kernel_samsung_a34x-permissive/drivers/gpu/drm/msm/adreno/adreno_gpu.c
2024-04-28 15:51:13 +02:00

743 lines
19 KiB
C

/*
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* Copyright (c) 2014 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/ascii85.h>
#include <linux/kernel.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include "adreno_gpu.h"
#include "msm_gem.h"
#include "msm_mmu.h"
int adreno_get_param(struct msm_gpu *gpu, uint32_t param, uint64_t *value)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
switch (param) {
case MSM_PARAM_GPU_ID:
*value = adreno_gpu->info->revn;
return 0;
case MSM_PARAM_GMEM_SIZE:
*value = adreno_gpu->gmem;
return 0;
case MSM_PARAM_GMEM_BASE:
*value = 0x100000;
return 0;
case MSM_PARAM_CHIP_ID:
*value = adreno_gpu->rev.patchid |
(adreno_gpu->rev.minor << 8) |
(adreno_gpu->rev.major << 16) |
(adreno_gpu->rev.core << 24);
return 0;
case MSM_PARAM_MAX_FREQ:
*value = adreno_gpu->base.fast_rate;
return 0;
case MSM_PARAM_TIMESTAMP:
if (adreno_gpu->funcs->get_timestamp) {
int ret;
pm_runtime_get_sync(&gpu->pdev->dev);
ret = adreno_gpu->funcs->get_timestamp(gpu, value);
pm_runtime_put_autosuspend(&gpu->pdev->dev);
return ret;
}
return -EINVAL;
case MSM_PARAM_NR_RINGS:
*value = gpu->nr_rings;
return 0;
default:
DBG("%s: invalid param: %u", gpu->name, param);
return -EINVAL;
}
}
const struct firmware *
adreno_request_fw(struct adreno_gpu *adreno_gpu, const char *fwname)
{
struct drm_device *drm = adreno_gpu->base.dev;
const struct firmware *fw = NULL;
char *newname;
int ret;
newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname);
if (!newname)
return ERR_PTR(-ENOMEM);
/*
* Try first to load from qcom/$fwfile using a direct load (to avoid
* a potential timeout waiting for usermode helper)
*/
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
(adreno_gpu->fwloc == FW_LOCATION_NEW)) {
ret = request_firmware_direct(&fw, newname, drm->dev);
if (!ret) {
dev_info(drm->dev, "loaded %s from new location\n",
newname);
adreno_gpu->fwloc = FW_LOCATION_NEW;
goto out;
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
dev_err(drm->dev, "failed to load %s: %d\n",
newname, ret);
fw = ERR_PTR(ret);
goto out;
}
}
/*
* Then try the legacy location without qcom/ prefix
*/
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
(adreno_gpu->fwloc == FW_LOCATION_LEGACY)) {
ret = request_firmware_direct(&fw, fwname, drm->dev);
if (!ret) {
dev_info(drm->dev, "loaded %s from legacy location\n",
newname);
adreno_gpu->fwloc = FW_LOCATION_LEGACY;
goto out;
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
dev_err(drm->dev, "failed to load %s: %d\n",
fwname, ret);
fw = ERR_PTR(ret);
goto out;
}
}
/*
* Finally fall back to request_firmware() for cases where the
* usermode helper is needed (I think mainly android)
*/
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
(adreno_gpu->fwloc == FW_LOCATION_HELPER)) {
ret = request_firmware(&fw, newname, drm->dev);
if (!ret) {
dev_info(drm->dev, "loaded %s with helper\n",
newname);
adreno_gpu->fwloc = FW_LOCATION_HELPER;
goto out;
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
dev_err(drm->dev, "failed to load %s: %d\n",
newname, ret);
fw = ERR_PTR(ret);
goto out;
}
}
dev_err(drm->dev, "failed to load %s\n", fwname);
fw = ERR_PTR(-ENOENT);
out:
kfree(newname);
return fw;
}
int adreno_load_fw(struct adreno_gpu *adreno_gpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) {
