kernel_samsung_a34x-permissive/drivers/vibrator/imagis/isa1000_vibrator.c
2024-04-28 15:51:13 +02:00

766 lines
18 KiB
C

/* drivers/motor/isa1000.c
* Copyright (C) 2014 Samsung Electronics Co. Ltd. All Rights Reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "[VIB] isa1000_vib: " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/hrtimer.h>
#include <linux/pwm.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/delay.h>
#include <linux/regulator/consumer.h>
#include <linux/vibrator/sec_vibrator.h>
#if defined(CONFIG_MTK_PWM)
struct pwm_spec_config {
u32 pwm_no;
u32 mode;
u32 clk_div;
u32 clk_src;
u8 intr;
u8 pmic_pad;
union {
/* for old mode */
struct _PWM_OLDMODE_REGS {
u16 IDLE_VALUE;
u16 GUARD_VALUE;
u16 GDURATION;
u16 WAVE_NUM;
u16 DATA_WIDTH;
u16 THRESH;
} PWM_MODE_OLD_REGS;
/* for fifo mode */
struct _PWM_MODE_FIFO_REGS {
u32 IDLE_VALUE;
u32 GUARD_VALUE;
u32 STOP_BITPOS_VALUE;
u16 HDURATION;
u16 LDURATION;
u32 GDURATION;
u32 SEND_DATA0;
u32 SEND_DATA1;
u32 WAVE_NUM;
} PWM_MODE_FIFO_REGS;
/* for memory mode */
struct _PWM_MODE_MEMORY_REGS {
u32 IDLE_VALUE;
u32 GUARD_VALUE;
u32 STOP_BITPOS_VALUE;
u16 HDURATION;
u16 LDURATION;
u16 GDURATION;
dma_addr_t BUF0_BASE_ADDR;
u32 BUF0_SIZE;
u16 WAVE_NUM;
} PWM_MODE_MEMORY_REGS;
/* for RANDOM mode */
struct _PWM_MODE_RANDOM_REGS {
u16 IDLE_VALUE;
u16 GUARD_VALUE;
u32 STOP_BITPOS_VALUE;
u16 HDURATION;
u16 LDURATION;
u16 GDURATION;
dma_addr_t BUF0_BASE_ADDR;
u32 BUF0_SIZE;
dma_addr_t BUF1_BASE_ADDR;
u32 BUF1_SIZE;
u16 WAVE_NUM;
u32 VALID;
} PWM_MODE_RANDOM_REGS;
/* for seq mode */
struct _PWM_MODE_DELAY_REGS {
/* u32 ENABLE_DELAY_VALUE; */
u16 PWM3_DELAY_DUR;
u32 PWM3_DELAY_CLK;
/* 0: block clock source, 1: block/1625 clock source */
u16 PWM4_DELAY_DUR;
u32 PWM4_DELAY_CLK;
u16 PWM5_DELAY_DUR;
u32 PWM5_DELAY_CLK;
} PWM_MODE_DELAY_REGS;
};
};
enum INFRA_CLK_SRC_CTRL {
CLK_32K = 0x00,
CLK_26M = 0x01,
CLK_78M = 0x2,
CLK_SEL_TOPCKGEN = 0x3,
};
enum PWM_MODE_ENUM {
PWM_MODE_MIN,
PWM_MODE_OLD = PWM_MODE_MIN,
PWM_MODE_FIFO,
PWM_MODE_MEMORY,
PWM_MODE_RANDOM,
PWM_MODE_DELAY,
PWM_MODE_INVALID,
};
enum PWM_CLK_DIV {
CLK_DIV_MIN,
CLK_DIV1 = CLK_DIV_MIN,
CLK_DIV2,
CLK_DIV4,
CLK_DIV8,
CLK_DIV16,
CLK_DIV32,
CLK_DIV64,
CLK_DIV128,
CLK_DIV_MAX
};
enum PWM_CLOCK_SRC_ENUM {
PWM_CLK_SRC_MIN,
PWM_CLK_OLD_MODE_BLOCK = PWM_CLK_SRC_MIN,
PWM_CLK_OLD_MODE_32K,
PWM_CLK_NEW_MODE_BLOCK,
PWM_CLK_NEW_MODE_BLOCK_DIV_BY_1625,
PWM_CLK_SRC_NUM,
PWM_CLK_SRC_INVALID,
};
enum PWM_CON_IDLE_BIT {
IDLE_FALSE,
IDLE_TRUE,
IDLE_MAX
};
enum PWM_CON_GUARD_BIT {
GUARD_FALSE,
GUARD_TRUE,
GUARD_MAX
};
s32 pwm_set_spec_config(struct pwm_spec_config *conf);
void mt_pwm_disable(u32 pwm_no, u8 pmic_pad);
void mt_pwm_clk_sel_hal(u32 pwm, u32 clk_src);
//#include <mt-plat/mtk_pwm.h> //chipset based inclusion selection though MTK_PLATFORM in makefile
//#include <mach/mtk_pwm_hal.h>
void mt_pwm_power_on(u32 pwm_no, bool pmic_pad);
