kernel_samsung_a34x-permissive/arch/powerpc/platforms/ps3/mm.c
2024-04-28 15:51:13 +02:00

1252 lines
32 KiB
C

/*
* PS3 address space management.
*
* Copyright (C) 2006 Sony Computer Entertainment Inc.
* Copyright 2006 Sony Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/memblock.h>
#include <linux/slab.h>
#include <asm/cell-regs.h>
#include <asm/firmware.h>
#include <asm/prom.h>
#include <asm/udbg.h>
#include <asm/lv1call.h>
#include <asm/setup.h>
#include "platform.h"
#if defined(DEBUG)
#define DBG udbg_printf
#else
#define DBG pr_devel
#endif
enum {
#if defined(CONFIG_PS3_DYNAMIC_DMA)
USE_DYNAMIC_DMA = 1,
#else
USE_DYNAMIC_DMA = 0,
#endif
};
enum {
PAGE_SHIFT_4K = 12U,
PAGE_SHIFT_64K = 16U,
PAGE_SHIFT_16M = 24U,
};
static unsigned long make_page_sizes(unsigned long a, unsigned long b)
{
return (a << 56) | (b << 48);
}
enum {
ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
};
/* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
enum {
HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
};
/*============================================================================*/
/* virtual address space routines */
/*============================================================================*/
/**
* struct mem_region - memory region structure
* @base: base address
* @size: size in bytes
* @offset: difference between base and rm.size
* @destroy: flag if region should be destroyed upon shutdown
*/
struct mem_region {
u64 base;
u64 size;
unsigned long offset;
int destroy;
};
/**
* struct map - address space state variables holder
* @total: total memory available as reported by HV
* @vas_id - HV virtual address space id
* @htab_size: htab size in bytes
*
* The HV virtual address space (vas) allows for hotplug memory regions.
* Memory regions can be created and destroyed in the vas at runtime.
* @rm: real mode (bootmem) region
* @r1: highmem region(s)
*
* ps3 addresses
* virt_addr: a cpu 'translated' effective address
* phys_addr: an address in what Linux thinks is the physical address space
* lpar_addr: an address in the HV virtual address space
* bus_addr: an io controller 'translated' address on a device bus
*/
struct map {
u64 total;
u64 vas_id;
u64 htab_size;
struct mem_region rm;
struct mem_region r1;
};
#define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
static void __maybe_unused _debug_dump_map(const struct map *m,
const char *func, int line)
{
DBG("%s:%d: map.total = %llxh\n", func, line, m->total);
DBG("%s:%d: map.rm.size = %llxh\n", func, line, m->rm.size);
DBG("%s:%d: map.vas_id = %llu\n", func, line, m->vas_id);
DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
DBG("%s:%d: map.r1.base = %llxh\n", func, line, m->r1.base);
DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
DBG("%s:%d: map.r1.size = %llxh\n", func, line, m->r1.size);
}
static struct map map;
/**
* ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
* @phys_addr: linux physical address
*/
unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
{
BUG_ON(is_kernel_addr(phys_addr));
return (phys_addr < map.rm.size || phys_addr >= map.total)
? phys_addr : phys_addr + map.r1.offset;
}
EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
/**
* ps3_mm_vas_create - create the virtual address space
*/
void __init ps3_mm_vas_create(unsigned long* htab_size)
{
int result;
u64 start_address;
u64 size;
u64 access_right;
u64 max_page_size;
u64 flags;
result = lv1_query_logical_partition_address_region_info(0,
&start_address, &size, &access_right, &max_page_size,
&flags);
if (result) {
DBG("%s:%d: lv1_query_logical_partition_address_region_info "
"failed: %s\n", __func__, __LINE__,
ps3_result(result));
goto fail;
}
if (max_page_size < PAGE_SHIFT_16M) {
DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
max_page_size);
goto fail;
}
BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
&map.vas_id, &map.htab_size);
if (result) {
DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
__func__, __LINE__, ps3_result(result));
goto fail;
}
result = lv1_select_virtual_address_space(map.vas_id);
if (result) {
DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