const struct firmware *fw;
if (!adreno_gpu->info->fw[i])
continue;
/* Skip if the firmware has already been loaded */
if (adreno_gpu->fw[i])
continue;
fw = adreno_request_fw(adreno_gpu, adreno_gpu->info->fw[i]);
if (IS_ERR(fw))
return PTR_ERR(fw);
adreno_gpu->fw[i] = fw;
}
return 0;
}
struct drm_gem_object *adreno_fw_create_bo(struct msm_gpu *gpu,
const struct firmware *fw, u64 *iova)
{
struct drm_gem_object *bo;
void *ptr;
ptr = msm_gem_kernel_new_locked(gpu->dev, fw->size - 4,
MSM_BO_UNCACHED | MSM_BO_GPU_READONLY, gpu->aspace, &bo, iova);
if (IS_ERR(ptr))
return ERR_CAST(ptr);
memcpy(ptr, &fw->data[4], fw->size - 4);
msm_gem_put_vaddr(bo);
return bo;
}
int adreno_hw_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int ret, i;
DBG("%s", gpu->name);
ret = adreno_load_fw(adreno_gpu);
if (ret)
return ret;
for (i = 0; i < gpu->nr_rings; i++) {
struct msm_ringbuffer *ring = gpu->rb[i];
if (!ring)
continue;
ret = msm_gem_get_iova(ring->bo, gpu->aspace, &ring->iova);
if (ret) {
ring->iova = 0;
dev_err(gpu->dev->dev,
"could not map ringbuffer %d: %d\n", i, ret);
return ret;
}
ring->cur = ring->start;
ring->next = ring->start;
/* reset completed fence seqno: */
ring->memptrs->fence = ring->fctx->completed_fence;
ring->memptrs->rptr = 0;
}
/*
* Setup REG_CP_RB_CNTL. The same value is used across targets (with
* the excpetion of A430 that disables the RPTR shadow) - the cacluation
* for the ringbuffer size and block size is moved to msm_gpu.h for the
* pre-processor to deal with and the A430 variant is ORed in here
*/
adreno_gpu_write(adreno_gpu, REG_ADRENO_CP_RB_CNTL,
MSM_GPU_RB_CNTL_DEFAULT |
(adreno_is_a430(adreno_gpu) ? AXXX_CP_RB_CNTL_NO_UPDATE : 0));
/* Setup ringbuffer address - use ringbuffer[0] for GPU init */
adreno_gpu_write64(adreno_gpu, REG_ADRENO_CP_RB_BASE,
REG_ADRENO_CP_RB_BASE_HI, gpu->rb[0]->iova);
if (!adreno_is_a430(adreno_gpu)) {
adreno_gpu_write64(adreno_gpu, REG_ADRENO_CP_RB_RPTR_ADDR,
REG_ADRENO_CP_RB_RPTR_ADDR_HI,
rbmemptr(gpu->rb[0], rptr));
}
return 0;
}
/* Use this helper to read rptr, since a430 doesn't update rptr in memory */
static uint32_t get_rptr(struct adreno_gpu *adreno_gpu,
struct msm_ringbuffer *ring)
{
if (adreno_is_a430(adreno_gpu))
return ring->memptrs->rptr = adreno_gpu_read(
adreno_gpu, REG_ADRENO_CP_RB_RPTR);
else
return ring->memptrs->rptr;
}
struct msm_ringbuffer *adreno_active_ring(struct msm_gpu *gpu)
{
return gpu->rb[0];
}
void adreno_recover(struct msm_gpu *gpu)
{
struct drm_device *dev = gpu->dev;
int ret;
// XXX pm-runtime?? we *need* the device to be off after this
// so maybe continuing to call ->pm_suspend/resume() is better?
gpu->funcs->pm_suspend(gpu);
gpu->funcs->pm_resume(gpu);
ret = msm_gpu_hw_init(gpu);
if (ret) {
dev_err(dev->dev, "gpu hw init failed: %d\n", ret);
/* hmm, oh well? */
}
}
void adreno_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
struct msm_file_private *ctx)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct msm_drm_private *priv = gpu->dev->dev_private;
struct msm_ringbuffer *ring = submit->ring;
unsigned i;
for (i = 0; i < submit->nr_cmds; i++) {
switch (submit->cmd[i].type) {
case MSM_SUBMIT_CMD_IB_TARGET_BUF:
/* ignore IB-targets */
break;
case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
/* ignore if there has not been a ctx switch: */
if (priv->lastctx == ctx)
break;
case MSM_SUBMIT_CMD_BUF:
OUT_PKT3(ring, adreno_is_a430(adreno_gpu) ?
