6db4831e98
Android 14
1956 lines
53 KiB
C
1956 lines
53 KiB
C
/*
|
|
* intel_hdmi_audio.c - Intel HDMI audio driver
|
|
*
|
|
* Copyright (C) 2016 Intel Corp
|
|
* Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
|
|
* Ramesh Babu K V <ramesh.babu@intel.com>
|
|
* Vaibhav Agarwal <vaibhav.agarwal@intel.com>
|
|
* Jerome Anand <jerome.anand@intel.com>
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
* ALSA driver for Intel HDMI audio
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/set_memory.h>
|
|
#include <sound/core.h>
|
|
#include <sound/asoundef.h>
|
|
#include <sound/pcm.h>
|
|
#include <sound/pcm_params.h>
|
|
#include <sound/initval.h>
|
|
#include <sound/control.h>
|
|
#include <sound/jack.h>
|
|
#include <drm/drm_edid.h>
|
|
#include <drm/intel_lpe_audio.h>
|
|
#include "intel_hdmi_audio.h"
|
|
|
|
#define for_each_pipe(card_ctx, pipe) \
|
|
for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
|
|
#define for_each_port(card_ctx, port) \
|
|
for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
|
|
|
|
/*standard module options for ALSA. This module supports only one card*/
|
|
static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
|
|
static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
|
|
static bool single_port;
|
|
|
|
module_param_named(index, hdmi_card_index, int, 0444);
|
|
MODULE_PARM_DESC(index,
|
|
"Index value for INTEL Intel HDMI Audio controller.");
|
|
module_param_named(id, hdmi_card_id, charp, 0444);
|
|
MODULE_PARM_DESC(id,
|
|
"ID string for INTEL Intel HDMI Audio controller.");
|
|
module_param(single_port, bool, 0444);
|
|
MODULE_PARM_DESC(single_port,
|
|
"Single-port mode (for compatibility)");
|
|
|
|
/*
|
|
* ELD SA bits in the CEA Speaker Allocation data block
|
|
*/
|
|
static const int eld_speaker_allocation_bits[] = {
|
|
[0] = FL | FR,
|
|
[1] = LFE,
|
|
[2] = FC,
|
|
[3] = RL | RR,
|
|
[4] = RC,
|
|
[5] = FLC | FRC,
|
|
[6] = RLC | RRC,
|
|
/* the following are not defined in ELD yet */
|
|
[7] = 0,
|
|
};
|
|
|
|
/*
|
|
* This is an ordered list!
|
|
*
|
|
* The preceding ones have better chances to be selected by
|
|
* hdmi_channel_allocation().
|
|
*/
|
|
static struct cea_channel_speaker_allocation channel_allocations[] = {
|
|
/* channel: 7 6 5 4 3 2 1 0 */
|
|
{ .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
|
|
/* 2.1 */
|
|
{ .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
|
|
/* Dolby Surround */
|
|
{ .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
|
|
/* surround40 */
|
|
{ .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
|
|
/* surround41 */
|
|
{ .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
|
|
/* surround50 */
|
|
{ .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
|
|
/* surround51 */
|
|
{ .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
|
|
/* 6.1 */
|
|
{ .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
|
|
/* surround71 */
|
|
{ .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
|
|
|
|
{ .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
|
|
{ .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
|
|
{ .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
|
|
{ .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
|
|
{ .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
|
|
{ .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
|
|
{ .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
|
|
{ .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
|
|
{ .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
|
|
{ .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
|
|
{ .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
|
|
{ .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
|
|
{ .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
|
|
{ .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
|
|
{ .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
|
|
{ .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
|
|
{ .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
|
|
{ .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
|
|
{ .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
|
|
{ .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
|
|
{ .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
|
|
{ .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
|
|
{ .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
|
|
};
|
|
|
|
static const struct channel_map_table map_tables[] = {
|
|
{ SNDRV_CHMAP_FL, 0x00, FL },
|
|
{ SNDRV_CHMAP_FR, 0x01, FR },
|
|
{ SNDRV_CHMAP_RL, 0x04, RL },
|
|
{ SNDRV_CHMAP_RR, 0x05, RR },
|
|
{ SNDRV_CHMAP_LFE, 0x02, LFE },
|
|
{ SNDRV_CHMAP_FC, 0x03, FC },
|
|
{ SNDRV_CHMAP_RLC, 0x06, RLC },
|
|
{ SNDRV_CHMAP_RRC, 0x07, RRC },
|
|
{} /* terminator */
|
|
};
|
|
|
|
/* hardware capability structure */
|
|
static const struct snd_pcm_hardware had_pcm_hardware = {
|
|
.info = (SNDRV_PCM_INFO_INTERLEAVED |
|
|
SNDRV_PCM_INFO_MMAP |
|
|
SNDRV_PCM_INFO_MMAP_VALID |
|
|
SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
|
|
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
|
|
SNDRV_PCM_FMTBIT_S24_LE |
|
|
SNDRV_PCM_FMTBIT_S32_LE),
|
|
.rates = SNDRV_PCM_RATE_32000 |
|
|
SNDRV_PCM_RATE_44100 |
|
|
SNDRV_PCM_RATE_48000 |
|
|
SNDRV_PCM_RATE_88200 |
|
|
SNDRV_PCM_RATE_96000 |
|
|
SNDRV_PCM_RATE_176400 |
|
|
SNDRV_PCM_RATE_192000,
|
|
.rate_min = HAD_MIN_RATE,
|
|
.rate_max = HAD_MAX_RATE,
|
|
.channels_min = HAD_MIN_CHANNEL,
|
|
.channels_max = HAD_MAX_CHANNEL,
|
|
.buffer_bytes_max = HAD_MAX_BUFFER,
|
|
.period_bytes_min = HAD_MIN_PERIOD_BYTES,
|
|
.period_bytes_max = HAD_MAX_PERIOD_BYTES,
|
|
.periods_min = HAD_MIN_PERIODS,
|
|
.periods_max = HAD_MAX_PERIODS,
|
|
.fifo_size = HAD_FIFO_SIZE,
|
|
};
|
|
|
|
/* Get the active PCM substream;
|
|
* Call had_substream_put() for unreferecing.
|
|
* Don't call this inside had_spinlock, as it takes by itself
|
|
*/
|
|
static struct snd_pcm_substream *
|
|
had_substream_get(struct snd_intelhad *intelhaddata)
|
|
{
|
|
struct snd_pcm_substream *substream;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
|
|
substream = intelhaddata->stream_info.substream;
|
|
if (substream)
|
|
intelhaddata->stream_info.substream_refcount++;
|
|
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
|
|
return substream;
|
|
}
|
|
|
|
/* Unref the active PCM substream;
|
|
* Don't call this inside had_spinlock, as it takes by itself
|
|
*/
|
|
static void had_substream_put(struct snd_intelhad *intelhaddata)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
|
|
intelhaddata->stream_info.substream_refcount--;
|
|
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
|
|
}
|
|
|
|
static u32 had_config_offset(int pipe)
|
|
{
|
|
switch (pipe) {
|
|
default:
|
|
case 0:
|
|
return AUDIO_HDMI_CONFIG_A;
|
|
case 1:
|
|
return AUDIO_HDMI_CONFIG_B;
|
|
case 2:
|
|
return AUDIO_HDMI_CONFIG_C;
|
|
}
|
|
}
|
|
|
|
/* Register access functions */
|
|
static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
|
|
int pipe, u32 reg)
|
|
{
|
|
return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
|
|
}
|
|
|
|
static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
|
|
int pipe, u32 reg, u32 val)
|
|
{
|
|
iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
|
|
}
|
|
|
|
static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
|
|
{
|
|
if (!ctx->connected)
|
|
*val = 0;
|
|
else
|
|
*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
|
|
}
|
|
|
|
static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
|
|
{
|
|
if (ctx->connected)
|
|
had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
|
|
}
|
|
|
|
/*
|
|
* enable / disable audio configuration
|
|
*
|
|
* The normal read/modify should not directly be used on VLV2 for
|
|
* updating AUD_CONFIG register.
