kernel_samsung_a34x-permissive/drivers/misc/mediatek/usb20/musb_gadget.c
2024-04-28 15:51:13 +02:00

3141 lines
80 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 MediaTek Inc.
*/
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/moduleparam.h>
#include <linux/stat.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/kfifo.h>
#if defined(CONFIG_USBIF_COMPLIANCE)
#include <linux/kthread.h>
#include <linux/sched.h>
#endif
#include <linux/usb/composite.h>
#include <musb_core.h>
#include <mtk_musb.h>
/* GADGET only support all-ep QMU, otherwise downgrade to non-QMU */
#ifdef MUSB_QMU_LIMIT_SUPPORT
#undef CONFIG_MTK_MUSB_QMU_SUPPORT
#endif
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
#include "musb_qmu.h"
#endif
#ifdef CONFIG_USB_NOTIFY_PROC_LOG
#include <linux/usb_notify.h>
#endif
#if defined(CONFIG_BATTERY_SAMSUNG)
#include "../../../battery/common/sec_charging_common.h"
#endif
#if IS_ENABLED(CONFIG_USB_NOTIFY_LAYER)
extern bool acc_dev_status;
#endif
#define FIFO_START_ADDR 512
/* #define RX_DMA_MODE1 1 */
/* MUSB PERIPHERAL status 3-mar-2006:
*
* - EP0 seems solid. It passes both USBCV and usbtest control cases.
* Minor glitches:
*
* + remote wakeup to Linux hosts work, but saw USBCV failures;
* in one test run (operator error?)
* + endpoint halt tests -- in both usbtest and usbcv -- seem
* to break when dma is enabled ... is something wrongly
* clearing SENDSTALL?
*
* - Mass storage behaved ok when last tested. Network traffic patterns
* (with lots of short transfers etc) need retesting; they turn up the
* worst cases of the DMA, since short packets are typical but are not
* required.
*
* - TX/IN
* + both pio and dma behave in with network and g_zero tests
* + no cppi throughput issues other than no-hw-queueing
* + failed with FLAT_REG (DaVinci)
* + seems to behave with double buffering, PIO -and- CPPI
* + with gadgetfs + AIO, requests got lost?
*
* - RX/OUT
* + both pio and dma behave in with network and g_zero tests
* + dma is slow in typical case (short_not_ok is clear)
* + double buffering ok with PIO
* + double buffering *FAILS* with CPPI, wrong data bytes sometimes
* + request lossage observed with gadgetfs
*
* - ISO not tested ... might work, but only weakly isochronous
*
* - Gadget driver disabling of softconnect during bind() is ignored; so
* drivers can't hold off host requests until userspace is ready.
* (Workaround: they can turn it off later.)
*
* - PORTABILITY (assumes PIO works):
* + DaVinci, basically works with cppi dma
* + OMAP 2430, ditto with mentor dma
* + TUSB 6010, platform-specific dma in the works
*/
/* ----------------------------------------------------------------------- */
#define is_buffer_mapped(req) (is_dma_capable() && \
(req->map_state != UN_MAPPED))
/* Maps the buffer to dma */
static inline void map_dma_buffer(struct musb_request *request,
struct musb *musb, struct musb_ep *musb_ep)
{
#ifndef CONFIG_MTK_MUSB_QMU_SUPPORT
int compatible = true;
struct dma_controller *dma = musb->dma_controller;
#endif
unsigned int length;
if (request->request.length == 0)
return;
length = ALIGN(request->request.length, dma_get_cache_alignment());
request->map_state = UN_MAPPED;
#ifndef CONFIG_MTK_MUSB_QMU_SUPPORT
if (!is_dma_capable() || !musb_ep->dma)
return;
/* Check if DMA engine can handle this request.
* DMA code must reject the USB request explicitly.
* Default behaviour is to map the request.
*/
if (dma->is_compatible)
compatible = dma->is_compatible(musb_ep->dma,
musb_ep->packet_sz,
request->request.buf,
request->request.length);
if (!compatible)
return;
#endif
if (request->request.dma == DMA_ADDR_INVALID) {
dma_addr_t dma_addr;
int ret;
dma_addr = dma_map_single(musb->controller,
request->request.buf,
length,
request->tx
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
ret = dma_mapping_error(musb->controller, dma_addr);
if (ret)
return;
request->request.dma = dma_addr;
request->map_state = MUSB_MAPPED;
} else {
dma_sync_single_for_device(musb->controller,
request->request.dma,
length, request->tx ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
request->map_state = PRE_MAPPED;
}
}
/* Unmap the buffer from dma and maps it back to cpu */
static inline void
unmap_dma_buffer(struct musb_request *request, struct musb *musb)
{
unsigned int length;
if (request->request.length == 0)
return;
length = ALIGN(request->request.length, dma_get_cache_alignment());
if (!is_buffer_mapped(request))
return;
if (request->request.dma == DMA_ADDR_INVALID) {
DBG(1, "not unmapping a never mapped buffer\n");
return;
}
if (request->map_state == MUSB_MAPPED) {
dma_unmap_single(musb->controller,
request->request.dma,
length, request->tx ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
request->request.dma = DMA_ADDR_INVALID;
} else { /* PRE_MAPPED */
dma_sync_single_for_cpu(musb->controller,
request->request.dma,
length, request->tx ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
}
request->map_state = UN_MAPPED;
}
/*
* Immediately complete a request.
*
* @param request the request to complete
* @param status the status to complete the request with
* Context: controller locked, IRQs blocked.
*/
void musb_g_giveback(struct musb_ep *ep,
struct usb_request *request,
int status) __releases(ep->musb->lock)
__acquires(ep->musb->lock)
{
struct musb_request *req;
struct musb *musb;
int busy = ep->busy;
req = to_musb_request(request);
list_del(&req->list);
if (req->request.status == -EINPROGRESS)
req->request.status = status;
musb = req->musb;
ep->busy = 1;
spin_unlock(&musb->lock);
if (!request) {
DBG(0, "%s request already free\n", ep->end_point.name);
goto lock;
}
if (!dma_mapping_error(musb->controller, request->dma) &&
req->request.length != 0)
unmap_dma_buffer(req, musb);
else if (req->epnum != 0)
DBG(0, "%s dma_mapping_error\n", ep->end_point.name);
if (request->status == 0)
DBG(1, "%s done request %p, %d/%d\n",
ep->end_point.name, request,
req->request.actual,
req->request.length);
else
DBG(1, "%s request %p, %d/%d fault %d\n",
ep->end_point.name, request,
req->request.actual, req->request.length, request->status);
usb_gadget_giveback_request(&req->ep->end_point, &req->request);
lock:
spin_lock(&musb->lock);
ep->busy = busy;
}
/* ----------------------------------------------------------------------- */
/*
* Abort requests queued to an endpoint using the status. Synchronous.
* caller locked controller and blocked irqs, and selected this ep.
*/
static void nuke(struct musb_ep *ep, const int status)
{
/*struct musb *musb = ep->musb; */
struct musb_request *req = NULL;
#ifndef CONFIG_MTK_MUSB_QMU_SUPPORT
void __iomem *epio = ep->musb->endpoints[ep->current_epnum].regs;
#endif
ep->busy = 1;
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
musb_flush_qmu(ep->hw_ep->epnum, (ep->is_in ? TXQ : RXQ));
#else
if (is_dma_capable() && ep->dma) {
struct dma_controller *c = ep->musb->dma_controller;
int value;
if (ep->is_in) {
/*
* The programming guide says that we must not clear
* the DMAMODE bit before DMAENAB, so we only
* clear it in the second write...
