kernel_samsung_a34x-permissive/fs/xfs/xfs_reflink.c
2024-04-28 15:51:13 +02:00

1744 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2016 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
#include "xfs_btree.h"
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota_defs.h"
#include "xfs_quota.h"
#include "xfs_reflink.h"
#include "xfs_iomap.h"
#include "xfs_rmap_btree.h"
#include "xfs_sb.h"
#include "xfs_ag_resv.h"
/*
* Copy on Write of Shared Blocks
*
* XFS must preserve "the usual" file semantics even when two files share
* the same physical blocks. This means that a write to one file must not
* alter the blocks in a different file; the way that we'll do that is
* through the use of a copy-on-write mechanism. At a high level, that
* means that when we want to write to a shared block, we allocate a new
* block, write the data to the new block, and if that succeeds we map the
* new block into the file.
*
* XFS provides a "delayed allocation" mechanism that defers the allocation
* of disk blocks to dirty-but-not-yet-mapped file blocks as long as
* possible. This reduces fragmentation by enabling the filesystem to ask
* for bigger chunks less often, which is exactly what we want for CoW.
*
* The delalloc mechanism begins when the kernel wants to make a block
* writable (write_begin or page_mkwrite). If the offset is not mapped, we
* create a delalloc mapping, which is a regular in-core extent, but without
* a real startblock. (For delalloc mappings, the startblock encodes both
* a flag that this is a delalloc mapping, and a worst-case estimate of how
* many blocks might be required to put the mapping into the BMBT.) delalloc
* mappings are a reservation against the free space in the filesystem;
* adjacent mappings can also be combined into fewer larger mappings.
*
* As an optimization, the CoW extent size hint (cowextsz) creates
* outsized aligned delalloc reservations in the hope of landing out of
* order nearby CoW writes in a single extent on disk, thereby reducing
* fragmentation and improving future performance.
*
* D: --RRRRRRSSSRRRRRRRR--- (data fork)
* C: ------DDDDDDD--------- (CoW fork)
*
* When dirty pages are being written out (typically in writepage), the
* delalloc reservations are converted into unwritten mappings by
* allocating blocks and replacing the delalloc mapping with real ones.
* A delalloc mapping can be replaced by several unwritten ones if the
* free space is fragmented.
*
* D: --RRRRRRSSSRRRRRRRR---
* C: ------UUUUUUU---------
*
* We want to adapt the delalloc mechanism for copy-on-write, since the
* write paths are similar. The first two steps (creating the reservation
* and allocating the blocks) are exactly the same as delalloc except that
* the mappings must be stored in a separate CoW fork because we do not want
* to disturb the mapping in the data fork until we're sure that the write
* succeeded. IO completion in this case is the process of removing the old
* mapping from the data fork and moving the new mapping from the CoW fork to
* the data fork. This will be discussed shortly.
*
* For now, unaligned directio writes will be bounced back to the page cache.
* Block-aligned directio writes will use the same mechanism as buffered
* writes.
*
* Just prior to submitting the actual disk write requests, we convert
* the extents representing the range of the file actually being written
* (as opposed to extra pieces created for the cowextsize hint) to real
* extents. This will become important in the next step:
*
* D: --RRRRRRSSSRRRRRRRR---
* C: ------UUrrUUU---------
*
* CoW remapping must be done after the data block write completes,
* because we don't want to destroy the old data fork map until we're sure
* the new block has been written. Since the new mappings are kept in a
* separate fork, we can simply iterate these mappings to find the ones
* that cover the file blocks that we just CoW'd. For each extent, simply
* unmap the corresponding range in the data fork, map the new range into
* the data fork, and remove the extent from the CoW fork. Because of
* the presence of the cowextsize hint, however, we must be careful
* only to remap the blocks that we've actually written out -- we must
* never remap delalloc reservations nor CoW staging blocks that have
* yet to be written. This corresponds exactly to the real extents in
* the CoW fork:
*
* D: --RRRRRRrrSRRRRRRRR---
* C: ------UU--UUU---------
*
* Since the remapping operation can be applied to an arbitrary file
* range, we record the need for the remap step as a flag in the ioend
* instead of declaring a new IO type. This is required for direct io
* because we only have ioend for the whole dio, and we have to be able to
* remember the presence of unwritten blocks and CoW blocks with a single
* ioend structure. Better yet, the more ground we can cover with one
* ioend, the better.
*/
/*
* Given an AG extent, find the lowest-numbered run of shared blocks
* within that range and return the range in fbno/flen. If
* find_end_of_shared is true, return the longest contiguous extent of
* shared blocks. If there are no shared extents, fbno and flen will
* be set to NULLAGBLOCK and 0, respectively.
*/
int
xfs_reflink_find_shared(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
xfs_agblock_t agbno,
xfs_extlen_t aglen,
xfs_agblock_t *fbno,
xfs_extlen_t *flen,
bool find_end_of_shared)
{
struct xfs_buf *agbp;
struct xfs_btree_cur *cur;
int error;
error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
if (error)
return error;
if (!agbp)
return -ENOMEM;
cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
find_end_of_shared);
xfs_btree_del_cursor(cur, error);
xfs_trans_brelse(tp, agbp);
return error;
}
/*
* Trim the mapping to the next block where there's a change in the
* shared/unshared status. More specifically, this means that we
* find the lowest-numbered extent of shared blocks that coincides with
* the given block mapping. If the shared extent overlaps the start of
* the mapping, trim the mapping to the end of the shared extent. If
* the shared region intersects the mapping, trim the mapping to the
* start of the shared extent. If there are no shared regions that
* overlap, just return the original extent.