__func__, __LINE__, ps3_result(result));
goto fail;
}
*htab_size = map.htab_size;
debug_dump_map(&map);
return;
fail:
panic("ps3_mm_vas_create failed");
}
/**
* ps3_mm_vas_destroy -
*/
void ps3_mm_vas_destroy(void)
{
int result;
if (map.vas_id) {
result = lv1_select_virtual_address_space(0);
result += lv1_destruct_virtual_address_space(map.vas_id);
if (result) {
lv1_panic(0);
}
map.vas_id = 0;
}
}
static int ps3_mm_get_repository_highmem(struct mem_region *r)
{
int result;
/* Assume a single highmem region. */
result = ps3_repository_read_highmem_info(0, &r->base, &r->size);
if (result)
goto zero_region;
if (!r->base || !r->size) {
result = -1;
goto zero_region;
}
r->offset = r->base - map.rm.size;
DBG("%s:%d: Found high region in repository: %llxh %llxh\n",
__func__, __LINE__, r->base, r->size);
return 0;
zero_region:
DBG("%s:%d: No high region in repository.\n", __func__, __LINE__);
r->size = r->base = r->offset = 0;
return result;
}
static int ps3_mm_set_repository_highmem(const struct mem_region *r)
{
/* Assume a single highmem region. */
return r ? ps3_repository_write_highmem_info(0, r->base, r->size) :
ps3_repository_write_highmem_info(0, 0, 0);
}
/**
* ps3_mm_region_create - create a memory region in the vas
* @r: pointer to a struct mem_region to accept initialized values
* @size: requested region size
*
* This implementation creates the region with the vas large page size.
* @size is rounded down to a multiple of the vas large page size.
*/
static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
{
int result;
u64 muid;
r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
DBG("%s:%d requested %lxh\n", __func__, __LINE__, size);
DBG("%s:%d actual %llxh\n", __func__, __LINE__, r->size);
DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
size - r->size, (size - r->size) / 1024 / 1024);
if (r->size == 0) {
DBG("%s:%d: size == 0\n", __func__, __LINE__);
result = -1;
goto zero_region;
}
result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
if (result || r->base < map.rm.size) {
DBG("%s:%d: lv1_allocate_memory failed: %s\n",
__func__, __LINE__, ps3_result(result));
goto zero_region;
}
r->destroy = 1;
r->offset = r->base - map.rm.size;
return result;
zero_region:
r->size = r->base = r->offset = 0;
return result;
}
/**
* ps3_mm_region_destroy - destroy a memory region
* @r: pointer to struct mem_region
*/
static void ps3_mm_region_destroy(struct mem_region *r)
{
int result;
if (!r->destroy) {
return;
}
if (r->base) {
result = lv1_release_memory(r->base);
if (result) {
lv1_panic(0);
}
r->size = r->base = r->offset = 0;
map.total = map.rm.size;
}
ps3_mm_set_repository_highmem(NULL);
}
/*============================================================================*/
/* dma routines */
/*============================================================================*/
/**
* dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
* @r: pointer to dma region structure
* @lpar_addr: HV lpar address
*/
static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
unsigned long lpar_addr)
{
if (lpar_addr >= map.rm.size)
lpar_addr -= map.r1.offset;
BUG_ON(lpar_addr < r->offset);
BUG_ON(lpar_addr >= r->offset + r->len);
return r->bus_addr + lpar_addr - r->offset;
}
#define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
const char *func, int line)
{
DBG("%s:%d: dev %llu:%llu\n", func, line, r->dev->bus_id,
r->dev->dev_id);
DBG("%s:%d: page_size %u\n", func, line, r->page_size);
DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr);
DBG("%s:%d: len %lxh\n", func, line, r->len);
DBG("%s:%d: offset %lxh\n", func, line, r->offset);
}
/**
* dma_chunk - A chunk of dma pages mapped by the io controller.
* @region - The dma region that owns this chunk.
* @lpar_addr: Starting lpar address of the area to map.
* @bus_addr: Starting ioc bus address of the area to map.
* @len: Length in bytes of the area to map.
* @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
* list of all chuncks owned by the region.
*
* This implementation uses a very simple dma page manager
* based on the dma_chunk structure. This scheme assumes
* that all drivers use very well behaved dma ops.