*/
musb_writew(epio, MUSB_TXCSR,
MUSB_TXCSR_DMAMODE
| MUSB_TXCSR_FLUSHFIFO);
musb_writew(epio, MUSB_TXCSR, 0 | MUSB_TXCSR_FLUSHFIFO);
} else {
musb_writew(epio, MUSB_RXCSR, 0 | MUSB_RXCSR_FLUSHFIFO);
musb_writew(epio, MUSB_RXCSR, 0 | MUSB_RXCSR_FLUSHFIFO);
}
value = c->channel_abort(ep->dma);
DBG(0, "%s: %s: abort DMA --> %d\n"
, __func__, ep->name, value);
c->channel_release(ep->dma);
ep->dma = NULL;
}
#endif
while (!list_empty(&ep->req_list)) {
req = list_first_entry(&ep->req_list,
struct musb_request, list);
musb_g_giveback(ep, &req->request, status);
DBG_LIMIT(5, "call musb_g_giveback on function %s ep is %s\n"
, __func__,
ep->end_point.name);
}
}
/* ----------------------------------------------------------------------- */
/* Data transfers - pure PIO, pure DMA, or mixed mode */
/*
* This assumes the separate CPPI engine is responding to DMA requests
* from the usb core ... sequenced a bit differently from mentor dma.
*/
static inline int max_ep_writesize(struct musb *musb, struct musb_ep *ep)
{
if (can_bulk_split(musb, ep->type))
return ep->hw_ep->max_packet_sz_tx;
else
return ep->packet_sz;
}
/* Peripheral tx (IN) using Mentor DMA works as follows:
* Only mode 0 is used for transfers <= wPktSize,
* mode 1 is used for larger transfers,
*
* One of the following happens:
* - Host sends IN token which causes an endpoint interrupt
* -> TxAvail
* -> if DMA is currently busy, exit.
* -> if queue is non-empty, txstate().
* - Request is queued by the gadget driver.
* -> if queue was previously empty, txstate()
*
* txstate()
* -> start
* /\ -> setup DMA
* | (data is transferred to the FIFO, then sent out when
* | IN token(s) are recd from Host.
* | -> DMA interrupt on completion
* | calls TxAvail.
* | -> stop DMA, ~DMAENAB,
* | -> set TxPktRdy for last short pkt or zlp
* | -> Complete Request
* | -> Continue next request (call txstate)
* |___________________________________|
*
* Non-Mentor DMA engines can of course work differently, such as by
* upleveling from irq-per-packet to irq-per-buffer.
*/
/*
* An endpoint is transmitting data. This can be called either from
* the IRQ routine or from ep.queue() to kickstart a request on an
* endpoint.
*
* Context: controller locked, IRQs blocked, endpoint selected
*/
static void txstate(struct musb *musb, struct musb_request *req)
{
u8 epnum = req->epnum;
struct musb_ep *musb_ep;
void __iomem *epio = musb->endpoints[epnum].regs;
struct usb_request *request;
u16 fifo_count = 0, csr;
int use_dma = 0;
musb_ep = req->ep;
/* Check if EP is disabled */
if (!musb_ep->desc) {
DBG(0, "ep:%s disabled - ignore request\n"
, musb_ep->end_point.name);
return;
}
/* we shouldn't get here while DMA is active ... but we do ... */
if (dma_channel_status(musb_ep->dma) == MUSB_DMA_STATUS_BUSY) {
DBG(0, "dma pending...\n");
return;
}
/* read TXCSR before */
csr = musb_readw(epio, MUSB_TXCSR);
request = &req->request;
fifo_count = min(max_ep_writesize(musb, musb_ep)
, (int)(request->length -
request->actual));
if (csr & MUSB_TXCSR_TXPKTRDY) {
DBG(1, "%s old packet still ready , txcsr %03x\n"
, musb_ep->end_point.name, csr);
return;
}
if (csr & MUSB_TXCSR_P_SENDSTALL) {
DBG(0, "%s stalling, txcsr %03x\n"
, musb_ep->end_point.name, csr);
return;
}
DBG(1, "hw_ep%d, maxpacket %d, fifo count %d, txcsr %03x\n",
epnum, musb_ep->packet_sz, fifo_count, csr);
if (is_buffer_mapped(req)) {
struct dma_controller *c = musb->dma_controller;
size_t request_size;
/* setup DMA, then program endpoint CSR */
request_size = min_t(size_t, request->length - request->actual,
musb_ep->dma->max_len);
use_dma = (request->dma != DMA_ADDR_INVALID && request_size);
/* MUSB_TXCSR_P_ISO is still set correctly */
if (request_size < musb_ep->packet_sz)
musb_ep->dma->desired_mode = 0;
else
musb_ep->dma->desired_mode = 1;
use_dma = use_dma && c->channel_program(musb_ep->dma,
musb_ep->packet_sz,
musb_ep->dma->desired_mode,
request->dma +
request->actual,
request_size);
if (use_dma) {
if (musb_ep->dma->desired_mode == 0) {
/*
* We must not clear the DMAMODE bit
* before the DMAENAB bit -- and the
* latter doesn't always get cleared
* before we get here...
*/
csr &= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB);
musb_writew(epio, MUSB_TXCSR,
csr | MUSB_TXCSR_P_WZC_BITS);
csr &= ~MUSB_TXCSR_DMAMODE;
csr |= (MUSB_TXCSR_DMAENAB | MUSB_TXCSR_MODE);
/* against programming guide */
} else {
csr |= (MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_DMAMODE
| MUSB_TXCSR_MODE);
if (!musb_ep->hb_mult)
csr |= MUSB_TXCSR_AUTOSET;
}
csr &= ~MUSB_TXCSR_P_UNDERRUN;
musb_writew(epio, MUSB_TXCSR, csr);
}
}
if (!use_dma) {
/*
* Unmap the dma buffer back to cpu if dma channel
* programming fails
*/
unmap_dma_buffer(req, musb);
musb_write_fifo(musb_ep->hw_ep, fifo_count,
(u8 *) (request->buf + request->actual));
request->actual += fifo_count;
csr |= MUSB_TXCSR_TXPKTRDY;
csr &= ~MUSB_TXCSR_P_UNDERRUN;
musb_writew(epio, MUSB_TXCSR, csr);
}
/* host may already have the data when this message shows... */
DBG(1, "%s TX/IN %s len %d/%d, txcsr %04x, fifo %d/%d\n",
musb_ep->end_point.name, use_dma ? "dma" : "pio",
request->actual, request->length,
musb_readw(epio, MUSB_TXCSR),
fifo_count, musb_readw(epio, MUSB_TXMAXP));
}
/*
* FIFO state update (e.g. data ready).
* Called from IRQ, with controller locked.