*/
int
xfs_reflink_trim_around_shared(
struct xfs_inode *ip,
struct xfs_bmbt_irec *irec,
bool *shared,
bool *trimmed)
{
xfs_agnumber_t agno;
xfs_agblock_t agbno;
xfs_extlen_t aglen;
xfs_agblock_t fbno;
xfs_extlen_t flen;
int error = 0;
/* Holes, unwritten, and delalloc extents cannot be shared */
if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
*shared = false;
return 0;
}
trace_xfs_reflink_trim_around_shared(ip, irec);
agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
aglen = irec->br_blockcount;
error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
aglen, &fbno, &flen, true);
if (error)
return error;
*shared = *trimmed = false;
if (fbno == NULLAGBLOCK) {
/* No shared blocks at all. */
return 0;
} else if (fbno == agbno) {
/*
* The start of this extent is shared. Truncate the
* mapping at the end of the shared region so that a
* subsequent iteration starts at the start of the
* unshared region.
*/
irec->br_blockcount = flen;
*shared = true;
if (flen != aglen)
*trimmed = true;
return 0;
} else {
/*
* There's a shared extent midway through this extent.
* Truncate the mapping at the start of the shared
* extent so that a subsequent iteration starts at the
* start of the shared region.
*/
irec->br_blockcount = fbno - agbno;
*trimmed = true;
return 0;
}
}
/*
* Trim the passed in imap to the next shared/unshared extent boundary, and
* if imap->br_startoff points to a shared extent reserve space for it in the
* COW fork. In this case *shared is set to true, else to false.
*
* Note that imap will always contain the block numbers for the existing blocks
* in the data fork, as the upper layers need them for read-modify-write
* operations.
*/
int
xfs_reflink_reserve_cow(
struct xfs_inode *ip,
struct xfs_bmbt_irec *imap,
bool *shared)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
struct xfs_bmbt_irec got;
int error = 0;
bool eof = false, trimmed;
struct xfs_iext_cursor icur;
/*
* Search the COW fork extent list first. This serves two purposes:
* first this implement the speculative preallocation using cowextisze,
* so that we also unshared block adjacent to shared blocks instead
* of just the shared blocks themselves. Second the lookup in the
* extent list is generally faster than going out to the shared extent
* tree.
*/
if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
eof = true;
if (!eof && got.br_startoff <= imap->br_startoff) {
trace_xfs_reflink_cow_found(ip, imap);
xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
*shared = true;
return 0;
}
/* Trim the mapping to the nearest shared extent boundary. */
error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
if (error)
return error;
/* Not shared? Just report the (potentially capped) extent. */
if (!*shared)
return 0;
/*
* Fork all the shared blocks from our write offset until the end of
* the extent.
*/
error = xfs_qm_dqattach_locked(ip, false);
if (error)
return error;
error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
imap->br_blockcount, 0, &got, &icur, eof);
if (error == -ENOSPC || error == -EDQUOT)
trace_xfs_reflink_cow_enospc(ip, imap);
if (error)
return error;
xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
trace_xfs_reflink_cow_alloc(ip, &got);
return 0;
}
/* Convert part of an unwritten CoW extent to a real one. */
STATIC int
xfs_reflink_convert_cow_extent(
struct xfs_inode *ip,
struct xfs_bmbt_irec *imap,
xfs_fileoff_t offset_fsb,
xfs_filblks_t count_fsb)
{
int nimaps = 1;
if (imap->br_state == XFS_EXT_NORM)
return 0;
xfs_trim_extent(imap, offset_fsb, count_fsb);
trace_xfs_reflink_convert_cow(ip, imap);
if (imap->br_blockcount == 0)
return 0;
return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap,
&nimaps);
}
/* Convert all of the unwritten CoW extents in a file's range to real ones. */
int
xfs_reflink_convert_cow(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t count)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
xfs_filblks_t count_fsb = end_fsb - offset_fsb;
struct xfs_bmbt_irec imap;
int nimaps = 1, error = 0;
ASSERT(count != 0);
xfs_ilock(ip, XFS_ILOCK_EXCL);
error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
}
/*
* Find the extent that maps the given range in the COW fork. Even if the extent
* is not shared we might have a preallocation for it in the COW fork. If so we
* use it that rather than trigger a new allocation.
*/
static int
xfs_find_trim_cow_extent(
struct xfs_inode *ip,
struct xfs_bmbt_irec *imap,
bool *shared,
bool *found)
{
xfs_fileoff_t offset_fsb = imap->br_startoff;
xfs_filblks_t count_fsb = imap->br_blockcount;
struct xfs_iext_cursor icur;
struct xfs_bmbt_irec got;
bool trimmed;
*found = false;
/*
* If we don't find an overlapping extent, trim the range we need to
* allocate to fit the hole we found.