|
|
* This is because:
|
|
* Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
|
|
* HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
|
|
* clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
|
|
* register. This field should be 1xy binary for configuration with 6 or
|
|
* more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
|
|
* causes the "channels" field to be updated as 0xy binary resulting in
|
|
* bad audio. The fix is to always write the AUD_CONFIG[6:4] with
|
|
* appropriate value when doing read-modify of AUD_CONFIG register.
|
|
*/
|
|
static void had_enable_audio(struct snd_intelhad *intelhaddata,
|
|
bool enable)
|
|
{
|
|
/* update the cached value */
|
|
intelhaddata->aud_config.regx.aud_en = enable;
|
|
had_write_register(intelhaddata, AUD_CONFIG,
|
|
intelhaddata->aud_config.regval);
|
|
}
|
|
|
|
/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
|
|
static void had_ack_irqs(struct snd_intelhad *ctx)
|
|
{
|
|
u32 status_reg;
|
|
|
|
if (!ctx->connected)
|
|
return;
|
|
had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
|
|
status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
|
|
had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
|
|
had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
|
|
}
|
|
|
|
/* Reset buffer pointers */
|
|
static void had_reset_audio(struct snd_intelhad *intelhaddata)
|
|
{
|
|
had_write_register(intelhaddata, AUD_HDMI_STATUS,
|
|
AUD_HDMI_STATUSG_MASK_FUNCRST);
|
|
had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
|
|
}
|
|
|
|
/*
|
|
* initialize audio channel status registers
|
|
* This function is called in the prepare callback
|
|
*/
|
|
static int had_prog_status_reg(struct snd_pcm_substream *substream,
|
|
struct snd_intelhad *intelhaddata)
|
|
{
|
|
union aud_ch_status_0 ch_stat0 = {.regval = 0};
|
|
union aud_ch_status_1 ch_stat1 = {.regval = 0};
|
|
|
|
ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
|
|
IEC958_AES0_NONAUDIO) >> 1;
|
|
ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
|
|
IEC958_AES3_CON_CLOCK) >> 4;
|
|
|
|
switch (substream->runtime->rate) {
|
|
case AUD_SAMPLE_RATE_32:
|
|
ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_44_1:
|
|
ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
|
|
break;
|
|
case AUD_SAMPLE_RATE_48:
|
|
ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
|
|
break;
|
|
case AUD_SAMPLE_RATE_88_2:
|
|
ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
|
|
break;
|
|
case AUD_SAMPLE_RATE_96:
|
|
ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
|
|
break;
|
|
case AUD_SAMPLE_RATE_176_4:
|
|
ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
|
|
break;
|
|
case AUD_SAMPLE_RATE_192:
|
|
ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
|
|
break;
|
|
|
|
default:
|
|
/* control should never come here */
|
|
return -EINVAL;
|
|
}
|
|
|
|
had_write_register(intelhaddata,
|
|
AUD_CH_STATUS_0, ch_stat0.regval);
|
|
|
|
switch (substream->runtime->format) {
|
|
case SNDRV_PCM_FORMAT_S16_LE:
|
|
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
|
|
ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
|
|
break;
|
|
case SNDRV_PCM_FORMAT_S24_LE:
|
|
case SNDRV_PCM_FORMAT_S32_LE:
|
|
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
|
|
ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
had_write_register(intelhaddata,
|
|
AUD_CH_STATUS_1, ch_stat1.regval);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* function to initialize audio
|
|
* registers and buffer confgiuration registers
|
|
* This function is called in the prepare callback
|
|
*/
|
|
static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
|
|
struct snd_intelhad *intelhaddata)
|
|
{
|
|
union aud_cfg cfg_val = {.regval = 0};
|
|
union aud_buf_config buf_cfg = {.regval = 0};
|
|
u8 channels;
|
|
|
|
had_prog_status_reg(substream, intelhaddata);
|
|
|
|
buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
|
|
buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
|
|
buf_cfg.regx.aud_delay = 0;
|
|
had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
|
|
|
|
channels = substream->runtime->channels;
|
|
cfg_val.regx.num_ch = channels - 2;
|
|
if (channels <= 2)
|
|
cfg_val.regx.layout = LAYOUT0;
|
|
else
|
|
cfg_val.regx.layout = LAYOUT1;
|
|
|
|
if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
|
|
cfg_val.regx.packet_mode = 1;
|
|
|
|
if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
|
|
cfg_val.regx.left_align = 1;
|
|
|
|
cfg_val.regx.val_bit = 1;
|
|
|
|
/* fix up the DP bits */
|
|
if (intelhaddata->dp_output) {
|
|
cfg_val.regx.dp_modei = 1;
|
|
cfg_val.regx.set = 1;
|
|
}
|
|
|
|
had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
|
|
intelhaddata->aud_config = cfg_val;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compute derived values in channel_allocations[].
|
|
*/
|
|
static void init_channel_allocations(void)
|
|
{
|
|
int i, j;
|
|
struct cea_channel_speaker_allocation *p;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
|
|
p = channel_allocations + i;
|
|
p->channels = 0;
|
|
p->spk_mask = 0;
|
|
for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
|
|
if (p->speakers[j]) {
|
|
p->channels++;
|
|
p->spk_mask |= p->speakers[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The transformation takes two steps:
|
|
*
|
|
* eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
|
|
* spk_mask => (channel_allocations[]) => ai->CA
|
|
*
|
|
* TODO: it could select the wrong CA from multiple candidates.
|
|
*/
|
|
static int had_channel_allocation(struct snd_intelhad *intelhaddata,
|
|
int channels)
|
|
{
|
|
int i;
|
|
int ca = 0;
|
|
int spk_mask = 0;
|
|
|
|
/*
|
|
* CA defaults to 0 for basic stereo audio
|
|
*/
|
|
if (channels <= 2)
|
|
return 0;
|
|
|
|
/*
|
|
* expand ELD's speaker allocation mask
|
|
*
|
|
* ELD tells the speaker mask in a compact(paired) form,
|
|
* expand ELD's notions to match the ones used by Audio InfoFrame.
|
|
*/
|
|
|
|
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
|
|
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
|
|
spk_mask |= eld_speaker_allocation_bits[i];
|
|
}
|
|
|
|
/* search for the first working match in the CA table */
|
|
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
|
|
if (channels == channel_allocations[i].channels &&
|
|
(spk_mask & channel_allocations[i].spk_mask) ==
|
|
channel_allocations[i].spk_mask) {
|
|
ca = channel_allocations[i].ca_index;
|
|
break;
|
|
}
|
|
}
|
|
|
|
dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
|
|
|
|
return ca;
|
|
}
|
|
|
|
/* from speaker bit mask to ALSA API channel position */
|
|
static int spk_to_chmap(int spk)
|
|
{
|
|
const struct channel_map_table *t = map_tables;
|
|
|
|
for (; t->map; t++) {
|
|
if (t->spk_mask == spk)
|
|
return t->map;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
|
|
{
|
|
int i, c;
|
|
int spk_mask = 0;
|
|
struct snd_pcm_chmap_elem *chmap;
|
|
u8 eld_high, eld_high_mask = 0xF0;
|
|
u8 high_msb;
|
|
|
|
kfree(intelhaddata->chmap->chmap);
|
|
intelhaddata->chmap->chmap = NULL;
|
|
|
|
chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
|
|
if (!chmap)
|
|
return;
|
|
|
|
dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
|
|
intelhaddata->eld[DRM_ELD_SPEAKER]);
|
|
|
|
/* WA: Fix the max channel supported to 8 */
|
|
|
|
/*
|
|
* Sink may support more than 8 channels, if eld_high has more than
|
|
* one bit set. SOC supports max 8 channels.