*/
void musb_g_tx(struct musb *musb, u8 epnum)
{
u16 csr;
struct musb_request *req;
struct usb_request *request;
u8 __iomem *mbase = musb->mregs;
struct musb_ep *musb_ep = &musb->endpoints[epnum].ep_in;
void __iomem *epio = musb->endpoints[epnum].regs;
struct dma_channel *dma;
musb_ep_select(mbase, epnum);
req = next_request(musb_ep);
request = &req->request;
csr = musb_readw(epio, MUSB_TXCSR);
DBG(1, "<== %s, txcsr %04x\n", musb_ep->end_point.name, csr);
dma = is_dma_capable() ? musb_ep->dma : NULL;
/*
* REVISIT: for high bandwidth, MUSB_TXCSR_P_INCOMPTX
* probably rates reporting as a host error.
*/
if (csr & MUSB_TXCSR_P_SENTSTALL) {
csr |= MUSB_TXCSR_P_WZC_BITS;
csr &= ~MUSB_TXCSR_P_SENTSTALL;
musb_writew(epio, MUSB_TXCSR, csr);
return;
}
if (csr & MUSB_TXCSR_P_UNDERRUN) {
/* We NAKed, no big deal... little reason to care. */
csr |= MUSB_TXCSR_P_WZC_BITS;
csr &= ~(MUSB_TXCSR_P_UNDERRUN | MUSB_TXCSR_TXPKTRDY);
musb_writew(epio, MUSB_TXCSR, csr);
DBG(1, "underrun on ep%d, req %p\n", epnum, request);
}
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
/*
* SHOULD NOT HAPPEN... has with CPPI though, after
* changing SENDSTALL (and other cases); harmless?
*/
DBG(1, "%s dma still busy?\n", musb_ep->end_point.name);
return;
}
if (request) {
u8 is_dma = 0;
if (dma && (csr & MUSB_TXCSR_DMAENAB)) {
is_dma = 1;
csr |= MUSB_TXCSR_P_WZC_BITS;
csr &= ~(MUSB_TXCSR_DMAENAB | MUSB_TXCSR_P_UNDERRUN |
MUSB_TXCSR_TXPKTRDY | MUSB_TXCSR_AUTOSET);
musb_writew(epio, MUSB_TXCSR, csr);
/* Ensure writebuffer is empty. */
csr = musb_readw(epio, MUSB_TXCSR);
request->actual += musb_ep->dma->actual_len;
DBG(3, "TXCSR%d %04x, DMA off, len %zu, req %p\n",
epnum, csr, musb_ep->dma->actual_len, request);
}
/*
* First, maybe a terminating short packet. Some DMA
* engines might handle this by themselves.
*/
if ((request->zero && request->length
&& (request->length % musb_ep->packet_sz == 0)
&& (request->actual == request->length))
|| (is_dma && (!dma->desired_mode
|| (request->actual % musb_ep->packet_sz)))
) {
/*
* On DMA completion, FIFO may not be
* available yet...
*/
if (csr & MUSB_TXCSR_TXPKTRDY)
return;
DBG(4, "sending zero pkt\n");
musb_writew(epio, MUSB_TXCSR, MUSB_TXCSR_MODE
| MUSB_TXCSR_TXPKTRDY
| (csr & MUSB_TXCSR_P_ISO));
request->zero = 0;
/*
* Return from here with the expectation of the endpoint
* interrupt for further action.
*/
return;
}
if (request->actual == request->length) {
#ifdef NEVER
if (ep_in == &(musb_ep->end_point)) {
adbCmdLog(request->buf, request->actual,
musb_ep->is_in, "musb_g_tx");
/* pr_info("adb: musb_g_tx length = 0x%x,
* actual = 0x%x, packet_sz = 0x%x\n",
* request->length,
* request->actual, musb_ep->packet_sz);
*/
}
#endif
musb_g_giveback(musb_ep, request, 0);
/*
* In the giveback function the MUSB lock is
* released and acquired after sometime. During
* this time period the INDEX register could get
* changed by the gadget_queue function especially
* on SMP systems. Reselect the INDEX to be sure
* we are reading/modifying the right registers
*/
musb_ep_select(mbase, epnum);
/*
* Kickstart next transfer if appropriate;
* the packet that just completed might not
* be transmitted for hours or days.
* REVISIT for double buffering...
* FIXME revisit for stalls too...
*
* If configured as DB, then FIFONOTEMPTY
* doesn't mean no space for new packet
*/
if (!(musb_read_txfifosz(mbase) & MUSB_FIFOSZ_DPB)) {
csr = musb_readw(epio, MUSB_TXCSR);
if (csr & MUSB_TXCSR_FIFONOTEMPTY) {
if ((csr & MUSB_TXCSR_TXPKTRDY) == 0)
musb_writew(epio, MUSB_TXCSR
, MUSB_TXCSR_TXPKTRDY);
return;
}
}
req = musb_ep->desc ? next_request(musb_ep) : NULL;
if (!req) {
DBG(1, "%s idle now\n"
, musb_ep->end_point.name);
return;
}
}
txstate(musb, req);
}
}
/* ------------------------------------------------------------ */
/* Peripheral rx (OUT) using Mentor DMA works as follows:
* - Only mode 0 is used.
*
* - Request is queued by the gadget class driver.
* -> if queue was previously empty, rxstate()
*
* - Host sends OUT token which causes an endpoint interrupt
* /\ -> RxReady
* | -> if request queued, call rxstate
* | /\ -> setup DMA
* | | -> DMA interrupt on completion
* | | -> RxReady
* | | -> stop DMA
* | | -> ack the read
* | | -> if data recd = max expected
* | | by the request, or host
* | | sent a short packet,
* | | complete the request,
* | | and start the next one.
* | |_____________________________________|
* | else just wait for the host
* | to send the next OUT token.
* |__________________________________________________|
*
* Non-Mentor DMA engines can of course work differently.