static struct pwm_spec_config motor_pwm_config = {
.pwm_no = 0,
.mode = PWM_MODE_FIFO, /*mode used for pwm generation*/
.clk_div = CLK_DIV2, /*clk src division factor*/
.clk_src = PWM_CLK_NEW_MODE_BLOCK,
.pmic_pad = 0,
.PWM_MODE_FIFO_REGS.IDLE_VALUE = IDLE_FALSE,
.PWM_MODE_FIFO_REGS.GUARD_VALUE = GUARD_FALSE,
.PWM_MODE_FIFO_REGS.STOP_BITPOS_VALUE = 61, /*(value + 1) number of bits used in pwm generation*/
.PWM_MODE_FIFO_REGS.HDURATION = 7, /*number of clk cycles for which high bit is set*/
.PWM_MODE_FIFO_REGS.LDURATION = 7, /*number of clk cycles for which low bit is set*/
.PWM_MODE_FIFO_REGS.GDURATION = 0,
.PWM_MODE_FIFO_REGS.SEND_DATA0 = 0xFFFFFFFE, /*first pwm data block writing starts from LSB*/
.PWM_MODE_FIFO_REGS.SEND_DATA1 = 0x1FFFFF, /*second pwm data block writing starts from LSB*/
.PWM_MODE_FIFO_REGS.WAVE_NUM = 0,
};
#endif // CONFIG_MTK_PWM
#define ISA1000_DIVIDER 128
#define FREQ_DIVIDER NSEC_PER_SEC / ISA1000_DIVIDER * 10
struct isa1000_pdata {
int gpio_en;
const char *regulator_name;
struct pwm_device *pwm;
struct regulator *regulator;
const char *motor_type;
int frequency;
int duty_ratio;
/* for multi-frequency */
int freq_nums;
u32 *freq_array;
#if defined(CONFIG_SEC_VIBRATOR)
bool calibration;
int steps;
int *intensities;
int *haptic_intensities;
#endif
};
struct isa1000_ddata {
struct isa1000_pdata *pdata;
struct sec_vibrator_drvdata sec_vib_ddata;
int max_duty;
int duty;
int period;
};
static int isa1000_vib_set_frequency(struct device *dev, int num)
{
struct isa1000_ddata *ddata = dev_get_drvdata(dev);
if (num >= 0 && num < ddata->pdata->freq_nums) {
ddata->period = FREQ_DIVIDER / ddata->pdata->freq_array[num];
ddata->duty = ddata->max_duty =
(ddata->period * ddata->pdata->duty_ratio) / 100;
} else if (num >= HAPTIC_ENGINE_FREQ_MIN &&
num <= HAPTIC_ENGINE_FREQ_MAX) {
ddata->period = FREQ_DIVIDER / num;
ddata->duty = ddata->max_duty =
(ddata->period * ddata->pdata->duty_ratio) / 100;
} else {
pr_err("%s out of range %d\n", __func__, num);
return -EINVAL;
}
return 0;
}
#if defined(CONFIG_MTK_PWM)
static int isa1000_vib_set_ratio(int ratio)
{
int send_data1_bits_limit;
int bit_size = motor_pwm_config.PWM_MODE_FIFO_REGS.STOP_BITPOS_VALUE + 1;
send_data1_bits_limit = bit_size * ratio / 100;
send_data1_bits_limit -= (bit_size / 2);
pr_info("send_data1_bits_limit set to %d\n", send_data1_bits_limit);
return send_data1_bits_limit;
}
#endif
static int isa1000_vib_set_intensity(struct device *dev, int intensity)
{
struct isa1000_ddata *ddata = dev_get_drvdata(dev);
int duty = ddata->period >> 1;
int ret = 0;
int ratio = 100;
#if defined(CONFIG_MTK_PWM)
int send_data1_bits_limit;
#endif
if (intensity < -(MAX_INTENSITY) || MAX_INTENSITY < intensity) {
pr_err("%s out of range %d\n", __func__, intensity);
return -EINVAL;
}
if (intensity == MAX_INTENSITY)
duty = ddata->max_duty;
else if (intensity == -(MAX_INTENSITY))
duty = ddata->period - ddata->max_duty;
