kernel_samsung_a34x-permissive/drivers/isdn/hisax/hfc_2bs0.c
2024-04-28 15:51:13 +02:00

592 lines
15 KiB
C

/* $Id: hfc_2bs0.c,v 1.20.2.6 2004/02/11 13:21:33 keil Exp $
*
* specific routines for CCD's HFC 2BS0
*
* Author Karsten Keil
* Copyright by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "hfc_2bs0.h"
#include "isac.h"
#include "isdnl1.h"
#include <linux/interrupt.h>
#include <linux/slab.h>
static inline int
WaitForBusy(struct IsdnCardState *cs)
{
int to = 130;
u_char val;
while (!(cs->BC_Read_Reg(cs, HFC_STATUS, 0) & HFC_BUSY) && to) {
val = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2 |
(cs->hw.hfc.cip & 3));
udelay(1);
to--;
}
if (!to) {
printk(KERN_WARNING "HiSax: %s timeout\n", __func__);
return (0);
} else
return (to);
}
static inline int
WaitNoBusy(struct IsdnCardState *cs)
{
int to = 125;
while ((cs->BC_Read_Reg(cs, HFC_STATUS, 0) & HFC_BUSY) && to) {
udelay(1);
to--;
}
if (!to) {
printk(KERN_WARNING "HiSax: waitforBusy timeout\n");
return (0);
} else
return (to);
}
static int
GetFreeFifoBytes(struct BCState *bcs)
{
int s;
if (bcs->hw.hfc.f1 == bcs->hw.hfc.f2)
return (bcs->cs->hw.hfc.fifosize);
s = bcs->hw.hfc.send[bcs->hw.hfc.f1] - bcs->hw.hfc.send[bcs->hw.hfc.f2];
if (s <= 0)
s += bcs->cs->hw.hfc.fifosize;
s = bcs->cs->hw.hfc.fifosize - s;
return (s);
}
static int
ReadZReg(struct BCState *bcs, u_char reg)
{
int val;
WaitNoBusy(bcs->cs);
val = 256 * bcs->cs->BC_Read_Reg(bcs->cs, HFC_DATA, reg | HFC_CIP | HFC_Z_HIGH);
WaitNoBusy(bcs->cs);
val += bcs->cs->BC_Read_Reg(bcs->cs, HFC_DATA, reg | HFC_CIP | HFC_Z_LOW);
return (val);
}
static void
hfc_clear_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int idx, cnt;
int rcnt, z1, z2;
u_char cip, f1, f2;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hfc_clear_fifo");
cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel);
if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) {
cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip);
WaitForBusy(cs);
}
WaitNoBusy(cs);
f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
cnt = 32;
while (((f1 != f2) || (z1 != z2)) && cnt--) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc clear %d f1(%d) f2(%d)",
bcs->channel, f1, f2);
rcnt = z1 - z2;
if (rcnt < 0)
rcnt += cs->hw.hfc.fifosize;
if (rcnt)
rcnt++;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc clear %d z1(%x) z2(%x) cnt(%d)",
bcs->channel, z1, z2, rcnt);
cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
idx = 0;
while ((idx < rcnt) && WaitNoBusy(cs)) {
cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
idx++;
}
if (f1 != f2) {
WaitNoBusy(cs);
cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
HFC_CHANNEL(bcs->channel));
WaitForBusy(cs);
}
cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
}
return;
}
static struct sk_buff
*
hfc_empty_fifo(struct BCState *bcs, int count)
{
u_char *ptr;
struct sk_buff *skb;
struct IsdnCardState *cs = bcs->cs;
int idx;
int chksum;
u_char stat, cip;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hfc_empty_fifo");
idx = 0;
if (count > HSCX_BUFMAX + 3) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfc_empty_fifo: incoming packet too large");
cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
while ((idx++ < count) && WaitNoBusy(cs))
cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
WaitNoBusy(cs);
stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
HFC_CHANNEL(bcs->channel));
WaitForBusy(cs);
return (NULL);
}
if ((count < 4) && (bcs->mode != L1_MODE_TRANS)) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfc_empty_fifo: incoming packet too small");
cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
while ((idx++ < count) && WaitNoBusy(cs))
cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
WaitNoBusy(cs);
stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
HFC_CHANNEL(bcs->channel));
WaitForBusy(cs);
#ifdef ERROR_STATISTIC
bcs->err_inv++;
#endif
return (NULL);
}
