kernel_samsung_a34x-permissive/sound/soc/mediatek/mt6768/mt6768-dai-adda.c
2024-04-28 15:51:13 +02:00

772 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// MediaTek ALSA SoC Audio DAI ADDA Control
//
// Copyright (c) 2018 MediaTek Inc.
// Author: Michael Hsiao <michael.hsiao@mediatek.com>
#include <linux/regmap.h>
#include <linux/delay.h>
#include "mt6768-afe-common.h"
#include "mt6768-afe-gpio.h"
#include "mt6768-interconnection.h"
enum {
UL_IIR_SW = 0,
UL_IIR_5HZ,
UL_IIR_10HZ,
UL_IIR_25HZ,
UL_IIR_50HZ,
UL_IIR_75HZ,
};
enum {
AUDIO_SDM_LEVEL_MUTE = 0,
AUDIO_SDM_LEVEL_NORMAL = 0x1d,
/* if you change level normal */
/* you need to change formula of hp impedance and dc trim too */
};
enum {
AUDIO_SDM_2ND = 0,
AUDIO_SDM_3RD,
};
enum {
DELAY_DATA_MISO1 = 0,
DELAY_DATA_MISO2,
};
enum {
MTK_AFE_ADDA_DL_RATE_8K = 0,
MTK_AFE_ADDA_DL_RATE_11K = 1,
MTK_AFE_ADDA_DL_RATE_12K = 2,
MTK_AFE_ADDA_DL_RATE_16K = 3,
MTK_AFE_ADDA_DL_RATE_22K = 4,
MTK_AFE_ADDA_DL_RATE_24K = 5,
MTK_AFE_ADDA_DL_RATE_32K = 6,
MTK_AFE_ADDA_DL_RATE_44K = 7,
MTK_AFE_ADDA_DL_RATE_48K = 8,
MTK_AFE_ADDA_DL_RATE_96K = 9,
MTK_AFE_ADDA_DL_RATE_192K = 10,
};
enum {
MTK_AFE_ADDA_UL_RATE_8K = 0,
MTK_AFE_ADDA_UL_RATE_16K = 1,
MTK_AFE_ADDA_UL_RATE_32K = 2,
MTK_AFE_ADDA_UL_RATE_48K = 3,
MTK_AFE_ADDA_UL_RATE_96K = 4,
MTK_AFE_ADDA_UL_RATE_192K = 5,
MTK_AFE_ADDA_UL_RATE_48K_HD = 6,
};
static unsigned int adda_dl_rate_transform(struct mtk_base_afe *afe,
unsigned int rate)
{
switch (rate) {
case 8000:
return MTK_AFE_ADDA_DL_RATE_8K;
case 11025:
return MTK_AFE_ADDA_DL_RATE_11K;
case 12000:
return MTK_AFE_ADDA_DL_RATE_12K;
case 16000:
return MTK_AFE_ADDA_DL_RATE_16K;
case 22050:
return MTK_AFE_ADDA_DL_RATE_22K;
case 24000:
return MTK_AFE_ADDA_DL_RATE_24K;
case 32000:
return MTK_AFE_ADDA_DL_RATE_32K;
case 44100:
return MTK_AFE_ADDA_DL_RATE_44K;
case 48000:
return MTK_AFE_ADDA_DL_RATE_48K;
case 96000:
return MTK_AFE_ADDA_DL_RATE_96K;
case 192000:
return MTK_AFE_ADDA_DL_RATE_192K;
default:
dev_warn(afe->dev, "%s(), rate %d invalid, use 48kHz!!!\n",
__func__, rate);
return MTK_AFE_ADDA_DL_RATE_48K;
}
}
static unsigned int adda_ul_rate_transform(struct mtk_base_afe *afe,
unsigned int rate)
{
switch (rate) {
case 8000:
return MTK_AFE_ADDA_UL_RATE_8K;
case 16000:
return MTK_AFE_ADDA_UL_RATE_16K;
case 32000:
return MTK_AFE_ADDA_UL_RATE_32K;
case 48000:
return MTK_AFE_ADDA_UL_RATE_48K;
case 96000:
return MTK_AFE_ADDA_UL_RATE_96K;
case 192000:
return MTK_AFE_ADDA_UL_RATE_192K;
default:
dev_warn(afe->dev, "%s(), rate %d invalid, use 48kHz!!!\n",
__func__, rate);
return MTK_AFE_ADDA_UL_RATE_48K;
}
}
/* dai component */
static const struct snd_kcontrol_new mtk_adda_dl_ch1_mix[] = {