else if (intensity != 0)
duty += (ddata->max_duty - duty) * intensity / MAX_INTENSITY;
ddata->duty = duty;
ratio = sec_vibrator_recheck_ratio(&ddata->sec_vib_ddata);
#if defined(CONFIG_MTK_PWM)
send_data1_bits_limit = isa1000_vib_set_ratio(ratio);
motor_pwm_config.PWM_MODE_FIFO_REGS.SEND_DATA1 = (1 << (send_data1_bits_limit * intensity / MAX_INTENSITY)) - 1;
mt_pwm_power_on(motor_pwm_config.pwm_no, 0);
mt_pwm_clk_sel_hal(0, CLK_26M);
#else
ret = pwm_config(ddata->pdata->pwm, duty, ddata->period);
if (ret < 0) {
pr_err("failed to config pwm %d\n", ret);
return ret;
}
#endif
if (intensity != 0) {
#if defined(CONFIG_MTK_PWM)
ret = pwm_set_spec_config(&motor_pwm_config);
#else
ret = pwm_enable(ddata->pdata->pwm);
#endif
if (ret < 0)
pr_err("failed to enable pwm %d\n", ret);
} else {
#if defined(CONFIG_MTK_PWM)
mt_pwm_disable(motor_pwm_config.pwm_no, motor_pwm_config.pmic_pad);
#else
pwm_disable(ddata->pdata->pwm);
#endif
}
return ret;
}
static void isa1000_regulator_en(struct isa1000_ddata *ddata, bool en)
{
int ret;
if (ddata->pdata->regulator == NULL)
return;
if (en && !regulator_is_enabled(ddata->pdata->regulator)) {
ret = regulator_enable(ddata->pdata->regulator);
if (ret)
pr_err("regulator_enable returns: %d\n", ret);
} else if (!en && regulator_is_enabled(ddata->pdata->regulator)) {
ret = regulator_disable(ddata->pdata->regulator);
if (ret)
pr_err("regulator_disable returns: %d\n", ret);
}
}
static void isa1000_gpio_en(struct isa1000_ddata *ddata, bool en)
{
if (gpio_is_valid(ddata->pdata->gpio_en))
gpio_direction_output(ddata->pdata->gpio_en, en);
}
static int isa1000_vib_enable(struct device *dev, bool en)
{
struct isa1000_ddata *ddata = dev_get_drvdata(dev);
if (en) {
isa1000_regulator_en(ddata, en);
isa1000_gpio_en(ddata, en);
} else {
isa1000_gpio_en(ddata, en);
isa1000_regulator_en(ddata, en);
}
return 0;
}
static int isa1000_get_motor_type(struct device *dev, char *buf)
{
struct isa1000_ddata *ddata = dev_get_drvdata(dev);
int ret = snprintf(buf, VIB_BUFSIZE, "%s\n", ddata->pdata->motor_type);
return ret;
}
#if defined(CONFIG_SEC_VIBRATOR)
static bool isa1000_get_calibration(struct device *dev)
{
struct isa1000_ddata *ddata = dev_get_drvdata(dev);
struct isa1000_pdata *pdata = ddata->pdata;
return pdata->calibration;
}
static int isa1000_get_step_size(struct device *dev, int *step_size)
{
struct isa1000_ddata *ddata = dev_get_drvdata(dev);
struct isa1000_pdata *pdata = ddata->pdata;
pr_info("%s step_size=%d\n", __func__, pdata->steps);
if (pdata->steps == 0)
return -ENODATA;
*step_size = pdata->steps;
return 0;
}
static int isa1000_get_intensities(struct device *dev, int *buf)
{
struct isa1000_ddata *ddata = dev_get_drvdata(dev);
struct isa1000_pdata *pdata = ddata->pdata;
int i;
if (pdata->intensities[1] == 0)
return -ENODATA;
for (i = 0; i < pdata->steps; i++)
buf[i] = pdata->intensities[i];
return 0;
}