CP_INDIRECT_BUFFER_PFE : CP_INDIRECT_BUFFER_PFD, 2);
OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
OUT_RING(ring, submit->cmd[i].size);
OUT_PKT2(ring);
break;
}
}
OUT_PKT0(ring, REG_AXXX_CP_SCRATCH_REG2, 1);
OUT_RING(ring, submit->seqno);
if (adreno_is_a3xx(adreno_gpu) || adreno_is_a4xx(adreno_gpu)) {
/* Flush HLSQ lazy updates to make sure there is nothing
* pending for indirect loads after the timestamp has
* passed:
*/
OUT_PKT3(ring, CP_EVENT_WRITE, 1);
OUT_RING(ring, HLSQ_FLUSH);
OUT_PKT3(ring, CP_WAIT_FOR_IDLE, 1);
OUT_RING(ring, 0x00000000);
}
/* BIT(31) of CACHE_FLUSH_TS triggers CACHE_FLUSH_TS IRQ from GPU */
OUT_PKT3(ring, CP_EVENT_WRITE, 3);
OUT_RING(ring, CACHE_FLUSH_TS | BIT(31));
OUT_RING(ring, rbmemptr(ring, fence));
OUT_RING(ring, submit->seqno);
#if 0
if (adreno_is_a3xx(adreno_gpu)) {
/* Dummy set-constant to trigger context rollover */
OUT_PKT3(ring, CP_SET_CONSTANT, 2);
OUT_RING(ring, CP_REG(REG_A3XX_HLSQ_CL_KERNEL_GROUP_X_REG));
OUT_RING(ring, 0x00000000);
}
#endif
gpu->funcs->flush(gpu, ring);
}
void adreno_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
uint32_t wptr;
/* Copy the shadow to the actual register */
ring->cur = ring->next;
/*
* Mask wptr value that we calculate to fit in the HW range. This is
* to account for the possibility that the last command fit exactly into
* the ringbuffer and rb->next hasn't wrapped to zero yet
*/
wptr = get_wptr(ring);
/* ensure writes to ringbuffer have hit system memory: */
mb();
adreno_gpu_write(adreno_gpu, REG_ADRENO_CP_RB_WPTR, wptr);
}
bool adreno_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
uint32_t wptr = get_wptr(ring);
/* wait for CP to drain ringbuffer: */
if (!spin_until(get_rptr(adreno_gpu, ring) == wptr))
return true;
/* TODO maybe we need to reset GPU here to recover from hang? */
DRM_ERROR("%s: timeout waiting to drain ringbuffer %d rptr/wptr = %X/%X\n",
gpu->name, ring->id, get_rptr(adreno_gpu, ring), wptr);
return false;
}
int adreno_gpu_state_get(struct msm_gpu *gpu, struct msm_gpu_state *state)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i, count = 0;
kref_init(&state->ref);
ktime_get_real_ts64(&state->time);
for (i = 0; i < gpu->nr_rings; i++) {
int size = 0, j;
state->ring[i].fence = gpu->rb[i]->memptrs->fence;
state->ring[i].iova = gpu->rb[i]->iova;
state->ring[i].seqno = gpu->rb[i]->seqno;
state->ring[i].rptr = get_rptr(adreno_gpu, gpu->rb[i]);
state->ring[i].wptr = get_wptr(gpu->rb[i]);
/* Copy at least 'wptr' dwords of the data */
size = state->ring[i].wptr;
/* After wptr find the last non zero dword to save space */
for (j = state->ring[i].wptr; j < MSM_GPU_RINGBUFFER_SZ >> 2; j++)
if (gpu->rb[i]->start[j])
size = j + 1;
if (size) {
state->ring[i].data = kmalloc(size << 2, GFP_KERNEL);
if (state->ring[i].data) {
memcpy(state->ring[i].data, gpu->rb[i]->start, size << 2);
state->ring[i].data_size = size << 2;
}
}
}
/* Count the number of registers */
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2)
count += adreno_gpu->registers[i + 1] -
adreno_gpu->registers[i] + 1;
state->registers = kcalloc(count * 2, sizeof(u32), GFP_KERNEL);
if (state->registers) {
int pos = 0;
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) {
u32 start = adreno_gpu->registers[i];
u32 end = adreno_gpu->registers[i + 1];
u32 addr;
for (addr = start; addr <= end; addr++) {
state->registers[pos++] = addr;
state->registers[pos++] = gpu_read(gpu, addr);
}
}
state->nr_registers = count;
}
return 0;
}
void adreno_gpu_state_destroy(struct msm_gpu_state *state)
{
int i;
for (i = 0; i < ARRAY_SIZE(state->ring); i++)
