kernel_samsung_a34x-permissive/sound/soc/bcm/cygnus-pcm.c
2024-04-28 15:51:13 +02:00

861 lines
24 KiB
C

/*
* Copyright (C) 2014-2015 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/debugfs.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dai.h>
#include "cygnus-ssp.h"
/* Register offset needed for ASoC PCM module */
#define INTH_R5F_STATUS_OFFSET 0x040
#define INTH_R5F_CLEAR_OFFSET 0x048
#define INTH_R5F_MASK_SET_OFFSET 0x050
#define INTH_R5F_MASK_CLEAR_OFFSET 0x054
#define BF_REARM_FREE_MARK_OFFSET 0x344
#define BF_REARM_FULL_MARK_OFFSET 0x348
/* Ring Buffer Ctrl Regs --- Start */
/* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_RDADDR_REG_BASE */
#define SRC_RBUF_0_RDADDR_OFFSET 0x500
#define SRC_RBUF_1_RDADDR_OFFSET 0x518
#define SRC_RBUF_2_RDADDR_OFFSET 0x530
#define SRC_RBUF_3_RDADDR_OFFSET 0x548
#define SRC_RBUF_4_RDADDR_OFFSET 0x560
#define SRC_RBUF_5_RDADDR_OFFSET 0x578
#define SRC_RBUF_6_RDADDR_OFFSET 0x590
/* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_WRADDR_REG_BASE */
#define SRC_RBUF_0_WRADDR_OFFSET 0x504
#define SRC_RBUF_1_WRADDR_OFFSET 0x51c
#define SRC_RBUF_2_WRADDR_OFFSET 0x534
#define SRC_RBUF_3_WRADDR_OFFSET 0x54c
#define SRC_RBUF_4_WRADDR_OFFSET 0x564
#define SRC_RBUF_5_WRADDR_OFFSET 0x57c
#define SRC_RBUF_6_WRADDR_OFFSET 0x594
/* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_BASEADDR_REG_BASE */
#define SRC_RBUF_0_BASEADDR_OFFSET 0x508
#define SRC_RBUF_1_BASEADDR_OFFSET 0x520
#define SRC_RBUF_2_BASEADDR_OFFSET 0x538
#define SRC_RBUF_3_BASEADDR_OFFSET 0x550
#define SRC_RBUF_4_BASEADDR_OFFSET 0x568
#define SRC_RBUF_5_BASEADDR_OFFSET 0x580
#define SRC_RBUF_6_BASEADDR_OFFSET 0x598
/* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_ENDADDR_REG_BASE */
#define SRC_RBUF_0_ENDADDR_OFFSET 0x50c
#define SRC_RBUF_1_ENDADDR_OFFSET 0x524
#define SRC_RBUF_2_ENDADDR_OFFSET 0x53c
#define SRC_RBUF_3_ENDADDR_OFFSET 0x554
#define SRC_RBUF_4_ENDADDR_OFFSET 0x56c
#define SRC_RBUF_5_ENDADDR_OFFSET 0x584
#define SRC_RBUF_6_ENDADDR_OFFSET 0x59c
/* AUD_FMM_BF_CTRL_SOURCECH_RINGBUF_X_FREE_MARK_REG_BASE */
#define SRC_RBUF_0_FREE_MARK_OFFSET 0x510
#define SRC_RBUF_1_FREE_MARK_OFFSET 0x528
#define SRC_RBUF_2_FREE_MARK_OFFSET 0x540
#define SRC_RBUF_3_FREE_MARK_OFFSET 0x558
#define SRC_RBUF_4_FREE_MARK_OFFSET 0x570
#define SRC_RBUF_5_FREE_MARK_OFFSET 0x588
#define SRC_RBUF_6_FREE_MARK_OFFSET 0x5a0
/* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_RDADDR_REG_BASE */
#define DST_RBUF_0_RDADDR_OFFSET 0x5c0
#define DST_RBUF_1_RDADDR_OFFSET 0x5d8
#define DST_RBUF_2_RDADDR_OFFSET 0x5f0
#define DST_RBUF_3_RDADDR_OFFSET 0x608
#define DST_RBUF_4_RDADDR_OFFSET 0x620
#define DST_RBUF_5_RDADDR_OFFSET 0x638
/* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_WRADDR_REG_BASE */
#define DST_RBUF_0_WRADDR_OFFSET 0x5c4
#define DST_RBUF_1_WRADDR_OFFSET 0x5dc
#define DST_RBUF_2_WRADDR_OFFSET 0x5f4
#define DST_RBUF_3_WRADDR_OFFSET 0x60c
