kernel_samsung_a34x-permissive/drivers/power/supply/mediatek/charger/mtk_pe40.c
2024-04-28 15:51:13 +02:00

922 lines
21 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2021 MediaTek Inc.
*/
#include <linux/errno.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/time.h>
#include <linux/slab.h>
#include "mtk_intf.h"
#define PE40_VBUS_STEP 50
#define PE40_MIN_WATT 5000000
#define PE40_VBUS_IR_DROP_THRESHOLD 1200
static struct pe40 *pe4;
int pe40_set_mivr(int uV)
{
int ret = 0;
ret = charger_set_mivr(uV);
if (ret < 0)
chr_err("%s: failed, ret = %d\n", __func__, ret);
return ret;
}
int pe40_pd_1st_request(int adapter_mv, int adapter_ma, int ma)
{
unsigned int oldmA = 3000000;
int ret;
int mivr;
chr_err("pe40_pd_req:vbus:%d ibus:%d input_current:%d\n",
adapter_mv, adapter_ma, ma);
mivr = pe4->data.min_charger_voltage / 1000;
pe40_set_mivr(pe4->data.min_charger_voltage);
charger_get_input_current(&oldmA);
oldmA = oldmA / 1000;
if (oldmA > ma)
charger_set_input_current(ma * 1000);
ret = adapter_set_cap_start(adapter_mv, adapter_ma);
if (oldmA < ma)
charger_set_input_current(ma * 1000);
if ((adapter_mv - PE40_VBUS_IR_DROP_THRESHOLD) > mivr)
mivr = adapter_mv - PE40_VBUS_IR_DROP_THRESHOLD;
pe40_set_mivr(mivr * 1000);
pe4->pe4_input_current_limit_setting = ma * 1000;
return ret;
}
int pe40_pd_request(int *adapter_vbus, int *adapter_ibus, int ma)
{
unsigned int oldmA = 3000000;
unsigned int oldmivr = 4600;
int ret;
int mivr;
int adapter_mv, adapter_ma;
adapter_mv = *adapter_vbus;
adapter_ma = *adapter_ibus;
charger_get_mivr(&oldmivr);
mivr = pe4->data.min_charger_voltage / 1000;
pe40_set_mivr(pe4->data.min_charger_voltage);
charger_get_input_current(&oldmA);
oldmA = oldmA / 1000;
if (oldmA > ma)
charger_set_input_current(ma * 1000);
ret = adapter_set_cap(adapter_mv, adapter_ma);
chr_err("pe40_pd_req:vbus:%d ibus:%d input_current:%d ret:%d\n",
adapter_mv, adapter_ma, ma, ret);
if (ret == ADAPTER_REJECT) {
chr_err("pe40_pd_req: reject\n");
if (pe4->cap.pdp > 0 &&
adapter_mv * adapter_ma > pe4->cap.pdp * 1000000) {
*adapter_ibus = pe4->cap.pdp * 1000000
/ adapter_mv;
ret = adapter_set_cap(adapter_mv, *adapter_ibus);
chr_err("pe40_pd_req:vbus:%d new_ibus:%d pdp:%d ret:%d\n",
adapter_mv, *adapter_ibus,
pe4->cap.pdp, ret);
if (ret == ADAPTER_OK)
ret = ADAPTER_ADJUST;
if (ret == ADAPTER_REJECT)
goto err;
} else
goto err;
}
if (oldmA < ma)
charger_set_input_current(ma * 1000);
if ((adapter_mv - PE40_VBUS_IR_DROP_THRESHOLD) > mivr)
mivr = adapter_mv - PE40_VBUS_IR_DROP_THRESHOLD;
pe40_set_mivr(mivr * 1000);
pe4->pe4_input_current_limit_setting = ma * 1000;
return ret;
err:
if (oldmA > ma)
charger_set_input_current(oldmA * 1000);
pe40_set_mivr(oldmivr);
return ret;
}
int pe40_stop(void)
{
if (pe4 == NULL)
return -1;
if (pe4->is_connect == true) {
adapter_set_cap_end(5000, 2000);
pe40_set_mivr(pe4->data.min_charger_voltage);
pmic_enable_hw_vbus_ovp(true);