kfree(state->ring[i].data);
for (i = 0; state->bos && i < state->nr_bos; i++)
kvfree(state->bos[i].data);
kfree(state->bos);
kfree(state->comm);
kfree(state->cmd);
kfree(state->registers);
}
static void adreno_gpu_state_kref_destroy(struct kref *kref)
{
struct msm_gpu_state *state = container_of(kref,
struct msm_gpu_state, ref);
adreno_gpu_state_destroy(state);
kfree(state);
}
int adreno_gpu_state_put(struct msm_gpu_state *state)
{
if (IS_ERR_OR_NULL(state))
return 1;
return kref_put(&state->ref, adreno_gpu_state_kref_destroy);
}
#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
static void adreno_show_object(struct drm_printer *p, u32 *ptr, int len)
{
char out[ASCII85_BUFSZ];
long l, datalen, i;
if (!ptr || !len)
return;
/*
* Only dump the non-zero part of the buffer - rarely will any data
* completely fill the entire allocated size of the buffer
*/
for (datalen = 0, i = 0; i < len >> 2; i++) {
if (ptr[i])
datalen = (i << 2) + 1;
}
/* Skip printing the object if it is empty */
if (datalen == 0)
return;
l = ascii85_encode_len(datalen);
drm_puts(p, " data: !!ascii85 |\n");
drm_puts(p, " ");
for (i = 0; i < l; i++)
drm_puts(p, ascii85_encode(ptr[i], out));
drm_puts(p, "\n");
}
void adreno_show(struct msm_gpu *gpu, struct msm_gpu_state *state,
struct drm_printer *p)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i;
if (IS_ERR_OR_NULL(state))
return;
drm_printf(p, "revision: %d (%d.%d.%d.%d)\n",
adreno_gpu->info->revn, adreno_gpu->rev.core,
adreno_gpu->rev.major, adreno_gpu->rev.minor,
adreno_gpu->rev.patchid);
drm_printf(p, "rbbm-status: 0x%08x\n", state->rbbm_status);
drm_puts(p, "ringbuffer:\n");
for (i = 0; i < gpu->nr_rings; i++) {
drm_printf(p, " - id: %d\n", i);
drm_printf(p, " iova: 0x%016llx\n", state->ring[i].iova);
drm_printf(p, " last-fence: %d\n", state->ring[i].seqno);
drm_printf(p, " retired-fence: %d\n", state->ring[i].fence);
drm_printf(p, " rptr: %d\n", state->ring[i].rptr);
drm_printf(p, " wptr: %d\n", state->ring[i].wptr);
drm_printf(p, " size: %d\n", MSM_GPU_RINGBUFFER_SZ);
adreno_show_object(p, state->ring[i].data,
state->ring[i].data_size);
}
if (state->bos) {
drm_puts(p, "bos:\n");
for (i = 0; i < state->nr_bos; i++) {
drm_printf(p, " - iova: 0x%016llx\n",
state->bos[i].iova);
drm_printf(p, " size: %zd\n", state->bos[i].size);
adreno_show_object(p, state->bos[i].data,
state->bos[i].size);
}
}
drm_puts(p, "registers:\n");
for (i = 0; i < state->nr_registers; i++) {
drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n",
state->registers[i * 2] << 2,
state->registers[(i * 2) + 1]);
}
}
#endif
/* Dump common gpu status and scratch registers on any hang, to make
* the hangcheck logs more useful. The scratch registers seem always
* safe to read when GPU has hung (unlike some other regs, depending
* on how the GPU hung), and they are useful to match up to cmdstream
* dumps when debugging hangs:
*/
void adreno_dump_info(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i;
printk("revision: %d (%d.%d.%d.%d)\n",
adreno_gpu->info->revn, adreno_gpu->rev.core,
adreno_gpu->rev.major, adreno_gpu->rev.minor,
adreno_gpu->rev.patchid);
for (i = 0; i < gpu->nr_rings; i++) {
struct msm_ringbuffer *ring = gpu->rb[i];
printk("rb %d: fence: %d/%d\n", i,
ring->memptrs->fence,
ring->seqno);
printk("rptr: %d\n", get_rptr(adreno_gpu, ring));
printk("rb wptr: %d\n", get_wptr(ring));
}
}
/* would be nice to not have to duplicate the _show() stuff with printk(): */
void adreno_dump(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i;
