6db4831e98
Android 14
1438 lines
36 KiB
C
1438 lines
36 KiB
C
/* Copyright (c) 2010-2015, The Linux Foundation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 and
|
|
* only version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*/
|
|
|
|
#include "hdmi.h"
|
|
#include <linux/qcom_scm.h>
|
|
|
|
#define HDCP_REG_ENABLE 0x01
|
|
#define HDCP_REG_DISABLE 0x00
|
|
#define HDCP_PORT_ADDR 0x74
|
|
|
|
#define HDCP_INT_STATUS_MASK ( \
|
|
HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_INT | \
|
|
HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT | \
|
|
HDMI_HDCP_INT_CTRL_AUTH_XFER_REQ_INT | \
|
|
HDMI_HDCP_INT_CTRL_AUTH_XFER_DONE_INT)
|
|
|
|
#define AUTH_WORK_RETRIES_TIME 100
|
|
#define AUTH_RETRIES_TIME 30
|
|
|
|
/* QFPROM Registers for HDMI/HDCP */
|
|
#define QFPROM_RAW_FEAT_CONFIG_ROW0_LSB 0x000000F8
|
|
#define QFPROM_RAW_FEAT_CONFIG_ROW0_MSB 0x000000FC
|
|
#define HDCP_KSV_LSB 0x000060D8
|
|
#define HDCP_KSV_MSB 0x000060DC
|
|
|
|
enum DS_TYPE { /* type of downstream device */
|
|
DS_UNKNOWN,
|
|
DS_RECEIVER,
|
|
DS_REPEATER,
|
|
};
|
|
|
|
enum hdmi_hdcp_state {
|
|
HDCP_STATE_NO_AKSV,
|
|
HDCP_STATE_INACTIVE,
|
|
HDCP_STATE_AUTHENTICATING,
|
|
HDCP_STATE_AUTHENTICATED,
|
|
HDCP_STATE_AUTH_FAILED
|
|
};
|
|
|
|
struct hdmi_hdcp_reg_data {
|
|
u32 reg_id;
|
|
u32 off;
|
|
char *name;
|
|
u32 reg_val;
|
|
};
|
|
|
|
struct hdmi_hdcp_ctrl {
|
|
struct hdmi *hdmi;
|
|
u32 auth_retries;
|
|
bool tz_hdcp;
|
|
enum hdmi_hdcp_state hdcp_state;
|
|
struct work_struct hdcp_auth_work;
|
|
struct work_struct hdcp_reauth_work;
|
|
|
|
#define AUTH_ABORT_EV 1
|
|
#define AUTH_RESULT_RDY_EV 2
|
|
unsigned long auth_event;
|
|
wait_queue_head_t auth_event_queue;
|
|
|
|
u32 ksv_fifo_w_index;
|
|
/*
|
|
* store aksv from qfprom
|
|
*/
|
|
u32 aksv_lsb;
|
|
u32 aksv_msb;
|
|
bool aksv_valid;
|
|
u32 ds_type;
|
|
u32 bksv_lsb;
|
|
u32 bksv_msb;
|
|
u8 dev_count;
|
|
u8 depth;
|
|
u8 ksv_list[5 * 127];
|
|
bool max_cascade_exceeded;
|
|
bool max_dev_exceeded;
|
|
};
|
|
|
|
static int msm_hdmi_ddc_read(struct hdmi *hdmi, u16 addr, u8 offset,
|
|
u8 *data, u16 data_len)
|
|
{
|
|
int rc;
|
|
int retry = 5;
|
|
struct i2c_msg msgs[] = {
|
|
{
|
|
.addr = addr >> 1,
|
|
.flags = 0,
|
|
.len = 1,
|
|
.buf = &offset,
|
|
}, {
|
|
.addr = addr >> 1,
|
|
.flags = I2C_M_RD,
|
|
.len = data_len,
|
|
.buf = data,
|
|
}
|
|
};
|
|
|
|
DBG("Start DDC read");
|
|
retry:
|
|
rc = i2c_transfer(hdmi->i2c, msgs, 2);
|
|
|
|
retry--;
|
|
if (rc == 2)
|
|
rc = 0;
|
|
else if (retry > 0)
|
|
goto retry;
|
|
else
|
|
rc = -EIO;
|
|
|
|
DBG("End DDC read %d", rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define HDCP_DDC_WRITE_MAX_BYTE_NUM 32
|
|
|
|
static int msm_hdmi_ddc_write(struct hdmi *hdmi, u16 addr, u8 offset,
|
|
u8 *data, u16 data_len)
|
|
{
|
|
int rc;
|
|
int retry = 10;
|
|
u8 buf[HDCP_DDC_WRITE_MAX_BYTE_NUM];
|
|
struct i2c_msg msgs[] = {
|
|
{
|
|
.addr = addr >> 1,
|
|
.flags = 0,
|
|
.len = 1,
|
|
}
|
|
};
|
|
|
|
DBG("Start DDC write");
|
|
if (data_len > (HDCP_DDC_WRITE_MAX_BYTE_NUM - 1)) {
|
|
pr_err("%s: write size too big\n", __func__);
|
|
return -ERANGE;
|
|
}
|
|
|
|
buf[0] = offset;
|
|
memcpy(&buf[1], data, data_len);
|
|
msgs[0].buf = buf;
|
|
msgs[0].len = data_len + 1;
|
|
retry:
|
|
rc = i2c_transfer(hdmi->i2c, msgs, 1);
|
|
|
|
retry--;
|
|
if (rc == 1)
|
|
rc = 0;
|
|
else if (retry > 0)
|
|
goto retry;
|
|
else
|
|
rc = -EIO;
|
|
|
|
DBG("End DDC write %d", rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_scm_wr(struct hdmi_hdcp_ctrl *hdcp_ctrl, u32 *preg,
|
|
u32 *pdata, u32 count)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
struct qcom_scm_hdcp_req scm_buf[QCOM_SCM_HDCP_MAX_REQ_CNT];
|
|
u32 resp, phy_addr, idx = 0;
|
|
int i, ret = 0;
|
|
|
|
WARN_ON(!pdata || !preg || (count == 0));
|
|
|
|
if (hdcp_ctrl->tz_hdcp) {
|
|
phy_addr = (u32)hdmi->mmio_phy_addr;
|
|
|
|
while (count) {
|
|
memset(scm_buf, 0, sizeof(scm_buf));
|
|