SOC_DAPM_SINGLE_AUTODISABLE("DL1_CH1", AFE_CONN3, I_DL1_CH1, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("DL12_CH1", AFE_CONN3, I_DL12_CH1, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("DL2_CH1", AFE_CONN3, I_DL2_CH1, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("DL3_CH1", AFE_CONN3, I_DL3_CH1, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH2", AFE_CONN3,
I_ADDA_UL_CH2, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH1", AFE_CONN3,
I_ADDA_UL_CH1, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("GAIN1_OUT_CH1", AFE_CONN3,
I_GAIN1_OUT_CH1, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("PCM_2_CAP_CH1", AFE_CONN3,
I_PCM_2_CAP_CH1, 1, 0),
};
static const struct snd_kcontrol_new mtk_adda_dl_ch2_mix[] = {
SOC_DAPM_SINGLE_AUTODISABLE("DL1_CH1", AFE_CONN4, I_DL1_CH1, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("DL1_CH2", AFE_CONN4, I_DL1_CH2, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("DL12_CH2", AFE_CONN4, I_DL12_CH2, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("DL2_CH1", AFE_CONN4, I_DL2_CH1, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("DL2_CH2", AFE_CONN4, I_DL2_CH2, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("DL3_CH1", AFE_CONN4, I_DL3_CH1, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("DL3_CH2", AFE_CONN4, I_DL3_CH2, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH2", AFE_CONN4,
I_ADDA_UL_CH2, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("ADDA_UL_CH1", AFE_CONN4,
I_ADDA_UL_CH1, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("GAIN1_OUT_CH2", AFE_CONN4,
I_GAIN1_OUT_CH2, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("PCM_2_CAP_CH1", AFE_CONN4,
I_PCM_2_CAP_CH1, 1, 0),
SOC_DAPM_SINGLE_AUTODISABLE("PCM_2_CAP_CH2", AFE_CONN4,
I_PCM_2_CAP_CH2, 1, 0),
};
enum {
SUPPLY_SEQ_ADDA_AFE_ON,
SUPPLY_SEQ_ADDA_DL_ON,
SUPPLY_SEQ_ADDA_UL_ON,
};
static int mtk_adda_ul_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm);
struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt);
struct mt6768_afe_private *afe_priv = afe->platform_priv;
int mtkaif_dmic = afe_priv->mtkaif_dmic;
dev_info(afe->dev, "%s(), name %s, event 0x%x, mtkaif_dmic %d\n",
__func__, w->name, event, mtkaif_dmic);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
mt6768_afe_gpio_request(afe, true, MT6768_DAI_ADDA, 1);
/* update setting to dmic */
if (mtkaif_dmic) {
/* mtkaif_rxif_data_mode = 1, dmic */
regmap_update_bits(afe->regmap, AFE_ADDA_MTKAIF_RX_CFG0,
0x1, 0x1);
/* dmic mode, 3.25M*/
regmap_update_bits(afe->regmap, AFE_ADDA_MTKAIF_RX_CFG0,
0xf << 20, 0x0);
regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0,
0x1 << 5, 0x0);
regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0,
0x3 << 14, 0x0);
/* turn on dmic, ch1, ch2 */
regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0,
0x1 << 1, 0x1 << 1);
regmap_update_bits(afe->regmap, AFE_ADDA_UL_SRC_CON0,
0x3 << 21, 0x3 << 21);
}
break;
case SND_SOC_DAPM_POST_PMD:
/* should delayed 1/fs(smallest is 8k) = 125us before afe off */
udelay(125);
mt6768_afe_gpio_request(afe, false, MT6768_DAI_ADDA, 1);
/* reset dmic */
afe_priv->mtkaif_dmic = 0;
break;
default:
break;
}
return 0;
}
static int mtk_adda_dl_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm);
struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt);
dev_info(afe->dev, "%s(), name %s, event 0x%x\n",
__func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
mt6768_afe_gpio_request(afe, true, MT6768_DAI_ADDA, 0);
break;
case SND_SOC_DAPM_POST_PMD:
/* should delayed 1/fs(smallest is 8k) = 125us before afe off */
udelay(125);
mt6768_afe_gpio_request(afe, false, MT6768_DAI_ADDA, 0);
break;
default:
break;
}
return 0;
}
/* stf */
static int stf_positive_gain_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt);
struct mt6768_afe_private *afe_priv = afe->platform_priv;
ucontrol->value.integer.value[0] = afe_priv->stf_positive_gain_db;
return 0;
}
static int stf_positive_gain_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt);
struct mt6768_afe_private *afe_priv = afe->platform_priv;
int gain_db = ucontrol->value.integer.value[0];
afe_priv->stf_positive_gain_db = gain_db;
if (gain_db >= 0 && gain_db <= 24) {
regmap_update_bits(afe->regmap,
AFE_SIDETONE_GAIN,
POSITIVE_GAIN_MASK_SFT,
(gain_db / 6) << POSITIVE_GAIN_SFT);
} else {
dev_warn(afe->dev, "%s(), gain_db %d invalid\n",
__func__, gain_db);
}
return 0;
}
/* mtkaif dmic */
static const char * const mt6768_adda_off_on_str[] = {
"Off", "On"
};
static const struct soc_enum mt6768_adda_enum[] = {
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(mt6768_adda_off_on_str),
mt6768_adda_off_on_str),
};
static int mt6768_adda_dmic_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt);
struct mt6768_afe_private *afe_priv = afe->platform_priv;
ucontrol->value.integer.value[0] = afe_priv->mtkaif_dmic;
return 0;
}
static int mt6768_adda_dmic_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt);
struct mt6768_afe_private *afe_priv = afe->platform_priv;
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
int dmic_on;
if (ucontrol->value.enumerated.item[0] >= e->items)
return -EINVAL;
dmic_on = ucontrol->value.integer.value[0];
dev_info(afe->dev, "%s(), kcontrol name %s, dmic_on %d\n",
__func__, kcontrol->id.name, dmic_on);
afe_priv->mtkaif_dmic = dmic_on;
return 0;
}
static const struct snd_kcontrol_new mtk_adda_controls[] = {
SOC_SINGLE("Sidetone_Gain", AFE_SIDETONE_GAIN,
SIDE_TONE_GAIN_SFT, SIDE_TONE_GAIN_MASK, 0),
SOC_SINGLE_EXT("Sidetone_Positive_Gain_dB", SND_SOC_NOPM, 0, 100, 0,
stf_positive_gain_get, stf_positive_gain_set),
SOC_SINGLE("ADDA_DL_GAIN", AFE_ADDA_DL_SRC2_CON1,
DL_2_GAIN_CTL_PRE_SFT, DL_2_GAIN_CTL_PRE_MASK, 0),
SOC_ENUM_EXT("MTKAIF_DMIC", mt6768_adda_enum[0],
mt6768_adda_dmic_get, mt6768_adda_dmic_set),