if (bcs->mode == L1_MODE_TRANS)
count -= 1;
else
count -= 3;
if (!(skb = dev_alloc_skb(count)))
printk(KERN_WARNING "HFC: receive out of memory\n");
else {
ptr = skb_put(skb, count);
idx = 0;
cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
while ((idx < count) && WaitNoBusy(cs)) {
*ptr++ = cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
idx++;
}
if (idx != count) {
debugl1(cs, "RFIFO BUSY error");
printk(KERN_WARNING "HFC FIFO channel %d BUSY Error\n", bcs->channel);
dev_kfree_skb_any(skb);
if (bcs->mode != L1_MODE_TRANS) {
WaitNoBusy(cs);
stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
HFC_CHANNEL(bcs->channel));
WaitForBusy(cs);
}
return (NULL);
}
if (bcs->mode != L1_MODE_TRANS) {
WaitNoBusy(cs);
chksum = (cs->BC_Read_Reg(cs, HFC_DATA, cip) << 8);
WaitNoBusy(cs);
chksum += cs->BC_Read_Reg(cs, HFC_DATA, cip);
WaitNoBusy(cs);
stat = cs->BC_Read_Reg(cs, HFC_DATA, cip);
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_empty_fifo %d chksum %x stat %x",
bcs->channel, chksum, stat);
if (stat) {
debugl1(cs, "FIFO CRC error");
dev_kfree_skb_any(skb);
skb = NULL;
#ifdef ERROR_STATISTIC
bcs->err_crc++;
#endif
}
WaitNoBusy(cs);
stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
HFC_CHANNEL(bcs->channel));
WaitForBusy(cs);
}
}
return (skb);
}
static void
hfc_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int idx, fcnt;
int count;
int z1, z2;
u_char cip;
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
cip = HFC_CIP | HFC_F1 | HFC_SEND | HFC_CHANNEL(bcs->channel);
if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) {
cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip);
WaitForBusy(cs);
}
WaitNoBusy(cs);
if (bcs->mode != L1_MODE_TRANS) {
bcs->hw.hfc.f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
cip = HFC_CIP | HFC_F2 | HFC_SEND | HFC_CHANNEL(bcs->channel);
WaitNoBusy(cs);
bcs->hw.hfc.f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
bcs->hw.hfc.send[bcs->hw.hfc.f1] = ReadZReg(bcs, HFC_Z1 | HFC_SEND | HFC_CHANNEL(bcs->channel));
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo %d f1(%d) f2(%d) z1(%x)",
bcs->channel, bcs->hw.hfc.f1, bcs->hw.hfc.f2,
bcs->hw.hfc.send[bcs->hw.hfc.f1]);
fcnt = bcs->hw.hfc.f1 - bcs->hw.hfc.f2;
if (fcnt < 0)
fcnt += 32;
if (fcnt > 30) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo more as 30 frames");
return;
}
count = GetFreeFifoBytes(bcs);
}
else {
WaitForBusy(cs);
z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
count = z1 - z2;
if (count < 0)
count += cs->hw.hfc.fifosize;
} /* L1_MODE_TRANS */
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo %d count(%u/%d)",
bcs->channel, bcs->tx_skb->len,
count);
if (count < bcs->tx_skb->len) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo no fifo mem");
return;
}
cip = HFC_CIP | HFC_FIFO_IN | HFC_SEND | HFC_CHANNEL(bcs->channel);
idx = 0;
while ((idx < bcs->tx_skb->len) && WaitNoBusy(cs))
cs->BC_Write_Reg(cs, HFC_DATA_NODEB, cip, bcs->tx_skb->data[idx++]);
if (idx != bcs->tx_skb->len) {
debugl1(cs, "FIFO Send BUSY error");
printk(KERN_WARNING "HFC S FIFO channel %d BUSY Error\n", bcs->channel);
} else {
count = bcs->tx_skb->len;
bcs->tx_cnt -= count;
if (PACKET_NOACK == bcs->tx_skb->pkt_type)
count = -1;
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
if (bcs->mode != L1_MODE_TRANS) {
WaitForBusy(cs);
WaitNoBusy(cs);
cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F1_INC | HFC_SEND | HFC_CHANNEL(bcs->channel));
}
if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
(count >= 0)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += count;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
return;
}
void
main_irq_hfc(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int z1, z2, rcnt;
u_char f1, f2, cip;
int receive, transmit, count = 5;
struct sk_buff *skb;
Begin:
count--;
cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel);
if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) {
cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip);
WaitForBusy(cs);
}
WaitNoBusy(cs);
receive = 0;
if (bcs->mode == L1_MODE_HDLC) {
f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
if (f1 != f2) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc rec %d f1(%d) f2(%d)",
bcs->channel, f1, f2);
receive = 1;
}
}
if (receive || (bcs->mode == L1_MODE_TRANS)) {
WaitForBusy(cs);
z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
rcnt = z1 - z2;
if (rcnt < 0)
rcnt += cs->hw.hfc.fifosize;
if ((bcs->mode == L1_MODE_HDLC) || (rcnt)) {
rcnt++;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc rec %d z1(%x) z2(%x) cnt(%d)",
bcs->channel, z1, z2, rcnt);
/* sti(); */
if ((skb = hfc_empty_fifo(bcs, rcnt))) {
skb_queue_tail(&bcs->rqueue, skb);
schedule_event(bcs, B_RCVBUFREADY);
}
}
receive = 1;
}
if (bcs->tx_skb) {
transmit = 1;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
hfc_fill_fifo(bcs);
if (test_bit(BC_FLG_BUSY, &bcs->Flag))
transmit = 0;
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
transmit = 1;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
hfc_fill_fifo(bcs);
if (test_bit(BC_FLG_BUSY, &bcs->Flag))
transmit = 0;
} else {
transmit = 0;
schedule_event(bcs, B_XMTBUFREADY);
}
}
if ((receive || transmit) && count)
goto Begin;
return;
}
static void
mode_hfc(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HFC 2BS0 mode %d bchan %d/%d",
mode, bc, bcs->channel);
bcs->mode = mode;
bcs->channel = bc;
switch (mode) {
case (L1_MODE_NULL):
if (bc) {
cs->hw.hfc.ctmt &= ~1;
cs->hw.hfc.isac_spcr &= ~0x03;
}
else {
cs->hw.hfc.ctmt &= ~2;
cs->hw.hfc.isac_spcr &= ~0x0c;
}
break;
case (L1_MODE_TRANS):
cs->hw.hfc.ctmt &= ~(1 << bc); /* set HDLC mode */
cs->BC_Write_Reg(cs, HFC_STATUS, cs->hw.hfc.ctmt, cs->hw.hfc.ctmt);
hfc_clear_fifo(bcs); /* complete fifo clear */
if (bc) {
cs->hw.hfc.ctmt |= 1;
cs->hw.hfc.isac_spcr &= ~0x03;
cs->hw.hfc.isac_spcr |= 0x02;
} else {
cs->hw.hfc.ctmt |= 2;
cs->hw.hfc.isac_spcr &= ~0x0c;
cs->hw.hfc.isac_spcr |= 0x08;
}
break;
case (L1_MODE_HDLC):
if (bc) {
cs->hw.hfc.ctmt &= ~1;
cs->hw.hfc.isac_spcr &= ~0x03;
cs->hw.hfc.isac_spcr |= 0x02;
} else {
cs->hw.hfc.ctmt &= ~2;
cs->hw.hfc.isac_spcr &= ~0x0c;
cs->hw.hfc.isac_spcr |= 0x08;
}
break;
}
cs->BC_Write_Reg(cs, HFC_STATUS, cs->hw.hfc.ctmt, cs->hw.hfc.ctmt);
cs->writeisac(cs, ISAC_SPCR, cs->hw.hfc.isac_spcr);
if (mode == L1_MODE_HDLC)
hfc_clear_fifo(bcs);
}
static void
hfc_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
} else {
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
mode_hfc(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
mode_hfc(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
static void
close_hfcstate(struct BCState *bcs)
{
mode_hfc(bcs, 0, bcs->channel);
if (test_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
}
static int
open_hfcstate(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->tx_cnt = 0;
return (0);
}
static int
setstack_hfc(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (open_hfcstate(st->l1.hardware, bcs))
return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = hfc_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
static void
init_send(struct BCState *bcs)
{
int i;
bcs->hw.hfc.send = kmalloc_array(32, sizeof(unsigned int), GFP_ATOMIC);
if (!bcs->hw.hfc.send) {
printk(KERN_WARNING
"HiSax: No memory for hfc.send\n");
return;
}
for (i = 0; i < 32; i++)
bcs->hw.hfc.send[i] = 0x1fff;
}
void
inithfc(struct IsdnCardState *cs)
{
init_send(&cs->bcs[0]);
init_send(&cs->bcs[1]);
cs->BC_Send_Data = &hfc_fill_fifo;
cs->bcs[0].BC_SetStack = setstack_hfc;
cs->bcs[1].BC_SetStack = setstack_hfc;
cs->bcs[0].BC_Close = close_hfcstate;
cs->bcs[1].BC_Close = close_hfcstate;
mode_hfc(cs->bcs, 0, 0);
mode_hfc(cs->bcs + 1, 0, 0);
}
void
releasehfc(struct IsdnCardState *cs)
{
kfree(cs->bcs[0].hw.hfc.send);
cs->bcs[0].hw.hfc.send = NULL;
kfree(cs->bcs[1].hw.hfc.send);
cs->bcs[1].hw.hfc.send = NULL;
}