for (i = 0; i < count && i < QCOM_SCM_HDCP_MAX_REQ_CNT;
|
|
i++) {
|
|
scm_buf[i].addr = phy_addr + preg[idx];
|
|
scm_buf[i].val = pdata[idx];
|
|
idx++;
|
|
}
|
|
ret = qcom_scm_hdcp_req(scm_buf, i, &resp);
|
|
|
|
if (ret || resp) {
|
|
pr_err("%s: error: scm_call ret=%d resp=%u\n",
|
|
__func__, ret, resp);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
count -= i;
|
|
}
|
|
} else {
|
|
for (i = 0; i < count; i++)
|
|
hdmi_write(hdmi, preg[i], pdata[i]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void msm_hdmi_hdcp_irq(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 reg_val, hdcp_int_status;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&hdmi->reg_lock, flags);
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_INT_CTRL);
|
|
hdcp_int_status = reg_val & HDCP_INT_STATUS_MASK;
|
|
if (!hdcp_int_status) {
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
return;
|
|
}
|
|
/* Clear Interrupts */
|
|
reg_val |= hdcp_int_status << 1;
|
|
/* Clear AUTH_FAIL_INFO as well */
|
|
if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT)
|
|
reg_val |= HDMI_HDCP_INT_CTRL_AUTH_FAIL_INFO_ACK;
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, reg_val);
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
|
|
DBG("hdcp irq %x", hdcp_int_status);
|
|
|
|
if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_INT) {
|
|
pr_info("%s:AUTH_SUCCESS_INT received\n", __func__);
|
|
if (HDCP_STATE_AUTHENTICATING == hdcp_ctrl->hdcp_state) {
|
|
set_bit(AUTH_RESULT_RDY_EV, &hdcp_ctrl->auth_event);
|
|
wake_up_all(&hdcp_ctrl->auth_event_queue);
|
|
}
|
|
}
|
|
|
|
if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT) {
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
|
|
pr_info("%s: AUTH_FAIL_INT rcvd, LINK0_STATUS=0x%08x\n",
|
|
__func__, reg_val);
|
|
if (HDCP_STATE_AUTHENTICATED == hdcp_ctrl->hdcp_state)
|
|
queue_work(hdmi->workq, &hdcp_ctrl->hdcp_reauth_work);
|
|
else if (HDCP_STATE_AUTHENTICATING ==
|
|
hdcp_ctrl->hdcp_state) {
|
|
set_bit(AUTH_RESULT_RDY_EV, &hdcp_ctrl->auth_event);
|
|
wake_up_all(&hdcp_ctrl->auth_event_queue);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_msleep(struct hdmi_hdcp_ctrl *hdcp_ctrl, u32 ms, u32 ev)
|
|
{
|
|
int rc;
|
|
|
|
rc = wait_event_timeout(hdcp_ctrl->auth_event_queue,
|
|
!!test_bit(ev, &hdcp_ctrl->auth_event),
|
|
msecs_to_jiffies(ms));
|
|
if (rc) {
|
|
pr_info("%s: msleep is canceled by event %d\n",
|
|
__func__, ev);
|
|
clear_bit(ev, &hdcp_ctrl->auth_event);
|
|
return -ECANCELED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_read_validate_aksv(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
|
|
/* Fetch aksv from QFPROM, this info should be public. */
|
|
hdcp_ctrl->aksv_lsb = hdmi_qfprom_read(hdmi, HDCP_KSV_LSB);
|
|
hdcp_ctrl->aksv_msb = hdmi_qfprom_read(hdmi, HDCP_KSV_MSB);
|
|
|
|
/* check there are 20 ones in AKSV */
|
|
if ((hweight32(hdcp_ctrl->aksv_lsb) + hweight32(hdcp_ctrl->aksv_msb))
|
|
!= 20) {
|
|
pr_err("%s: AKSV QFPROM doesn't have 20 1's, 20 0's\n",
|
|
__func__);
|
|
pr_err("%s: QFPROM AKSV chk failed (AKSV=%02x%08x)\n",
|
|
__func__, hdcp_ctrl->aksv_msb,
|
|
hdcp_ctrl->aksv_lsb);
|
|
return -EINVAL;
|
|
}
|
|
DBG("AKSV=%02x%08x", hdcp_ctrl->aksv_msb, hdcp_ctrl->aksv_lsb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int msm_reset_hdcp_ddc_failures(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 reg_val, failure, nack0;
|
|
int rc = 0;
|
|
|
|
/* Check for any DDC transfer failures */
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS);
|
|
failure = reg_val & HDMI_HDCP_DDC_STATUS_FAILED;
|
|
nack0 = reg_val & HDMI_HDCP_DDC_STATUS_NACK0;
|
|
DBG("HDCP_DDC_STATUS=0x%x, FAIL=%d, NACK0=%d",
|
|
reg_val, failure, nack0);
|
|
|
|
if (failure) {
|
|
/*
|
|
* Indicates that the last HDCP HW DDC transfer failed.
|
|
* This occurs when a transfer is attempted with HDCP DDC
|
|
* disabled (HDCP_DDC_DISABLE=1) or the number of retries
|
|
* matches HDCP_DDC_RETRY_CNT.
|
|
* Failure occurred, let's clear it.