*/
if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) ||
got.br_startoff > offset_fsb)
return xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
*shared = true;
if (isnullstartblock(got.br_startblock)) {
xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
return 0;
}
/* real extent found - no need to allocate */
xfs_trim_extent(&got, offset_fsb, count_fsb);
*imap = got;
*found = true;
return 0;
}
/* Allocate all CoW reservations covering a range of blocks in a file. */
int
xfs_reflink_allocate_cow(
struct xfs_inode *ip,
struct xfs_bmbt_irec *imap,
bool *shared,
uint *lockmode)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t offset_fsb = imap->br_startoff;
xfs_filblks_t count_fsb = imap->br_blockcount;
struct xfs_trans *tp;
int nimaps, error = 0;
bool found;
xfs_filblks_t resaligned;
xfs_extlen_t resblks = 0;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
ASSERT(xfs_is_reflink_inode(ip));
error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
if (error || !*shared)
return error;
if (found)
goto convert;
resaligned = xfs_aligned_fsb_count(imap->br_startoff,
imap->br_blockcount, xfs_get_cowextsz_hint(ip));
resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
xfs_iunlock(ip, *lockmode);
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
*lockmode = XFS_ILOCK_EXCL;
xfs_ilock(ip, *lockmode);
if (error)
return error;
error = xfs_qm_dqattach_locked(ip, false);
if (error)
goto out_trans_cancel;
/*
* Check for an overlapping extent again now that we dropped the ilock.
*/
error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
if (error || !*shared)
goto out_trans_cancel;
if (found) {
xfs_trans_cancel(tp);
goto convert;
}
error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
XFS_QMOPT_RES_REGBLKS);
if (error)
goto out_trans_cancel;
xfs_trans_ijoin(tp, ip, 0);
/* Allocate the entire reservation as unwritten blocks. */
nimaps = 1;
error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
resblks, imap, &nimaps);
if (error)
goto out_unreserve;
xfs_inode_set_cowblocks_tag(ip);
error = xfs_trans_commit(tp);
if (error)
return error;
/*
* Allocation succeeded but the requested range was not even partially
* satisfied? Bail out!
*/
if (nimaps == 0)
return -ENOSPC;
convert:
return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb);
out_unreserve:
xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
XFS_QMOPT_RES_REGBLKS);
out_trans_cancel:
xfs_trans_cancel(tp);
return error;
}
/*
* Cancel CoW reservations for some block range of an inode.
*
* If cancel_real is true this function cancels all COW fork extents for the
* inode; if cancel_real is false, real extents are not cleared.
*
* Caller must have already joined the inode to the current transaction. The
* inode will be joined to the transaction returned to the caller.
*/
int
xfs_reflink_cancel_cow_blocks(
struct xfs_inode *ip,
struct xfs_trans **tpp,
xfs_fileoff_t offset_fsb,
xfs_fileoff_t end_fsb,
bool cancel_real)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
struct xfs_bmbt_irec got, del;
struct xfs_iext_cursor icur;
int error = 0;
if (!xfs_inode_has_cow_data(ip))
return 0;
if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
return 0;
/* Walk backwards until we're out of the I/O range... */
while (got.br_startoff + got.br_blockcount > offset_fsb) {
del = got;
xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
/* Extent delete may have bumped ext forward */
if (!del.br_blockcount) {
xfs_iext_prev(ifp, &icur);
goto next_extent;
}
trace_xfs_reflink_cancel_cow(ip, &del);
if (isnullstartblock(del.br_startblock)) {
error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
&icur, &got, &del);
if (error)
break;
} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
/* Free the CoW orphan record. */
error = xfs_refcount_free_cow_extent(*tpp,
del.br_startblock, del.br_blockcount);
if (error)
break;
xfs_bmap_add_free(*tpp, del.br_startblock,
del.br_blockcount, NULL);
/* Roll the transaction */
error = xfs_defer_finish(tpp);
if (error)
break;
/* Remove the mapping from the CoW fork. */
xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
/* Remove the quota reservation */
error = xfs_trans_reserve_quota_nblks(NULL, ip,
-(long)del.br_blockcount, 0,
XFS_QMOPT_RES_REGBLKS);
if (error)
break;
} else {
/* Didn't do anything, push cursor back. */
xfs_iext_prev(ifp, &icur);
}
next_extent:
if (!xfs_iext_get_extent(ifp, &icur, &got))
break;
}
/* clear tag if cow fork is emptied */
if (!ifp->if_bytes)
xfs_inode_clear_cowblocks_tag(ip);
return error;
}
/*
* Cancel CoW reservations for some byte range of an inode.
*
* If cancel_real is true this function cancels all COW fork extents for the
* inode; if cancel_real is false, real extents are not cleared.
*/
int
xfs_reflink_cancel_cow_range(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t count,
bool cancel_real)
{
struct xfs_trans *tp;
xfs_fileoff_t offset_fsb;
xfs_fileoff_t end_fsb;
int error;
trace_xfs_reflink_cancel_cow_range(ip, offset, count);
ASSERT(xfs_is_reflink_inode(ip));
offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
if (count == NULLFILEOFF)
end_fsb = NULLFILEOFF;
else
end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
/* Start a rolling transaction to remove the mappings */
error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
0, 0, XFS_TRANS_NOFS, &tp);
if (error)
goto out;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
/* Scrape out the old CoW reservations */
error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
cancel_real);
if (error)
goto out_cancel;
error = xfs_trans_commit(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
out_cancel:
xfs_trans_cancel(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
return error;
}
/*
* Remap parts of a file's data fork after a successful CoW.