*/
/*
* Context: controller locked, IRQs blocked, endpoint selected
*/
static void rxstate(struct musb *musb, struct musb_request *req)
{
const u8 epnum = req->epnum;
struct usb_request *request = &req->request;
struct musb_ep *musb_ep;
void __iomem *epio = musb->endpoints[epnum].regs;
unsigned int len = 0;
u16 fifo_count;
u16 csr = musb_readw(epio, MUSB_RXCSR);
struct musb_hw_ep *hw_ep = &musb->endpoints[epnum];
u8 use_mode_1;
if (hw_ep->is_shared_fifo)
musb_ep = &hw_ep->ep_in;
else
musb_ep = &hw_ep->ep_out;
fifo_count = musb_ep->packet_sz;
/* Check if EP is disabled */
if (!musb_ep->desc) {
DBG(0, "ep:%s disabled - ignore request\n"
, musb_ep->end_point.name);
return;
}
/* We shouldn't get here while DMA is active, but we do... */
if (is_buffer_mapped(req) &&
dma_channel_status(musb_ep->dma) ==
MUSB_DMA_STATUS_BUSY) {
DBG(0, "DMA pending...\n");
return;
}
if (csr & MUSB_RXCSR_P_SENDSTALL) {
DBG(0, "%s stalling, RXCSR %04x\n"
, musb_ep->end_point.name, csr);
return;
}
if (csr & MUSB_RXCSR_RXPKTRDY) {
fifo_count = musb_readw(epio, MUSB_RXCOUNT);
DBG(1, "%s epnum %d len %d\n ", __func__, epnum, len);
/*
* Enable Mode 1 on RX transfers only when short_not_ok flag
* is set. Currently short_not_ok flag is set only from
* file_storage and f_mass_storage drivers
*/
#ifdef RX_DMA_MODE1
if (fifo_count == musb_ep->packet_sz)
#else
if (request->short_not_ok && fifo_count == musb_ep->packet_sz)
#endif
use_mode_1 = 1;
else
use_mode_1 = 0;
if (request->actual < request->length) {
#ifdef RX_DMA_MODE1
if (is_buffer_mapped(req) && use_mode_1) {
struct dma_controller *c;
struct dma_channel *channel;
int use_dma = 0;
int transfer_size;
c = musb->dma_controller;
channel = musb_ep->dma;
/* Experimental: Mode1 works with
* mass storage use cases
*/
csr |= MUSB_RXCSR_AUTOCLEAR;
musb_writew(epio, MUSB_RXCSR, csr);
csr |= MUSB_RXCSR_DMAENAB;
musb_writew(epio, MUSB_RXCSR, csr);
musb_writew(epio, MUSB_RXCSR, csr
| MUSB_RXCSR_DMAMODE);
transfer_size = min(request->length -
request->actual,
channel->max_len);
/* Program the transfer length to be
* a multiple of packet size because
* short packets cant be transferred
* over mode1
*/
transfer_size = transfer_size -
(transfer_size % musb_ep->packet_sz);
musb_ep->dma->prog_len = transfer_size;
musb_ep->dma->desired_mode = 1;
use_dma = c->channel_program(channel,
musb_ep->packet_sz,
channel->desired_mode,
request->dma
+ request->actual,
transfer_size);
if (use_dma)
return;
}
#else
if (is_buffer_mapped(req)) {
struct dma_controller *c;
struct dma_channel *channel;
int use_dma = 0;
int transfer_size;
c = musb->dma_controller;
channel = musb_ep->dma;
/* We use DMA Req mode 0 in rx_csr,
* and DMA controller operates in
* mode 0 only. So we do not get
* endpoint interrupts due to DMA
* completion. We only get interrupts
* from DMA controller.
* We could operate in DMA mode 1 if
* we knew the size of the transfer
* in advance. For mass storage class,
* request->length = what the host
* sends, so that'd work. But for pretty
* much everything else,
* request->length is routinely more than
* what the host sends. For
* most these gadgets, end of is signified
* either by a short packet,
* or filling the last byte of the buffer.
* (Sending extra data in
* that last pckate should trigger an
* overflow fault.) But in mode 1,
* we don't get DMA completion interrupt
* for short packets.
*
* Theoretically, we could enable DMAReq
* irq (MUSB_RXCSR_DMAMODE = 1),
* to get endpoint interrupt on every DMA
* req, but that didn't seem to work reliably.
*
* REVISIT an updated g_file_storage
* can set req->short_not_ok, which
* then becomes usable as a runtime
* "use mode 1" hint...
*/
/* Experimental: Mode1 works
* with mass storage
* use cases
*/
if (use_mode_1) {
csr |= MUSB_RXCSR_AUTOCLEAR;
musb_writew(epio, MUSB_RXCSR, csr);
csr |= MUSB_RXCSR_DMAENAB;
musb_writew(epio, MUSB_RXCSR, csr);
/*
* this special sequence
* (enabling and then
* disabling MUSB_RXCSR_DMAMODE)
* is required
* to get DMAReq to activate
*/
musb_writew(epio, MUSB_RXCSR, csr
| MUSB_RXCSR_DMAMODE);
musb_writew(epio, MUSB_RXCSR, csr);
transfer_size = min_t(unsigned int,
request->length -
request->actual,
channel->max_len);
musb_ep->dma->desired_mode = 1;
} else {
/*
* Comment out here, cuz we dont have
* "hb_mult"
* and follow the original setting.
* Dont want to
* change it.
* if (!musb_ep->hb_mult &&
* musb_ep->hw_ep->rx_double_buffered)
* csr |= MUSB_RXCSR_AUTOCLEAR;
*/
csr |= MUSB_RXCSR_DMAENAB;
musb_writew(epio, MUSB_RXCSR, csr);
transfer_size = min_t(
unsigned int,
request->length -
request->actual,
fifo_count);
musb_ep->dma->desired_mode = 0;
}
use_dma =
c->channel_program(channel,
musb_ep->packet_sz,
channel->desired_mode,
request->dma
+ request->actual,
transfer_size);
if (use_dma)
return;
}
#endif
len = request->length - request->actual;
DBG(3, "%s OUT/RX pio fifo %d/%d, maxpacket %d\n",
musb_ep->end_point.name,
len, fifo_count,
musb_ep->packet_sz);
fifo_count =
min_t(unsigned int, len, fifo_count);
/*
* Unmap the dma buffer back to cpu if dma channel
* programming fails. This buffer is mapped if the
* channel allocation is successful
*/
if (is_buffer_mapped(req)) {
unmap_dma_buffer(req, musb);
/*
* Clear DMAENAB and AUTOCLEAR for the
* PIO mode transfer
*/
csr &= ~(MUSB_RXCSR_DMAENAB
| MUSB_RXCSR_AUTOCLEAR);
musb_writew(epio, MUSB_RXCSR, csr);
}
musb_read_fifo(musb_ep->hw_ep, fifo_count, (u8 *)
(request->buf + request->actual));
request->actual += fifo_count;
/* REVISIT if we left anything in the fifo, flush
* it and report -EOVERFLOW
*/
/* ack the read! */
csr |= MUSB_RXCSR_P_WZC_BITS;
csr &= ~MUSB_RXCSR_RXPKTRDY;
musb_writew(epio, MUSB_RXCSR, csr);
}
}
/* reach the end or short packet detected */
if (request->actual == request->length
|| fifo_count < musb_ep->packet_sz)
musb_g_giveback(musb_ep, request, 0);
}
/*
* Data ready for a request; called from IRQ
*/
void musb_g_rx(struct musb *musb, u8 epnum)
{
u16 csr;
struct musb_request *req;
struct usb_request *request;
void __iomem *mbase = musb->mregs;
struct musb_ep *musb_ep;
void __iomem *epio = musb->endpoints[epnum].regs;
struct dma_channel *dma;
struct musb_hw_ep *hw_ep = &musb->endpoints[epnum];
#ifdef RX_DMA_MODE1
u16 len;
u32 residue;
struct dma_controller *c = musb->dma_controller;
int status;
#endif
if (hw_ep->is_shared_fifo)
musb_ep = &hw_ep->ep_in;
else
musb_ep = &hw_ep->ep_out;
musb_ep_select(mbase, epnum);
req = next_request(musb_ep);
if (!req) {
#ifdef RX_DMA_MODE1
musb_ep->rx_pending = 1;
DBG(2, "Packet received on %s but no request queued\n",
musb_ep->end_point.name);
#endif
return;
}
request = &req->request;
csr = musb_readw(epio, MUSB_RXCSR);
dma = is_dma_capable() ? musb_ep->dma : NULL;
DBG(1, "<== %s, rxcsr %04x%s %p\n", musb_ep->end_point.name,
csr, dma ? " (dma)" : "", request);
if (csr & MUSB_RXCSR_P_SENTSTALL) {
csr |= MUSB_RXCSR_P_WZC_BITS;
csr &= ~MUSB_RXCSR_P_SENTSTALL;
DBG(0, "%s sendstall on %p\n", musb_ep->name, request);
musb_writew(epio, MUSB_RXCSR, csr);
return;
}
if (csr & MUSB_RXCSR_P_OVERRUN) {
/* csr |= MUSB_RXCSR_P_WZC_BITS; */
csr &= ~MUSB_RXCSR_P_OVERRUN;
musb_writew(epio, MUSB_RXCSR, csr);
DBG(0, "%s iso overrun on %p\n", musb_ep->name, request);
if (request->status == -EINPROGRESS)
request->status = -EOVERFLOW;
}
if (csr & MUSB_RXCSR_INCOMPRX) {
/* REVISIT not necessarily an error */
DBG(1, "%s, incomprx\n", musb_ep->end_point.name);
}
if (csr & MUSB_RXCSR_FIFOFULL)
DBG(1, "%s, FIFO full\n", musb_ep->end_point.name);
if (dma && dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
#ifdef RX_DMA_MODE1
/* For short_not_ok type transfers and mode0 transfers */
if (dma->desired_mode == 0 || request->short_not_ok)
return;
if (!(csr & MUSB_RXCSR_RXPKTRDY)) {
DBG(1, "%s, DMA busy and Packet not ready\n",
musb_ep->end_point.name);
return;
}
/* For Mode1 we get here for the last short packet */
len = musb_readw(epio, MUSB_RXCOUNT);
/* We should get here only for a short packet. */
if (len == musb_ep->packet_sz) {
DBG(2, "%s, Packet not short RXCOUNT=%d\n",
musb_ep->end_point.name, len);
return;
}
/* Pause the channel to get the correct transfer residue. */
status = c->channel_pause(musb_ep->dma);
residue = c->tx_status(musb_ep->dma);
status = c->check_residue(musb_ep->dma, residue);
DBG(2, "len=%d, residue=%d\n", len, residue);
if (status) {
/* Something's wrong */
status = c->channel_resume(musb_ep->dma);
return;
}
/* In cases when we don't know the transfer length the short
* packet indicates end of current transfer.