|
|
* Refer eld_speaker_allocation_bits, for sink speaker allocation
|
|
*/
|
|
|
|
/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
|
|
eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
|
|
if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
|
|
/* eld_high & (eld_high-1): if more than 1 bit set */
|
|
/* 0x1F: 7 channels */
|
|
for (i = 1; i < 4; i++) {
|
|
high_msb = eld_high & (0x80 >> i);
|
|
if (high_msb) {
|
|
intelhaddata->eld[DRM_ELD_SPEAKER] &=
|
|
high_msb | 0xF;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
|
|
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
|
|
spk_mask |= eld_speaker_allocation_bits[i];
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
|
|
if (spk_mask == channel_allocations[i].spk_mask) {
|
|
for (c = 0; c < channel_allocations[i].channels; c++) {
|
|
chmap->map[c] = spk_to_chmap(
|
|
channel_allocations[i].speakers[
|
|
(MAX_SPEAKERS - 1) - c]);
|
|
}
|
|
chmap->channels = channel_allocations[i].channels;
|
|
intelhaddata->chmap->chmap = chmap;
|
|
break;
|
|
}
|
|
}
|
|
if (i >= ARRAY_SIZE(channel_allocations))
|
|
kfree(chmap);
|
|
}
|
|
|
|
/*
|
|
* ALSA API channel-map control callbacks
|
|
*/
|
|
static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_info *uinfo)
|
|
{
|
|
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
|
|
uinfo->count = HAD_MAX_CHANNEL;
|
|
uinfo->value.integer.min = 0;
|
|
uinfo->value.integer.max = SNDRV_CHMAP_LAST;
|
|
return 0;
|
|
}
|
|
|
|
static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_value *ucontrol)
|
|
{
|
|
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
|
|
struct snd_intelhad *intelhaddata = info->private_data;
|
|
int i;
|
|
const struct snd_pcm_chmap_elem *chmap;
|
|
|
|
memset(ucontrol->value.integer.value, 0,
|
|
sizeof(long) * HAD_MAX_CHANNEL);
|
|
mutex_lock(&intelhaddata->mutex);
|
|
if (!intelhaddata->chmap->chmap) {
|
|
mutex_unlock(&intelhaddata->mutex);
|
|
return 0;
|
|
}
|
|
|
|
chmap = intelhaddata->chmap->chmap;
|
|
for (i = 0; i < chmap->channels; i++)
|
|
ucontrol->value.integer.value[i] = chmap->map[i];
|
|
mutex_unlock(&intelhaddata->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
|
|
struct snd_pcm *pcm)
|
|
{
|
|
int err;
|
|
|
|
err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
|
|
NULL, 0, (unsigned long)intelhaddata,
|
|
&intelhaddata->chmap);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
intelhaddata->chmap->private_data = intelhaddata;
|
|
intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
|
|
intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
|
|
intelhaddata->chmap->chmap = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize Data Island Packets registers
|
|
* This function is called in the prepare callback
|
|
*/
|
|
static void had_prog_dip(struct snd_pcm_substream *substream,
|
|
struct snd_intelhad *intelhaddata)
|
|
{
|
|
int i;
|
|
union aud_ctrl_st ctrl_state = {.regval = 0};
|
|
union aud_info_frame2 frame2 = {.regval = 0};
|
|
union aud_info_frame3 frame3 = {.regval = 0};
|
|
u8 checksum = 0;
|
|
u32 info_frame;
|
|
int channels;
|
|
int ca;
|
|
|
|
channels = substream->runtime->channels;
|
|
|
|
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
|
|
|
|
ca = had_channel_allocation(intelhaddata, channels);
|
|
if (intelhaddata->dp_output) {
|
|
info_frame = DP_INFO_FRAME_WORD1;
|
|
frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
|
|
} else {
|
|
info_frame = HDMI_INFO_FRAME_WORD1;
|
|
frame2.regx.chnl_cnt = substream->runtime->channels - 1;
|
|
frame3.regx.chnl_alloc = ca;
|
|
|
|
/* Calculte the byte wide checksum for all valid DIP words */
|
|
for (i = 0; i < BYTES_PER_WORD; i++)
|
|
checksum += (info_frame >> (i * 8)) & 0xff;
|
|
for (i = 0; i < BYTES_PER_WORD; i++)
|
|
checksum += (frame2.regval >> (i * 8)) & 0xff;
|
|
for (i = 0; i < BYTES_PER_WORD; i++)
|
|
checksum += (frame3.regval >> (i * 8)) & 0xff;
|
|
|
|
frame2.regx.chksum = -(checksum);
|
|
}
|
|
|
|
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
|
|
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
|
|
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
|
|
|
|
/* program remaining DIP words with zero */
|
|
for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
|
|
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
|
|
|
|
ctrl_state.regx.dip_freq = 1;
|
|
ctrl_state.regx.dip_en_sta = 1;
|
|
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
|
|
}
|
|
|
|
static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
|
|
{
|
|
u32 maud_val;
|
|
|
|
/* Select maud according to DP 1.2 spec */
|
|
if (link_rate == DP_2_7_GHZ) {
|
|
switch (aud_samp_freq) {
|
|
case AUD_SAMPLE_RATE_32:
|
|
maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_44_1:
|
|
maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_48:
|
|
maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_88_2:
|
|
maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_96:
|
|
maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_176_4:
|
|
maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
|
|
break;
|
|
|
|
case HAD_MAX_RATE:
|
|
maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
|
|
break;
|
|
|
|
default:
|
|
maud_val = -EINVAL;
|
|
break;
|
|
}
|
|
} else if (link_rate == DP_1_62_GHZ) {
|
|
switch (aud_samp_freq) {
|
|
case AUD_SAMPLE_RATE_32:
|
|
maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_44_1:
|
|
maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_48:
|
|
maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_88_2:
|
|
maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_96:
|
|
maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_176_4:
|
|
maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
|
|
break;
|
|
|
|
case HAD_MAX_RATE:
|
|
maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
|
|
break;
|
|
|
|
default:
|
|
maud_val = -EINVAL;
|
|
break;
|
|
}
|
|
} else
|
|
maud_val = -EINVAL;
|
|
|
|
return maud_val;
|
|
}
|
|
|
|
/*
|
|
* Program HDMI audio CTS value
|
|
*
|
|
* @aud_samp_freq: sampling frequency of audio data
|
|
* @tmds: sampling frequency of the display data
|
|
* @link_rate: DP link rate
|
|
* @n_param: N value, depends on aud_samp_freq
|
|
* @intelhaddata: substream private data
|
|
*
|
|
* Program CTS register based on the audio and display sampling frequency
|
|
*/
|
|
static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
|
|
u32 n_param, struct snd_intelhad *intelhaddata)
|
|
{
|
|
u32 cts_val;
|
|
u64 dividend, divisor;
|
|
|
|
if (intelhaddata->dp_output) {
|
|
/* Substitute cts_val with Maud according to DP 1.2 spec*/
|
|
cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
|
|
} else {
|
|
/* Calculate CTS according to HDMI 1.3a spec*/
|
|
dividend = (u64)tmds * n_param*1000;
|
|
divisor = 128 * aud_samp_freq;
|
|
cts_val = div64_u64(dividend, divisor);
|
|
}
|
|
dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
|
|
tmds, n_param, cts_val);
|
|
had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
|
|
}
|
|
|
|
static int had_calculate_n_value(u32 aud_samp_freq)
|
|
{
|
|
int n_val;
|
|
|
|
/* Select N according to HDMI 1.3a spec*/
|
|
switch (aud_samp_freq) {
|
|
case AUD_SAMPLE_RATE_32:
|
|
n_val = 4096;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_44_1:
|
|
n_val = 6272;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_48:
|
|
n_val = 6144;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_88_2:
|
|
n_val = 12544;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_96:
|
|
n_val = 12288;
|
|
break;
|
|
|
|
case AUD_SAMPLE_RATE_176_4:
|
|
n_val = 25088;
|
|
break;
|
|
|
|
case HAD_MAX_RATE:
|
|
n_val = 24576;
|
|
break;
|
|
|
|
default:
|
|
n_val = -EINVAL;
|
|
break;
|
|
}
|
|
return n_val;
|
|
}
|
|
|
|
/*
|
|
* Program HDMI audio N value
|
|
*
|
|
* @aud_samp_freq: sampling frequency of audio data
|
|
* @n_param: N value, depends on aud_samp_freq
|
|
* @intelhaddata: substream private data
|
|
*
|
|
* This function is called in the prepare callback.