*/
int
xfs_reflink_end_cow(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t count)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
struct xfs_bmbt_irec got, del;
struct xfs_trans *tp;
xfs_fileoff_t offset_fsb;
xfs_fileoff_t end_fsb;
int error;
unsigned int resblks;
xfs_filblks_t rlen;
struct xfs_iext_cursor icur;
trace_xfs_reflink_end_cow(ip, offset, count);
/* No COW extents? That's easy! */
if (ifp->if_bytes == 0)
return 0;
offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
/*
* Start a rolling transaction to switch the mappings. We're
* unlikely ever to have to remap 16T worth of single-block
* extents, so just cap the worst case extent count to 2^32-1.
* Stick a warning in just in case, and avoid 64-bit division.
*/
BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
if (end_fsb - offset_fsb > UINT_MAX) {
error = -EFSCORRUPTED;
xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
ASSERT(0);
goto out;
}
resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
(unsigned int)(end_fsb - offset_fsb),
XFS_DATA_FORK);
error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
if (error)
goto out;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
/*
* In case of racing, overlapping AIO writes no COW extents might be
* left by the time I/O completes for the loser of the race. In that
* case we are done.
*/
if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
goto out_cancel;
/* Walk backwards until we're out of the I/O range... */
while (got.br_startoff + got.br_blockcount > offset_fsb) {
del = got;
xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
/* Extent delete may have bumped ext forward */
if (!del.br_blockcount)
goto prev_extent;
/*
* Only remap real extent that contain data. With AIO
* speculatively preallocations can leak into the range we
* are called upon, and we need to skip them.
*/
if (!xfs_bmap_is_real_extent(&got))
goto prev_extent;
/* Unmap the old blocks in the data fork. */
ASSERT(tp->t_firstblock == NULLFSBLOCK);
rlen = del.br_blockcount;
error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
if (error)
goto out_cancel;
/* Trim the extent to whatever got unmapped. */
if (rlen) {
xfs_trim_extent(&del, del.br_startoff + rlen,
del.br_blockcount - rlen);
}
trace_xfs_reflink_cow_remap(ip, &del);
/* Free the CoW orphan record. */
error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
del.br_blockcount);
if (error)
goto out_cancel;
/* Map the new blocks into the data fork. */
error = xfs_bmap_map_extent(tp, ip, &del);
if (error)
goto out_cancel;
/* Charge this new data fork mapping to the on-disk quota. */
xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
(long)del.br_blockcount);
/* Remove the mapping from the CoW fork. */
xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
error = xfs_defer_finish(&tp);
if (error)
goto out_cancel;
if (!xfs_iext_get_extent(ifp, &icur, &got))
break;
continue;
prev_extent:
if (!xfs_iext_prev_extent(ifp, &icur, &got))
break;
}
error = xfs_trans_commit(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
goto out;
return 0;
out_cancel:
xfs_trans_cancel(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
return error;
}
/*
* Free leftover CoW reservations that didn't get cleaned out.
*/
int
xfs_reflink_recover_cow(
struct xfs_mount *mp)
{
xfs_agnumber_t agno;
int error = 0;
if (!xfs_sb_version_hasreflink(&mp->m_sb))
return 0;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
error = xfs_refcount_recover_cow_leftovers(mp, agno);
if (error)
break;
}
return error;
}
/*
* Reflinking (Block) Ranges of Two Files Together
*
* First, ensure that the reflink flag is set on both inodes. The flag is an
* optimization to avoid unnecessary refcount btree lookups in the write path.
*
* Now we can iteratively remap the range of extents (and holes) in src to the
* corresponding ranges in dest. Let drange and srange denote the ranges of
* logical blocks in dest and src touched by the reflink operation.
*
* While the length of drange is greater than zero,
* - Read src's bmbt at the start of srange ("imap")
* - If imap doesn't exist, make imap appear to start at the end of srange
* with zero length.
* - If imap starts before srange, advance imap to start at srange.
* - If imap goes beyond srange, truncate imap to end at the end of srange.
* - Punch (imap start - srange start + imap len) blocks from dest at
* offset (drange start).
* - If imap points to a real range of pblks,
* > Increase the refcount of the imap's pblks
* > Map imap's pblks into dest at the offset
* (drange start + imap start - srange start)
* - Advance drange and srange by (imap start - srange start + imap len)
*
* Finally, if the reflink made dest longer, update both the in-core and
* on-disk file sizes.
*
* ASCII Art Demonstration:
*
* Let's say we want to reflink this source file:
*
* ----SSSSSSS-SSSSS----SSSSSS (src file)
* <-------------------->
*
* into this destination file:
*
* --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
* <-------------------->
* '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
* Observe that the range has different logical offsets in either file.
*
* Consider that the first extent in the source file doesn't line up with our
* reflink range. Unmapping and remapping are separate operations, so we can
* unmap more blocks from the destination file than we remap.
*
* ----SSSSSSS-SSSSS----SSSSSS
* <------->
* --DDDDD---------DDDDD--DDD
* <------->
*
* Now remap the source extent into the destination file:
*
* ----SSSSSSS-SSSSS----SSSSSS
* <------->
* --DDDDD--SSSSSSSDDDDD--DDD
* <------->
*
* Do likewise with the second hole and extent in our range. Holes in the
* unmap range don't affect our operation.
*
* ----SSSSSSS-SSSSS----SSSSSS
* <---->
* --DDDDD--SSSSSSS-SSSSS-DDD
* <---->
*
* Finally, unmap and remap part of the third extent. This will increase the
* size of the destination file.