#define DST_RBUF_4_WRADDR_OFFSET 0x624
#define DST_RBUF_5_WRADDR_OFFSET 0x63c
/* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_BASEADDR_REG_BASE */
#define DST_RBUF_0_BASEADDR_OFFSET 0x5c8
#define DST_RBUF_1_BASEADDR_OFFSET 0x5e0
#define DST_RBUF_2_BASEADDR_OFFSET 0x5f8
#define DST_RBUF_3_BASEADDR_OFFSET 0x610
#define DST_RBUF_4_BASEADDR_OFFSET 0x628
#define DST_RBUF_5_BASEADDR_OFFSET 0x640
/* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_ENDADDR_REG_BASE */
#define DST_RBUF_0_ENDADDR_OFFSET 0x5cc
#define DST_RBUF_1_ENDADDR_OFFSET 0x5e4
#define DST_RBUF_2_ENDADDR_OFFSET 0x5fc
#define DST_RBUF_3_ENDADDR_OFFSET 0x614
#define DST_RBUF_4_ENDADDR_OFFSET 0x62c
#define DST_RBUF_5_ENDADDR_OFFSET 0x644
/* AUD_FMM_BF_CTRL_DESTCH_RINGBUF_X_FULL_MARK_REG_BASE */
#define DST_RBUF_0_FULL_MARK_OFFSET 0x5d0
#define DST_RBUF_1_FULL_MARK_OFFSET 0x5e8
#define DST_RBUF_2_FULL_MARK_OFFSET 0x600
#define DST_RBUF_3_FULL_MARK_OFFSET 0x618
#define DST_RBUF_4_FULL_MARK_OFFSET 0x630
#define DST_RBUF_5_FULL_MARK_OFFSET 0x648
/* Ring Buffer Ctrl Regs --- End */
/* Error Status Regs --- Start */
/* AUD_FMM_BF_ESR_ESRX_STATUS_REG_BASE */
#define ESR0_STATUS_OFFSET 0x900
#define ESR1_STATUS_OFFSET 0x918
#define ESR2_STATUS_OFFSET 0x930
#define ESR3_STATUS_OFFSET 0x948
#define ESR4_STATUS_OFFSET 0x960
/* AUD_FMM_BF_ESR_ESRX_STATUS_CLEAR_REG_BASE */
#define ESR0_STATUS_CLR_OFFSET 0x908
#define ESR1_STATUS_CLR_OFFSET 0x920
#define ESR2_STATUS_CLR_OFFSET 0x938
#define ESR3_STATUS_CLR_OFFSET 0x950
#define ESR4_STATUS_CLR_OFFSET 0x968
/* AUD_FMM_BF_ESR_ESRX_MASK_REG_BASE */
#define ESR0_MASK_STATUS_OFFSET 0x90c
#define ESR1_MASK_STATUS_OFFSET 0x924
#define ESR2_MASK_STATUS_OFFSET 0x93c
#define ESR3_MASK_STATUS_OFFSET 0x954
#define ESR4_MASK_STATUS_OFFSET 0x96c
/* AUD_FMM_BF_ESR_ESRX_MASK_SET_REG_BASE */
#define ESR0_MASK_SET_OFFSET 0x910
#define ESR1_MASK_SET_OFFSET 0x928
#define ESR2_MASK_SET_OFFSET 0x940
#define ESR3_MASK_SET_OFFSET 0x958
#define ESR4_MASK_SET_OFFSET 0x970
/* AUD_FMM_BF_ESR_ESRX_MASK_CLEAR_REG_BASE */
#define ESR0_MASK_CLR_OFFSET 0x914
#define ESR1_MASK_CLR_OFFSET 0x92c
#define ESR2_MASK_CLR_OFFSET 0x944
#define ESR3_MASK_CLR_OFFSET 0x95c
#define ESR4_MASK_CLR_OFFSET 0x974
/* Error Status Regs --- End */
#define R5F_ESR0_SHIFT 0 /* esr0 = fifo underflow */
#define R5F_ESR1_SHIFT 1 /* esr1 = ringbuf underflow */
#define R5F_ESR2_SHIFT 2 /* esr2 = ringbuf overflow */
#define R5F_ESR3_SHIFT 3 /* esr3 = freemark */
#define R5F_ESR4_SHIFT 4 /* esr4 = fullmark */
/* Mask for R5F register. Set all relevant interrupt for playback handler */
#define ANY_PLAYBACK_IRQ (BIT(R5F_ESR0_SHIFT) | \
BIT(R5F_ESR1_SHIFT) | \
BIT(R5F_ESR3_SHIFT))
/* Mask for R5F register. Set all relevant interrupt for capture handler */
#define ANY_CAPTURE_IRQ (BIT(R5F_ESR2_SHIFT) | BIT(R5F_ESR4_SHIFT))
/*
* PERIOD_BYTES_MIN is the number of bytes to at which the interrupt will tick.