|
|
* It programs based on the audio and display sampling frequency
|
|
*/
|
|
static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
|
|
struct snd_intelhad *intelhaddata)
|
|
{
|
|
int n_val;
|
|
|
|
if (intelhaddata->dp_output) {
|
|
/*
|
|
* According to DP specs, Maud and Naud values hold
|
|
* a relationship, which is stated as:
|
|
* Maud/Naud = 512 * fs / f_LS_Clk
|
|
* where, fs is the sampling frequency of the audio stream
|
|
* and Naud is 32768 for Async clock.
|
|
*/
|
|
|
|
n_val = DP_NAUD_VAL;
|
|
} else
|
|
n_val = had_calculate_n_value(aud_samp_freq);
|
|
|
|
if (n_val < 0)
|
|
return n_val;
|
|
|
|
had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
|
|
*n_param = n_val;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* PCM ring buffer handling
|
|
*
|
|
* The hardware provides a ring buffer with the fixed 4 buffer descriptors
|
|
* (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
|
|
* moves at each period elapsed. The below illustrates how it works:
|
|
*
|
|
* At time=0
|
|
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
|
|
* BD | 0 | 1 | 2 | 3 |
|
|
*
|
|
* At time=1 (period elapsed)
|
|
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
|
|
* BD | 1 | 2 | 3 | 0 |
|
|
*
|
|
* At time=2 (second period elapsed)
|
|
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
|
|
* BD | 2 | 3 | 0 | 1 |
|
|
*
|
|
* The bd_head field points to the index of the BD to be read. It's also the
|
|
* position to be filled at next. The pcm_head and the pcm_filled fields
|
|
* point to the indices of the current position and of the next position to
|
|
* be filled, respectively. For PCM buffer there are both _head and _filled
|
|
* because they may be difference when nperiods > 4. For example, in the
|
|
* example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
|
|
*
|
|
* pcm_head (=1) --v v-- pcm_filled (=5)
|
|
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
|
|
* BD | 1 | 2 | 3 | 0 |
|
|
* bd_head (=1) --^ ^-- next to fill (= bd_head)
|
|
*
|
|
* For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
|
|
* the hardware skips those BDs in the loop.
|
|
*
|
|
* An exceptional setup is the case with nperiods=1. Since we have to update
|
|
* BDs after finishing one BD processing, we'd need at least two BDs, where
|
|
* both BDs point to the same content, the same address, the same size of the
|
|
* whole PCM buffer.
|
|
*/
|
|
|
|
#define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
|
|
#define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
|
|
|
|
/* Set up a buffer descriptor at the "filled" position */
|
|
static void had_prog_bd(struct snd_pcm_substream *substream,
|
|
struct snd_intelhad *intelhaddata)
|
|
{
|
|
int idx = intelhaddata->bd_head;
|
|
int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
|
|
u32 addr = substream->runtime->dma_addr + ofs;
|
|
|
|
addr |= AUD_BUF_VALID;
|
|
if (!substream->runtime->no_period_wakeup)
|
|
addr |= AUD_BUF_INTR_EN;
|
|
had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
|
|
had_write_register(intelhaddata, AUD_BUF_LEN(idx),
|
|
intelhaddata->period_bytes);
|
|
|
|
/* advance the indices to the next */
|
|
intelhaddata->bd_head++;
|
|
intelhaddata->bd_head %= intelhaddata->num_bds;
|
|
intelhaddata->pcmbuf_filled++;
|
|
intelhaddata->pcmbuf_filled %= substream->runtime->periods;
|
|
}
|
|
|
|
/* invalidate a buffer descriptor with the given index */
|
|
static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
|
|
int idx)
|
|
{
|
|
had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
|
|
had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
|
|
}
|
|
|
|
/* Initial programming of ring buffer */
|
|
static void had_init_ringbuf(struct snd_pcm_substream *substream,
|
|
struct snd_intelhad *intelhaddata)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
int i, num_periods;
|
|
|
|
num_periods = runtime->periods;
|
|
intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
|
|
/* set the minimum 2 BDs for num_periods=1 */
|
|
intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
|
|
intelhaddata->period_bytes =
|
|
frames_to_bytes(runtime, runtime->period_size);
|
|
WARN_ON(intelhaddata->period_bytes & 0x3f);
|
|
|
|
intelhaddata->bd_head = 0;
|
|
intelhaddata->pcmbuf_head = 0;
|
|
intelhaddata->pcmbuf_filled = 0;
|
|
|
|
for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
|
|
if (i < intelhaddata->num_bds)
|
|
had_prog_bd(substream, intelhaddata);
|
|
else /* invalidate the rest */
|
|
had_invalidate_bd(intelhaddata, i);
|
|
}
|
|
|
|
intelhaddata->bd_head = 0; /* reset at head again before starting */
|
|
}
|
|
|
|
/* process a bd, advance to the next */
|
|
static void had_advance_ringbuf(struct snd_pcm_substream *substream,
|
|
struct snd_intelhad *intelhaddata)
|
|
{
|
|
int num_periods = substream->runtime->periods;
|
|
|
|
/* reprogram the next buffer */
|
|
had_prog_bd(substream, intelhaddata);
|
|
|
|
/* proceed to next */
|
|
intelhaddata->pcmbuf_head++;
|
|
intelhaddata->pcmbuf_head %= num_periods;
|
|
}
|
|
|
|
/* process the current BD(s);
|
|
* returns the current PCM buffer byte position, or -EPIPE for underrun.