*
* ----SSSSSSS-SSSSS----SSSSSS
* <----->
* --DDDDD--SSSSSSS-SSSSS----SSS
* <----->
*
* Once we update the destination file's i_size, we're done.
*/
/*
* Ensure the reflink bit is set in both inodes.
*/
STATIC int
xfs_reflink_set_inode_flag(
struct xfs_inode *src,
struct xfs_inode *dest)
{
struct xfs_mount *mp = src->i_mount;
int error;
struct xfs_trans *tp;
if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
return 0;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
if (error)
goto out_error;
/* Lock both files against IO */
if (src->i_ino == dest->i_ino)
xfs_ilock(src, XFS_ILOCK_EXCL);
else
xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
if (!xfs_is_reflink_inode(src)) {
trace_xfs_reflink_set_inode_flag(src);
xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
xfs_ifork_init_cow(src);
} else
xfs_iunlock(src, XFS_ILOCK_EXCL);
if (src->i_ino == dest->i_ino)
goto commit_flags;
if (!xfs_is_reflink_inode(dest)) {
trace_xfs_reflink_set_inode_flag(dest);
xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
xfs_ifork_init_cow(dest);
} else
xfs_iunlock(dest, XFS_ILOCK_EXCL);
commit_flags:
error = xfs_trans_commit(tp);
if (error)
goto out_error;
return error;
out_error:
trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
return error;
}
/*
* Update destination inode size & cowextsize hint, if necessary.
*/
STATIC int
xfs_reflink_update_dest(
struct xfs_inode *dest,
xfs_off_t newlen,
xfs_extlen_t cowextsize,
bool is_dedupe)
{
struct xfs_mount *mp = dest->i_mount;
struct xfs_trans *tp;
int error;
if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
return 0;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
if (error)
goto out_error;
xfs_ilock(dest, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
if (newlen > i_size_read(VFS_I(dest))) {
trace_xfs_reflink_update_inode_size(dest, newlen);
i_size_write(VFS_I(dest), newlen);
dest->i_d.di_size = newlen;
}
if (cowextsize) {
dest->i_d.di_cowextsize = cowextsize;
dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
}
if (!is_dedupe) {
xfs_trans_ichgtime(tp, dest,
XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
}
xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
error = xfs_trans_commit(tp);
if (error)
goto out_error;
return error;
out_error:
trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
return error;
}
/*
* Do we have enough reserve in this AG to handle a reflink? The refcount
* btree already reserved all the space it needs, but the rmap btree can grow
* infinitely, so we won't allow more reflinks when the AG is down to the
* btree reserves.
*/
static int
xfs_reflink_ag_has_free_space(
struct xfs_mount *mp,
xfs_agnumber_t agno)
{
struct xfs_perag *pag;
int error = 0;
if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
return 0;
pag = xfs_perag_get(mp, agno);
if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
error = -ENOSPC;
xfs_perag_put(pag);
return error;
}
/*
* Unmap a range of blocks from a file, then map other blocks into the hole.
* The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
* The extent irec is mapped into dest at irec->br_startoff.
*/
STATIC int
xfs_reflink_remap_extent(
struct xfs_inode *ip,
struct xfs_bmbt_irec *irec,
xfs_fileoff_t destoff,
xfs_off_t new_isize)
{
struct xfs_mount *mp = ip->i_mount;
bool real_extent = xfs_bmap_is_real_extent(irec);
struct xfs_trans *tp;
unsigned int resblks;
struct xfs_bmbt_irec uirec;
xfs_filblks_t rlen;
xfs_filblks_t unmap_len;
xfs_off_t newlen;
int64_t qres;
int error;
unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
/* No reflinking if we're low on space */
if (real_extent) {
error = xfs_reflink_ag_has_free_space(mp,
XFS_FSB_TO_AGNO(mp, irec->br_startblock));
if (error)
goto out;
}
/* Start a rolling transaction to switch the mappings */
resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
if (error)
goto out;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
/*
* Reserve quota for this operation. We don't know if the first unmap
* in the dest file will cause a bmap btree split, so we always reserve
* at least enough blocks for that split. If the extent being mapped
* in is written, we need to reserve quota for that too.
*/
qres = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
if (real_extent)
qres += irec->br_blockcount;
error = xfs_trans_reserve_quota_nblks(tp, ip, qres, 0,
XFS_QMOPT_RES_REGBLKS);
if (error)
goto out_cancel;
trace_xfs_reflink_remap(ip, irec->br_startoff,
irec->br_blockcount, irec->br_startblock);
/* Unmap the old blocks in the data fork. */
rlen = unmap_len;
while (rlen) {
ASSERT(tp->t_firstblock == NULLFSBLOCK);
error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
if (error)
goto out_cancel;
/*
* Trim the extent to whatever got unmapped.
* Remember, bunmapi works backwards.
