battery Meter Device Driver");
|
|
MODULE_LICENSE("GPL");
|