|
|
*/
|
|
static int had_process_ringbuf(struct snd_pcm_substream *substream,
|
|
struct snd_intelhad *intelhaddata)
|
|
{
|
|
int len, processed;
|
|
unsigned long flags;
|
|
|
|
processed = 0;
|
|
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
|
|
for (;;) {
|
|
/* get the remaining bytes on the buffer */
|
|
had_read_register(intelhaddata,
|
|
AUD_BUF_LEN(intelhaddata->bd_head),
|
|
&len);
|
|
if (len < 0 || len > intelhaddata->period_bytes) {
|
|
dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
|
|
len);
|
|
len = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
if (len > 0) /* OK, this is the current buffer */
|
|
break;
|
|
|
|
/* len=0 => already empty, check the next buffer */
|
|
if (++processed >= intelhaddata->num_bds) {
|
|
len = -EPIPE; /* all empty? - report underrun */
|
|
goto out;
|
|
}
|
|
had_advance_ringbuf(substream, intelhaddata);
|
|
}
|
|
|
|
len = intelhaddata->period_bytes - len;
|
|
len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
|
|
out:
|
|
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
|
|
return len;
|
|
}
|
|
|
|
/* called from irq handler */
|
|
static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
|
|
{
|
|
struct snd_pcm_substream *substream;
|
|
|
|
substream = had_substream_get(intelhaddata);
|
|
if (!substream)
|
|
return; /* no stream? - bail out */
|
|
|
|
if (!intelhaddata->connected) {
|
|
snd_pcm_stop_xrun(substream);
|
|
goto out; /* disconnected? - bail out */
|
|
}
|
|
|
|
/* process or stop the stream */
|
|
if (had_process_ringbuf(substream, intelhaddata) < 0)
|
|
snd_pcm_stop_xrun(substream);
|
|
else
|
|
snd_pcm_period_elapsed(substream);
|
|
|
|
out:
|
|
had_substream_put(intelhaddata);
|
|
}
|
|
|
|
/*
|
|
* The interrupt status 'sticky' bits might not be cleared by
|
|
* setting '1' to that bit once...
|
|
*/
|
|
static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
|
|
{
|
|
int i;
|
|
u32 val;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
/* clear bit30, 31 AUD_HDMI_STATUS */
|
|
had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
|
|
if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
|
|
return;
|
|
udelay(100);
|
|
cond_resched();
|
|
had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
|
|
}
|
|
dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
|
|
}
|
|
|
|
/* Perform some reset procedure but only when need_reset is set;
|
|
* this is called from prepare or hw_free callbacks once after trigger STOP
|
|
* or underrun has been processed in order to settle down the h/w state.
|
|
*/
|
|
static void had_do_reset(struct snd_intelhad *intelhaddata)
|
|
{
|
|
if (!intelhaddata->need_reset || !intelhaddata->connected)
|
|
return;
|
|
|
|
/* Reset buffer pointers */
|
|
had_reset_audio(intelhaddata);
|
|
wait_clear_underrun_bit(intelhaddata);
|
|
intelhaddata->need_reset = false;
|
|
}
|
|
|
|
/* called from irq handler */
|
|
static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
|
|
{
|
|
struct snd_pcm_substream *substream;
|
|
|
|
/* Report UNDERRUN error to above layers */
|
|
substream = had_substream_get(intelhaddata);
|
|
if (substream) {
|
|
snd_pcm_stop_xrun(substream);
|
|
had_substream_put(intelhaddata);
|
|
}
|
|
intelhaddata->need_reset = true;
|
|
}
|
|
|
|
/*
|
|
* ALSA PCM open callback
|
|
*/
|
|
static int had_pcm_open(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_intelhad *intelhaddata;
|
|
struct snd_pcm_runtime *runtime;
|
|
int retval;
|
|
|
|
intelhaddata = snd_pcm_substream_chip(substream);
|
|
runtime = substream->runtime;
|
|
|
|
pm_runtime_get_sync(intelhaddata->dev);
|
|
|
|
/* set the runtime hw parameter with local snd_pcm_hardware struct */
|
|
runtime->hw = had_pcm_hardware;
|
|
|
|
retval = snd_pcm_hw_constraint_integer(runtime,
|
|
SNDRV_PCM_HW_PARAM_PERIODS);
|
|
if (retval < 0)
|
|
goto error;
|
|
|
|
/* Make sure, that the period size is always aligned
|
|
* 64byte boundary
|
|
*/
|
|
retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
|
|
SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
|
|
if (retval < 0)
|
|
goto error;
|
|
|
|
retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
|
|
if (retval < 0)
|
|
goto error;
|
|
|
|
/* expose PCM substream */
|
|
spin_lock_irq(&intelhaddata->had_spinlock);
|
|
intelhaddata->stream_info.substream = substream;
|
|
intelhaddata->stream_info.substream_refcount++;
|
|
spin_unlock_irq(&intelhaddata->had_spinlock);
|
|
|
|
return retval;
|
|
error:
|
|
pm_runtime_mark_last_busy(intelhaddata->dev);
|
|
pm_runtime_put_autosuspend(intelhaddata->dev);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* ALSA PCM close callback
|
|
*/
|
|
static int had_pcm_close(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_intelhad *intelhaddata;
|
|
|
|
intelhaddata = snd_pcm_substream_chip(substream);
|
|
|
|
/* unreference and sync with the pending PCM accesses */
|
|
spin_lock_irq(&intelhaddata->had_spinlock);
|
|
intelhaddata->stream_info.substream = NULL;
|
|
intelhaddata->stream_info.substream_refcount--;
|
|
while (intelhaddata->stream_info.substream_refcount > 0) {
|
|
spin_unlock_irq(&intelhaddata->had_spinlock);
|
|
cpu_relax();
|
|
spin_lock_irq(&intelhaddata->had_spinlock);
|
|
}
|
|
spin_unlock_irq(&intelhaddata->had_spinlock);
|
|
|
|
pm_runtime_mark_last_busy(intelhaddata->dev);
|
|
pm_runtime_put_autosuspend(intelhaddata->dev);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ALSA PCM hw_params callback
|
|
*/
|
|
static int had_pcm_hw_params(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_hw_params *hw_params)
|
|
{
|
|
struct snd_intelhad *intelhaddata;
|
|
unsigned long addr;
|
|
int pages, buf_size, retval;
|
|
|
|
intelhaddata = snd_pcm_substream_chip(substream);
|
|
buf_size = params_buffer_bytes(hw_params);
|
|
retval = snd_pcm_lib_malloc_pages(substream, buf_size);
|
|
if (retval < 0)
|
|
return retval;
|
|
dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
|
|
__func__, buf_size);
|
|
/* mark the pages as uncached region */
|
|
addr = (unsigned long) substream->runtime->dma_area;
|
|
pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
retval = set_memory_uc(addr, pages);
|
|
if (retval) {
|
|
dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
|
|
retval);
|
|
return retval;
|
|
}
|
|
memset(substream->runtime->dma_area, 0, buf_size);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* ALSA PCM hw_free callback
|
|
*/
|
|
static int had_pcm_hw_free(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_intelhad *intelhaddata;
|
|
unsigned long addr;
|
|
u32 pages;
|
|
|
|
intelhaddata = snd_pcm_substream_chip(substream);
|
|
had_do_reset(intelhaddata);
|
|
|
|
/* mark back the pages as cached/writeback region before the free */
|
|
if (substream->runtime->dma_area != NULL) {
|
|
addr = (unsigned long) substream->runtime->dma_area;
|
|
pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
|
|
PAGE_SIZE;
|
|
set_memory_wb(addr, pages);
|
|
return snd_pcm_lib_free_pages(substream);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ALSA PCM trigger callback
|
|
*/
|
|
static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
|
|
{
|
|
int retval = 0;
|
|
struct snd_intelhad *intelhaddata;
|
|
|
|
intelhaddata = snd_pcm_substream_chip(substream);
|
|
|
|
spin_lock(&intelhaddata->had_spinlock);
|
|
switch (cmd) {
|
|
case SNDRV_PCM_TRIGGER_START:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