*/
uirec.br_startblock = irec->br_startblock + rlen;
uirec.br_startoff = irec->br_startoff + rlen;
uirec.br_blockcount = unmap_len - rlen;
uirec.br_state = irec->br_state;
unmap_len = rlen;
/* If this isn't a real mapping, we're done. */
if (!real_extent || uirec.br_blockcount == 0)
goto next_extent;
trace_xfs_reflink_remap(ip, uirec.br_startoff,
uirec.br_blockcount, uirec.br_startblock);
/* Update the refcount tree */
error = xfs_refcount_increase_extent(tp, &uirec);
if (error)
goto out_cancel;
/* Map the new blocks into the data fork. */
error = xfs_bmap_map_extent(tp, ip, &uirec);
if (error)
goto out_cancel;
/* Update quota accounting. */
xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
uirec.br_blockcount);
/* Update dest isize if needed. */
newlen = XFS_FSB_TO_B(mp,
uirec.br_startoff + uirec.br_blockcount);
newlen = min_t(xfs_off_t, newlen, new_isize);
if (newlen > i_size_read(VFS_I(ip))) {
trace_xfs_reflink_update_inode_size(ip, newlen);
i_size_write(VFS_I(ip), newlen);
ip->i_d.di_size = newlen;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
}
next_extent:
/* Process all the deferred stuff. */
error = xfs_defer_finish(&tp);
if (error)
goto out_cancel;
}
error = xfs_trans_commit(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
goto out;
return 0;
out_cancel:
xfs_trans_cancel(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
return error;
}
/*
* Iteratively remap one file's extents (and holes) to another's.
*/
STATIC int
xfs_reflink_remap_blocks(
struct xfs_inode *src,
xfs_fileoff_t srcoff,
struct xfs_inode *dest,
xfs_fileoff_t destoff,
xfs_filblks_t len,
xfs_off_t new_isize)
{
struct xfs_bmbt_irec imap;
int nimaps;
int error = 0;
xfs_filblks_t range_len;
/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
while (len) {
uint lock_mode;
trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
dest, destoff);
/* Read extent from the source file */
nimaps = 1;
lock_mode = xfs_ilock_data_map_shared(src);
error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
xfs_iunlock(src, lock_mode);
if (error)
goto err;
ASSERT(nimaps == 1);
trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
&imap);
/* Translate imap into the destination file. */
range_len = imap.br_startoff + imap.br_blockcount - srcoff;
imap.br_startoff += destoff - srcoff;
/* Clear dest from destoff to the end of imap and map it in. */
error = xfs_reflink_remap_extent(dest, &imap, destoff,
new_isize);
if (error)
goto err;
if (fatal_signal_pending(current)) {
error = -EINTR;
goto err;
}
/* Advance drange/srange */
srcoff += range_len;
destoff += range_len;
len -= range_len;
}
return 0;
err:
trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
return error;
}
/*
* Grab the exclusive iolock for a data copy from src to dest, making
* sure to abide vfs locking order (lowest pointer value goes first) and
* breaking the pnfs layout leases on dest before proceeding. The loop
* is needed because we cannot call the blocking break_layout() with the
* src iolock held, and therefore have to back out both locks.
*/
static int
xfs_iolock_two_inodes_and_break_layout(
struct inode *src,
struct inode *dest)
{
int error;
retry:
if (src < dest) {
inode_lock_shared(src);
inode_lock_nested(dest, I_MUTEX_NONDIR2);
} else {
/* src >= dest */
inode_lock(dest);
}
error = break_layout(dest, false);
if (error == -EWOULDBLOCK) {
inode_unlock(dest);
if (src < dest)
inode_unlock_shared(src);
error = break_layout(dest, true);
if (error)
return error;
goto retry;
}
if (error) {
inode_unlock(dest);
if (src < dest)
inode_unlock_shared(src);
return error;
}
if (src > dest)
inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
return 0;
}
/* Unlock both inodes after they've been prepped for a range clone. */
STATIC void
xfs_reflink_remap_unlock(
struct file *file_in,
struct file *file_out)
{
struct inode *inode_in = file_inode(file_in);
struct xfs_inode *src = XFS_I(inode_in);
struct inode *inode_out = file_inode(file_out);
struct xfs_inode *dest = XFS_I(inode_out);
bool same_inode = (inode_in == inode_out);
xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
if (!same_inode)
xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
inode_unlock(inode_out);
if (!same_inode)
inode_unlock_shared(inode_in);
}
/*
* If we're reflinking to a point past the destination file's EOF, we must
* zero any speculative post-EOF preallocations that sit between the old EOF
* and the destination file offset.
*/
static int
xfs_reflink_zero_posteof(
struct xfs_inode *ip,
loff_t pos)
{
loff_t isize = i_size_read(VFS_I(ip));
if (pos <= isize)
return 0;
trace_xfs_zero_eof(ip, isize, pos - isize);
return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
&xfs_iomap_ops);
}
/*
* Prepare two files for range cloning. Upon a successful return both inodes
* will have the iolock and mmaplock held, the page cache of the out file will
* be truncated, and any leases on the out file will have been broken. This
* function borrows heavily from xfs_file_aio_write_checks.
*
* The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
* checked that the bytes beyond EOF physically match. Hence we cannot use the
* EOF block in the source dedupe range because it's not a complete block match,
* hence can introduce a corruption into the file that has it's block replaced.
*
* In similar fashion, the VFS file cloning also allows partial EOF blocks to be
* "block aligned" for the purposes of cloning entire files. However, if the
* source file range includes the EOF block and it lands within the existing EOF
* of the destination file, then we can expose stale data from beyond the source
* file EOF in the destination file.
*
* XFS doesn't support partial block sharing, so in both cases we have check
* these cases ourselves. For dedupe, we can simply round the length to dedupe
* down to the previous whole block and ignore the partial EOF block. While this
* means we can't dedupe the last block of a file, this is an acceptible
* tradeoff for simplicity on implementation.