*/
struct dma_chunk {
struct ps3_dma_region *region;
unsigned long lpar_addr;
unsigned long bus_addr;
unsigned long len;
struct list_head link;
unsigned int usage_count;
};
#define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
int line)
{
DBG("%s:%d: r.dev %llu:%llu\n", func, line,
c->region->dev->bus_id, c->region->dev->dev_id);
DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr);
DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size);
DBG("%s:%d: r.len %lxh\n", func, line, c->region->len);
DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset);
DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr);
DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr);
DBG("%s:%d: c.len %lxh\n", func, line, c->len);
}
static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
unsigned long bus_addr, unsigned long len)
{
struct dma_chunk *c;
unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size);
unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus,
1 << r->page_size);
list_for_each_entry(c, &r->chunk_list.head, link) {
/* intersection */
if (aligned_bus >= c->bus_addr &&
aligned_bus + aligned_len <= c->bus_addr + c->len)
return c;
/* below */
if (aligned_bus + aligned_len <= c->bus_addr)
continue;
/* above */
if (aligned_bus >= c->bus_addr + c->len)
continue;
/* we don't handle the multi-chunk case for now */
dma_dump_chunk(c);
BUG();
}
return NULL;
}
static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
unsigned long lpar_addr, unsigned long len)
{
struct dma_chunk *c;
unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size);
unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar,
1 << r->page_size);
list_for_each_entry(c, &r->chunk_list.head, link) {
/* intersection */
if (c->lpar_addr <= aligned_lpar &&
aligned_lpar < c->lpar_addr + c->len) {
if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
return c;
else {
dma_dump_chunk(c);
BUG();
}
}
/* below */
if (aligned_lpar + aligned_len <= c->lpar_addr) {
continue;
}
/* above */
if (c->lpar_addr + c->len <= aligned_lpar) {
continue;
}
}
return NULL;
}
static int dma_sb_free_chunk(struct dma_chunk *c)
{
int result = 0;
if (c->bus_addr) {
result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
c->region->dev->dev_id, c->bus_addr, c->len);
BUG_ON(result);
}
kfree(c);
return result;
}
static int dma_ioc0_free_chunk(struct dma_chunk *c)
{
int result = 0;
int iopage;
unsigned long offset;
struct ps3_dma_region *r = c->region;
DBG("%s:start\n", __func__);
for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
offset = (1 << r->page_size) * iopage;
/* put INVALID entry */
result = lv1_put_iopte(0,
c->bus_addr + offset,
c->lpar_addr + offset,
r->ioid,
0);
DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
c->bus_addr + offset,
c->lpar_addr + offset,
r->ioid);
if (result) {
DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
__LINE__, ps3_result(result));
}
}
kfree(c);
DBG("%s:end\n", __func__);
return result;
}
/**
* dma_sb_map_pages - Maps dma pages into the io controller bus address space.
* @r: Pointer to a struct ps3_dma_region.
* @phys_addr: Starting physical address of the area to map.
* @len: Length in bytes of the area to map.
* c_out: A pointer to receive an allocated struct dma_chunk for this area.
*
* This is the lowest level dma mapping routine, and is the one that will
* make the HV call to add the pages into the io controller address space.