static int isa1000_set_intensities(struct device *dev, int *buf)
{
struct isa1000_ddata *ddata = dev_get_drvdata(dev);
struct isa1000_pdata *pdata = ddata->pdata;
int i;
for (i = 0; i < pdata->steps; i++)
pdata->intensities[i] = buf[i];
return 0;
}
static int isa1000_get_haptic_intensities(struct device *dev, int *buf)
{
struct isa1000_ddata *ddata = dev_get_drvdata(dev);
struct isa1000_pdata *pdata = ddata->pdata;
int i;
if (pdata->haptic_intensities[1] == 0)
return -ENODATA;
for (i = 0; i < pdata->steps; i++)
buf[i] = pdata->haptic_intensities[i];
return 0;
}
static int isa1000_set_haptic_intensities(struct device *dev, int *buf)
{
struct isa1000_ddata *ddata = dev_get_drvdata(dev);
struct isa1000_pdata *pdata = ddata->pdata;
int i;
for (i = 0; i < pdata->steps; i++)
pdata->haptic_intensities[i] = buf[i];
return 0;
}
#endif /* if defined(CONFIG_SEC_VIBRATOR) */
static const struct sec_vibrator_ops isa1000_multi_freq_vib_ops = {
.enable = isa1000_vib_enable,
.set_intensity = isa1000_vib_set_intensity,
.set_frequency = isa1000_vib_set_frequency,
.get_motor_type = isa1000_get_motor_type,
#if defined(CONFIG_SEC_VIBRATOR)
.get_calibration = isa1000_get_calibration,
.get_step_size = isa1000_get_step_size,
.get_intensities = isa1000_get_intensities,
.set_intensities = isa1000_set_intensities,
.get_haptic_intensities = isa1000_get_haptic_intensities,
.set_haptic_intensities = isa1000_set_haptic_intensities,
#endif
};
static const struct sec_vibrator_ops isa1000_single_freq_vib_ops = {
.enable = isa1000_vib_enable,
.set_intensity = isa1000_vib_set_intensity,
.get_motor_type = isa1000_get_motor_type,
#if defined(CONFIG_SEC_VIBRATOR)
.get_calibration = isa1000_get_calibration,
.get_step_size = isa1000_get_step_size,
.get_intensities = isa1000_get_intensities,
.set_intensities = isa1000_set_intensities,
.get_haptic_intensities = isa1000_get_haptic_intensities,
.set_haptic_intensities = isa1000_set_haptic_intensities,
#endif
};
#if defined(CONFIG_SEC_VIBRATOR)
static int of_sec_vibrator_dt(struct isa1000_pdata *pdata, struct device_node *np)
{
int ret = 0;
int i;
unsigned int val = 0;
int *intensities = NULL;
pr_info("%s\n", __func__);
pdata->calibration = false;
/* number of steps */
ret = of_property_read_u32(np, "samsung,steps", &val);
if (ret) {
pr_err("%s out of range(%d)\n", __func__, val);
return -EINVAL;
}
pdata->steps = (int)val;
/* allocate memory for intensities */
pdata->intensities = kmalloc_array(pdata->steps, sizeof(int), GFP_KERNEL);
if (!pdata->intensities)
return -ENOMEM;
intensities = pdata->intensities;
/* intensities */
ret = of_property_read_u32_array(np, "samsung,intensities", intensities, pdata->steps);
if (ret) {
pr_err("intensities are not specified\n");
ret = -EINVAL;
goto err_getting_int;
}
for (i = 0; i < pdata->steps; i++) {
if ((intensities[i] < 0) || (intensities[i] > MAX_INTENSITY)) {
pr_err("%s out of range(%d)\n", __func__, intensities[i]);