};
static const struct snd_kcontrol_new stf_ctl =
SOC_DAPM_SINGLE("Switch", SND_SOC_NOPM, 0, 1, 0);
static const uint16_t stf_coeff_table_16k[] = {
0x049C, 0x09E8, 0x09E0, 0x089C,
0xFF54, 0xF488, 0xEAFC, 0xEBAC,
0xfA40, 0x17AC, 0x3D1C, 0x6028,
0x7538
};
static const uint16_t stf_coeff_table_32k[] = {
0xFE52, 0x0042, 0x00C5, 0x0194,
0x029A, 0x03B7, 0x04BF, 0x057D,
0x05BE, 0x0555, 0x0426, 0x0230,
0xFF92, 0xFC89, 0xF973, 0xF6C6,
0xF500, 0xF49D, 0xF603, 0xF970,
0xFEF3, 0x065F, 0x0F4F, 0x1928,
0x2329, 0x2C80, 0x345E, 0x3A0D,
0x3D08
};
static const uint16_t stf_coeff_table_48k[] = {
0x0401, 0xFFB0, 0xFF5A, 0xFECE,
0xFE10, 0xFD28, 0xFC21, 0xFB08,
0xF9EF, 0xF8E8, 0xF80A, 0xF76C,
0xF724, 0xF746, 0xF7E6, 0xF90F,
0xFACC, 0xFD1E, 0xFFFF, 0x0364,
0x0737, 0x0B62, 0x0FC1, 0x1431,
0x188A, 0x1CA4, 0x2056, 0x237D,
0x25F9, 0x27B0, 0x2890
};
static int mtk_stf_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm);
struct mtk_base_afe *afe = snd_soc_component_get_drvdata(cmpnt);
size_t half_tap_num = 0;
const uint16_t *stf_coeff_table = NULL;
unsigned int ul_rate = 0;
uint32_t reg_value = 0;
size_t coef_addr = 0;
regmap_read(afe->regmap, AFE_ADDA_UL_SRC_CON0, &ul_rate);
ul_rate = ul_rate >> UL_VOICE_MODE_CH1_CH2_CTL_SFT;
ul_rate = ul_rate & UL_VOICE_MODE_CH1_CH2_CTL_MASK;
if (ul_rate == MTK_AFE_ADDA_UL_RATE_48K) {
half_tap_num = ARRAY_SIZE(stf_coeff_table_48k);
stf_coeff_table = stf_coeff_table_48k;
} else if (ul_rate == MTK_AFE_ADDA_UL_RATE_32K) {
half_tap_num = ARRAY_SIZE(stf_coeff_table_32k);
stf_coeff_table = stf_coeff_table_32k;
} else {
half_tap_num = ARRAY_SIZE(stf_coeff_table_16k);
stf_coeff_table = stf_coeff_table_16k;
}
regmap_read(afe->regmap, AFE_SIDETONE_CON1, &reg_value);
dev_info(afe->dev, "%s(), name %s, event 0x%x, ul_rate 0x%x, AFE_SIDETONE_CON1 0x%x\n",
__func__, w->name, event, ul_rate, reg_value);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* set side tone gain = 0 */
regmap_update_bits(afe->regmap,
AFE_SIDETONE_GAIN,
SIDE_TONE_GAIN_MASK_SFT,
0);
regmap_update_bits(afe->regmap,
AFE_SIDETONE_GAIN,
POSITIVE_GAIN_MASK_SFT,
0);
/* don't bypass stf */
regmap_update_bits(afe->regmap,
AFE_SIDETONE_CON1,
0xf << 28,
0x0);
/* set stf half tap num */
regmap_update_bits(afe->regmap,
AFE_SIDETONE_CON1,
SIDE_TONE_HALF_TAP_NUM_MASK_SFT,
half_tap_num << SIDE_TONE_HALF_TAP_NUM_SFT);
break;
case SND_SOC_DAPM_POST_PMU:
/* set side tone coefficient */
regmap_read(afe->regmap, AFE_SIDETONE_CON0, &reg_value);
for (coef_addr = 0; coef_addr < half_tap_num; coef_addr++) {
bool old_w_ready = (reg_value >> W_RDY_SFT) & 0x1;
bool new_w_ready = 0;
int try_cnt = 0;
regmap_update_bits(afe->regmap,
AFE_SIDETONE_CON0,
0x39FFFFF,
(1 << R_W_EN_SFT) |
(1 << R_W_SEL_SFT) |
(0 << SEL_CH2_SFT) |
(coef_addr <<
SIDE_TONE_COEFFICIENT_ADDR_SFT) |
stf_coeff_table[coef_addr]);