*/
static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
{
int result;
struct dma_chunk *c;
c = kzalloc(sizeof(*c), GFP_ATOMIC);
if (!c) {
result = -ENOMEM;
goto fail_alloc;
}
c->region = r;
c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
c->len = len;
BUG_ON(iopte_flag != 0xf800000000000000UL);
result = lv1_map_device_dma_region(c->region->dev->bus_id,
c->region->dev->dev_id, c->lpar_addr,
c->bus_addr, c->len, iopte_flag);
if (result) {
DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
__func__, __LINE__, ps3_result(result));
goto fail_map;
}
list_add(&c->link, &r->chunk_list.head);
*c_out = c;
return 0;
fail_map:
kfree(c);
fail_alloc:
*c_out = NULL;
DBG(" <- %s:%d\n", __func__, __LINE__);
return result;
}
static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
unsigned long len, struct dma_chunk **c_out,
u64 iopte_flag)
{
int result;
struct dma_chunk *c, *last;
int iopage, pages;
unsigned long offset;
DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
c = kzalloc(sizeof(*c), GFP_ATOMIC);
if (!c) {
result = -ENOMEM;
goto fail_alloc;
}
c->region = r;
c->len = len;
c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
/* allocate IO address */
if (list_empty(&r->chunk_list.head)) {
/* first one */
c->bus_addr = r->bus_addr;
} else {
/* derive from last bus addr*/
last = list_entry(r->chunk_list.head.next,
struct dma_chunk, link);
c->bus_addr = last->bus_addr + last->len;
DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
last->bus_addr, last->len);
}
/* FIXME: check whether length exceeds region size */
/* build ioptes for the area */
pages = len >> r->page_size;
DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
r->page_size, r->len, pages, iopte_flag);
for (iopage = 0; iopage < pages; iopage++) {
offset = (1 << r->page_size) * iopage;
result = lv1_put_iopte(0,
c->bus_addr + offset,
c->lpar_addr + offset,
r->ioid,
iopte_flag);
if (result) {
pr_warn("%s:%d: lv1_put_iopte failed: %s\n",
__func__, __LINE__, ps3_result(result));
goto fail_map;
}
DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
iopage, c->bus_addr + offset, c->lpar_addr + offset,
r->ioid);
}
/* be sure that last allocated one is inserted at head */
list_add(&c->link, &r->chunk_list.head);
*c_out = c;
DBG("%s: end\n", __func__);
return 0;
fail_map:
for (iopage--; 0 <= iopage; iopage--) {
lv1_put_iopte(0,
c->bus_addr + offset,
c->lpar_addr + offset,
r->ioid,
0);
}
kfree(c);
fail_alloc:
*c_out = NULL;
return result;
}
/**
* dma_sb_region_create - Create a device dma region.
* @r: Pointer to a struct ps3_dma_region.
*
* This is the lowest level dma region create routine, and is the one that
* will make the HV call to create the region.
*/
static int dma_sb_region_create(struct ps3_dma_region *r)
{
int result;
u64 bus_addr;
DBG(" -> %s:%d:\n", __func__, __LINE__);
BUG_ON(!r);
if (!r->dev->bus_id) {
pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
r->dev->bus_id, r->dev->dev_id);
return 0;
}
DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
__LINE__, r->len, r->page_size, r->offset);
BUG_ON(!r->len);
BUG_ON(!r->page_size);
BUG_ON(!r->region_ops);
INIT_LIST_HEAD(&r->chunk_list.head);
spin_lock_init(&r->chunk_list.lock);
result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
roundup_pow_of_two(r->len), r->page_size, r->region_type,
&bus_addr);
r->bus_addr = bus_addr;
if (result) {
DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
__func__, __LINE__, ps3_result(result));
r->len = r->bus_addr = 0;
}
return result;
}
static int dma_ioc0_region_create(struct ps3_dma_region *r)
{
int result;
u64 bus_addr;
INIT_LIST_HEAD(&r->chunk_list.head);
spin_lock_init(&r->chunk_list.lock);
result = lv1_allocate_io_segment(0,
r->len,
r->page_size,
&bus_addr);
r->bus_addr = bus_addr;
if (result) {
DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
__func__, __LINE__, ps3_result(result));
r->len = r->bus_addr = 0;
}
DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
r->len, r->page_size, r->bus_addr);
return result;
}
/**
* dma_region_free - Free a device dma region.
* @r: Pointer to a struct ps3_dma_region.
*
* This is the lowest level dma region free routine, and is the one that
* will make the HV call to free the region.
*/
static int dma_sb_region_free(struct ps3_dma_region *r)
{
int result;
struct dma_chunk *c;
struct dma_chunk *tmp;
BUG_ON(!r);
if (!r->dev->bus_id) {
pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
r->dev->bus_id, r->dev->dev_id);
return 0;
}
list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
list_del(&c->link);
dma_sb_free_chunk(c);
}
result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
r->bus_addr);
if (result)
DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
__func__, __LINE__, ps3_result(result));
r->bus_addr = 0;
return result;
}
static int dma_ioc0_region_free(struct ps3_dma_region *r)
{
int result;
struct dma_chunk *c, *n;
DBG("%s: start\n", __func__);
list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
list_del(&c->link);
dma_ioc0_free_chunk(c);
}
result = lv1_release_io_segment(0, r->bus_addr);
if (result)
DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
__func__, __LINE__, ps3_result(result));
r->bus_addr = 0;
DBG("%s: end\n", __func__);
return result;
}
/**
* dma_sb_map_area - Map an area of memory into a device dma region.