|
|
*/
|
|
DBG("DDC failure detected");
|
|
|
|
/* First, Disable DDC */
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_0,
|
|
HDMI_HDCP_DDC_CTRL_0_DISABLE);
|
|
|
|
/* ACK the Failure to Clear it */
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_CTRL_1);
|
|
reg_val |= HDMI_HDCP_DDC_CTRL_1_FAILED_ACK;
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_1, reg_val);
|
|
|
|
/* Check if the FAILURE got Cleared */
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS);
|
|
if (reg_val & HDMI_HDCP_DDC_STATUS_FAILED)
|
|
pr_info("%s: Unable to clear HDCP DDC Failure\n",
|
|
__func__);
|
|
|
|
/* Re-Enable HDCP DDC */
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_0, 0);
|
|
}
|
|
|
|
if (nack0) {
|
|
DBG("Before: HDMI_DDC_SW_STATUS=0x%08x",
|
|
hdmi_read(hdmi, REG_HDMI_DDC_SW_STATUS));
|
|
/* Reset HDMI DDC software status */
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL);
|
|
reg_val |= HDMI_DDC_CTRL_SW_STATUS_RESET;
|
|
hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val);
|
|
|
|
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
|
|
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL);
|
|
reg_val &= ~HDMI_DDC_CTRL_SW_STATUS_RESET;
|
|
hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val);
|
|
|
|
/* Reset HDMI DDC Controller */
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL);
|
|
reg_val |= HDMI_DDC_CTRL_SOFT_RESET;
|
|
hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val);
|
|
|
|
/* If previous msleep is aborted, skip this msleep */
|
|
if (!rc)
|
|
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
|
|
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL);
|
|
reg_val &= ~HDMI_DDC_CTRL_SOFT_RESET;
|
|
hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val);
|
|
DBG("After: HDMI_DDC_SW_STATUS=0x%08x",
|
|
hdmi_read(hdmi, REG_HDMI_DDC_SW_STATUS));
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_hw_ddc_clean(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
int rc;
|
|
u32 hdcp_ddc_status, ddc_hw_status;
|
|
u32 xfer_done, xfer_req, hw_done;
|
|
bool hw_not_ready;
|
|
u32 timeout_count;
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
|
|
if (hdmi_read(hdmi, REG_HDMI_DDC_HW_STATUS) == 0)
|
|
return 0;
|
|
|
|
/* Wait to be clean on DDC HW engine */
|
|
timeout_count = 100;
|
|
do {
|
|
hdcp_ddc_status = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS);
|
|
ddc_hw_status = hdmi_read(hdmi, REG_HDMI_DDC_HW_STATUS);
|
|
|
|
xfer_done = hdcp_ddc_status & HDMI_HDCP_DDC_STATUS_XFER_DONE;
|
|
xfer_req = hdcp_ddc_status & HDMI_HDCP_DDC_STATUS_XFER_REQ;
|
|
hw_done = ddc_hw_status & HDMI_DDC_HW_STATUS_DONE;
|
|
hw_not_ready = !xfer_done || xfer_req || !hw_done;
|
|
|
|
if (hw_not_ready)
|
|
break;
|
|
|
|
timeout_count--;
|
|
if (!timeout_count) {
|
|
pr_warn("%s: hw_ddc_clean failed\n", __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
|
|
if (rc)
|
|
return rc;
|
|
} while (1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void msm_hdmi_hdcp_reauth_work(struct work_struct *work)
|
|
{
|
|
struct hdmi_hdcp_ctrl *hdcp_ctrl = container_of(work,
|
|
struct hdmi_hdcp_ctrl, hdcp_reauth_work);
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
unsigned long flags;
|
|
u32 reg_val;
|
|
|
|
DBG("HDCP REAUTH WORK");
|
|
/*
|
|
* Disable HPD circuitry.
|
|
* This is needed to reset the HDCP cipher engine so that when we
|
|
* attempt a re-authentication, HW would clear the AN0_READY and
|
|
* AN1_READY bits in HDMI_HDCP_LINK0_STATUS register
|
|
*/
|
|
spin_lock_irqsave(&hdmi->reg_lock, flags);
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL);
|
|
reg_val &= ~HDMI_HPD_CTRL_ENABLE;
|
|
hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val);
|
|
|
|
/* Disable HDCP interrupts */
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, 0);
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_RESET,
|
|
HDMI_HDCP_RESET_LINK0_DEAUTHENTICATE);
|
|
|
|
/* Wait to be clean on DDC HW engine */
|
|
if (msm_hdmi_hdcp_hw_ddc_clean(hdcp_ctrl)) {
|
|
pr_info("%s: reauth work aborted\n", __func__);
|
|
return;
|
|
}
|
|
|
|
/* Disable encryption and disable the HDCP block */
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, 0);
|
|
|
|
/* Enable HPD circuitry */
|
|
spin_lock_irqsave(&hdmi->reg_lock, flags);
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL);
|
|
reg_val |= HDMI_HPD_CTRL_ENABLE;
|
|
hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val);
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
|
|
/*
|
|
* Only retry defined times then abort current authenticating process
|
|
*/
|
|
if (++hdcp_ctrl->auth_retries == AUTH_RETRIES_TIME) {
|
|
hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE;
|
|
hdcp_ctrl->auth_retries = 0;
|
|
pr_info("%s: abort reauthentication!\n", __func__);
|
|
|
|
return;
|
|
}
|
|
|
|
DBG("Queue AUTH WORK");
|
|
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATING;
|
|
queue_work(hdmi->workq, &hdcp_ctrl->hdcp_auth_work);
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_auth_prepare(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 link0_status;
|
|
u32 reg_val;
|
|
unsigned long flags;
|
|
int rc;
|
|
|
|
if (!hdcp_ctrl->aksv_valid) {
|
|
rc = msm_hdmi_hdcp_read_validate_aksv(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: ASKV validation failed\n", __func__);
|
|
hdcp_ctrl->hdcp_state = HDCP_STATE_NO_AKSV;
|
|
return -ENOTSUPP;
|
|
}
|
|
hdcp_ctrl->aksv_valid = true;
|
|
}
|
|
|
|
spin_lock_irqsave(&hdmi->reg_lock, flags);
|
|
/* disable HDMI Encrypt */
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_CTRL);
|
|
reg_val &= ~HDMI_CTRL_ENCRYPTED;
|
|
hdmi_write(hdmi, REG_HDMI_CTRL, reg_val);
|
|
|
|
/* Enabling Software DDC */
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_ARBITRATION);
|
|
reg_val &= ~HDMI_DDC_ARBITRATION_HW_ARBITRATION;
|
|
hdmi_write(hdmi, REG_HDMI_DDC_ARBITRATION, reg_val);
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
|
|
/*
|
|
* Write AKSV read from QFPROM to the HDCP registers.
|
|
* This step is needed for HDCP authentication and must be
|
|
* written before enabling HDCP.
|
|
*/
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_SW_LOWER_AKSV, hdcp_ctrl->aksv_lsb);
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_SW_UPPER_AKSV, hdcp_ctrl->aksv_msb);
|
|
|
|
/*
|
|
* HDCP setup prior to enabling HDCP_CTRL.
|
|
* Setup seed values for random number An.