enable_vbus_ovp(true);
chr_err("set TD true\n");
charger_enable_termination(true);
pe4->state = PE40_INIT;
pe4->is_connect = false;
pe4->cap.nr = 0;
pe4->pe4_input_current_limit = -1;
pe4->pe4_input_current_limit_setting = -1;
pe4->max_vbus = pe4->data.pe40_max_vbus;
pe4->max_ibus = pe4->data.pe40_max_ibus;
pe4->max_charger_ibus = pe4->data.pe40_max_ibus *
(100 - pe4->data.ibus_err) / 100;
}
return 0;
}
int pe40_get_setting_by_watt(int *voltage,
int *adapter_ibus, int *actual_current, int watt,
int *ibus_current_setting)
{
int i;
struct pps_cap *pe40_cap;
int vbus = 0, ibus = 0, ibus_setting = 0;
int idx = 0, ta_ibus = 0;
pe40_cap = &pe4->cap;
for (i = 0; i < pe40_cap->nr; i++) {
int max_ibus = 0;
int max_vbus = 0;
chr_err("%s: %d %d %d %d\n", __func__,
pe40_cap->ma[i],
pe4->max_ibus,
pe40_cap->max_mv[i],
pe40_cap->nr);
/* update upper bound */
if (pe40_cap->ma[i] > pe4->max_ibus)
max_ibus = pe4->max_ibus;
else
max_ibus = pe40_cap->ma[i];
if (max_ibus > pe4->data.input_current_limit / 1000)
max_ibus = pe4->data.input_current_limit / 1000;
if (pe4->pe4_input_current_limit != -1 &&
max_ibus > (pe4->pe4_input_current_limit / 1000))
max_ibus = pe4->pe4_input_current_limit / 1000;
pe4->max_charger_ibus = max_ibus *
(100 - pe4->data.ibus_err) / 100;
chr_err("pe4: %d %d %d %d %d %d\n",
pe40_cap->ma[i], pe4->max_ibus,
pe4->data.input_current_limit / 1000,
pe4->pe4_input_current_limit / 1000,
max_ibus, pe4->max_charger_ibus);
if (pe40_cap->max_mv[i] > pe4->max_vbus)
max_vbus = pe4->max_vbus;
else
max_vbus = pe40_cap->max_mv[i];
if (*voltage != 0 && *voltage <= max_vbus &&
*voltage >= pe40_cap->min_mv[i]) {
ibus = watt / *voltage;
vbus = *voltage;
ibus_setting = max_ibus;
ta_ibus = pe40_cap->ma[i];
if (ibus <= max_ibus) {
idx = 1;
break;
}
}
/* is 5v ok ? */
if (max_vbus >= 5000 &&
pe40_cap->min_mv[i] <= 5000 &&
5000 * pe4->max_charger_ibus >= watt) {
vbus = 5000;
ibus = watt / 5000;
ibus_setting = max_ibus;
ta_ibus = pe40_cap->ma[i];
idx = 2;
break;
}
/* is max watt ok */
if (max_vbus * (pe4->max_charger_ibus - 200) >= watt &&
!pe40_cap->pwr_limit[i]) {
ibus = pe4->max_charger_ibus - 200;
vbus = watt / ibus;
ibus_setting = max_ibus;
ta_ibus = pe40_cap->ma[i];
if (vbus < pe40_cap->min_mv[i])
vbus = pe40_cap->min_mv[i];
idx = 3;
break;
}
/* is power limit set */
if (pe40_cap->pwr_limit[i] && pe40_cap->pdp > 0) {
if (watt > pe40_cap->pdp * 1000000)
watt = pe40_cap->pdp * 1000000;
if (max_vbus * (pe4->max_charger_ibus - 200) >= watt) {
ibus = pe4->max_charger_ibus - 200;
vbus = watt / ibus;
ibus_setting = max_ibus;
ta_ibus = pe40_cap->ma[i];
if (vbus > max_vbus)
vbus = max_vbus;
if (vbus < pe40_cap->min_mv[i])
vbus = pe40_cap->min_mv[i];
idx = 4;
break;
}
}
vbus = max_vbus;
ibus = pe4->max_charger_ibus;
ibus_setting = max_ibus;
ta_ibus = pe40_cap->ma[i];
idx = 5;
}
*voltage = vbus;
*ibus_current_setting = ibus_setting;
*actual_current = ibus;