/* wait until flag write_ready changed */
for (try_cnt = 0; try_cnt < 10; try_cnt++) {
regmap_read(afe->regmap,
AFE_SIDETONE_CON0, &reg_value);
new_w_ready = (reg_value >> W_RDY_SFT) & 0x1;
/* flip => ok */
if (new_w_ready == old_w_ready) {
udelay(3);
if (try_cnt == 9) {
dev_warn(afe->dev,
"%s(), write coeff not ready",
__func__);
}
} else {
break;
}
}
}
break;
case SND_SOC_DAPM_POST_PMD:
/* bypass stf */
regmap_update_bits(afe->regmap,
AFE_SIDETONE_CON1,
0xf << 28,
0xf << 28);
/* set side tone gain = 0 */
regmap_update_bits(afe->regmap,
AFE_SIDETONE_GAIN,
SIDE_TONE_GAIN_MASK_SFT,
0);
regmap_update_bits(afe->regmap,
AFE_SIDETONE_GAIN,
POSITIVE_GAIN_MASK_SFT,
0);
break;
default:
break;
}
return 0;
}
static const struct snd_soc_dapm_widget mtk_dai_adda_widgets[] = {
/* inter-connections */
SND_SOC_DAPM_MIXER("ADDA_DL_CH1", SND_SOC_NOPM, 0, 0,
mtk_adda_dl_ch1_mix,
ARRAY_SIZE(mtk_adda_dl_ch1_mix)),
SND_SOC_DAPM_MIXER("ADDA_DL_CH2", SND_SOC_NOPM, 0, 0,
mtk_adda_dl_ch2_mix,
ARRAY_SIZE(mtk_adda_dl_ch2_mix)),
SND_SOC_DAPM_SUPPLY_S("ADDA Enable", SUPPLY_SEQ_ADDA_AFE_ON,
AFE_ADDA_UL_DL_CON0, ADDA_AFE_ON_SFT, 0,
NULL, 0),
SND_SOC_DAPM_SUPPLY_S("ADDA Playback Enable", SUPPLY_SEQ_ADDA_DL_ON,
AFE_ADDA_DL_SRC2_CON0,
DL_2_SRC_ON_TMP_CTL_PRE_SFT, 0,
mtk_adda_dl_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY_S("ADDA Capture Enable", SUPPLY_SEQ_ADDA_UL_ON,
AFE_ADDA_UL_SRC_CON0,
UL_SRC_ON_TMP_CTL_SFT, 0,
mtk_adda_ul_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SWITCH_E("Sidetone Filter",
AFE_SIDETONE_CON1, SIDE_TONE_ON_SFT, 0,
&stf_ctl,
mtk_stf_event,
SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_OUTPUT("STF_OUTPUT"),
SND_SOC_DAPM_CLOCK_SUPPLY("aud_dac_clk"),
SND_SOC_DAPM_CLOCK_SUPPLY("aud_dac_predis_clk"),
SND_SOC_DAPM_CLOCK_SUPPLY("aud_adc_clk"),
};
static const struct snd_soc_dapm_route mtk_dai_adda_routes[] = {
/* playback */
{"ADDA_DL_CH1", "DL1_CH1", "DL1"},
{"ADDA_DL_CH2", "DL1_CH1", "DL1"},
{"ADDA_DL_CH2", "DL1_CH2", "DL1"},
{"ADDA_DL_CH1", "DL12_CH1", "DL12"},
{"ADDA_DL_CH2", "DL12_CH2", "DL12"},
{"ADDA_DL_CH1", "DL2_CH1", "DL2"},
{"ADDA_DL_CH2", "DL2_CH1", "DL2"},
{"ADDA_DL_CH2", "DL2_CH2", "DL2"},
{"ADDA_DL_CH1", "DL3_CH1", "DL3"},
{"ADDA_DL_CH2", "DL3_CH1", "DL3"},
{"ADDA_DL_CH2", "DL3_CH2", "DL3"},
{"ADDA_DL_CH1", "GAIN1_OUT_CH1", "HW Gain 1 Out"},
{"ADDA_DL_CH2", "GAIN1_OUT_CH2", "HW Gain 1 Out"},
{"ADDA Playback", NULL, "ADDA_DL_CH1"},
{"ADDA Playback", NULL, "ADDA_DL_CH2"},
/* adda enable */
{"ADDA Playback", NULL, "ADDA Enable"},
{"ADDA Playback", NULL, "ADDA Playback Enable"},
{"ADDA Capture", NULL, "ADDA Enable"},
{"ADDA Capture", NULL, "ADDA Capture Enable"},
/* sidetone filter */
{"Sidetone Filter", "Switch", "ADDA Capture"},
{"STF_OUTPUT", NULL, "Sidetone Filter"},
{"ADDA Playback", NULL, "Sidetone Filter"},
/* clk */
{"ADDA Playback", NULL, "aud_dac_clk"},