|
|
*/
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_ENTROPY_CTRL0, 0xB1FFB0FF);
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_ENTROPY_CTRL1, 0xF00DFACE);
|
|
|
|
/* Disable the RngCipher state */
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DEBUG_CTRL);
|
|
reg_val &= ~HDMI_HDCP_DEBUG_CTRL_RNG_CIPHER;
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_DEBUG_CTRL, reg_val);
|
|
DBG("HDCP_DEBUG_CTRL=0x%08x",
|
|
hdmi_read(hdmi, REG_HDMI_HDCP_DEBUG_CTRL));
|
|
|
|
/*
|
|
* Ensure that all register writes are completed before
|
|
* enabling HDCP cipher
|
|
*/
|
|
wmb();
|
|
|
|
/*
|
|
* Enable HDCP
|
|
* This needs to be done as early as possible in order for the
|
|
* hardware to make An available to read
|
|
*/
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, HDMI_HDCP_CTRL_ENABLE);
|
|
|
|
/*
|
|
* If we had stale values for the An ready bit, it should most
|
|
* likely be cleared now after enabling HDCP cipher
|
|
*/
|
|
link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
|
|
DBG("After enabling HDCP Link0_Status=0x%08x", link0_status);
|
|
if (!(link0_status &
|
|
(HDMI_HDCP_LINK0_STATUS_AN_0_READY |
|
|
HDMI_HDCP_LINK0_STATUS_AN_1_READY)))
|
|
DBG("An not ready after enabling HDCP");
|
|
|
|
/* Clear any DDC failures from previous tries before enable HDCP*/
|
|
rc = msm_reset_hdcp_ddc_failures(hdcp_ctrl);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void msm_hdmi_hdcp_auth_fail(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 reg_val;
|
|
unsigned long flags;
|
|
|
|
DBG("hdcp auth failed, queue reauth work");
|
|
/* clear HDMI Encrypt */
|
|
spin_lock_irqsave(&hdmi->reg_lock, flags);
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_CTRL);
|
|
reg_val &= ~HDMI_CTRL_ENCRYPTED;
|
|
hdmi_write(hdmi, REG_HDMI_CTRL, reg_val);
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
|
|
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTH_FAILED;
|
|
queue_work(hdmi->workq, &hdcp_ctrl->hdcp_reauth_work);
|
|
}
|
|
|
|
static void msm_hdmi_hdcp_auth_done(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 reg_val;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Disable software DDC before going into part3 to make sure
|
|
* there is no Arbitration between software and hardware for DDC
|
|
*/
|
|
spin_lock_irqsave(&hdmi->reg_lock, flags);
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_DDC_ARBITRATION);
|
|
reg_val |= HDMI_DDC_ARBITRATION_HW_ARBITRATION;
|
|
hdmi_write(hdmi, REG_HDMI_DDC_ARBITRATION, reg_val);
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
|
|
/* enable HDMI Encrypt */
|
|
spin_lock_irqsave(&hdmi->reg_lock, flags);
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_CTRL);
|
|
reg_val |= HDMI_CTRL_ENCRYPTED;
|
|
hdmi_write(hdmi, REG_HDMI_CTRL, reg_val);
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
|
|
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATED;
|
|
hdcp_ctrl->auth_retries = 0;
|
|
}
|
|
|
|
/*
|
|
* hdcp authenticating part 1
|
|
* Wait Key/An ready
|
|
* Read BCAPS from sink
|
|
* Write BCAPS and AKSV into HDCP engine
|
|
* Write An and AKSV to sink
|
|
* Read BKSV from sink and write into HDCP engine
|
|
*/
|
|
static int msm_hdmi_hdcp_wait_key_an_ready(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
int rc;
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 link0_status, keys_state;
|
|
u32 timeout_count;
|
|
bool an_ready;
|
|
|
|
/* Wait for HDCP keys to be checked and validated */
|
|
timeout_count = 100;
|
|
do {
|
|
link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
|
|
keys_state = (link0_status >> 28) & 0x7;
|
|
if (keys_state == HDCP_KEYS_STATE_VALID)
|
|
break;
|
|
|
|
DBG("Keys not ready(%d). s=%d, l0=%0x08x",
|
|
timeout_count, keys_state, link0_status);
|
|
|
|
timeout_count--;
|
|
if (!timeout_count) {
|
|
pr_err("%s: Wait key state timedout", __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
|
|
if (rc)
|
|
return rc;
|
|
} while (1);
|
|
|
|
timeout_count = 100;
|
|
do {
|
|
link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
|
|
an_ready = (link0_status & HDMI_HDCP_LINK0_STATUS_AN_0_READY)
|
|
&& (link0_status & HDMI_HDCP_LINK0_STATUS_AN_1_READY);
|
|
if (an_ready)
|
|
break;
|
|
|
|
DBG("An not ready(%d). l0_status=0x%08x",
|
|
timeout_count, link0_status);
|
|
|
|
timeout_count--;
|
|
if (!timeout_count) {
|
|
pr_err("%s: Wait An timedout", __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
|
|
if (rc)
|
|
return rc;
|
|
} while (1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_send_aksv_an(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
int rc = 0;
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 link0_aksv_0, link0_aksv_1;
|
|
u32 link0_an[2];
|
|
u8 aksv[5];
|
|
|
|
/* Read An0 and An1 */
|
|
link0_an[0] = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA5);
|
|
link0_an[1] = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA6);
|
|
|
|
/* Read AKSV */
|
|
link0_aksv_0 = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA3);
|
|
link0_aksv_1 = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA4);
|
|
|
|
DBG("Link ASKV=%08x%08x", link0_aksv_0, link0_aksv_1);
|
|
/* Copy An and AKSV to byte arrays for transmission */
|
|
aksv[0] = link0_aksv_0 & 0xFF;
|
|
aksv[1] = (link0_aksv_0 >> 8) & 0xFF;
|
|
aksv[2] = (link0_aksv_0 >> 16) & 0xFF;
|
|
aksv[3] = (link0_aksv_0 >> 24) & 0xFF;
|
|
aksv[4] = link0_aksv_1 & 0xFF;
|
|
|
|
/* Write An to offset 0x18 */
|
|
rc = msm_hdmi_ddc_write(hdmi, HDCP_PORT_ADDR, 0x18, (u8 *)link0_an,
|
|
(u16)sizeof(link0_an));
|
|
if (rc) {
|
|
pr_err("%s:An write failed\n", __func__);
|
|
return rc;
|
|
}
|
|
DBG("Link0-An=%08x%08x", link0_an[0], link0_an[1]);
|
|
|
|
/* Write AKSV to offset 0x10 */
|
|
rc = msm_hdmi_ddc_write(hdmi, HDCP_PORT_ADDR, 0x10, aksv, 5);
|
|
if (rc) {
|
|
pr_err("%s:AKSV write failed\n", __func__);
|
|
return rc;
|
|
}
|
|
DBG("Link0-AKSV=%02x%08x", link0_aksv_1 & 0xFF, link0_aksv_0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_recv_bksv(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