*adapter_ibus = ta_ibus;
chr_err("%s:[%d,%d]%d vbus:%d ibus:%d aicl:%d current:%d %d\n",
__func__,
idx, i,
watt, *voltage,
*adapter_ibus,
*ibus_current_setting,
ibus, pe4->max_charger_ibus);
return idx;
}
bool pe40_is_ready(void)
{
int tmp;
tmp = battery_get_bat_temperature();
if (!adapter_is_support_pd_pps() ||
tmp > pe4->data.high_temp_to_enter_pe40 ||
tmp < pe4->data.low_temp_to_enter_pe40)
return false;
return true;
}
int pe40_get_init_watt(void)
{
int ret;
int vbus1, ibus1;
int vbus2, ibus2;
int vbat1, vbat2;
int voltage = 0, input_current = 1000, actual_current = 0;
int voltage1 = 0, adapter_ibus;
bool is_enable = false, is_chip_enable = false;
int i;
voltage = 0;
pe40_get_setting_by_watt(&voltage, &adapter_ibus,
&actual_current, 27000000, &input_current);
ret = pe40_pd_request(&voltage, &adapter_ibus, input_current);
if (ret != 0 && ret != ADAPTER_REJECT &&
ret != ADAPTER_ADJUST) {
chr_err("[pe40_i1] err:1 %d\n", ret);
return -1;
}
for (i = 0; i < 3 ; i++) {
charger_dump_registers();
msleep(100);
}
charger_get_ibus(&ibus1);
vbus1 = battery_get_vbus();
ibus1 = ibus1 / 1000;
vbat1 = battery_get_bat_voltage();
voltage1 = voltage;
voltage = 0;
pe40_get_setting_by_watt(&voltage, &adapter_ibus,
&actual_current, 15000000, &input_current);
for (i = 0; i < 6 ; i++) {
ret = pe40_pd_request(&voltage, &adapter_ibus,
input_current);
if (ret != 0 && ret != ADAPTER_ADJUST) {
chr_err("[pe40_i1] err:2 %d\n", ret);
return -1;
}
msleep(100);
charger_get_ibus(&ibus2);
vbus2 = battery_get_vbus();
ibus2 = ibus2 / 1000;
vbat2 = battery_get_bat_voltage();
chr_err("[pe40_vbus] vbus1:%d ibus1:%d vbus2:%d ibus2:%d watt:%d en:%d %d vbat:%d %d\n",
vbus1, ibus1, vbus2, ibus2, voltage1 * ibus1, is_enable,
is_chip_enable, vbat1, vbat2);
}
return voltage1 * ibus1;
}
int pe40_init_state(void)
{
int ret = 0;
int vbus1, vbat1, ibus1;
int vbus2, vbat2, ibus2;
struct pps_status cap, cap1, cap2;
int voltage, adapter_ibus = 1000, actual_current;
int watt = 0;
int i;
int input_current = 0;
chr_err("set TD false\n");
charger_enable_termination(false);
pmic_enable_hw_vbus_ovp(false);
enable_vbus_ovp(false);
adapter_get_pps_cap(&pe4->cap);
pe4->max_vbus = pe4->data.pe40_max_vbus;
pe4->is_connect = true;
voltage = 0;
pe40_get_setting_by_watt(&voltage, &adapter_ibus,
&actual_current, 5000000, &input_current);
ret = pe40_pd_1st_request(voltage, actual_current,
actual_current);
if (ret != 0) {
chr_err("[pe40_i0] err:1 %d\n", ret);
goto retry;
}
/* disable charger */
charger_force_disable_powerpath(true);
msleep(500);
cap.output_ma = 0;
cap.output_mv = 0;
ret = adapter_get_output(&cap.output_mv, &cap.output_ma);
pe4->can_query = true;
if (ret == 0 && (cap.output_ma == -1 || cap.output_mv == -1))
pe4->can_query = false;
else if (ret == ADAPTER_NOT_SUPPORT)
pe4->can_query = false;
else if (ret != 0) {
chr_err("[pe40_i0] err:2 %d\n", ret);
goto err;
}
chr_err("[pe40_i0] can_query:%d ret:%d\n",