* @r: Pointer to a struct ps3_dma_region.
* @virt_addr: Starting virtual address of the area to map.
* @len: Length in bytes of the area to map.
* @bus_addr: A pointer to return the starting ioc bus address of the area to
* map.
*
* This is the common dma mapping routine.
*/
static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
unsigned long len, dma_addr_t *bus_addr,
u64 iopte_flag)
{
int result;
unsigned long flags;
struct dma_chunk *c;
unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
: virt_addr;
unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
1 << r->page_size);
*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
if (!USE_DYNAMIC_DMA) {
unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
DBG(" -> %s:%d\n", __func__, __LINE__);
DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
virt_addr);
DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
phys_addr);
DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
lpar_addr);
DBG("%s:%d len %lxh\n", __func__, __LINE__, len);
DBG("%s:%d bus_addr %llxh (%lxh)\n", __func__, __LINE__,
*bus_addr, len);
}
spin_lock_irqsave(&r->chunk_list.lock, flags);
c = dma_find_chunk(r, *bus_addr, len);
if (c) {
DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
dma_dump_chunk(c);
c->usage_count++;
spin_unlock_irqrestore(&r->chunk_list.lock, flags);
return 0;
}
result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
if (result) {
*bus_addr = 0;
DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
__func__, __LINE__, result);
spin_unlock_irqrestore(&r->chunk_list.lock, flags);
return result;
}
c->usage_count = 1;
spin_unlock_irqrestore(&r->chunk_list.lock, flags);
return result;
}
static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
unsigned long len, dma_addr_t *bus_addr,
u64 iopte_flag)
{
int result;
unsigned long flags;
struct dma_chunk *c;
unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
: virt_addr;
unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
1 << r->page_size);
DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
virt_addr, len);
DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
phys_addr, aligned_phys, aligned_len);
spin_lock_irqsave(&r->chunk_list.lock, flags);
c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
if (c) {
/* FIXME */
BUG();
*bus_addr = c->bus_addr + phys_addr - aligned_phys;
c->usage_count++;
spin_unlock_irqrestore(&r->chunk_list.lock, flags);
return 0;
}
result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
iopte_flag);
if (result) {
*bus_addr = 0;
DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
__func__, __LINE__, result);
spin_unlock_irqrestore(&r->chunk_list.lock, flags);
return result;
}
*bus_addr = c->bus_addr + phys_addr - aligned_phys;
DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
virt_addr, phys_addr, aligned_phys, *bus_addr);
c->usage_count = 1;
spin_unlock_irqrestore(&r->chunk_list.lock, flags);
return result;
}
/**
* dma_sb_unmap_area - Unmap an area of memory from a device dma region.
* @r: Pointer to a struct ps3_dma_region.
* @bus_addr: The starting ioc bus address of the area to unmap.
* @len: Length in bytes of the area to unmap.
*
* This is the common dma unmap routine.
*/
static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
unsigned long len)
{
unsigned long flags;
struct dma_chunk *c;
spin_lock_irqsave(&r->chunk_list.lock, flags);
c = dma_find_chunk(r, bus_addr, len);
if (!c) {
unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
1 << r->page_size);
unsigned long aligned_len = _ALIGN_UP(len + bus_addr
- aligned_bus, 1 << r->page_size);
DBG("%s:%d: not found: bus_addr %llxh\n",
__func__, __LINE__, bus_addr);
DBG("%s:%d: not found: len %lxh\n",
__func__, __LINE__, len);
DBG("%s:%d: not found: aligned_bus %lxh\n",
__func__, __LINE__, aligned_bus);
DBG("%s:%d: not found: aligned_len %lxh\n",
__func__, __LINE__, aligned_len);
BUG();
}
c->usage_count--;
if (!c->usage_count) {
list_del(&c->link);
dma_sb_free_chunk(c);
}
spin_unlock_irqrestore(&r->chunk_list.lock, flags);
return 0;
}
static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
dma_addr_t bus_addr, unsigned long len)
{
unsigned long flags;
struct dma_chunk *c;
DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
spin_lock_irqsave(&r->chunk_list.lock, flags);
c = dma_find_chunk(r, bus_addr, len);
if (!c) {
unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
1 << r->page_size);
unsigned long aligned_len = _ALIGN_UP(len + bus_addr
- aligned_bus,
1 << r->page_size);
DBG("%s:%d: not found: bus_addr %llxh\n",
__func__, __LINE__, bus_addr);
DBG("%s:%d: not found: len %lxh\n",
__func__, __LINE__, len);
DBG("%s:%d: not found: aligned_bus %lxh\n",
__func__, __LINE__, aligned_bus);
DBG("%s:%d: not found: aligned_len %lxh\n",
__func__, __LINE__, aligned_len);
BUG();
}
c->usage_count--;
if (!c->usage_count) {
list_del(&c->link);
dma_ioc0_free_chunk(c);
}
spin_unlock_irqrestore(&r->chunk_list.lock, flags);
DBG("%s: end\n", __func__);
return 0;
}
/**
* dma_sb_region_create_linear - Setup a linear dma mapping for a device.