* This number should be a multiple of 256. Minimum value is 256
*/
#define PERIOD_BYTES_MIN 0x100
static const struct snd_pcm_hardware cygnus_pcm_hw = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE,
/* A period is basically an interrupt */
.period_bytes_min = PERIOD_BYTES_MIN,
.period_bytes_max = 0x10000,
/* period_min/max gives range of approx interrupts per buffer */
.periods_min = 2,
.periods_max = 8,
/*
* maximum buffer size in bytes = period_bytes_max * periods_max
* We allocate this amount of data for each enabled channel
*/
.buffer_bytes_max = 4 * 0x8000,
};
static u64 cygnus_dma_dmamask = DMA_BIT_MASK(32);
static struct cygnus_aio_port *cygnus_dai_get_dma_data(
struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *soc_runtime = substream->private_data;
return snd_soc_dai_get_dma_data(soc_runtime->cpu_dai, substream);
}
static void ringbuf_set_initial(void __iomem *audio_io,
struct ringbuf_regs *p_rbuf,
bool is_playback,
u32 start,
u32 periodsize,
u32 bufsize)
{
u32 initial_rd;
u32 initial_wr;
u32 end;
u32 fmark_val; /* free or full mark */
p_rbuf->period_bytes = periodsize;
p_rbuf->buf_size = bufsize;
if (is_playback) {
/* Set the pointers to indicate full (flip uppermost bit) */
initial_rd = start;
initial_wr = initial_rd ^ BIT(31);
} else {
/* Set the pointers to indicate empty */
initial_wr = start;
initial_rd = initial_wr;
}
end = start + bufsize - 1;
/*
* The interrupt will fire when free/full mark is *exceeded*
* The fmark value must be multiple of PERIOD_BYTES_MIN so set fmark
* to be PERIOD_BYTES_MIN less than the period size.
*/
fmark_val = periodsize - PERIOD_BYTES_MIN;
writel(start, audio_io + p_rbuf->baseaddr);
writel(end, audio_io + p_rbuf->endaddr);
writel(fmark_val, audio_io + p_rbuf->fmark);
writel(initial_rd, audio_io + p_rbuf->rdaddr);
writel(initial_wr, audio_io + p_rbuf->wraddr);
}
static int configure_ringbuf_regs(struct snd_pcm_substream *substream)
{
struct cygnus_aio_port *aio;
struct ringbuf_regs *p_rbuf;
int status = 0;
aio = cygnus_dai_get_dma_data(substream);
/* Map the ssp portnum to a set of ring buffers. */
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
p_rbuf = &aio->play_rb_regs;
switch (aio->portnum) {
case 0:
*p_rbuf = RINGBUF_REG_PLAYBACK(0);
break;
case 1:
*p_rbuf = RINGBUF_REG_PLAYBACK(2);
break;
case 2:
*p_rbuf = RINGBUF_REG_PLAYBACK(4);
break;
case 3: /* SPDIF */
*p_rbuf = RINGBUF_REG_PLAYBACK(6);
break;
default:
status = -EINVAL;
}
} else {
p_rbuf = &aio->capture_rb_regs;
switch (aio->portnum) {
case 0:
*p_rbuf = RINGBUF_REG_CAPTURE(0);
break;
case 1:
*p_rbuf = RINGBUF_REG_CAPTURE(2);
break;
case 2:
*p_rbuf = RINGBUF_REG_CAPTURE(4);
break;
default:
status = -EINVAL;
}
}
return status;
}
static struct ringbuf_regs *get_ringbuf(struct snd_pcm_substream *substream)
{
struct cygnus_aio_port *aio;
struct ringbuf_regs *p_rbuf = NULL;
aio = cygnus_dai_get_dma_data(substream);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
p_rbuf = &aio->play_rb_regs;
else
p_rbuf = &aio->capture_rb_regs;
return p_rbuf;
}
static void enable_intr(struct snd_pcm_substream *substream)
{
struct cygnus_aio_port *aio;
u32 clear_mask;
aio = cygnus_dai_get_dma_data(substream);