|
|
case SNDRV_PCM_TRIGGER_RESUME:
|
|
/* Enable Audio */
|
|
had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
|
|
had_enable_audio(intelhaddata, true);
|
|
break;
|
|
|
|
case SNDRV_PCM_TRIGGER_STOP:
|
|
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
|
|
/* Disable Audio */
|
|
had_enable_audio(intelhaddata, false);
|
|
intelhaddata->need_reset = true;
|
|
break;
|
|
|
|
default:
|
|
retval = -EINVAL;
|
|
}
|
|
spin_unlock(&intelhaddata->had_spinlock);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* ALSA PCM prepare callback
|
|
*/
|
|
static int had_pcm_prepare(struct snd_pcm_substream *substream)
|
|
{
|
|
int retval;
|
|
u32 disp_samp_freq, n_param;
|
|
u32 link_rate = 0;
|
|
struct snd_intelhad *intelhaddata;
|
|
struct snd_pcm_runtime *runtime;
|
|
|
|
intelhaddata = snd_pcm_substream_chip(substream);
|
|
runtime = substream->runtime;
|
|
|
|
dev_dbg(intelhaddata->dev, "period_size=%d\n",
|
|
(int)frames_to_bytes(runtime, runtime->period_size));
|
|
dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
|
|
dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
|
|
(int)snd_pcm_lib_buffer_bytes(substream));
|
|
dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
|
|
dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
|
|
|
|
had_do_reset(intelhaddata);
|
|
|
|
/* Get N value in KHz */
|
|
disp_samp_freq = intelhaddata->tmds_clock_speed;
|
|
|
|
retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
|
|
if (retval) {
|
|
dev_err(intelhaddata->dev,
|
|
"programming N value failed %#x\n", retval);
|
|
goto prep_end;
|
|
}
|
|
|
|
if (intelhaddata->dp_output)
|
|
link_rate = intelhaddata->link_rate;
|
|
|
|
had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
|
|
n_param, intelhaddata);
|
|
|
|
had_prog_dip(substream, intelhaddata);
|
|
|
|
retval = had_init_audio_ctrl(substream, intelhaddata);
|
|
|
|
/* Prog buffer address */
|
|
had_init_ringbuf(substream, intelhaddata);
|
|
|
|
/*
|
|
* Program channel mapping in following order:
|
|
* FL, FR, C, LFE, RL, RR
|
|
*/
|
|
|
|
had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
|
|
|
|
prep_end:
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* ALSA PCM pointer callback
|
|
*/
|
|
static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_intelhad *intelhaddata;
|
|
int len;
|
|
|
|
intelhaddata = snd_pcm_substream_chip(substream);
|
|
|
|
if (!intelhaddata->connected)
|
|
return SNDRV_PCM_POS_XRUN;
|
|
|
|
len = had_process_ringbuf(substream, intelhaddata);
|
|
if (len < 0)
|
|
return SNDRV_PCM_POS_XRUN;
|
|
len = bytes_to_frames(substream->runtime, len);
|
|
/* wrapping may happen when periods=1 */
|
|
len %= substream->runtime->buffer_size;
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* ALSA PCM mmap callback
|
|
*/
|
|
static int had_pcm_mmap(struct snd_pcm_substream *substream,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
return remap_pfn_range(vma, vma->vm_start,
|
|
substream->dma_buffer.addr >> PAGE_SHIFT,
|
|
vma->vm_end - vma->vm_start, vma->vm_page_prot);
|
|
}
|
|
|
|
/*
|
|
* ALSA PCM ops
|
|
*/
|
|
static const struct snd_pcm_ops had_pcm_ops = {
|
|
.open = had_pcm_open,
|
|
.close = had_pcm_close,
|
|
.ioctl = snd_pcm_lib_ioctl,
|
|
.hw_params = had_pcm_hw_params,
|
|
.hw_free = had_pcm_hw_free,
|
|
.prepare = had_pcm_prepare,
|
|
.trigger = had_pcm_trigger,
|
|
.pointer = had_pcm_pointer,
|
|
.mmap = had_pcm_mmap,
|
|
};
|
|
|
|
/* process mode change of the running stream; called in mutex */
|
|
static int had_process_mode_change(struct snd_intelhad *intelhaddata)
|
|
{
|
|
struct snd_pcm_substream *substream;
|
|
int retval = 0;
|
|
u32 disp_samp_freq, n_param;
|
|
u32 link_rate = 0;
|
|
|
|
substream = had_substream_get(intelhaddata);
|
|
if (!substream)
|
|
return 0;
|
|
|
|
/* Disable Audio */
|
|
had_enable_audio(intelhaddata, false);
|
|
|
|
/* Update CTS value */
|
|
disp_samp_freq = intelhaddata->tmds_clock_speed;
|
|
|
|
retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
|
|
if (retval) {
|
|
dev_err(intelhaddata->dev,
|
|
"programming N value failed %#x\n", retval);
|
|
goto out;
|
|
}
|
|
|
|
if (intelhaddata->dp_output)
|
|
link_rate = intelhaddata->link_rate;
|
|
|
|
had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
|
|
n_param, intelhaddata);
|
|
|
|
/* Enable Audio */
|
|
had_enable_audio(intelhaddata, true);
|
|
|
|
out:
|
|
had_substream_put(intelhaddata);
|
|
return retval;
|
|
}
|
|
|
|
/* process hot plug, called from wq with mutex locked */
|
|
static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
|
|
{
|
|
struct snd_pcm_substream *substream;
|
|
|
|
spin_lock_irq(&intelhaddata->had_spinlock);
|
|
if (intelhaddata->connected) {
|
|
dev_dbg(intelhaddata->dev, "Device already connected\n");
|
|
spin_unlock_irq(&intelhaddata->had_spinlock);
|
|
return;
|
|
}
|
|
|
|
/* Disable Audio */
|
|
had_enable_audio(intelhaddata, false);
|
|
|
|
intelhaddata->connected = true;
|
|
dev_dbg(intelhaddata->dev,
|
|
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
|
|
__func__, __LINE__);
|
|
spin_unlock_irq(&intelhaddata->had_spinlock);
|
|
|
|
had_build_channel_allocation_map(intelhaddata);
|
|
|
|
/* Report to above ALSA layer */
|
|
substream = had_substream_get(intelhaddata);
|
|
if (substream) {
|
|
snd_pcm_stop_xrun(substream);
|
|
had_substream_put(intelhaddata);
|
|
}
|
|
|
|
snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
|
|
}
|
|
|
|
/* process hot unplug, called from wq with mutex locked */
|
|
static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
|
|
{
|
|
struct snd_pcm_substream *substream;
|
|
|
|
spin_lock_irq(&intelhaddata->had_spinlock);
|
|
if (!intelhaddata->connected) {
|
|
dev_dbg(intelhaddata->dev, "Device already disconnected\n");
|
|
spin_unlock_irq(&intelhaddata->had_spinlock);
|
|
return;
|
|
|
|
}
|
|
|
|
/* Disable Audio */
|
|
had_enable_audio(intelhaddata, false);
|
|
|
|
intelhaddata->connected = false;
|
|
dev_dbg(intelhaddata->dev,
|
|
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
|
|
__func__, __LINE__);
|
|
spin_unlock_irq(&intelhaddata->had_spinlock);
|
|
|
|
kfree(intelhaddata->chmap->chmap);
|
|
intelhaddata->chmap->chmap = NULL;
|
|
|
|
/* Report to above ALSA layer */
|
|
substream = had_substream_get(intelhaddata);
|
|
if (substream) {
|
|
snd_pcm_stop_xrun(substream);
|
|
had_substream_put(intelhaddata);
|
|
}
|
|
|
|
snd_jack_report(intelhaddata->jack, 0);
|
|
}
|
|
|
|
/*
|
|
* ALSA iec958 and ELD controls
|
|
*/
|
|
|
|
static int had_iec958_info(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_info *uinfo)
|
|
{
|
|
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
|
|
uinfo->count = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int had_iec958_get(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_value *ucontrol)
|
|
{
|
|
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
|
|
|
|
mutex_lock(&intelhaddata->mutex);
|
|
ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
|
|
ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
|
|
ucontrol->value.iec958.status[2] =
|
|
(intelhaddata->aes_bits >> 16) & 0xff;
|
|
ucontrol->value.iec958.status[3] =
|
|
(intelhaddata->aes_bits >> 24) & 0xff;
|
|
mutex_unlock(&intelhaddata->mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_value *ucontrol)
|
|
{
|
|
ucontrol->value.iec958.status[0] = 0xff;
|
|
ucontrol->value.iec958.status[1] = 0xff;