pe4->can_query,
ret);
pe4->pmic_vbus = battery_get_vbus();
pe4->TA_vbus = cap.output_mv;
pe4->vbus_cali = pe4->TA_vbus - pe4->pmic_vbus;
chr_err("[pe40_i0]pmic_vbus:%d TA_vbus:%d cali:%d ibus:%d\n",
pe4->pmic_vbus, pe4->TA_vbus, pe4->vbus_cali,
cap.output_ma);
/*enable charger*/
charger_force_disable_powerpath(false);
msleep(100);
if (cap.output_ma > 100) {
chr_err("[pe40_i0] FOD fail :%d\n", cap.output_ma);
goto err;
}
if (pe4->can_query == true) {
/* measure 1 */
voltage = 0;
pe40_get_setting_by_watt(&voltage, &adapter_ibus,
&actual_current, 5000000, &input_current);
ret = pe40_pd_request(&voltage, &actual_current,
actual_current);
if (ret != 0 && ret != ADAPTER_ADJUST) {
chr_err("[pe40_i0] err:3 %d\n", ret);
goto err;
}
for (i = 0; i < 4; i++) {
msleep(250);
vbus1 = battery_get_vbus();
vbat1 = battery_get_bat_voltage();
charger_get_ibus(&ibus1);
ibus1 = ibus1 / 1000;
ret = adapter_get_output(&cap1.output_mv,
&cap1.output_ma);
if (ret != 0) {
chr_err("[pe40_i0] err:4 %d\n", ret);
goto err;
}
chr_err("[pe40_i11]vbus:%d ibus:%d vbat:%d TA_vbus:%d TA_ibus:%d setting:%d %d\n",
vbus1, ibus1, vbat1,
cap1.output_mv, cap1.output_ma,
voltage, actual_current);
if (abs(cap1.output_ma - actual_current) < 200)
break;
}
/* measure 2 */
voltage = 0;
pe40_get_setting_by_watt(&voltage, &adapter_ibus,
&actual_current, 7500000, &input_current);
ret = pe40_pd_request(&voltage, &actual_current,
actual_current);
if (ret != 0 && ret != ADAPTER_ADJUST) {
chr_err("[pe40_i0] err:5 %d\n", ret);
goto err;
}
for (i = 0; i < 4; i++) {
msleep(250);
vbus2 = battery_get_vbus();
vbat2 = battery_get_bat_voltage();
charger_get_ibus(&ibus2);
ibus2 = ibus2 / 1000;
ret = adapter_get_output(&cap2.output_mv,
&cap2.output_ma);
if (ret != 0)
goto err;
chr_err("[pe40_i12]vbus:%d ibus:%d vbat:%d TA_vbus:%d TA_ibus:%d setting:%d %d\n",
vbus2, ibus2, vbat2,
cap2.output_mv, cap2.output_ma,
voltage, actual_current);
if (abs(cap2.output_ma - actual_current) < 200)
break;
}
chr_err("[pe40_i1]vbus:%d,%d,%d,%d ibus:%d,%d,%d,%d vbat:%d,%d\n",
vbus1, vbus2, cap1.output_mv, cap2.output_mv,
ibus1, ibus2, cap1.output_ma, cap2.output_ma,
vbat1, vbat2);
pe4->r_sw = abs((vbus2 - vbus1) - (vbat2 - vbat1)) * 1000 /
abs(cap2.output_ma - cap1.output_ma);
pe4->r_cable = abs((cap2.output_mv - cap1.output_mv) -
(vbus2 - vbus1)) * 1000 /
abs(cap2.output_ma - cap1.output_ma);
pe4->r_cable_2 = abs(cap2.output_mv - pe4->vbus_cali - vbus2)
* 1000 / abs(cap2.output_ma);
pe4->r_cable_1 = abs(cap1.output_mv - pe4->vbus_cali - vbus1)
* 1000 / abs(cap1.output_ma);
if (pe4->r_cable_1 < pe4->data.pe40_r_cable_3a_lower)
pe4->pe4_input_current_limit = 5000000;
else if (pe4->r_cable_1 >= pe4->data.pe40_r_cable_3a_lower &&
pe4->r_cable_1 < pe4->data.pe40_r_cable_2a_lower)
pe4->pe4_input_current_limit = 3000000;
else if (pe4->r_cable_1 >= pe4->data.pe40_r_cable_2a_lower &&
pe4->r_cable_1 < pe4->data.pe40_r_cable_1a_lower)