{"ADDA Playback", NULL, "aud_dac_predis_clk"},
{"ADDA Capture", NULL, "aud_adc_clk"},
};
static int set_mtkaif_rx(struct mtk_base_afe *afe)
{
struct mt6768_afe_private *afe_priv = afe->platform_priv;
unsigned int delay_data = 0;
int delay_cycle = 0;
if (afe_priv->mtkaif_protocol == MTKAIF_PROTOCOL_2_CLK_P2) {
regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x38);
regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x39);
/* mtkaif_rxif_clkinv_adc inverse for calibration */
regmap_write(afe->regmap, AFE_ADDA_MTKAIF_CFG0,
0x80010000);
if (afe_priv->mtkaif_phase_cycle[0] >=
afe_priv->mtkaif_phase_cycle[1]) {
delay_data = DELAY_DATA_MISO1;
delay_cycle = afe_priv->mtkaif_phase_cycle[0] -
afe_priv->mtkaif_phase_cycle[1];
} else {
delay_data = DELAY_DATA_MISO2;
delay_cycle = afe_priv->mtkaif_phase_cycle[1] -
afe_priv->mtkaif_phase_cycle[0];
}
regmap_update_bits(afe->regmap,
AFE_ADDA_MTKAIF_RX_CFG2,
MTKAIF_RXIF_DELAY_DATA_MASK_SFT,
delay_data << MTKAIF_RXIF_DELAY_DATA_SFT);
regmap_update_bits(afe->regmap,
AFE_ADDA_MTKAIF_RX_CFG2,
MTKAIF_RXIF_DELAY_CYCLE_MASK_SFT,
delay_cycle << MTKAIF_RXIF_DELAY_CYCLE_SFT);
} else if (afe_priv->mtkaif_protocol == MTKAIF_PROTOCOL_2) {
regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x31);
regmap_write(afe->regmap, AFE_ADDA_MTKAIF_CFG0,
0x00010000);
} else {
regmap_write(afe->regmap, AFE_AUD_PAD_TOP, 0x31);
regmap_write(afe->regmap, AFE_ADDA_MTKAIF_CFG0, 0x0);
}
return 0;
}
/* dai ops */
static int mtk_dai_adda_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct mtk_base_afe *afe = snd_soc_dai_get_drvdata(dai);
unsigned int rate = params_rate(params);
dev_info(afe->dev, "%s(), id %d, stream %d, rate %d\n",
__func__,
dai->id,
substream->stream,
rate);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
unsigned int dl_src2_con0 = 0;
unsigned int dl_src2_con1 = 0;
/* clean predistortion */
regmap_write(afe->regmap, AFE_ADDA_PREDIS_CON0, 0);
regmap_write(afe->regmap, AFE_ADDA_PREDIS_CON1, 0);
/* set sampling rate */
dl_src2_con0 = adda_dl_rate_transform(afe, rate) << 28;
/* set output mode */
switch (rate) {
case 192000:
dl_src2_con0 |= (0x1 << 24); /* UP_SAMPLING_RATE_X2 */
dl_src2_con0 |= 1 << 14;
break;
case 96000:
dl_src2_con0 |= (0x2 << 24); /* UP_SAMPLING_RATE_X4 */
dl_src2_con0 |= 1 << 14;
break;
default:
dl_src2_con0 |= (0x3 << 24); /* UP_SAMPLING_RATE_X8 */
break;
}
/* turn off mute function */
dl_src2_con0 |= (0x03 << 11);
/* set voice input data if input sample rate is 8k or 16k */
if (rate == 8000 || rate == 16000)
dl_src2_con0 |= 0x01 << 5;
/* SA suggest apply -0.3db to audio/speech path */
dl_src2_con1 = MTK_AFE_ADDA_DL_GAIN_NORMAL <<
DL_2_GAIN_CTL_PRE_SFT;
/* turn on down-link gain */
dl_src2_con0 = dl_src2_con0 | (0x01 << 1);
regmap_write(afe->regmap, AFE_ADDA_DL_SRC2_CON0, dl_src2_con0);