/* The port number maps to the bit position to be cleared */
clear_mask = BIT(aio->portnum);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
/* Clear interrupt status before enabling them */
writel(clear_mask, aio->cygaud->audio + ESR0_STATUS_CLR_OFFSET);
writel(clear_mask, aio->cygaud->audio + ESR1_STATUS_CLR_OFFSET);
writel(clear_mask, aio->cygaud->audio + ESR3_STATUS_CLR_OFFSET);
/* Unmask the interrupts of the given port*/
writel(clear_mask, aio->cygaud->audio + ESR0_MASK_CLR_OFFSET);
writel(clear_mask, aio->cygaud->audio + ESR1_MASK_CLR_OFFSET);
writel(clear_mask, aio->cygaud->audio + ESR3_MASK_CLR_OFFSET);
writel(ANY_PLAYBACK_IRQ,
aio->cygaud->audio + INTH_R5F_MASK_CLEAR_OFFSET);
} else {
writel(clear_mask, aio->cygaud->audio + ESR2_STATUS_CLR_OFFSET);
writel(clear_mask, aio->cygaud->audio + ESR4_STATUS_CLR_OFFSET);
writel(clear_mask, aio->cygaud->audio + ESR2_MASK_CLR_OFFSET);
writel(clear_mask, aio->cygaud->audio + ESR4_MASK_CLR_OFFSET);
writel(ANY_CAPTURE_IRQ,
aio->cygaud->audio + INTH_R5F_MASK_CLEAR_OFFSET);
}
}
static void disable_intr(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct cygnus_aio_port *aio;
u32 set_mask;
aio = cygnus_dai_get_dma_data(substream);
dev_dbg(rtd->cpu_dai->dev, "%s on port %d\n", __func__, aio->portnum);
/* The port number maps to the bit position to be set */
set_mask = BIT(aio->portnum);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
/* Mask the interrupts of the given port*/
writel(set_mask, aio->cygaud->audio + ESR0_MASK_SET_OFFSET);
writel(set_mask, aio->cygaud->audio + ESR1_MASK_SET_OFFSET);
writel(set_mask, aio->cygaud->audio + ESR3_MASK_SET_OFFSET);
} else {
writel(set_mask, aio->cygaud->audio + ESR2_MASK_SET_OFFSET);
writel(set_mask, aio->cygaud->audio + ESR4_MASK_SET_OFFSET);
}
}
static int cygnus_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
int ret = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
enable_intr(substream);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
disable_intr(substream);
break;
default:
ret = -EINVAL;
}
return ret;
}
static void cygnus_pcm_period_elapsed(struct snd_pcm_substream *substream)
{
struct cygnus_aio_port *aio;
struct ringbuf_regs *p_rbuf = NULL;
u32 regval;
aio = cygnus_dai_get_dma_data(substream);
p_rbuf = get_ringbuf(substream);
/*
* If free/full mark interrupt occurs, provide timestamp
* to ALSA and update appropriate idx by period_bytes
*/
snd_pcm_period_elapsed(substream);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
/* Set the ring buffer to full */
regval = readl(aio->cygaud->audio + p_rbuf->rdaddr);
regval = regval ^ BIT(31);
writel(regval, aio->cygaud->audio + p_rbuf->wraddr);
} else {
/* Set the ring buffer to empty */
regval = readl(aio->cygaud->audio + p_rbuf->wraddr);
writel(regval, aio->cygaud->audio + p_rbuf->rdaddr);
}
}
/*
* ESR0/1/3 status Description
* 0x1 I2S0_out port caused interrupt
* 0x2 I2S1_out port caused interrupt
* 0x4 I2S2_out port caused interrupt
* 0x8 SPDIF_out port caused interrupt
*/
static void handle_playback_irq(struct cygnus_audio *cygaud)
{
void __iomem *audio_io;
u32 port;
u32 esr_status0, esr_status1, esr_status3;
audio_io = cygaud->audio;
/*
* ESR status gets updates with/without interrupts enabled.