|
|
ucontrol->value.iec958.status[2] = 0xff;
|
|
ucontrol->value.iec958.status[3] = 0xff;
|
|
return 0;
|
|
}
|
|
|
|
static int had_iec958_put(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_value *ucontrol)
|
|
{
|
|
unsigned int val;
|
|
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
|
|
int changed = 0;
|
|
|
|
val = (ucontrol->value.iec958.status[0] << 0) |
|
|
(ucontrol->value.iec958.status[1] << 8) |
|
|
(ucontrol->value.iec958.status[2] << 16) |
|
|
(ucontrol->value.iec958.status[3] << 24);
|
|
mutex_lock(&intelhaddata->mutex);
|
|
if (intelhaddata->aes_bits != val) {
|
|
intelhaddata->aes_bits = val;
|
|
changed = 1;
|
|
}
|
|
mutex_unlock(&intelhaddata->mutex);
|
|
return changed;
|
|
}
|
|
|
|
static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_info *uinfo)
|
|
{
|
|
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
|
|
uinfo->count = HDMI_MAX_ELD_BYTES;
|
|
return 0;
|
|
}
|
|
|
|
static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_value *ucontrol)
|
|
{
|
|
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
|
|
|
|
mutex_lock(&intelhaddata->mutex);
|
|
memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
|
|
HDMI_MAX_ELD_BYTES);
|
|
mutex_unlock(&intelhaddata->mutex);
|
|
return 0;
|
|
}
|
|
|
|
static const struct snd_kcontrol_new had_controls[] = {
|
|
{
|
|
.access = SNDRV_CTL_ELEM_ACCESS_READ,
|
|
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
|
|
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
|
|
.info = had_iec958_info, /* shared */
|
|
.get = had_iec958_mask_get,
|
|
},
|
|
{
|
|
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
|
|
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
|
|
.info = had_iec958_info,
|
|
.get = had_iec958_get,
|
|
.put = had_iec958_put,
|
|
},
|
|
{
|
|
.access = (SNDRV_CTL_ELEM_ACCESS_READ |
|
|
SNDRV_CTL_ELEM_ACCESS_VOLATILE),
|
|
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
|
|
.name = "ELD",
|
|
.info = had_ctl_eld_info,
|
|
.get = had_ctl_eld_get,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* audio interrupt handler
|
|
*/
|
|
static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
|
|
{
|
|
struct snd_intelhad_card *card_ctx = dev_id;
|
|
u32 audio_stat[3] = {};
|
|
int pipe, port;
|
|
|
|
for_each_pipe(card_ctx, pipe) {
|
|
/* use raw register access to ack IRQs even while disconnected */
|
|
audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
|
|
AUD_HDMI_STATUS) &
|
|
(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
|
|
|
|
if (audio_stat[pipe])
|
|
had_write_register_raw(card_ctx, pipe,
|
|
AUD_HDMI_STATUS, audio_stat[pipe]);
|
|
}
|
|
|
|
for_each_port(card_ctx, port) {
|
|
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
|
|
int pipe = ctx->pipe;
|
|
|
|
if (pipe < 0)
|
|
continue;
|
|
|
|
if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
|
|
had_process_buffer_done(ctx);
|
|
if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
|
|
had_process_buffer_underrun(ctx);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* monitor plug/unplug notification from i915; just kick off the work
|
|
*/
|
|
static void notify_audio_lpe(struct platform_device *pdev, int port)
|
|
{
|
|
struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
|
|
struct snd_intelhad *ctx;
|
|
|
|
ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
|
|
if (single_port)
|
|
ctx->port = port;
|
|
|
|
schedule_work(&ctx->hdmi_audio_wq);
|
|
}
|
|
|
|
/* the work to handle monitor hot plug/unplug */
|
|
static void had_audio_wq(struct work_struct *work)
|
|
{
|
|
struct snd_intelhad *ctx =
|
|
container_of(work, struct snd_intelhad, hdmi_audio_wq);
|
|
struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
|
|
struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
|
|
|
|
pm_runtime_get_sync(ctx->dev);
|
|
mutex_lock(&ctx->mutex);
|
|
if (ppdata->pipe < 0) {
|
|
dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
|
|
__func__, ctx->port);
|
|
|
|
memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
|
|
|
|
ctx->dp_output = false;
|
|
ctx->tmds_clock_speed = 0;
|
|
ctx->link_rate = 0;
|
|
|
|
/* Shut down the stream */
|
|
had_process_hot_unplug(ctx);
|
|
|
|
ctx->pipe = -1;
|
|
} else {
|
|
dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
|
|
__func__, ctx->port, ppdata->ls_clock);
|
|
|
|
memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
|
|
|
|
ctx->dp_output = ppdata->dp_output;
|
|
if (ctx->dp_output) {
|
|
ctx->tmds_clock_speed = 0;
|
|
ctx->link_rate = ppdata->ls_clock;
|
|
} else {
|
|
ctx->tmds_clock_speed = ppdata->ls_clock;
|
|
ctx->link_rate = 0;
|
|
}
|
|
|
|
/*
|
|
* Shut down the stream before we change
|
|
* the pipe assignment for this pcm device
|
|
*/
|
|
had_process_hot_plug(ctx);
|
|
|
|
ctx->pipe = ppdata->pipe;
|
|
|
|
/* Restart the stream if necessary */
|
|
had_process_mode_change(ctx);
|
|
}
|
|
|
|
mutex_unlock(&ctx->mutex);
|
|
pm_runtime_mark_last_busy(ctx->dev);
|
|
pm_runtime_put_autosuspend(ctx->dev);
|
|
}
|
|
|
|
/*
|
|
* Jack interface
|
|
*/
|
|
static int had_create_jack(struct snd_intelhad *ctx,
|
|
struct snd_pcm *pcm)
|
|
{
|
|
char hdmi_str[32];
|
|
int err;
|
|
|
|
snprintf(hdmi_str, sizeof(hdmi_str),
|
|
"HDMI/DP,pcm=%d", pcm->device);
|
|
|
|
err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
|
|
SND_JACK_AVOUT, &ctx->jack,
|
|
true, false);
|
|
if (err < 0)
|
|
return err;
|
|
ctx->jack->private_data = ctx;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* PM callbacks
|
|
*/
|
|
|
|
static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
|
|
{
|
|
struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
|
|
int port;
|
|
|
|
for_each_port(card_ctx, port) {
|
|
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
|
|
struct snd_pcm_substream *substream;
|
|
|
|
substream = had_substream_get(ctx);
|
|
if (substream) {
|
|
snd_pcm_suspend(substream);
|
|
had_substream_put(ctx);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
|
|
{
|
|
struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
|
|
int err;
|
|
|
|
err = hdmi_lpe_audio_runtime_suspend(dev);
|
|
if (!err)
|
|
snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
|
|
return err;
|
|
}
|
|
|
|
static int hdmi_lpe_audio_runtime_resume(struct device *dev)
|
|
{
|
|
pm_runtime_mark_last_busy(dev);
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
|
|
{
|
|
struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
|
|
|
|
hdmi_lpe_audio_runtime_resume(dev);
|
|
snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
|
|
return 0;
|
|
}
|
|
|
|
/* release resources */
|
|
static void hdmi_lpe_audio_free(struct snd_card *card)
|
|
{
|
|
struct snd_intelhad_card *card_ctx = card->private_data;
|
|
struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
|
|
int port;
|
|
|
|
spin_lock_irq(&pdata->lpe_audio_slock);
|
|
pdata->notify_audio_lpe = NULL;
|
|
spin_unlock_irq(&pdata->lpe_audio_slock);
|
|
|
|
for_each_port(card_ctx, port) {
|
|
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
|
|
|
|
cancel_work_sync(&ctx->hdmi_audio_wq);
|
|
}
|
|
|
|
if (card_ctx->mmio_start)
|
|
iounmap(card_ctx->mmio_start);
|
|
if (card_ctx->irq >= 0)
|
|
free_irq(card_ctx->irq, card_ctx);
|
|
}
|
|
|
|
/*
|
|
* hdmi_lpe_audio_probe - start bridge with i915
|
|
*
|
|
* This function is called when the i915 driver creates the
|
|
* hdmi-lpe-audio platform device.