* @r: Pointer to a struct ps3_dma_region.
*
* This routine creates an HV dma region for the device and maps all available
* ram into the io controller bus address space.
*/
static int dma_sb_region_create_linear(struct ps3_dma_region *r)
{
int result;
unsigned long virt_addr, len;
dma_addr_t tmp;
if (r->len > 16*1024*1024) { /* FIXME: need proper fix */
/* force 16M dma pages for linear mapping */
if (r->page_size != PS3_DMA_16M) {
pr_info("%s:%d: forcing 16M pages for linear map\n",
__func__, __LINE__);
r->page_size = PS3_DMA_16M;
r->len = _ALIGN_UP(r->len, 1 << r->page_size);
}
}
result = dma_sb_region_create(r);
BUG_ON(result);
if (r->offset < map.rm.size) {
/* Map (part of) 1st RAM chunk */
virt_addr = map.rm.base + r->offset;
len = map.rm.size - r->offset;
if (len > r->len)
len = r->len;
result = dma_sb_map_area(r, virt_addr, len, &tmp,
CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
CBE_IOPTE_M);
BUG_ON(result);
}
if (r->offset + r->len > map.rm.size) {
/* Map (part of) 2nd RAM chunk */
virt_addr = map.rm.size;
len = r->len;
if (r->offset >= map.rm.size)
virt_addr += r->offset - map.rm.size;
else
len -= map.rm.size - r->offset;
result = dma_sb_map_area(r, virt_addr, len, &tmp,
CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
CBE_IOPTE_M);
BUG_ON(result);
}
return result;
}
/**
* dma_sb_region_free_linear - Free a linear dma mapping for a device.
* @r: Pointer to a struct ps3_dma_region.
*
* This routine will unmap all mapped areas and free the HV dma region.
*/
static int dma_sb_region_free_linear(struct ps3_dma_region *r)
{
int result;
dma_addr_t bus_addr;
unsigned long len, lpar_addr;
if (r->offset < map.rm.size) {
/* Unmap (part of) 1st RAM chunk */
lpar_addr = map.rm.base + r->offset;
len = map.rm.size - r->offset;
if (len > r->len)
len = r->len;
bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
result = dma_sb_unmap_area(r, bus_addr, len);
BUG_ON(result);
}
if (r->offset + r->len > map.rm.size) {
/* Unmap (part of) 2nd RAM chunk */
lpar_addr = map.r1.base;
len = r->len;
if (r->offset >= map.rm.size)
lpar_addr += r->offset - map.rm.size;
else
len -= map.rm.size - r->offset;
bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
result = dma_sb_unmap_area(r, bus_addr, len);
BUG_ON(result);
}
result = dma_sb_region_free(r);
BUG_ON(result);
return result;
}
/**
* dma_sb_map_area_linear - Map an area of memory into a device dma region.
* @r: Pointer to a struct ps3_dma_region.
* @virt_addr: Starting virtual address of the area to map.
* @len: Length in bytes of the area to map.
* @bus_addr: A pointer to return the starting ioc bus address of the area to
* map.
*
* This routine just returns the corresponding bus address. Actual mapping
* occurs in dma_region_create_linear().