*/
status = c->channel_abort(musb_ep->dma);
/* Update with the actual number of bytes transferred */
request->actual = musb_ep->dma->prog_len - residue;
/* Clear DMA bits in the CSR */
csr &= ~(MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_DMAENAB
| MUSB_RXCSR_DMAMODE);
musb_writew(epio, MUSB_RXCSR, csr);
/* Proceed to read the short packet */
rxstate(musb, req);
/* Don't program next transfer, it will tamper with the DMA
* busy condition. Wait for next OUT
*/
#else
/* "should not happen"; likely RXPKTRDY pending for DMA */
#endif
return;
}
if (dma && (csr & MUSB_RXCSR_DMAENAB)) {
csr &= ~(MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_DMAENAB
| MUSB_RXCSR_DMAMODE);
musb_writew(epio, MUSB_RXCSR, MUSB_RXCSR_P_WZC_BITS | csr);
request->actual += musb_ep->dma->actual_len;
DBG(1, "RXCSR%d %04x, dma off, %04x, len %zu, req %p ep %d\n",
epnum, csr,
musb_readw(epio, MUSB_RXCSR),
musb_ep->dma->actual_len, request, epnum);
/* Autoclear doesn't clear RxPktRdy for short packets */
if ((dma->desired_mode == 0 && !hw_ep->rx_double_buffered)
|| (dma->actual_len & (musb_ep->packet_sz - 1))) {
/* ack the read! */
csr &= ~MUSB_RXCSR_RXPKTRDY;
musb_writew(epio, MUSB_RXCSR, csr);
}
#ifdef RX_DMA_MODE1
/* We get here after DMA completion */
if ((dma->desired_mode == 1) && (!request->short_not_ok)) {
/* Incomplete? wait for next OUT packet */
if (request->actual < request->length) {
DBG(2, "Wait for next OUT\n");
} else if (request->actual == request->length) {
DBG(2, "Transfer over mode1 done\n");
musb_g_giveback(musb_ep, request, 0);
} else
DBG(2, "Transfer length exceeded!!\n");
return;
}
#endif
/* incomplete, and not short? wait for next IN packet */
if ((request->actual < request->length)
&& (musb_ep->dma->actual_len == musb_ep->packet_sz)) {
/* In double buffer case, continue to unload fifo if
* there is Rx packet in FIFO.
**/
csr = musb_readw(epio, MUSB_RXCSR);
if ((csr & MUSB_RXCSR_RXPKTRDY)
&& hw_ep->rx_double_buffered)
goto exit;
return;
}
musb_g_giveback(musb_ep, request, 0);
/*
* In the giveback function the MUSB lock is
* released and acquired after sometime. During
* this time period the INDEX register could get
* changed by the gadget_queue function especially
* on SMP systems. Reselect the INDEX to be sure
* we are reading/modifying the right registers
*/
musb_ep_select(mbase, epnum);
req = next_request(musb_ep);
if (!req)
return;
}
exit:
/* Analyze request */
rxstate(musb, req);
}
enum {
USB_TYPE_UNKNOWN,
USB_TYPE_ADB,
USB_TYPE_MTP,
/* USB_TYPE_PTP, */
USB_TYPE_RNDIS,
USB_TYPE_ACM,
};
static struct usb_descriptor_header **
get_function_descriptors(struct usb_function *f,
enum usb_device_speed speed)
{
struct usb_descriptor_header **descriptors;
switch (speed) {
case USB_SPEED_SUPER_PLUS:
descriptors = f->ssp_descriptors;
if (descriptors)
break;
case USB_SPEED_SUPER:
descriptors = f->ss_descriptors;
if (descriptors)
break;
case USB_SPEED_HIGH:
descriptors = f->hs_descriptors;
if (descriptors)
break;
default:
descriptors = f->fs_descriptors;
}
return descriptors;
}
static int musb_get_ep_type(struct usb_descriptor_header **f_desc)
{
struct usb_interface_descriptor *int_desc;
u8 int_class, int_subclass, int_protocol;
for (; *f_desc; ++f_desc) {
if ((*f_desc)->bDescriptorType != USB_DT_INTERFACE)
continue;
int_desc = (struct usb_interface_descriptor *)*f_desc;
int_class = int_desc->bInterfaceClass;
int_subclass = int_desc->bInterfaceSubClass;
int_protocol = int_desc->bInterfaceProtocol;
if (int_class == 0x6 && int_subclass == 0x1
&& int_protocol == 0x1) {
return USB_TYPE_MTP;
} else if (int_class == 0xff && int_subclass == 0x42
&& int_protocol == 0x1) {
return USB_TYPE_ADB;
} else if (int_class == 0x2 && int_subclass == 0x2
&& int_protocol == 0xff) {
return USB_TYPE_RNDIS;
} else if (int_class == 0xe0 && int_subclass == 0x1
&& int_protocol == 0x3) {
return USB_TYPE_RNDIS;
} else if (int_class == 0x2 && int_subclass == 0x2
&& int_protocol == 0x1) {
return USB_TYPE_ACM;
}
}
return USB_TYPE_UNKNOWN;
}
/*
* at the safe mode,
* ACM IN-BULK-> Double Buffer,
* OUT-BULK-> Signle Buffer,
* IN-INT-> Signle Buffer
* ADB IN-BULK-> Signle Buffer,
* OUT-BULK-> Signle Buffer
*/
static int is_db_ok(struct musb *musb, struct musb_ep *musb_ep)
{
struct usb_ep *ep = &musb_ep->end_point;
struct usb_composite_dev *cdev = (musb->g).ep0->driver_data;
struct usb_gadget *gadget = &(musb->g);
struct usb_function *f = NULL;
struct usb_descriptor_header **f_desc;
int addr;
int type = USB_TYPE_UNKNOWN;
int ret = 1;
addr = ((ep->address & 0x80) >> 3)
| (ep->address & 0x0f);
list_for_each_entry(f, &cdev->config->functions, list) {
if (test_bit(addr, f->endpoints))
goto find_f;
}
goto done;
find_f:
f_desc = get_function_descriptors(f, gadget->speed);
if (f_desc)
type = musb_get_ep_type(f_desc);
else
goto done;
if (type == USB_TYPE_ACM && !musb_ep->is_in)
ret = 0;
else if (type == USB_TYPE_ADB)
ret = 0;
done:
return ret;
}
static void fifo_setup(struct musb *musb, struct musb_ep *musb_ep)
{
void __iomem *mbase = musb->mregs;
int size = 0;
u16 maxpacket = musb_ep->fifo_size;
u16 c_off = musb->fifo_addr >> 3;
u8 c_size;
int dbuffer_needed = 0;
/* expect hw_ep has already been zero-initialized */
size = ffs(max_t(u16, maxpacket, 8)) - 1;
maxpacket = 1 << size;
DBG(0, "musb type=%s\n",
(musb_ep->type == USB_ENDPOINT_XFER_BULK ? "BULK" :
(musb_ep->type == USB_ENDPOINT_XFER_INT ? "INT" :
(musb_ep->type == USB_ENDPOINT_XFER_ISOC ?