pe4->pe4_input_current_limit = 2000000;
else if (pe4->r_cable_1 >= pe4->data.pe40_r_cable_1a_lower)
pe4->pe4_input_current_limit = 1000000;
chr_err("[pe40_i2]r_sw:%d r_cable:%d r_cable_1:%d r_cable_2:%d pe4_icl:%d\n",
pe4->r_sw, pe4->r_cable, pe4->r_cable_1,
pe4->r_cable_2, pe4->pe4_input_current_limit);
} else
chr_err("TA does not support query\n");
watt = pe40_get_init_watt();
voltage = 0;
pe40_get_setting_by_watt(&voltage, &adapter_ibus,
&actual_current, watt, &input_current);
if (voltage <= 0)
chr_err("abnormal voltage: %d\n", voltage);
pe4->avbus = voltage / 10 * 10;
ret = pe40_pd_request(&pe4->avbus, &adapter_ibus,
input_current);
if (ret != 0 && ret != ADAPTER_REJECT &&
ret != ADAPTER_ADJUST) {
chr_err("[pe40_i0] err:6 %d\n", ret);
goto err;
}
pe4->avbus = voltage;
if (voltage > 0)
pe4->ibus = watt / voltage;
else
pe4->ibus = 0;
pe4->watt = watt;
pe4->state = PE40_CC;
return 0;
retry:
pe40_stop();
return 1;
err:
pe40_stop();
return 2;
}
int pe40_safety_check(void)
{
int vbus;
struct pps_status cap;
struct ta_status TAstatus;
int ret;
int tmp;
int i;
int high_tmp_cnt = 0;
TAstatus.ocp = 0;
TAstatus.otp = 0;
TAstatus.ovp = 0;
TAstatus.temperature = 0;
/* vbus ov */
vbus = battery_get_vbus();
if (vbus - pe4->avbus >= 2000) {
chr_err("[pe40_err]vbus ov :vbus:%d avbus:%d\n",
vbus, pe4->avbus);
goto err;
}
/* cable voltage drop check */
if (pe4->can_query == true) {
ret = adapter_get_output(&cap.output_mv, &cap.output_ma);
if (ret != 0) {
chr_err("[pe40_err] err:1 %d\n", ret);
goto err;
}
if (cap.output_mv != -1 &&
(cap.output_mv - vbus) > PE40_VBUS_IR_DROP_THRESHOLD) {
chr_err("[pe40_err]vbus ov2 vbus:%d TAvbus:%d %d %d\n",
vbus, cap.output_mv,
PE40_VBUS_IR_DROP_THRESHOLD,
(cap.output_mv - vbus) >
PE40_VBUS_IR_DROP_THRESHOLD);
goto err;
}
/* TA V_BUS OVP */
if (cap.output_mv >= pe4->avbus * 12 / 10) {
chr_err("[pe40_err]TA vbus ovp :vbus:%d avbus:%d\n",
cap.output_mv, pe4->avbus);
goto err;
}
}
/* TA Thermal */
for (i = 0; i < 3; i++) {
ret = adapter_get_status(&TAstatus);
if (TAstatus.temperature >= 100 &&
TAstatus.temperature != 0 &&
ret != ADAPTER_NOT_SUPPORT &&
ret != ADAPTER_TIMEOUT) {
high_tmp_cnt++;
chr_err("[pe40]TA Thermal:%d cnt:%d\n",
TAstatus.temperature, high_tmp_cnt);
} else if (ret == ADAPTER_TIMEOUT) {
chr_err("[pe40]TA adapter_dev_get_status timeout\n");
goto err;
} else
break;
if (high_tmp_cnt >= 3) {
chr_err("[pe40_err]TA Thermal: %d thd:%d cnt:%d\n",
TAstatus.temperature, 100, high_tmp_cnt);
goto err;
}
}
if (ret == ADAPTER_NOT_SUPPORT)
chr_err("[pe40]TA adapter_dev_get_status not support\n");
else {
if (TAstatus.ocp ||
TAstatus.otp ||
TAstatus.ovp) {
chr_err("[pe40_err]TA protect: ocp:%d otp:%d ovp:%d\n",
TAstatus.ocp,
TAstatus.otp,
TAstatus.ovp);
goto err;
}
chr_err("PD_TA:TA protect: ocp:%d otp:%d ovp:%d tmp:%d\n",
TAstatus.ocp,
TAstatus.otp,
TAstatus.ovp,
TAstatus.temperature);
}
tmp = battery_get_bat_temperature();