*/
static int dma_sb_map_area_linear(struct ps3_dma_region *r,
unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
u64 iopte_flag)
{
unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
: virt_addr;
*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
return 0;
}
/**
* dma_unmap_area_linear - Unmap an area of memory from a device dma region.
* @r: Pointer to a struct ps3_dma_region.
* @bus_addr: The starting ioc bus address of the area to unmap.
* @len: Length in bytes of the area to unmap.
*
* This routine does nothing. Unmapping occurs in dma_sb_region_free_linear().
*/
static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
dma_addr_t bus_addr, unsigned long len)
{
return 0;
};
static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = {
.create = dma_sb_region_create,
.free = dma_sb_region_free,
.map = dma_sb_map_area,
.unmap = dma_sb_unmap_area
};
static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
.create = dma_sb_region_create_linear,
.free = dma_sb_region_free_linear,
.map = dma_sb_map_area_linear,
.unmap = dma_sb_unmap_area_linear
};
static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
.create = dma_ioc0_region_create,
.free = dma_ioc0_region_free,
.map = dma_ioc0_map_area,
.unmap = dma_ioc0_unmap_area
};
int ps3_dma_region_init(struct ps3_system_bus_device *dev,
struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
enum ps3_dma_region_type region_type, void *addr, unsigned long len)
{
unsigned long lpar_addr;
lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
r->dev = dev;
r->page_size = page_size;
r->region_type = region_type;
r->offset = lpar_addr;
if (r->offset >= map.rm.size)
r->offset -= map.r1.offset;
r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size);
switch (dev->dev_type) {
case PS3_DEVICE_TYPE_SB:
r->region_ops = (USE_DYNAMIC_DMA)
? &ps3_dma_sb_region_ops
: &ps3_dma_sb_region_linear_ops;
break;
case PS3_DEVICE_TYPE_IOC0:
r->region_ops = &ps3_dma_ioc0_region_ops;
break;
default:
BUG();
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(ps3_dma_region_init);
int ps3_dma_region_create(struct ps3_dma_region *r)
{
BUG_ON(!r);
BUG_ON(!r->region_ops);
BUG_ON(!r->region_ops->create);
return r->region_ops->create(r);
}
EXPORT_SYMBOL(ps3_dma_region_create);
int ps3_dma_region_free(struct ps3_dma_region *r)
{
BUG_ON(!r);
BUG_ON(!r->region_ops);
BUG_ON(!r->region_ops->free);
return r->region_ops->free(r);
}
EXPORT_SYMBOL(ps3_dma_region_free);
int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
unsigned long len, dma_addr_t *bus_addr,
u64 iopte_flag)
{
return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
}
int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
unsigned long len)
{
return r->region_ops->unmap(r, bus_addr, len);
}
/*============================================================================*/
/* system startup routines */
/*============================================================================*/
/**
* ps3_mm_init - initialize the address space state variables
*/
void __init ps3_mm_init(void)
{
int result;
DBG(" -> %s:%d\n", __func__, __LINE__);
result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
&map.total);
if (result)
panic("ps3_repository_read_mm_info() failed");
map.rm.offset = map.rm.base;
map.vas_id = map.htab_size = 0;
/* this implementation assumes map.rm.base is zero */
BUG_ON(map.rm.base);
BUG_ON(!map.rm.size);
/* Check if we got the highmem region from an earlier boot step */
if (ps3_mm_get_repository_highmem(&map.r1)) {
result = ps3_mm_region_create(&map.r1, map.total - map.rm.size);
if (!result)
ps3_mm_set_repository_highmem(&map.r1);
}
/* correct map.total for the real total amount of memory we use */
map.total = map.rm.size + map.r1.size;
if (!map.r1.size) {
DBG("%s:%d: No highmem region found\n", __func__, __LINE__);
} else {
DBG("%s:%d: Adding highmem region: %llxh %llxh\n",
__func__, __LINE__, map.rm.size,
map.total - map.rm.size);
memblock_add(map.rm.size, map.total - map.rm.size);
}
DBG(" <- %s:%d\n", __func__, __LINE__);
}
/**
* ps3_mm_shutdown - final cleanup of address space
*/
void ps3_mm_shutdown(void)
{
ps3_mm_region_destroy(&map.r1);
}