ret = -EINVAL;
goto err_getting_int;
}
}
intensities = NULL;
/* allocate memory for haptic_intensities */
pdata->haptic_intensities = kmalloc_array(pdata->steps, sizeof(int), GFP_KERNEL);
if (!pdata->haptic_intensities) {
ret = -ENOMEM;
goto err_alloc_haptic;
}
intensities = pdata->haptic_intensities;
/* haptic intensities */
ret = of_property_read_u32_array(np, "samsung,haptic_intensities", intensities, pdata->steps);
if (ret) {
pr_err("haptic_intensities are not specified\n");
ret = -EINVAL;
goto err_haptic;
}
for (i = 0; i < pdata->steps; i++) {
if ((intensities[i] < 0) || (intensities[i] > MAX_INTENSITY)) {
pr_err("%s out of range(%d)\n", __func__, intensities[i]);
ret = -EINVAL;
goto err_haptic;
}
}
/* update calibration statue */
pdata->calibration = true;
return ret;
err_haptic:
kfree(pdata->haptic_intensities);
err_alloc_haptic:
pdata->haptic_intensities = NULL;
err_getting_int:
kfree(pdata->intensities);
pdata->intensities = NULL;
pdata->steps = 0;
return ret;
}
#endif /* if defined(CONFIG_SEC_VIBRATOR) */
static struct isa1000_pdata *isa1000_get_devtree_pdata(struct device *dev)
{
struct device_node *node;
struct isa1000_pdata *pdata;
u32 temp;
int ret = 0;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return NULL;
node = dev->of_node;
if (!node) {
pr_err("%s: error to get dt node\n", __func__);
goto err_out;
}
ret = of_property_read_u32(node, "isa1000,multi_frequency", &temp);
if (ret) {
pr_info("%s: multi_frequency isn't used\n", __func__);
pdata->freq_nums = 0;
} else
pdata->freq_nums = (int)temp;
if (pdata->freq_nums) {
pdata->freq_array = devm_kzalloc(dev,
sizeof(u32)*pdata->freq_nums, GFP_KERNEL);
if (!pdata->freq_array) {
pr_err("%s: failed to allocate freq_array data\n",
__func__);
goto err_out;
}
ret = of_property_read_u32_array(node, "isa1000,frequency",
pdata->freq_array, pdata->freq_nums);
if (ret) {
pr_err("%s: error to get dt node frequency\n",
__func__);
goto err_out;
}
pdata->frequency = pdata->freq_array[0];
} else {
ret = of_property_read_u32(node,
"isa1000,frequency", &temp);
if (ret) {
pr_err("%s: error to get dt node frequency\n",
__func__);
goto err_out;
} else
pdata->frequency = (int)temp;
}
ret = of_property_read_u32(node, "isa1000,duty_ratio",
&pdata->duty_ratio);
if (ret) {
pr_err("%s: error to get dt node duty_ratio\n", __func__);
goto err_out;
}
ret = of_property_read_string(node, "isa1000,regulator_name",
&pdata->regulator_name);
if (!ret) {
pdata->regulator = regulator_get(NULL, pdata->regulator_name);
if (IS_ERR(pdata->regulator)) {
ret = PTR_ERR(pdata->regulator);
pdata->regulator = NULL;
pr_err("%s: regulator get fail\n", __func__);
goto err_out;
}
} else {
pr_info("%s: regulator isn't used\n", __func__);
pdata->regulator = NULL;
}
pdata->gpio_en = of_get_named_gpio(node, "isa1000,gpio_en", 0);
if (gpio_is_valid(pdata->gpio_en)) {
ret = gpio_request(pdata->gpio_en, "isa1000,gpio_en");
if (ret) {