*
* For cloning, we want to share the partial EOF block if it is also the new EOF
* block of the destination file. If the partial EOF block lies inside the
* existing destination EOF, then we have to abort the clone to avoid exposing
* stale data in the destination file. Hence we reject these clone attempts with
* -EINVAL in this case.
*/
STATIC int
xfs_reflink_remap_prep(
struct file *file_in,
loff_t pos_in,
struct file *file_out,
loff_t pos_out,
u64 *len,
bool is_dedupe)
{
struct inode *inode_in = file_inode(file_in);
struct xfs_inode *src = XFS_I(inode_in);
struct inode *inode_out = file_inode(file_out);
struct xfs_inode *dest = XFS_I(inode_out);
bool same_inode = (inode_in == inode_out);
u64 blkmask = i_blocksize(inode_in) - 1;
ssize_t ret;
/* Lock both files against IO */
ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
if (ret)
return ret;
if (same_inode)
xfs_ilock(src, XFS_MMAPLOCK_EXCL);
else
xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
XFS_MMAPLOCK_EXCL);
/* Check file eligibility and prepare for block sharing. */
ret = -EINVAL;
/* Don't reflink realtime inodes */
if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
goto out_unlock;
/* Don't share DAX file data for now. */
if (IS_DAX(inode_in) || IS_DAX(inode_out))
goto out_unlock;
ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out,
len, is_dedupe);
if (ret <= 0)
goto out_unlock;
/*
* If the dedupe data matches, chop off the partial EOF block
* from the source file so we don't try to dedupe the partial
* EOF block.
*/
if (is_dedupe) {
*len &= ~blkmask;
} else if (*len & blkmask) {
/*
* The user is attempting to share a partial EOF block,
* if it's inside the destination EOF then reject it.
*/
if (pos_out + *len < i_size_read(inode_out)) {
ret = -EINVAL;
goto out_unlock;
}
}
/* Attach dquots to dest inode before changing block map */
ret = xfs_qm_dqattach(dest);
if (ret)
goto out_unlock;
/*
* Zero existing post-eof speculative preallocations in the destination
* file.
*/
ret = xfs_reflink_zero_posteof(dest, pos_out);
if (ret)
goto out_unlock;
/* Set flags and remap blocks. */
ret = xfs_reflink_set_inode_flag(src, dest);
if (ret)
goto out_unlock;
/*
* If pos_out > EOF, we may have dirtied blocks between EOF and
* pos_out. In that case, we need to extend the flush and unmap to cover
* from EOF to the end of the copy length.
*/
if (pos_out > XFS_ISIZE(dest)) {
loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
} else {
ret = xfs_flush_unmap_range(dest, pos_out, *len);
}
if (ret)
goto out_unlock;
/* If we're altering the file contents... */
if (!is_dedupe) {
/*
* ...update the timestamps (which will grab the ilock again
* from xfs_fs_dirty_inode, so we have to call it before we
* take the ilock).
*/
if (!(file_out->f_mode & FMODE_NOCMTIME)) {
ret = file_update_time(file_out);
if (ret)
goto out_unlock;
}
/*
* ...clear the security bits if the process is not being run
* by root. This keeps people from modifying setuid and setgid
* binaries.
*/
ret = file_remove_privs(file_out);
if (ret)
goto out_unlock;
}
return 1;
out_unlock:
xfs_reflink_remap_unlock(file_in, file_out);
return ret;
}
/*
* Link a range of blocks from one file to another.
*/
int
xfs_reflink_remap_range(
struct file *file_in,
loff_t pos_in,
struct file *file_out,
loff_t pos_out,
u64 len,
bool is_dedupe)
{
struct inode *inode_in = file_inode(file_in);
struct xfs_inode *src = XFS_I(inode_in);
struct inode *inode_out = file_inode(file_out);
struct xfs_inode *dest = XFS_I(inode_out);
struct xfs_mount *mp = src->i_mount;
xfs_fileoff_t sfsbno, dfsbno;
xfs_filblks_t fsblen;
xfs_extlen_t cowextsize;
ssize_t ret;
if (!xfs_sb_version_hasreflink(&mp->m_sb))
return -EOPNOTSUPP;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
/* Prepare and then clone file data. */
ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
&len, is_dedupe);
if (ret <= 0)
return ret;
trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
dfsbno = XFS_B_TO_FSBT(mp, pos_out);
sfsbno = XFS_B_TO_FSBT(mp, pos_in);
fsblen = XFS_B_TO_FSB(mp, len);
ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
pos_out + len);
if (ret)
goto out_unlock;
/*
* Carry the cowextsize hint from src to dest if we're sharing the
* entire source file to the entire destination file, the source file
* has a cowextsize hint, and the destination file does not.
*/
cowextsize = 0;
if (pos_in == 0 && len == i_size_read(inode_in) &&
(src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
pos_out == 0 && len >= i_size_read(inode_out) &&
!(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
cowextsize = src->i_d.di_cowextsize;
ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
is_dedupe);
out_unlock:
xfs_reflink_remap_unlock(file_in, file_out);
if (ret)
trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
return ret;
}
/*
* The user wants to preemptively CoW all shared blocks in this file,
* which enables us to turn off the reflink flag. Iterate all
* extents which are not prealloc/delalloc to see which ranges are
* mentioned in the refcount tree, then read those blocks into the
* pagecache, dirty them, fsync them back out, and then we can update
* the inode flag. What happens if we run out of memory? :)
*/
STATIC int
xfs_reflink_dirty_extents(
struct xfs_inode *ip,
xfs_fileoff_t fbno,
xfs_filblks_t end,
xfs_off_t isize)
{
struct xfs_mount *mp = ip->i_mount;
xfs_agnumber_t agno;
xfs_agblock_t agbno;
xfs_extlen_t aglen;
xfs_agblock_t rbno;
xfs_extlen_t rlen;
xfs_off_t fpos;
xfs_off_t flen;
struct xfs_bmbt_irec map[2];
int nmaps;
int error = 0;
while (end - fbno > 0) {
nmaps = 1;
/*
* Look for extents in the file. Skip holes, delalloc, or
* unwritten extents; they can't be reflinked.