* So, check the ESR mask, which provides interrupt enable/
* disable status and use it to determine which ESR status
* should be serviced.
*/
esr_status0 = readl(audio_io + ESR0_STATUS_OFFSET);
esr_status0 &= ~readl(audio_io + ESR0_MASK_STATUS_OFFSET);
esr_status1 = readl(audio_io + ESR1_STATUS_OFFSET);
esr_status1 &= ~readl(audio_io + ESR1_MASK_STATUS_OFFSET);
esr_status3 = readl(audio_io + ESR3_STATUS_OFFSET);
esr_status3 &= ~readl(audio_io + ESR3_MASK_STATUS_OFFSET);
for (port = 0; port < CYGNUS_MAX_PLAYBACK_PORTS; port++) {
u32 esrmask = BIT(port);
/*
* Ringbuffer or FIFO underflow
* If we get this interrupt then, it is also true that we have
* not yet responded to the freemark interrupt.
* Log a debug message. The freemark handler below will
* handle getting everything going again.
*/
if ((esrmask & esr_status1) || (esrmask & esr_status0)) {
dev_dbg(cygaud->dev,
"Underrun: esr0=0x%x, esr1=0x%x esr3=0x%x\n",
esr_status0, esr_status1, esr_status3);
}
/*
* Freemark is hit. This is the normal interrupt.
* In typical operation the read and write regs will be equal
*/
if (esrmask & esr_status3) {
struct snd_pcm_substream *playstr;
playstr = cygaud->portinfo[port].play_stream;
cygnus_pcm_period_elapsed(playstr);
}
}
/* Clear ESR interrupt */
writel(esr_status0, audio_io + ESR0_STATUS_CLR_OFFSET);
writel(esr_status1, audio_io + ESR1_STATUS_CLR_OFFSET);
writel(esr_status3, audio_io + ESR3_STATUS_CLR_OFFSET);
/* Rearm freemark logic by writing 1 to the correct bit */
writel(esr_status3, audio_io + BF_REARM_FREE_MARK_OFFSET);
}
/*
* ESR2/4 status Description
* 0x1 I2S0_in port caused interrupt
* 0x2 I2S1_in port caused interrupt
* 0x4 I2S2_in port caused interrupt
*/
static void handle_capture_irq(struct cygnus_audio *cygaud)
{
void __iomem *audio_io;
u32 port;
u32 esr_status2, esr_status4;
audio_io = cygaud->audio;
/*
* ESR status gets updates with/without interrupts enabled.
* So, check the ESR mask, which provides interrupt enable/
* disable status and use it to determine which ESR status
* should be serviced.
*/
esr_status2 = readl(audio_io + ESR2_STATUS_OFFSET);
esr_status2 &= ~readl(audio_io + ESR2_MASK_STATUS_OFFSET);
esr_status4 = readl(audio_io + ESR4_STATUS_OFFSET);
esr_status4 &= ~readl(audio_io + ESR4_MASK_STATUS_OFFSET);
for (port = 0; port < CYGNUS_MAX_CAPTURE_PORTS; port++) {
u32 esrmask = BIT(port);
/*
* Ringbuffer or FIFO overflow
* If we get this interrupt then, it is also true that we have
* not yet responded to the fullmark interrupt.
* Log a debug message. The fullmark handler below will
* handle getting everything going again.