|
|
*/
|
|
static int hdmi_lpe_audio_probe(struct platform_device *pdev)
|
|
{
|
|
struct snd_card *card;
|
|
struct snd_intelhad_card *card_ctx;
|
|
struct snd_intelhad *ctx;
|
|
struct snd_pcm *pcm;
|
|
struct intel_hdmi_lpe_audio_pdata *pdata;
|
|
int irq;
|
|
struct resource *res_mmio;
|
|
int port, ret;
|
|
|
|
pdata = pdev->dev.platform_data;
|
|
if (!pdata) {
|
|
dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* get resources */
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0) {
|
|
dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
|
|
return irq;
|
|
}
|
|
|
|
res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!res_mmio) {
|
|
dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* create a card instance with ALSA framework */
|
|
ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
|
|
THIS_MODULE, sizeof(*card_ctx), &card);
|
|
if (ret)
|
|
return ret;
|
|
|
|
card_ctx = card->private_data;
|
|
card_ctx->dev = &pdev->dev;
|
|
card_ctx->card = card;
|
|
strcpy(card->driver, INTEL_HAD);
|
|
strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
|
|
strcpy(card->longname, "Intel HDMI/DP LPE Audio");
|
|
|
|
card_ctx->irq = -1;
|
|
|
|
card->private_free = hdmi_lpe_audio_free;
|
|
|
|
platform_set_drvdata(pdev, card_ctx);
|
|
|
|
card_ctx->num_pipes = pdata->num_pipes;
|
|
card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
|
|
|
|
for_each_port(card_ctx, port) {
|
|
ctx = &card_ctx->pcm_ctx[port];
|
|
ctx->card_ctx = card_ctx;
|
|
ctx->dev = card_ctx->dev;
|
|
ctx->port = single_port ? -1 : port;
|
|
ctx->pipe = -1;
|
|
|
|
spin_lock_init(&ctx->had_spinlock);
|
|
mutex_init(&ctx->mutex);
|
|
INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
|
|
}
|
|
|
|
dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
|
|
__func__, (unsigned int)res_mmio->start,
|
|
(unsigned int)res_mmio->end);
|
|
|
|
card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
|
|
(size_t)(resource_size(res_mmio)));
|
|
if (!card_ctx->mmio_start) {
|
|
dev_err(&pdev->dev, "Could not get ioremap\n");
|
|
ret = -EACCES;
|
|
goto err;
|
|
}
|
|
|
|
/* setup interrupt handler */
|
|
ret = request_irq(irq, display_pipe_interrupt_handler, 0,
|
|
pdev->name, card_ctx);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "request_irq failed\n");
|
|
goto err;
|
|
}
|
|
|
|
card_ctx->irq = irq;
|
|
|
|
/* only 32bit addressable */
|
|
dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
|
|
dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
|
|
|
|
init_channel_allocations();
|
|
|
|
card_ctx->num_pipes = pdata->num_pipes;
|
|
card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
|
|
|
|
for_each_port(card_ctx, port) {
|
|
int i;
|
|
|
|
ctx = &card_ctx->pcm_ctx[port];
|
|
ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
|
|
MAX_CAP_STREAMS, &pcm);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* setup private data which can be retrieved when required */
|
|
pcm->private_data = ctx;
|
|
pcm->info_flags = 0;
|
|
strlcpy(pcm->name, card->shortname, strlen(card->shortname));
|
|
/* setup the ops for playabck */
|
|
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
|
|
|
|
/* allocate dma pages;
|
|
* try to allocate 600k buffer as default which is large enough
|
|
*/
|
|
snd_pcm_lib_preallocate_pages_for_all(pcm,
|
|
SNDRV_DMA_TYPE_DEV, NULL,
|
|
HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
|
|
|
|
/* create controls */
|
|
for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
|
|
struct snd_kcontrol *kctl;
|
|
|
|
kctl = snd_ctl_new1(&had_controls[i], ctx);
|
|
if (!kctl) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
kctl->id.device = pcm->device;
|
|
|
|
ret = snd_ctl_add(card, kctl);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
|
|
/* Register channel map controls */
|
|
ret = had_register_chmap_ctls(ctx, pcm);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
ret = had_create_jack(ctx, pcm);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
|
|
ret = snd_card_register(card);
|
|
if (ret)
|
|
goto err;
|
|
|
|
spin_lock_irq(&pdata->lpe_audio_slock);
|
|
pdata->notify_audio_lpe = notify_audio_lpe;
|
|
spin_unlock_irq(&pdata->lpe_audio_slock);
|
|
|
|
pm_runtime_use_autosuspend(&pdev->dev);
|
|
pm_runtime_mark_last_busy(&pdev->dev);
|
|
|
|
dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
|
|
for_each_port(card_ctx, port) {
|
|
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
|
|
|
|
schedule_work(&ctx->hdmi_audio_wq);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
snd_card_free(card);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* hdmi_lpe_audio_remove - stop bridge with i915
|
|
*
|
|
* This function is called when the platform device is destroyed.
|
|
*/
|
|
static int hdmi_lpe_audio_remove(struct platform_device *pdev)
|
|
{
|
|
struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
|
|
|
|
snd_card_free(card_ctx->card);
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops hdmi_lpe_audio_pm = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
|
|
SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
|
|
hdmi_lpe_audio_runtime_resume, NULL)
|
|
};
|
|
|
|
static struct platform_driver hdmi_lpe_audio_driver = {
|
|
.driver = {
|
|
.name = "hdmi-lpe-audio",
|
|
.pm = &hdmi_lpe_audio_pm,
|
|
},
|
|
.probe = hdmi_lpe_audio_probe,
|
|
.remove = hdmi_lpe_audio_remove,
|
|
};
|
|
|
|
module_platform_driver(hdmi_lpe_audio_driver);
|
|
MODULE_ALIAS("platform:hdmi_lpe_audio");
|
|
|
|
MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
|
|
MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
|
|
MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
|
|
MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
|
|
MODULE_DESCRIPTION("Intel HDMI Audio driver");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");
|