if (tmp > pe4->data.high_temp_to_leave_pe40 ||
tmp < pe4->data.low_temp_to_leave_pe40) {
chr_err("[pe40_err]tmp:%d threshold:%d %d\n",
tmp, pe4->data.high_temp_to_leave_pe40,
pe4->data.low_temp_to_leave_pe40);
return 1;
}
return 0;
err:
return -1;
}
int pe40_cc_state(void)
{
int ibus = 0, vbat, ibat, vbus;
int icl, ccl, cv, max_icl;
int ret;
int oldavbus = 0;
int watt;
int max_watt;
int actual_current;
int new_watt = 0;
int adapter_ibus = 0;
int input_current = 0;
int icl_threshold;
bool mivr_loop = false;
vbat = battery_get_bat_voltage();
ibat = battery_get_bat_current_mA();
charger_get_mivr_state(&mivr_loop);
charger_get_ibus(&ibus);
vbus = battery_get_vbus();
ibus = ibus / 1000;
icl = pe4->data.input_current_limit / 1000 *
(100 - pe4->data.ibus_err) / 100;
ccl = pe4->data.charging_current_limit / 1000;
cv = pe4->data.battery_cv / 1000;
watt = pe4->avbus * ibus;
if (icl > pe4->max_charger_ibus)
max_icl = pe4->max_charger_ibus;
else
max_icl = icl;
icl_threshold = 100;
max_watt = pe4->avbus * max_icl;
chr_err("[pe40_cc]vbus:%d:%d,ibus:%d,ibat:%d icl:%d:%d,ccl:%d,vbat:%d,maxIbus:%d\n",
pe4->avbus, vbus,
ibus,
ibat,
icl, max_icl,
ccl,
vbat, pe4->max_charger_ibus);
if ((mivr_loop && vbus <= 5000) ||
(ibus >= (max_icl - icl_threshold)) ||
(ibus <= (max_icl - icl_threshold * 2))) {
oldavbus = pe4->avbus;
if (mivr_loop && vbus <= 5000) {
pe4->avbus = pe4->avbus + 50;
new_watt = (pe4->avbus + 50) * icl;
} else if (ibus >= (max_icl - icl_threshold)) {
pe4->avbus = pe4->avbus + 50;
new_watt = (pe4->avbus + 50) * ibus;
} else if (ibus <= (max_icl - icl_threshold * 2)) {
new_watt = pe4->avbus * pe4->ibus - 500000;
pe4->avbus = pe4->avbus - 50;
}
ret = pe40_get_setting_by_watt(&pe4->avbus,
&adapter_ibus, &actual_current, new_watt,
&input_current);
if (pe4->avbus <= 5000)
pe4->avbus = 5000;
if (abs(pe4->avbus - oldavbus) >= 50) {
ret = pe40_pd_request(&pe4->avbus,
&adapter_ibus, input_current);
if (ret != 0 && ret != ADAPTER_REJECT &&
ret != ADAPTER_ADJUST)
goto err;
}
msleep(100);
vbat = battery_get_bat_voltage();
ibat = battery_get_bat_current_mA();
charger_get_ibus(&ibus);
vbus = battery_get_vbus();
ibus = ibus / 1000;
icl = pe4->data.input_current_limit / 1000;
ccl = pe4->data.charging_current_limit / 1000;
pe4->watt = pe4->avbus * ibus;
pe4->vbus = vbus;
pe4->ibus = ibus;
}
ret = pe40_safety_check();
if (ret == 1)
goto retry;
if (ret == -1)
goto err;
if (pe4->avbus * ibus <= PE40_MIN_WATT)
goto leave;
return 0;
retry:
pe40_stop();
return 1;
leave:
err:
pe40_stop();
return 2;
}
int pe40_init(void)
{
struct pe40 *pe40 = NULL;
if (pe4 == NULL) {
pe40 = kzalloc(sizeof(struct pe40), GFP_KERNEL);
if (pe40 == NULL)
return -ENOMEM;
pe4 = pe40;
pe4->state = PE40_INIT;
pe4->is_connect = false;
pe4->data.input_current_limit = 3000000;
pe4->data.charging_current_limit = 3000000;
pe4->data.battery_cv = 4350000;
pe4->data.min_charger_voltage = 4600000;