regmap_write(afe->regmap, AFE_ADDA_DL_SRC2_CON1, dl_src2_con1);
/* set sdm gain */
regmap_update_bits(afe->regmap,
AFE_ADDA_DL_SDM_DCCOMP_CON,
ATTGAIN_CTL_MASK_SFT,
AUDIO_SDM_LEVEL_NORMAL << ATTGAIN_CTL_SFT);
} else {
unsigned int voice_mode = 0;
unsigned int ul_src_con0 = 0; /* default value */
/* set mtkaif protocol */
set_mtkaif_rx(afe);
voice_mode = adda_ul_rate_transform(afe, rate);
ul_src_con0 |= (voice_mode << 17) & (0x7 << 17);
/* enable iir */
ul_src_con0 |= (1 << UL_IIR_ON_TMP_CTL_SFT) &
UL_IIR_ON_TMP_CTL_MASK_SFT;
ul_src_con0 |= (UL_IIR_SW << UL_IIRMODE_CTL_SFT) &
UL_IIRMODE_CTL_MASK_SFT;
/* 35Hz @ 48k */
regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_02_01, 0x00000000);
regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_04_03, 0x00003FB8);
regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_06_05, 0x3FB80000);
regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_08_07, 0x3FB80000);
regmap_write(afe->regmap, AFE_ADDA_IIR_COEF_10_09, 0x0000C048);
regmap_write(afe->regmap, AFE_ADDA_UL_SRC_CON0, ul_src_con0);
/* Using Internal ADC */
regmap_update_bits(afe->regmap,
AFE_ADDA_TOP_CON0,
0x1 << 0,
0x0 << 0);
/* mtkaif_rxif_data_mode = 0, amic */
regmap_update_bits(afe->regmap,
AFE_ADDA_MTKAIF_RX_CFG0,
0x1 << 0,
0x0 << 0);
}
return 0;
}
static const struct snd_soc_dai_ops mtk_dai_adda_ops = {
.hw_params = mtk_dai_adda_hw_params,
};
/* dai driver */
#define MTK_ADDA_PLAYBACK_RATES (SNDRV_PCM_RATE_8000_48000 |\
SNDRV_PCM_RATE_96000 |\
SNDRV_PCM_RATE_192000)
#define MTK_ADDA_CAPTURE_RATES (SNDRV_PCM_RATE_8000 |\
SNDRV_PCM_RATE_16000 |\
SNDRV_PCM_RATE_32000 |\
SNDRV_PCM_RATE_48000)
#define MTK_ADDA_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
SNDRV_PCM_FMTBIT_S24_LE |\
SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver mtk_dai_adda_driver[] = {
{
.name = "ADDA",
.id = MT6768_DAI_ADDA,
.playback = {
.stream_name = "ADDA Playback",
.channels_min = 1,
.channels_max = 2,
.rates = MTK_ADDA_PLAYBACK_RATES,
.formats = MTK_ADDA_FORMATS,
},
.capture = {
.stream_name = "ADDA Capture",
.channels_min = 1,
.channels_max = 2,
.rates = MTK_ADDA_CAPTURE_RATES,
.formats = MTK_ADDA_FORMATS,
},
.ops = &mtk_dai_adda_ops,
},
};
int mt6768_dai_adda_register(struct mtk_base_afe *afe)
{
struct mtk_base_afe_dai *dai = NULL;
dev_info(afe->dev, "%s()\n", __func__);
dai = devm_kzalloc(afe->dev, sizeof(*dai), GFP_KERNEL);
if (!dai)
return -ENOMEM;
list_add(&dai->list, &afe->sub_dais);
dai->dai_drivers = mtk_dai_adda_driver;
dai->num_dai_drivers = ARRAY_SIZE(mtk_dai_adda_driver);
dai->controls = mtk_adda_controls;
dai->num_controls = ARRAY_SIZE(mtk_adda_controls);
dai->dapm_widgets = mtk_dai_adda_widgets;
dai->num_dapm_widgets = ARRAY_SIZE(mtk_dai_adda_widgets);
dai->dapm_routes = mtk_dai_adda_routes;
dai->num_dapm_routes = ARRAY_SIZE(mtk_dai_adda_routes);
return 0;
}