"ISO" : "CONTROL"))));
c_size = size - 3;
/* Set double buffer, if the transfer type is bulk or isoc. */
/* So user need to take care the fifo buffer is enough or not. */
if (musb_ep->fifo_mode == BUF_DOUBLE
&& (musb_ep->type == USB_ENDPOINT_XFER_BULK
|| musb_ep->type == USB_ENDPOINT_XFER_ISOC)) {
dbuffer_needed = 1;
}
if (dbuffer_needed) {
if ((musb->fifo_addr + (maxpacket << 1)) > (musb->fifo_size)) {
DBG(0,
"BUF_DOUBLE USB FIFO is not enough!!! (%d>%d), fifo_addr=%d\n",
(musb->fifo_addr + (maxpacket << 1)),
(musb->fifo_size),
musb->fifo_addr);
return;
}
if (is_saving_mode()) {
if (is_db_ok(musb, musb_ep)) {
DBG(0, "Saving mode, but EP%d supports DBBUF\n",
musb_ep->current_epnum);
c_size |= MUSB_FIFOSZ_DPB;
}
} else {
DBG(0, "EP%d supports DBBUF\n",
musb_ep->current_epnum);
c_size |= MUSB_FIFOSZ_DPB;
}
} else if ((musb->fifo_addr + maxpacket) > (musb->fifo_size)) {
DBG(0, "BUF_SINGLE USB FIFO is not enough!!! (%d>%d)\n",
(musb->fifo_addr + maxpacket), (musb->fifo_size));
return;
}
/* configure the FIFO */
/* musb_writeb(mbase, MUSB_INDEX, musb_ep->hw_ep->epnum); */
DBG(0,
"fifo size is %d after %d, fifo address is %d, epnum %d,hwepnum %d\n",
c_size, maxpacket, musb->fifo_addr,
musb_ep->current_epnum,
musb_ep->hw_ep->epnum);
if (musb_ep->is_in) {
musb_write_txfifosz(mbase, c_size);
musb_write_txfifoadd(mbase, c_off);
} else {
musb_write_rxfifosz(mbase, c_size);
musb_write_rxfifoadd(mbase, c_off);
}
musb->fifo_addr += (maxpacket << ((c_size & MUSB_FIFOSZ_DPB) ? 1 : 0));
}
/* ------------------------------------------------------------ */
static int musb_gadget_enable
(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc)
{
unsigned long flags;
struct musb_ep *musb_ep;
struct musb_hw_ep *hw_ep;
void __iomem *regs;
struct musb *musb;
void __iomem *mbase;
u8 epnum;
u16 csr;
unsigned int tmp;
int status = -EINVAL;
if (!ep || !desc)
return -EINVAL;
musb_ep = to_musb_ep(ep);
hw_ep = musb_ep->hw_ep;
regs = hw_ep->regs;
musb = musb_ep->musb;
mbase = musb->mregs;
epnum = musb_ep->current_epnum;
spin_lock_irqsave(&musb->lock, flags);
if (musb_ep->desc) {
status = -EBUSY;
goto fail;
}
musb_ep->type = usb_endpoint_type(desc);
/* check direction and (later) maxpacket size against endpoint */
if (usb_endpoint_num(desc) != epnum)
goto fail;
/* REVISIT this rules out high bandwidth periodic transfers */
tmp = usb_endpoint_maxp_mult(desc) - 1;
if (tmp) {
int ok;
if (usb_endpoint_dir_in(desc))
ok = musb->hb_iso_tx;
else
ok = musb->hb_iso_rx;
if (!ok) {
DBG(2, "no support for high bandwidth ISO\n");
goto fail;
}
musb_ep->hb_mult = tmp;
} else {
musb_ep->hb_mult = 0;
}
musb_ep->packet_sz = usb_endpoint_maxp(desc) & 0x7ff;
tmp = musb_ep->packet_sz * (musb_ep->hb_mult + 1);
/* enable the interrupts for the endpoint, set the endpoint
* packet size (or fail), set the mode, clear the fifo
*/
musb_ep_select(mbase, epnum);
if (usb_endpoint_dir_in(desc)) {
if (hw_ep->is_shared_fifo)
musb_ep->is_in = 1;
if (!musb_ep->is_in)
goto fail;
if (tmp > hw_ep->max_packet_sz_tx) {
DBG(0, "packet size beyond hardware FIFO size\n");
goto fail;
}
#ifndef CONFIG_MTK_MUSB_QMU_SUPPORT
musb->intrtxe |= (1 << epnum);
musb_writew(mbase, MUSB_INTRTXE, musb->intrtxe);
#endif
/* REVISIT if can_bulk_split(), use by updating "tmp";
* likewise high bandwidth periodic tx
*/
/* Set TXMAXP with the FIFO size of the endpoint
* to disable double buffering mode.