*/
error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
if (error)
goto out;
if (nmaps == 0)
break;
if (!xfs_bmap_is_real_extent(&map[0]))
goto next;
map[1] = map[0];
while (map[1].br_blockcount) {
agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
aglen = map[1].br_blockcount;
error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
aglen, &rbno, &rlen, true);
if (error)
goto out;
if (rbno == NULLAGBLOCK)
break;
/* Dirty the pages */
xfs_iunlock(ip, XFS_ILOCK_EXCL);
fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
(rbno - agbno));
flen = XFS_FSB_TO_B(mp, rlen);
if (fpos + flen > isize)
flen = isize - fpos;
error = iomap_file_dirty(VFS_I(ip), fpos, flen,
&xfs_iomap_ops);
xfs_ilock(ip, XFS_ILOCK_EXCL);
if (error)
goto out;
map[1].br_blockcount -= (rbno - agbno + rlen);
map[1].br_startoff += (rbno - agbno + rlen);
map[1].br_startblock += (rbno - agbno + rlen);
}
next:
fbno = map[0].br_startoff + map[0].br_blockcount;
}
out:
return error;
}
/* Does this inode need the reflink flag? */
int
xfs_reflink_inode_has_shared_extents(
struct xfs_trans *tp,
struct xfs_inode *ip,
bool *has_shared)
{
struct xfs_bmbt_irec got;
struct xfs_mount *mp = ip->i_mount;
struct xfs_ifork *ifp;
xfs_agnumber_t agno;
xfs_agblock_t agbno;
xfs_extlen_t aglen;
xfs_agblock_t rbno;
xfs_extlen_t rlen;
struct xfs_iext_cursor icur;
bool found;
int error;
ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
if (!(ifp->if_flags & XFS_IFEXTENTS)) {
error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
if (error)
return error;
}
*has_shared = false;
found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
while (found) {
if (isnullstartblock(got.br_startblock) ||
got.br_state != XFS_EXT_NORM)
goto next;
agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
aglen = got.br_blockcount;
error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
&rbno, &rlen, false);
if (error)
return error;
/* Is there still a shared block here? */
if (rbno != NULLAGBLOCK) {
*has_shared = true;
return 0;
}
next:
found = xfs_iext_next_extent(ifp, &icur, &got);
}
return 0;
}
/*
* Clear the inode reflink flag if there are no shared extents.
*
* The caller is responsible for joining the inode to the transaction passed in.
* The inode will be joined to the transaction that is returned to the caller.
*/
int
xfs_reflink_clear_inode_flag(
struct xfs_inode *ip,
struct xfs_trans **tpp)
{
bool needs_flag;
int error = 0;
ASSERT(xfs_is_reflink_inode(ip));
error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
if (error || needs_flag)
return error;
/*
* We didn't find any shared blocks so turn off the reflink flag.
* First, get rid of any leftover CoW mappings.
*/
error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
if (error)
return error;
/* Clear the inode flag. */
trace_xfs_reflink_unset_inode_flag(ip);
ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
xfs_inode_clear_cowblocks_tag(ip);
xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
return error;
}
/*
* Clear the inode reflink flag if there are no shared extents and the size
* hasn't changed.
*/
STATIC int
xfs_reflink_try_clear_inode_flag(
struct xfs_inode *ip)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
int error = 0;
/* Start a rolling transaction to remove the mappings */
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
error = xfs_reflink_clear_inode_flag(ip, &tp);
if (error)
goto cancel;
error = xfs_trans_commit(tp);
if (error)
goto out;
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return 0;
cancel:
xfs_trans_cancel(tp);
out:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
}
/*
* Pre-COW all shared blocks within a given byte range of a file and turn off
* the reflink flag if we unshare all of the file's blocks.
*/
int
xfs_reflink_unshare(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t len)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t fbno;
xfs_filblks_t end;
xfs_off_t isize;
int error;
if (!xfs_is_reflink_inode(ip))
return 0;
trace_xfs_reflink_unshare(ip, offset, len);
inode_dio_wait(VFS_I(ip));
/* Try to CoW the selected ranges */
xfs_ilock(ip, XFS_ILOCK_EXCL);
fbno = XFS_B_TO_FSBT(mp, offset);
isize = i_size_read(VFS_I(ip));
end = XFS_B_TO_FSB(mp, offset + len);
error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
if (error)
goto out_unlock;
xfs_iunlock(ip, XFS_ILOCK_EXCL);
/* Wait for the IO to finish */
error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
if (error)
goto out;
/* Turn off the reflink flag if possible. */
error = xfs_reflink_try_clear_inode_flag(ip);
if (error)
goto out;
return 0;
out_unlock:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
return error;
}