*/
if (esrmask & esr_status2)
dev_dbg(cygaud->dev,
"Overflow: esr2=0x%x\n", esr_status2);
if (esrmask & esr_status4) {
struct snd_pcm_substream *capstr;
capstr = cygaud->portinfo[port].capture_stream;
cygnus_pcm_period_elapsed(capstr);
}
}
writel(esr_status2, audio_io + ESR2_STATUS_CLR_OFFSET);
writel(esr_status4, audio_io + ESR4_STATUS_CLR_OFFSET);
/* Rearm fullmark logic by writing 1 to the correct bit */
writel(esr_status4, audio_io + BF_REARM_FULL_MARK_OFFSET);
}
static irqreturn_t cygnus_dma_irq(int irq, void *data)
{
u32 r5_status;
struct cygnus_audio *cygaud = data;
/*
* R5 status bits Description
* 0 ESR0 (playback FIFO interrupt)
* 1 ESR1 (playback rbuf interrupt)
* 2 ESR2 (capture rbuf interrupt)
* 3 ESR3 (Freemark play. interrupt)
* 4 ESR4 (Fullmark capt. interrupt)
*/
r5_status = readl(cygaud->audio + INTH_R5F_STATUS_OFFSET);
if (!(r5_status & (ANY_PLAYBACK_IRQ | ANY_CAPTURE_IRQ)))
return IRQ_NONE;
/* If playback interrupt happened */
if (ANY_PLAYBACK_IRQ & r5_status) {
handle_playback_irq(cygaud);
writel(ANY_PLAYBACK_IRQ & r5_status,
cygaud->audio + INTH_R5F_CLEAR_OFFSET);
}
/* If capture interrupt happened */
if (ANY_CAPTURE_IRQ & r5_status) {
handle_capture_irq(cygaud);
writel(ANY_CAPTURE_IRQ & r5_status,
cygaud->audio + INTH_R5F_CLEAR_OFFSET);
}
return IRQ_HANDLED;
}
static int cygnus_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
struct cygnus_aio_port *aio;
int ret;
aio = cygnus_dai_get_dma_data(substream);
if (!aio)
return -ENODEV;
dev_dbg(rtd->cpu_dai->dev, "%s port %d\n", __func__, aio->portnum);
snd_soc_set_runtime_hwparams(substream, &cygnus_pcm_hw);
ret = snd_pcm_hw_constraint_step(runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES, PERIOD_BYTES_MIN);
if (ret < 0)
return ret;
ret = snd_pcm_hw_constraint_step(runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_BYTES, PERIOD_BYTES_MIN);
if (ret < 0)
return ret;
/*
* Keep track of which substream belongs to which port.
* This info is needed by snd_pcm_period_elapsed() in irq_handler
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
aio->play_stream = substream;
else
aio->capture_stream = substream;
return 0;
}
static int cygnus_pcm_close(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct cygnus_aio_port *aio;
aio = cygnus_dai_get_dma_data(substream);
dev_dbg(rtd->cpu_dai->dev, "%s port %d\n", __func__, aio->portnum);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
aio->play_stream = NULL;
else
aio->capture_stream = NULL;
if (!aio->play_stream && !aio->capture_stream)
dev_dbg(rtd->cpu_dai->dev, "freed port %d\n", aio->portnum);
return 0;
}
static int cygnus_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
struct cygnus_aio_port *aio;
int ret = 0;
aio = cygnus_dai_get_dma_data(substream);
dev_dbg(rtd->cpu_dai->dev, "%s port %d\n", __func__, aio->portnum);
snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
runtime->dma_bytes = params_buffer_bytes(params);
return ret;
}
static int cygnus_pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct cygnus_aio_port *aio;
aio = cygnus_dai_get_dma_data(substream);
dev_dbg(rtd->cpu_dai->dev, "%s port %d\n", __func__, aio->portnum);
snd_pcm_set_runtime_buffer(substream, NULL);
return 0;
}
static int cygnus_pcm_prepare(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
struct cygnus_aio_port *aio;
unsigned long bufsize, periodsize;
int ret = 0;
bool is_play;
u32 start;
struct ringbuf_regs *p_rbuf = NULL;
aio = cygnus_dai_get_dma_data(substream);
dev_dbg(rtd->cpu_dai->dev, "%s port %d\n", __func__, aio->portnum);
bufsize = snd_pcm_lib_buffer_bytes(substream);
periodsize = snd_pcm_lib_period_bytes(substream);
dev_dbg(rtd->cpu_dai->dev, "%s (buf_size %lu) (period_size %lu)\n",
__func__, bufsize, periodsize);
configure_ringbuf_regs(substream);
p_rbuf = get_ringbuf(substream);
start = runtime->dma_addr;
is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 1 : 0;
ringbuf_set_initial(aio->cygaud->audio, p_rbuf, is_play, start,
periodsize, bufsize);
return ret;
}
static snd_pcm_uframes_t cygnus_pcm_pointer(struct snd_pcm_substream *substream)
{
struct cygnus_aio_port *aio;
unsigned int res = 0, cur = 0, base = 0;
struct ringbuf_regs *p_rbuf = NULL;
aio = cygnus_dai_get_dma_data(substream);
/*
* Get the offset of the current read (for playack) or write
* index (for capture). Report this value back to the asoc framework.