*/
if (musb->double_buffer_not_ok)
musb_writew(regs, MUSB_TXMAXP, hw_ep->max_packet_sz_tx);
else
musb_writew(regs, MUSB_TXMAXP, musb_ep->packet_sz
| (musb_ep->hb_mult << 11));
csr = MUSB_TXCSR_MODE | MUSB_TXCSR_CLRDATATOG;
if (musb_readw(regs, MUSB_TXCSR)
& MUSB_TXCSR_FIFONOTEMPTY)
csr |= MUSB_TXCSR_FLUSHFIFO;
if (musb_ep->type == USB_ENDPOINT_XFER_ISOC)
csr |= MUSB_TXCSR_P_ISO;
/* set twice in case of double buffering */
musb_writew(regs, MUSB_TXCSR, csr);
/* REVISIT may be inappropriate w/o FIFONOTEMPTY ... */
musb_writew(regs, MUSB_TXCSR, csr);
} else {
if (hw_ep->is_shared_fifo)
musb_ep->is_in = 0;
if (musb_ep->is_in)
goto fail;
if (tmp > hw_ep->max_packet_sz_rx) {
DBG(0, "packet size beyond hardware FIFO size\n");
goto fail;
}
#ifndef CONFIG_MTK_MUSB_QMU_SUPPORT
musb->intrrxe |= (1 << epnum);
musb_writew(mbase, MUSB_INTRRXE, musb->intrrxe);
#endif
/* REVISIT if can_bulk_combine() use by updating "tmp"
* likewise high bandwidth periodic rx
*/
/* Set RXMAXP with the FIFO size of the endpoint
* to disable double buffering mode.
*/
if (musb->double_buffer_not_ok)
musb_writew(regs, MUSB_RXMAXP, hw_ep->max_packet_sz_tx);
else
musb_writew(regs, MUSB_RXMAXP, musb_ep->packet_sz
| (musb_ep->hb_mult << 11));
/* force shared fifo to OUT-only mode */
if (hw_ep->is_shared_fifo) {
csr = musb_readw(regs, MUSB_TXCSR);
csr &= ~(MUSB_TXCSR_MODE | MUSB_TXCSR_TXPKTRDY);
musb_writew(regs, MUSB_TXCSR, csr);
}
/* don't flush fifo when enable, because sometimes usb
* will receive packets before ep enabled. when flush fifo
* here will lost those packets. We will flush fifo during
* disabe ep
*/
#ifdef NEVER
csr = MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_CLRDATATOG;
if (musb_ep->type == USB_ENDPOINT_XFER_ISOC)
csr |= MUSB_RXCSR_P_ISO;
else if (musb_ep->type == USB_ENDPOINT_XFER_INT)
csr |= MUSB_RXCSR_DISNYET;
/* set twice in case of double buffering */
musb_writew(regs, MUSB_RXCSR, csr);
musb_writew(regs, MUSB_RXCSR, csr);
#endif
}
fifo_setup(musb, musb_ep);
#ifndef CONFIG_MTK_MUSB_QMU_SUPPORT
/* NOTE: all the I/O code _should_ work fine without DMA, in case
* for some reason you run out of channels here.
*/
/* interrupt mode ep don't use dma */
if (is_dma_capable() && musb->dma_controller
&& musb_ep->type != USB_ENDPOINT_XFER_INT) {
struct dma_controller *c = musb->dma_controller;
musb_ep->dma = c->channel_alloc
(c, hw_ep, (desc->bEndpointAddress & USB_DIR_IN));
} else
musb_ep->dma = NULL;
#endif
musb_ep->desc = desc;
musb_ep->busy = 0;
musb_ep->wedged = 0;
status = 0;
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
mtk_qmu_enable(musb, epnum, !(musb_ep->is_in));
#endif
DBG(0, "%s periph: enabled %s for %s %s, %smaxpacket %d\n",
musb_driver_name, musb_ep->end_point.name, ({
char *s; switch (musb_ep->type) {
case USB_ENDPOINT_XFER_BULK:
s = "bulk"; break; case USB_ENDPOINT_XFER_INT:
s = "int"; break; default:
s = "iso"; break; }; s; }
), musb_ep->is_in ? "IN" : "OUT",
musb_ep->dma ? "dma, " : ""
, musb_ep->packet_sz);
schedule_work(&musb->irq_work);
fail:
spin_unlock_irqrestore(&musb->lock, flags);
return status;
}
/*
* Disable an endpoint flushing all requests queued.
*/
static int musb_gadget_disable(struct usb_ep *ep)
{
unsigned long flags;
struct musb *musb;
u8 epnum;
struct musb_ep *musb_ep;
void __iomem *epio;
int status = 0;
u16 csr;
musb_ep = to_musb_ep(ep);
musb = musb_ep->musb;
epnum = musb_ep->current_epnum;
epio = musb->endpoints[epnum].regs;
spin_lock_irqsave(&musb->lock, flags);
musb_ep_select(musb->mregs, epnum);
/* zero the endpoint sizes */
if (musb_ep->is_in) {
#ifndef CONFIG_MTK_MUSB_QMU_SUPPORT
musb->intrtxe &= ~(1 << epnum);
musb_writew(musb->mregs, MUSB_INTRTXE, musb->intrtxe);
#endif
csr = MUSB_TXCSR_FLUSHFIFO | MUSB_TXCSR_CLRDATATOG;
/* set twice in case of double buffering */
musb_writew(epio, MUSB_TXCSR, csr);
musb_writew(epio, MUSB_TXCSR, csr);
musb_writew(epio, MUSB_TXMAXP, 0);
} else {
#ifndef CONFIG_MTK_MUSB_QMU_SUPPORT
musb->intrrxe &= ~(1 << epnum);
musb_writew(musb->mregs, MUSB_INTRRXE, musb->intrrxe);
#endif
/* flush fifo here */
csr = MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_CLRDATATOG;
/* set twice in case of double buffering */
musb_writew(epio, MUSB_RXCSR, csr);
musb_writew(epio, MUSB_RXCSR, csr);
musb_writew(epio, MUSB_RXMAXP, 0);
}
musb_ep->desc = NULL;
musb_ep->end_point.desc = NULL;
/* abort all pending DMA and requests */
nuke(musb_ep, -ESHUTDOWN);
schedule_work(&musb->irq_work);
spin_unlock_irqrestore(&(musb->lock), flags);
DBG(2, "%s\n", musb_ep->end_point.name);
return status;
}
/*
* Allocate a request for an endpoint.
* Reused by ep0 code.
*/
struct usb_request *musb_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
/* struct musb *musb = musb_ep->musb; */
struct musb_request *request = NULL;
request = kzalloc(sizeof(*request), gfp_flags);
if (!request)
return NULL;
request->request.dma = DMA_ADDR_INVALID;
request->epnum = musb_ep->current_epnum;
request->ep = musb_ep;
return &request->request;
}
/*
* Free a request
* Reused by ep0 code.
*/
void musb_free_request(struct usb_ep *ep, struct usb_request *req)
{
kfree(to_musb_request(req));
}
static LIST_HEAD(buffers);
struct free_record {
struct list_head list;
struct device *dev;
unsigned int bytes;
dma_addr_t dma;
};
/*
* Context: controller locked, IRQs blocked.