int rc = 0;
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u8 bksv[5];
|
|
u32 reg[2], data[2];
|
|
|
|
/* Read BKSV at offset 0x00 */
|
|
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x00, bksv, 5);
|
|
if (rc) {
|
|
pr_err("%s:BKSV read failed\n", __func__);
|
|
return rc;
|
|
}
|
|
|
|
hdcp_ctrl->bksv_lsb = bksv[0] | (bksv[1] << 8) |
|
|
(bksv[2] << 16) | (bksv[3] << 24);
|
|
hdcp_ctrl->bksv_msb = bksv[4];
|
|
DBG(":BKSV=%02x%08x", hdcp_ctrl->bksv_msb, hdcp_ctrl->bksv_lsb);
|
|
|
|
/* check there are 20 ones in BKSV */
|
|
if ((hweight32(hdcp_ctrl->bksv_lsb) + hweight32(hdcp_ctrl->bksv_msb))
|
|
!= 20) {
|
|
pr_err(": BKSV doesn't have 20 1's and 20 0's\n");
|
|
pr_err(": BKSV chk fail. BKSV=%02x%02x%02x%02x%02x\n",
|
|
bksv[4], bksv[3], bksv[2], bksv[1], bksv[0]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Write BKSV read from sink to HDCP registers */
|
|
reg[0] = REG_HDMI_HDCP_RCVPORT_DATA0;
|
|
data[0] = hdcp_ctrl->bksv_lsb;
|
|
reg[1] = REG_HDMI_HDCP_RCVPORT_DATA1;
|
|
data[1] = hdcp_ctrl->bksv_msb;
|
|
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, 2);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_recv_bcaps(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
int rc = 0;
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 reg, data;
|
|
u8 bcaps;
|
|
|
|
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x40, &bcaps, 1);
|
|
if (rc) {
|
|
pr_err("%s:BCAPS read failed\n", __func__);
|
|
return rc;
|
|
}
|
|
DBG("BCAPS=%02x", bcaps);
|
|
|
|
/* receiver (0), repeater (1) */
|
|
hdcp_ctrl->ds_type = (bcaps & BIT(6)) ? DS_REPEATER : DS_RECEIVER;
|
|
|
|
/* Write BCAPS to the hardware */
|
|
reg = REG_HDMI_HDCP_RCVPORT_DATA12;
|
|
data = (u32)bcaps;
|
|
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, ®, &data, 1);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_auth_part1_key_exchange(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
unsigned long flags;
|
|
int rc;
|
|
|
|
/* Wait for AKSV key and An ready */
|
|
rc = msm_hdmi_hdcp_wait_key_an_ready(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: wait key and an ready failed\n", __func__);
|
|
return rc;
|
|
}
|
|
|
|
/* Read BCAPS and send to HDCP engine */
|
|
rc = msm_hdmi_hdcp_recv_bcaps(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: read bcaps error, abort\n", __func__);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* 1.1_Features turned off by default.
|
|
* No need to write AInfo since 1.1_Features is disabled.
|
|
*/
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_RCVPORT_DATA4, 0);
|
|
|
|
/* Send AKSV and An to sink */
|
|
rc = msm_hdmi_hdcp_send_aksv_an(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s:An/Aksv write failed\n", __func__);
|
|
return rc;
|
|
}
|
|
|
|
/* Read BKSV and send to HDCP engine*/
|
|
rc = msm_hdmi_hdcp_recv_bksv(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s:BKSV Process failed\n", __func__);
|
|
return rc;
|
|
}
|
|
|
|
/* Enable HDCP interrupts and ack/clear any stale interrupts */
|
|
spin_lock_irqsave(&hdmi->reg_lock, flags);
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL,
|
|
HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_ACK |
|
|
HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_MASK |
|
|
HDMI_HDCP_INT_CTRL_AUTH_FAIL_ACK |
|
|
HDMI_HDCP_INT_CTRL_AUTH_FAIL_MASK |
|
|
HDMI_HDCP_INT_CTRL_AUTH_FAIL_INFO_ACK);
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* read R0' from sink and pass it to HDCP engine */
|
|
static int msm_hdmi_hdcp_auth_part1_recv_r0(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
int rc = 0;
|
|
u8 buf[2];
|
|
|
|
/*
|
|
* HDCP Compliance Test case 1A-01:
|
|
* Wait here at least 100ms before reading R0'
|
|
*/
|
|
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 125, AUTH_ABORT_EV);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Read R0' at offset 0x08 */
|
|
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x08, buf, 2);
|
|
if (rc) {
|
|
pr_err("%s:R0' read failed\n", __func__);
|
|
return rc;
|
|
}
|
|
DBG("R0'=%02x%02x", buf[1], buf[0]);
|
|
|
|
/* Write R0' to HDCP registers and check to see if it is a match */
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_RCVPORT_DATA2_0,
|
|
(((u32)buf[1]) << 8) | buf[0]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Wait for authenticating result: R0/R0' are matched or not */
|
|
static int msm_hdmi_hdcp_auth_part1_verify_r0(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 link0_status;
|
|
int rc;
|
|
|
|
/* wait for hdcp irq, 10 sec should be long enough */
|
|
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 10000, AUTH_RESULT_RDY_EV);
|
|
if (!rc) {
|
|
pr_err("%s: Wait Auth IRQ timeout\n", __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
|
|
if (!(link0_status & HDMI_HDCP_LINK0_STATUS_RI_MATCHES)) {
|
|
pr_err("%s: Authentication Part I failed\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Enable HDCP Encryption */
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_CTRL,
|
|
HDMI_HDCP_CTRL_ENABLE |
|
|
HDMI_HDCP_CTRL_ENCRYPTION_ENABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_recv_check_bstatus(struct hdmi_hdcp_ctrl *hdcp_ctrl,
|
|
u16 *pbstatus)
|
|
{
|
|
int rc;
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
bool max_devs_exceeded = false, max_cascade_exceeded = false;
|
|
u32 repeater_cascade_depth = 0, down_stream_devices = 0;
|
|
u16 bstatus;
|
|
u8 buf[2];
|
|
|
|
/* Read BSTATUS at offset 0x41 */
|
|
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x41, buf, 2);
|
|
if (rc) {
|
|
pr_err("%s: BSTATUS read failed\n", __func__);
|
|
goto error;
|
|
}
|
|
*pbstatus = bstatus = (buf[1] << 8) | buf[0];
|
|
|
|
|
|
down_stream_devices = bstatus & 0x7F;
|
|
repeater_cascade_depth = (bstatus >> 8) & 0x7;
|
|
max_devs_exceeded = (bstatus & BIT(7)) ? true : false;
|
|
max_cascade_exceeded = (bstatus & BIT(11)) ? true : false;
|
|
|
|
if (down_stream_devices == 0) {
|
|
/*
|
|
* If no downstream devices are attached to the repeater
|
|
* then part II fails.