/* dump these out in a form that can be parsed by demsm: */
printk("IO:region %s 00000000 00020000\n", gpu->name);
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) {
uint32_t start = adreno_gpu->registers[i];
uint32_t end = adreno_gpu->registers[i+1];
uint32_t addr;
for (addr = start; addr <= end; addr++) {
uint32_t val = gpu_read(gpu, addr);
printk("IO:R %08x %08x\n", addr<<2, val);
}
}
}
static uint32_t ring_freewords(struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(ring->gpu);
uint32_t size = MSM_GPU_RINGBUFFER_SZ >> 2;
/* Use ring->next to calculate free size */
uint32_t wptr = ring->next - ring->start;
uint32_t rptr = get_rptr(adreno_gpu, ring);
return (rptr + (size - 1) - wptr) % size;
}
void adreno_wait_ring(struct msm_ringbuffer *ring, uint32_t ndwords)
{
if (spin_until(ring_freewords(ring) >= ndwords))
DRM_DEV_ERROR(ring->gpu->dev->dev,
"timeout waiting for space in ringbuffer %d\n",
ring->id);
}
/* Get legacy powerlevels from qcom,gpu-pwrlevels and populate the opp table */
static int adreno_get_legacy_pwrlevels(struct device *dev)
{
struct device_node *child, *node;
int ret;
node = of_get_compatible_child(dev->of_node, "qcom,gpu-pwrlevels");
if (!node) {
dev_err(dev, "Could not find the GPU powerlevels\n");
return -ENXIO;
}
for_each_child_of_node(node, child) {
unsigned int val;
ret = of_property_read_u32(child, "qcom,gpu-freq", &val);
if (ret)
continue;
/*
* Skip the intentionally bogus clock value found at the bottom
* of most legacy frequency tables
*/
if (val != 27000000)
dev_pm_opp_add(dev, val, 0);
}
of_node_put(node);
return 0;
}
static int adreno_get_pwrlevels(struct device *dev,
struct msm_gpu *gpu)
{
unsigned long freq = ULONG_MAX;
struct dev_pm_opp *opp;
int ret;
gpu->fast_rate = 0;
/* You down with OPP? */
if (!of_find_property(dev->of_node, "operating-points-v2", NULL))
ret = adreno_get_legacy_pwrlevels(dev);
else {
ret = dev_pm_opp_of_add_table(dev);
if (ret)
dev_err(dev, "Unable to set the OPP table\n");
}
if (!ret) {
/* Find the fastest defined rate */
opp = dev_pm_opp_find_freq_floor(dev, &freq);
if (!IS_ERR(opp)) {
gpu->fast_rate = freq;
dev_pm_opp_put(opp);
}
}
if (!gpu->fast_rate) {
dev_warn(dev,
"Could not find a clock rate. Using a reasonable default\n");
/* Pick a suitably safe clock speed for any target */
gpu->fast_rate = 200000000;
}
DBG("fast_rate=%u, slow_rate=27000000", gpu->fast_rate);
return 0;
}
int adreno_gpu_init(struct drm_device *drm, struct platform_device *pdev,
struct adreno_gpu *adreno_gpu,
const struct adreno_gpu_funcs *funcs, int nr_rings)
{
struct adreno_platform_config *config = pdev->dev.platform_data;
struct msm_gpu_config adreno_gpu_config = { 0 };
struct msm_gpu *gpu = &adreno_gpu->base;
adreno_gpu->funcs = funcs;
adreno_gpu->info = adreno_info(config->rev);
adreno_gpu->gmem = adreno_gpu->info->gmem;
adreno_gpu->revn = adreno_gpu->info->revn;
adreno_gpu->rev = config->rev;
adreno_gpu_config.ioname = "kgsl_3d0_reg_memory";
adreno_gpu_config.irqname = "kgsl_3d0_irq";
adreno_gpu_config.va_start = SZ_16M;
adreno_gpu_config.va_end = 0xffffffff;
adreno_gpu_config.nr_rings = nr_rings;
adreno_get_pwrlevels(&pdev->dev, gpu);
pm_runtime_set_autosuspend_delay(&pdev->dev,
adreno_gpu->info->inactive_period);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
return msm_gpu_init(drm, pdev, &adreno_gpu->base, &funcs->base,
adreno_gpu->info->name, &adreno_gpu_config);
}
void adreno_gpu_cleanup(struct adreno_gpu *adreno_gpu)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++)
release_firmware(adreno_gpu->fw[i]);
msm_gpu_cleanup(&adreno_gpu->base);
}