pr_err("%s: motor gpio request fail(%d)\n",
__func__, ret);
goto err_out;
}
ret = gpio_direction_output(pdata->gpio_en, 0);
} else {
pr_info("%s: gpio isn't used\n", __func__);
}
#if defined(CONFIG_MTK_PWM)
mt_pwm_power_on(0, 0);
#else
pdata->pwm = devm_of_pwm_get(dev, node, NULL);
if (IS_ERR(pdata->pwm)) {
pr_err("%s: error to get pwms : %d?\n", __func__, IS_ERR(pdata->pwm));
goto err_out;
}
#endif
ret = of_property_read_string(node, "isa1000,motor_type",
&pdata->motor_type);
if (ret)
pr_err("%s: motor_type is undefined\n", __func__);
#if defined(CONFIG_SEC_VIBRATOR)
ret = of_sec_vibrator_dt(pdata, node);
if (ret < 0)
pr_err("sec_vibrator dt read fail : %d\n", ret);
#endif
return pdata;
err_out:
return ERR_PTR(ret);
}
static int isa1000_probe(struct platform_device *pdev)
{
struct isa1000_pdata *pdata = dev_get_platdata(&pdev->dev);
struct isa1000_ddata *ddata;
if (!pdata) {
#if defined(CONFIG_OF)
pdata = isa1000_get_devtree_pdata(&pdev->dev);
if (IS_ERR(pdata)) {
pr_err("there is no device tree!\n");
return -ENODEV;
}
#else
pr_err("there is no platform data!\n");
#endif
}
ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
if (!ddata) {
pr_err("failed to alloc\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, ddata);
ddata->pdata = pdata;
ddata->period = FREQ_DIVIDER / pdata->frequency;
ddata->max_duty = ddata->duty =
ddata->period * ddata->pdata->duty_ratio / 100;
ddata->sec_vib_ddata.dev = &pdev->dev;
if (pdata->freq_nums)
ddata->sec_vib_ddata.vib_ops = &isa1000_multi_freq_vib_ops;
else
ddata->sec_vib_ddata.vib_ops = &isa1000_single_freq_vib_ops;
sec_vibrator_register(&ddata->sec_vib_ddata);
pr_info("%s - done\n", __func__);
return 0;
}
static int isa1000_remove(struct platform_device *pdev)
{
struct isa1000_ddata *ddata = platform_get_drvdata(pdev);
sec_vibrator_unregister(&ddata->sec_vib_ddata);
isa1000_vib_enable(&pdev->dev, false);
return 0;
}
static int isa1000_suspend(struct platform_device *pdev,
pm_message_t state)
{
isa1000_vib_enable(&pdev->dev, false);
return 0;
}
static int isa1000_resume(struct platform_device *pdev)
{
return 0;
}
#if defined(CONFIG_OF)
static struct of_device_id isa1000_dt_ids[] = {
{ .compatible = "imagis,isa1000_vibrator" },
{ }
};
MODULE_DEVICE_TABLE(of, isa1000_dt_ids);
#endif /* CONFIG_OF */
static struct platform_driver isa1000_driver = {
.probe = isa1000_probe,
.remove = isa1000_remove,
.suspend = isa1000_suspend,
.resume = isa1000_resume,
.driver = {
.name = "isa1000",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(isa1000_dt_ids),
},
};
static int __init isa1000_init(void)
{
return platform_driver_register(&isa1000_driver);
}
module_init(isa1000_init);
static void __exit isa1000_exit(void)
{
platform_driver_unregister(&isa1000_driver);
}
module_exit(isa1000_exit);
MODULE_AUTHOR("Samsung Electronics");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("isa1000 vibrator driver");