|
|
* todo: The other approach would be to continue PART II.
|
|
*/
|
|
pr_err("%s: No downstream devices\n", __func__);
|
|
rc = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* HDCP Compliance 1B-05:
|
|
* Check if no. of devices connected to repeater
|
|
* exceed max_devices_connected from bit 7 of Bstatus.
|
|
*/
|
|
if (max_devs_exceeded) {
|
|
pr_err("%s: no. of devs connected exceeds max allowed",
|
|
__func__);
|
|
rc = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* HDCP Compliance 1B-06:
|
|
* Check if no. of cascade connected to repeater
|
|
* exceed max_cascade_connected from bit 11 of Bstatus.
|
|
*/
|
|
if (max_cascade_exceeded) {
|
|
pr_err("%s: no. of cascade conn exceeds max allowed",
|
|
__func__);
|
|
rc = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
error:
|
|
hdcp_ctrl->dev_count = down_stream_devices;
|
|
hdcp_ctrl->max_cascade_exceeded = max_cascade_exceeded;
|
|
hdcp_ctrl->max_dev_exceeded = max_devs_exceeded;
|
|
hdcp_ctrl->depth = repeater_cascade_depth;
|
|
return rc;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_auth_part2_wait_ksv_fifo_ready(
|
|
struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
int rc;
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 reg, data;
|
|
u32 timeout_count;
|
|
u16 bstatus;
|
|
u8 bcaps;
|
|
|
|
/*
|
|
* Wait until READY bit is set in BCAPS, as per HDCP specifications
|
|
* maximum permitted time to check for READY bit is five seconds.
|
|
*/
|
|
timeout_count = 100;
|
|
do {
|
|
/* Read BCAPS at offset 0x40 */
|
|
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x40, &bcaps, 1);
|
|
if (rc) {
|
|
pr_err("%s: BCAPS read failed\n", __func__);
|
|
return rc;
|
|
}
|
|
|
|
if (bcaps & BIT(5))
|
|
break;
|
|
|
|
timeout_count--;
|
|
if (!timeout_count) {
|
|
pr_err("%s: Wait KSV fifo ready timedout", __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
|
|
if (rc)
|
|
return rc;
|
|
} while (1);
|
|
|
|
rc = msm_hdmi_hdcp_recv_check_bstatus(hdcp_ctrl, &bstatus);
|
|
if (rc) {
|
|
pr_err("%s: bstatus error\n", __func__);
|
|
return rc;
|
|
}
|
|
|
|
/* Write BSTATUS and BCAPS to HDCP registers */
|
|
reg = REG_HDMI_HDCP_RCVPORT_DATA12;
|
|
data = bcaps | (bstatus << 8);
|
|
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, ®, &data, 1);
|
|
if (rc) {
|
|
pr_err("%s: BSTATUS write failed\n", __func__);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hdcp authenticating part 2: 2nd
|
|
* read ksv fifo from sink
|
|
* transfer V' from sink to HDCP engine
|
|
* reset SHA engine
|
|
*/
|
|
static int msm_hdmi_hdcp_transfer_v_h(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
int rc = 0;
|
|
struct hdmi_hdcp_reg_data reg_data[] = {
|
|
{REG_HDMI_HDCP_RCVPORT_DATA7, 0x20, "V' H0"},
|
|
{REG_HDMI_HDCP_RCVPORT_DATA8, 0x24, "V' H1"},
|
|
{REG_HDMI_HDCP_RCVPORT_DATA9, 0x28, "V' H2"},
|
|
{REG_HDMI_HDCP_RCVPORT_DATA10, 0x2C, "V' H3"},
|
|
{REG_HDMI_HDCP_RCVPORT_DATA11, 0x30, "V' H4"},
|
|
};
|
|
struct hdmi_hdcp_reg_data *rd;
|
|
u32 size = ARRAY_SIZE(reg_data);
|
|
u32 reg[ARRAY_SIZE(reg_data)];
|
|
u32 data[ARRAY_SIZE(reg_data)];
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
rd = ®_data[i];
|
|
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR,
|
|
rd->off, (u8 *)&data[i], (u16)sizeof(data[i]));
|
|
if (rc) {
|
|
pr_err("%s: Read %s failed\n", __func__, rd->name);
|
|
goto error;
|
|
}
|
|
|
|
DBG("%s =%x", rd->name, data[i]);
|
|
reg[i] = reg_data[i].reg_id;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, size);
|
|
|
|
error:
|
|
return rc;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_recv_ksv_fifo(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
int rc;
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 ksv_bytes;
|
|
|
|
ksv_bytes = 5 * hdcp_ctrl->dev_count;
|
|
|
|
rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x43,
|
|
hdcp_ctrl->ksv_list, ksv_bytes);
|
|
if (rc)
|
|
pr_err("%s: KSV FIFO read failed\n", __func__);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_reset_sha_engine(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
u32 reg[2], data[2];
|
|
u32 rc = 0;
|
|
|
|
reg[0] = REG_HDMI_HDCP_SHA_CTRL;
|
|
data[0] = HDCP_REG_ENABLE;
|
|
reg[1] = REG_HDMI_HDCP_SHA_CTRL;
|
|
data[1] = HDCP_REG_DISABLE;
|
|
|
|
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, 2);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_auth_part2_recv_ksv_fifo(
|
|
struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
int rc;
|
|
u32 timeout_count;
|
|
|
|
/*
|
|
* Read KSV FIFO over DDC
|
|
* Key Selection vector FIFO Used to pull downstream KSVs
|
|
* from HDCP Repeaters.
|
|
* All bytes (DEVICE_COUNT * 5) must be read in a single,
|
|
* auto incrementing access.
|
|
* All bytes read as 0x00 for HDCP Receivers that are not
|
|
* HDCP Repeaters (REPEATER == 0).