*/
p_rbuf = get_ringbuf(substream);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
cur = readl(aio->cygaud->audio + p_rbuf->rdaddr);
else
cur = readl(aio->cygaud->audio + p_rbuf->wraddr);
base = readl(aio->cygaud->audio + p_rbuf->baseaddr);
/*
* Mask off the MSB of the rdaddr,wraddr and baseaddr
* since MSB is not part of the address
*/
res = (cur & 0x7fffffff) - (base & 0x7fffffff);
return bytes_to_frames(substream->runtime, res);
}
static int cygnus_pcm_preallocate_dma_buffer(struct snd_pcm *pcm, int stream)
{
struct snd_pcm_substream *substream = pcm->streams[stream].substream;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_dma_buffer *buf = &substream->dma_buffer;
size_t size;
size = cygnus_pcm_hw.buffer_bytes_max;
buf->dev.type = SNDRV_DMA_TYPE_DEV;
buf->dev.dev = pcm->card->dev;
buf->private_data = NULL;
buf->area = dma_alloc_coherent(pcm->card->dev, size,
&buf->addr, GFP_KERNEL);
dev_dbg(rtd->cpu_dai->dev, "%s: size 0x%zx @ %pK\n",
__func__, size, buf->area);
if (!buf->area) {
dev_err(rtd->cpu_dai->dev, "%s: dma_alloc failed\n", __func__);
return -ENOMEM;
}
buf->bytes = size;
return 0;
}
static const struct snd_pcm_ops cygnus_pcm_ops = {
.open = cygnus_pcm_open,
.close = cygnus_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = cygnus_pcm_hw_params,
.hw_free = cygnus_pcm_hw_free,
.prepare = cygnus_pcm_prepare,
.trigger = cygnus_pcm_trigger,
.pointer = cygnus_pcm_pointer,
};
static void cygnus_dma_free_dma_buffers(struct snd_pcm *pcm)
{
struct snd_pcm_substream *substream;
struct snd_dma_buffer *buf;
substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
if (substream) {
buf = &substream->dma_buffer;
if (buf->area) {
dma_free_coherent(pcm->card->dev, buf->bytes,
buf->area, buf->addr);
buf->area = NULL;
}
}
substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream;
if (substream) {
buf = &substream->dma_buffer;
if (buf->area) {
dma_free_coherent(pcm->card->dev, buf->bytes,
buf->area, buf->addr);
buf->area = NULL;
}
}
}
static int cygnus_dma_new(struct snd_soc_pcm_runtime *rtd)
{
struct snd_card *card = rtd->card->snd_card;
struct snd_pcm *pcm = rtd->pcm;
int ret;
if (!card->dev->dma_mask)
card->dev->dma_mask = &cygnus_dma_dmamask;
if (!card->dev->coherent_dma_mask)
card->dev->coherent_dma_mask = DMA_BIT_MASK(32);
if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
ret = cygnus_pcm_preallocate_dma_buffer(pcm,
SNDRV_PCM_STREAM_PLAYBACK);
if (ret)
return ret;
}
if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
ret = cygnus_pcm_preallocate_dma_buffer(pcm,
SNDRV_PCM_STREAM_CAPTURE);
if (ret) {
cygnus_dma_free_dma_buffers(pcm);
return ret;
}
}
return 0;
}
static struct snd_soc_component_driver cygnus_soc_platform = {
.ops = &cygnus_pcm_ops,
.pcm_new = cygnus_dma_new,
.pcm_free = cygnus_dma_free_dma_buffers,
};
int cygnus_soc_platform_register(struct device *dev,
struct cygnus_audio *cygaud)
{
int rc = 0;
dev_dbg(dev, "%s Enter\n", __func__);
rc = devm_request_irq(dev, cygaud->irq_num, cygnus_dma_irq,
IRQF_SHARED, "cygnus-audio", cygaud);
if (rc) {
dev_err(dev, "%s request_irq error %d\n", __func__, rc);
return rc;
}
rc = devm_snd_soc_register_component(dev, &cygnus_soc_platform,
NULL, 0);
if (rc) {
dev_err(dev, "%s failed\n", __func__);
return rc;
}
return 0;
}
int cygnus_soc_platform_unregister(struct device *dev)
{
return 0;
}
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Broadcom");
MODULE_DESCRIPTION("Cygnus ASoC PCM module");