pe4->data.pe40_max_vbus = 11000;
pe4->data.pe40_max_ibus = 3000;
pe4->data.ibus_err = 14;
pe4->data.high_temp_to_leave_pe40 = 46;
pe4->data.high_temp_to_enter_pe40 = 39;
pe4->data.low_temp_to_leave_pe40 = 10;
pe4->data.low_temp_to_enter_pe40 = 16;
pe4->data.pe40_r_cable_1a_lower = 576;
pe4->data.pe40_r_cable_2a_lower = 435;
pe4->data.pe40_r_cable_3a_lower = 293;
pe4->pe4_input_current_limit = -1;
pe4->pe4_input_current_limit_setting = -1;
pe4->max_vbus = pe4->data.pe40_max_vbus;
pe4->max_ibus = pe4->data.pe40_max_ibus;
pe4->max_charger_ibus = pe4->data.pe40_max_ibus *
(100 - pe4->data.ibus_err) / 100;
chr_err("%s: done\n", __func__);
return 0;
}
return 1;
}
struct pe40_data *pe40_get_data(void)
{
return &pe4->data;
}
int pe40_set_data(struct pe40_data data)
{
pe4->data.input_current_limit = data.input_current_limit;
pe4->data.charging_current_limit = data.charging_current_limit;
pe4->data.battery_cv = data.battery_cv;
pe4->data.min_charger_voltage = data.min_charger_voltage;
pe4->data.pe40_max_vbus = data.pe40_max_vbus;
pe4->data.pe40_max_ibus = data.pe40_max_ibus;
pe4->data.ibus_err = data.ibus_err;
pe4->data.high_temp_to_enter_pe40 = data.high_temp_to_enter_pe40;
pe4->data.low_temp_to_enter_pe40 = data.low_temp_to_enter_pe40;
pe4->data.high_temp_to_leave_pe40 = data.high_temp_to_leave_pe40;
pe4->data.low_temp_to_leave_pe40 = data.low_temp_to_leave_pe40;
pe4->data.pe40_r_cable_3a_lower = data.pe40_r_cable_3a_lower;
pe4->data.pe40_r_cable_2a_lower = data.pe40_r_cable_2a_lower;
pe4->data.pe40_r_cable_1a_lower = data.pe40_r_cable_1a_lower;
chr_err("[pe4_set_data]%d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",
pe4->data.input_current_limit,
pe4->data.charging_current_limit,
pe4->data.battery_cv,
pe4->data.min_charger_voltage,
pe4->data.pe40_max_vbus,
pe4->data.pe40_max_ibus,
pe4->data.ibus_err,
pe4->data.high_temp_to_enter_pe40,
pe4->data.low_temp_to_enter_pe40,
pe4->data.high_temp_to_leave_pe40,
pe4->data.low_temp_to_leave_pe40,
pe4->data.pe40_r_cable_3a_lower,
pe4->data.pe40_r_cable_2a_lower,
pe4->data.pe40_r_cable_1a_lower);
return 0;
}
int pe40_set_current(void)
{
if (pe4->pe4_input_current_limit != -1 &&
pe4->pe4_input_current_limit <
pe4->data.input_current_limit)
pe4->data.input_current_limit =
pe4->pe4_input_current_limit;
if (pe4->pe4_input_current_limit_setting != -1 &&
pe4->pe4_input_current_limit_setting <
pe4->data.input_current_limit)
pe4->data.input_current_limit =
pe4->pe4_input_current_limit_setting;
charger_set_input_current(pe4->data.input_current_limit);
charger_set_charging_current(pe4->data.charging_current_limit);
return 0;
}
int pe40_set_cv(void)
{
charger_set_constant_voltage(pe4->data.battery_cv);
return 0;
}
int pe40_run(void)
{
int ret = 0;
pe40_set_current();
pe40_set_cv();
switch (pe4->state) {
case PE40_INIT:
ret = pe40_init_state();
break;
case PE40_CC:
ret = pe40_cc_state();
break;
}
return ret;
}