|
|
*/
|
|
timeout_count = 100;
|
|
do {
|
|
rc = msm_hdmi_hdcp_recv_ksv_fifo(hdcp_ctrl);
|
|
if (!rc)
|
|
break;
|
|
|
|
timeout_count--;
|
|
if (!timeout_count) {
|
|
pr_err("%s: Recv ksv fifo timedout", __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 25, AUTH_ABORT_EV);
|
|
if (rc)
|
|
return rc;
|
|
} while (1);
|
|
|
|
rc = msm_hdmi_hdcp_transfer_v_h(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: transfer V failed\n", __func__);
|
|
return rc;
|
|
}
|
|
|
|
/* reset SHA engine before write ksv fifo */
|
|
rc = msm_hdmi_hdcp_reset_sha_engine(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: fail to reset sha engine\n", __func__);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write KSV FIFO to HDCP_SHA_DATA.
|
|
* This is done 1 byte at time starting with the LSB.
|
|
* Once 64 bytes have been written, we need to poll for
|
|
* HDCP_SHA_BLOCK_DONE before writing any further
|
|
* If the last byte is written, we need to poll for
|
|
* HDCP_SHA_COMP_DONE to wait until HW finish
|
|
*/
|
|
static int msm_hdmi_hdcp_write_ksv_fifo(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
int i;
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 ksv_bytes, last_byte = 0;
|
|
u8 *ksv_fifo = NULL;
|
|
u32 reg_val, data, reg;
|
|
u32 rc = 0;
|
|
|
|
ksv_bytes = 5 * hdcp_ctrl->dev_count;
|
|
|
|
/* Check if need to wait for HW completion */
|
|
if (hdcp_ctrl->ksv_fifo_w_index) {
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_SHA_STATUS);
|
|
DBG("HDCP_SHA_STATUS=%08x", reg_val);
|
|
if (hdcp_ctrl->ksv_fifo_w_index == ksv_bytes) {
|
|
/* check COMP_DONE if last write */
|
|
if (reg_val & HDMI_HDCP_SHA_STATUS_COMP_DONE) {
|
|
DBG("COMP_DONE");
|
|
return 0;
|
|
} else {
|
|
return -EAGAIN;
|
|
}
|
|
} else {
|
|
/* check BLOCK_DONE if not last write */
|
|
if (!(reg_val & HDMI_HDCP_SHA_STATUS_BLOCK_DONE))
|
|
return -EAGAIN;
|
|
|
|
DBG("BLOCK_DONE");
|
|
}
|
|
}
|
|
|
|
ksv_bytes -= hdcp_ctrl->ksv_fifo_w_index;
|
|
if (ksv_bytes <= 64)
|
|
last_byte = 1;
|
|
else
|
|
ksv_bytes = 64;
|
|
|
|
ksv_fifo = hdcp_ctrl->ksv_list;
|
|
ksv_fifo += hdcp_ctrl->ksv_fifo_w_index;
|
|
|
|
for (i = 0; i < ksv_bytes; i++) {
|
|
/* Write KSV byte and set DONE bit[0] for last byte*/
|
|
reg_val = ksv_fifo[i] << 16;
|
|
if ((i == (ksv_bytes - 1)) && last_byte)
|
|
reg_val |= HDMI_HDCP_SHA_DATA_DONE;
|
|
|
|
reg = REG_HDMI_HDCP_SHA_DATA;
|
|
data = reg_val;
|
|
rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, ®, &data, 1);
|
|
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
hdcp_ctrl->ksv_fifo_w_index += ksv_bytes;
|
|
|
|
/*
|
|
*return -EAGAIN to notify caller to wait for COMP_DONE or BLOCK_DONE
|
|
*/
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* write ksv fifo into HDCP engine */
|
|
static int msm_hdmi_hdcp_auth_part2_write_ksv_fifo(
|
|
struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
int rc;
|
|
u32 timeout_count;
|
|
|
|
hdcp_ctrl->ksv_fifo_w_index = 0;
|
|
timeout_count = 100;
|
|
do {
|
|
rc = msm_hdmi_hdcp_write_ksv_fifo(hdcp_ctrl);
|
|
if (!rc)
|
|
break;
|
|
|
|
if (rc != -EAGAIN)
|
|
return rc;
|
|
|
|
timeout_count--;
|
|
if (!timeout_count) {
|
|
pr_err("%s: Write KSV fifo timedout", __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
|
|
if (rc)
|
|
return rc;
|
|
} while (1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int msm_hdmi_hdcp_auth_part2_check_v_match(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
int rc = 0;
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 link0_status;
|
|
u32 timeout_count = 100;
|
|
|
|
do {
|
|
link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS);
|
|
if (link0_status & HDMI_HDCP_LINK0_STATUS_V_MATCHES)
|
|
break;
|
|
|
|
timeout_count--;
|
|
if (!timeout_count) {
|
|
pr_err("%s: HDCP V Match timedout", __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV);
|
|
if (rc)
|
|
return rc;
|
|
} while (1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void msm_hdmi_hdcp_auth_work(struct work_struct *work)
|
|
{
|
|
struct hdmi_hdcp_ctrl *hdcp_ctrl = container_of(work,
|
|
struct hdmi_hdcp_ctrl, hdcp_auth_work);
|
|
int rc;
|
|
|
|
rc = msm_hdmi_hdcp_auth_prepare(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: auth prepare failed %d\n", __func__, rc);
|
|
goto end;
|
|
}
|
|
|
|
/* HDCP PartI */
|
|
rc = msm_hdmi_hdcp_auth_part1_key_exchange(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: key exchange failed %d\n", __func__, rc);
|
|
goto end;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_auth_part1_recv_r0(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: receive r0 failed %d\n", __func__, rc);
|
|
goto end;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_auth_part1_verify_r0(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: verify r0 failed %d\n", __func__, rc);
|
|
goto end;
|
|
}
|
|
pr_info("%s: Authentication Part I successful\n", __func__);
|
|
if (hdcp_ctrl->ds_type == DS_RECEIVER)
|
|
goto end;
|
|
|
|
/* HDCP PartII */
|
|
rc = msm_hdmi_hdcp_auth_part2_wait_ksv_fifo_ready(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: wait ksv fifo ready failed %d\n", __func__, rc);
|
|
goto end;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_auth_part2_recv_ksv_fifo(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: recv ksv fifo failed %d\n", __func__, rc);
|
|
goto end;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_auth_part2_write_ksv_fifo(hdcp_ctrl);
|
|
if (rc) {
|
|
pr_err("%s: write ksv fifo failed %d\n", __func__, rc);
|
|
goto end;
|
|
}
|
|
|
|
rc = msm_hdmi_hdcp_auth_part2_check_v_match(hdcp_ctrl);
|
|
if (rc)
|
|
pr_err("%s: check v match failed %d\n", __func__, rc);
|
|
|
|
end:
|
|
if (rc == -ECANCELED) {
|
|
pr_info("%s: hdcp authentication canceled\n", __func__);
|
|
} else if (rc == -ENOTSUPP) {
|
|
pr_info("%s: hdcp is not supported\n", __func__);
|
|
} else if (rc) {
|
|
pr_err("%s: hdcp authentication failed\n", __func__);
|
|
msm_hdmi_hdcp_auth_fail(hdcp_ctrl);
|
|
} else {
|
|
msm_hdmi_hdcp_auth_done(hdcp_ctrl);
|
|
}
|
|
}
|
|
|
|
void msm_hdmi_hdcp_on(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
u32 reg_val;
|
|
unsigned long flags;
|
|
|
|
if ((HDCP_STATE_INACTIVE != hdcp_ctrl->hdcp_state) ||
|
|
(HDCP_STATE_NO_AKSV == hdcp_ctrl->hdcp_state)) {
|
|
DBG("still active or activating or no askv. returning");
|
|
return;
|
|
}
|
|
|
|
/* clear HDMI Encrypt */
|
|
spin_lock_irqsave(&hdmi->reg_lock, flags);
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_CTRL);
|
|
reg_val &= ~HDMI_CTRL_ENCRYPTED;
|
|
hdmi_write(hdmi, REG_HDMI_CTRL, reg_val);
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
|
|
hdcp_ctrl->auth_event = 0;
|
|
hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATING;
|
|
hdcp_ctrl->auth_retries = 0;
|
|
queue_work(hdmi->workq, &hdcp_ctrl->hdcp_auth_work);
|
|
}
|
|
|
|
void msm_hdmi_hdcp_off(struct hdmi_hdcp_ctrl *hdcp_ctrl)
|
|
{
|
|
struct hdmi *hdmi = hdcp_ctrl->hdmi;
|
|
unsigned long flags;
|
|
u32 reg_val;
|
|
|
|
if ((HDCP_STATE_INACTIVE == hdcp_ctrl->hdcp_state) ||
|
|
(HDCP_STATE_NO_AKSV == hdcp_ctrl->hdcp_state)) {
|
|
DBG("hdcp inactive or no aksv. returning");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Disable HPD circuitry.
|
|
* This is needed to reset the HDCP cipher engine so that when we
|
|
* attempt a re-authentication, HW would clear the AN0_READY and
|
|
* AN1_READY bits in HDMI_HDCP_LINK0_STATUS register
|
|
*/
|
|
spin_lock_irqsave(&hdmi->reg_lock, flags);
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL);
|
|
reg_val &= ~HDMI_HPD_CTRL_ENABLE;
|
|
hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val);
|
|
|
|
/*
|
|
* Disable HDCP interrupts.
|
|
* Also, need to set the state to inactive here so that any ongoing
|
|
* reauth works will know that the HDCP session has been turned off.
|
|
*/
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, 0);
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
|
|
/*
|
|
* Cancel any pending auth/reauth attempts.
|
|
* If one is ongoing, this will wait for it to finish.
|
|
* No more reauthentication attempts will be scheduled since we
|
|
* set the current state to inactive.
|
|
*/
|
|
set_bit(AUTH_ABORT_EV, &hdcp_ctrl->auth_event);
|
|
wake_up_all(&hdcp_ctrl->auth_event_queue);
|
|
cancel_work_sync(&hdcp_ctrl->hdcp_auth_work);
|
|
cancel_work_sync(&hdcp_ctrl->hdcp_reauth_work);
|
|
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_RESET,
|
|
HDMI_HDCP_RESET_LINK0_DEAUTHENTICATE);
|
|
|
|
/* Disable encryption and disable the HDCP block */
|
|
hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, 0);
|
|
|
|
spin_lock_irqsave(&hdmi->reg_lock, flags);
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_CTRL);
|
|
reg_val &= ~HDMI_CTRL_ENCRYPTED;
|
|
hdmi_write(hdmi, REG_HDMI_CTRL, reg_val);
|
|
|
|
/* Enable HPD circuitry */
|
|
reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL);
|
|
reg_val |= HDMI_HPD_CTRL_ENABLE;
|
|
hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val);
|
|
spin_unlock_irqrestore(&hdmi->reg_lock, flags);
|
|
|
|
hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE;
|
|
|
|
DBG("HDCP: Off");
|
|
}
|
|
|
|
struct hdmi_hdcp_ctrl *msm_hdmi_hdcp_init(struct hdmi *hdmi)
|
|
{
|
|
struct hdmi_hdcp_ctrl *hdcp_ctrl = NULL;
|
|
|
|
if (!hdmi->qfprom_mmio) {
|
|
pr_err("%s: HDCP is not supported without qfprom\n",
|
|
__func__);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
hdcp_ctrl = kzalloc(sizeof(*hdcp_ctrl), GFP_KERNEL);
|
|
if (!hdcp_ctrl)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_WORK(&hdcp_ctrl->hdcp_auth_work, msm_hdmi_hdcp_auth_work);
|
|
INIT_WORK(&hdcp_ctrl->hdcp_reauth_work, msm_hdmi_hdcp_reauth_work);
|
|
init_waitqueue_head(&hdcp_ctrl->auth_event_queue);
|
|
hdcp_ctrl->hdmi = hdmi;
|
|
hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE;
|
|
hdcp_ctrl->aksv_valid = false;
|
|
|
|
if (qcom_scm_hdcp_available())
|
|
hdcp_ctrl->tz_hdcp = true;
|
|
else
|
|
hdcp_ctrl->tz_hdcp = false;
|
|
|
|
return hdcp_ctrl;
|
|
}
|
|
|
|
void msm_hdmi_hdcp_destroy(struct hdmi *hdmi)
|
|
{
|
|
if (hdmi) {
|
|
kfree(hdmi->hdcp_ctrl);
|
|
hdmi->hdcp_ctrl = NULL;
|
|
}
|
|
}
|