*/
void musb_ep_restart(struct musb *musb, struct musb_request *req)
{
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
/* limit debug mechanism to avoid too much log */
static DEFINE_RATELIMIT_STATE(ratelimit, HZ, 10);
if (__ratelimit(&ratelimit))
pr_debug("<ratelimit> <== %s request %p len %u on hw_ep%d"
, req->tx ? "TX/IN" : "RX/OUT"
, &req->request
, req->request.length
, req->epnum);
#else
DBG(2,
"<== %s request %p len %u on hw_ep%d\n",
req->tx ? "TX/IN" : "RX/OUT", &req->request
, req->request.length, req->epnum);
musb_ep_select(musb->mregs, req->epnum);
if (req->tx)
txstate(musb, req);
else
rxstate(musb, req);
#endif
}
static int musb_gadget_queue
(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags)
{
struct musb_ep *musb_ep;
struct musb_request *request;
struct musb *musb;
int status = 0;
unsigned long lockflags;
if (!ep || !req)
return -EINVAL;
if (!req->buf)
return -ENODATA;
musb_ep = to_musb_ep(ep);
musb = musb_ep->musb;
request = to_musb_request(req);
request->musb = musb;
if (request->ep != musb_ep)
return -EINVAL;
DBG(2, "<== to %s request=%p\n", ep->name, req);
/* request is mine now... */
request->request.actual = 0;
request->request.status = -EINPROGRESS;
request->epnum = musb_ep->current_epnum;
request->tx = musb_ep->is_in;
map_dma_buffer(request, musb, musb_ep);
spin_lock_irqsave(&musb->lock, lockflags);
/* don't queue if the ep is down */
if (!musb_ep->desc) {
DBG(2,
"req %p queued to %s while ep %s\n",
req, ep->name, "disabled");
status = -ESHUTDOWN;
unmap_dma_buffer(request, musb);
goto unlock;
}
/* add request to the list */
list_add_tail(&request->list, &musb_ep->req_list);
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (request->request.dma != DMA_ADDR_INVALID ||
request->request.length == 0) {
/* TX case */
if (request->tx) {
/* TX QMU don't have info
* for length sent, set this
* field in advance
*/
request->request.actual = request->request.length;
#ifdef CONFIG_MTK_MUSB_QMU_PURE_ZLP_SUPPORT
if (request->request.length >= 0) {
#else
/* only enqueue for length > 0 packet.
* Don't send ZLP here for MSC protocol.
*/
if (request->request.length > 0) {
#endif
musb_kick_D_CmdQ(musb, request);
#ifndef CONFIG_MTK_MUSB_QMU_PURE_ZLP_SUPPORT
/*
* for UMS special case
*/
} else if (request->request.length == 0) {
int cnt = 50; /* 50*200us, total 10 ms */
int is_timeout = 1;
QMU_WARN("TX ZLP sent case\n");
/*
* wait QMU tx done,
* should be enough in UMS
* case due to protocol
*/
while (cnt--) {
if (musb_is_qmu_stop(request->epnum,
request->tx ? 0 : 1)) {
is_timeout = 0;
break;
}
udelay(200);
}
if (!is_timeout) {
musb_tx_zlp_qmu(musb, request->epnum);
musb_g_giveback(musb_ep
, &(request->request), 0);
} else {
/* let qmu_done_tx to handle this */
QMU_WARN
("TX ZLP sent in qmu_done_tx\n");
goto unlock;
}
#endif
} else {
QMU_ERR("ERR, TX, request->request.length(%d)\n"
, request->request.length);
}
} else { /* RX case */
musb_kick_D_CmdQ(musb, request);
}
}
#else
#ifdef RX_DMA_MODE1
/* it this is the head of the queue, start i/o ... */
if (!musb_ep->busy && &request->list == musb_ep->req_list.next) {
/* In case of RX, if there is no packet pending to be read
* from fifo then wait for next interrupt
*/
if (!request->tx) {
if (!musb_ep->rx_pending) {
DBG(2, "No packet pending for %s\n"
, ep->name);
goto cleanup;
} else {
musb_ep->rx_pending = 0;
DBG(2, "Read packet from fifo %s\n"
, ep->name);
}
}
musb_ep_restart(musb, request);
}
#else
/* it this is the head of the queue, start i/o ... */
if (!musb_ep->busy && &request->list == musb_ep->req_list.next)
musb_ep_restart(musb, request);
#endif
#endif
unlock:
spin_unlock_irqrestore(&musb->lock, lockflags);
return status;
}
static int musb_gadget_dequeue(struct usb_ep *ep, struct usb_request *request)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
struct musb_request *req = to_musb_request(request);
struct musb_request *r;
unsigned long flags;
int status = 0;
struct musb *musb = musb_ep->musb;
if (!ep || !request || to_musb_request(request)->ep != musb_ep)
return -EINVAL;
disable_irq_nosync(musb->nIrq);
spin_lock_irqsave(&musb->lock, flags);
list_for_each_entry(r, &musb_ep->req_list, list) {
if (r == req)
break;
}
if (r != req) {
DBG(2, "request %p not queued to %s\n", request, ep->name);
status = -EINVAL;
goto done;
}
/* if the hardware doesn't have the request, easy ... */
if (musb_ep->req_list.next != &req->list || musb_ep->busy)
musb_g_giveback(musb_ep, request, -ECONNRESET);
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
else {
QMU_DBG("dequeue req(%p), ep(%d), swep(%d)\n"
, request, musb_ep->hw_ep->epnum,
ep->address);
musb_flush_qmu(musb_ep->hw_ep->epnum,
(musb_ep->is_in ? TXQ : RXQ));
mtk_qmu_enable(musb,
musb_ep->hw_ep->epnum,
(musb_ep->is_in ? TXQ : RXQ));
musb_g_giveback(musb_ep, request, -ECONNRESET);
}
#else
/* ... else abort the dma transfer ... */
else if (is_dma_capable() && musb_ep->dma) {
struct dma_controller *c = musb->dma_controller;
musb_ep_select(musb->mregs, musb_ep->current_epnum);
if (c->channel_abort)
status = c->channel_abort(musb_ep->dma);
else
status = -EBUSY;
if (status == 0)
musb_g_giveback(musb_ep, request, -ECONNRESET);
} else {
/* NOTE: by sticking to easily tested hardware/driver states,
* we leave counting of in-flight packets imprecise.
*/
musb_g_giveback(musb_ep, request, -ECONNRESET);
}
#endif
done:
spin_unlock_irqrestore(&musb->lock, flags);
enable_irq(musb->nIrq);
return status;
}
/*
* Set or clear the halt bit of an endpoint. A halted enpoint won't tx/rx any
* data but will queue requests.
*
* exported to ep0 code
*/
static int musb_gadget_set_halt(struct usb_ep *ep, int value)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
u8 epnum = musb_ep->current_epnum;
struct musb *musb = musb_ep->musb;
void __iomem *epio = musb->endpoints[epnum].regs;
void __iomem *mbase;
unsigned long flags;
u16 csr;
struct musb_request *request;
int status = 0;
if (!ep)
return -EINVAL;
mbase = musb->mregs;
spin_lock_irqsave(&musb->lock, flags);
if (musb_ep->type == USB_ENDPOINT_XFER_ISOC) {
status = -EINVAL;
goto done;
}
musb_ep_select(mbase, epnum);
request = next_request(musb_ep);
if (value) {
if (request) {
DBG(0, "request in progress, cannot halt %s\n"
, ep->name);
status = -EAGAIN;
goto done;
}
/* Cannot portably stall with non-empty FIFO */
if (musb_ep->is_in) {
csr = musb_readw(epio, MUSB_TXCSR);
if (csr & MUSB_TXCSR_FIFONOTEMPTY) {
DBG(0, "FIFO busy, cannot halt %s\n"
, ep->name);
status = -EAGAIN;
goto done;
}
}
} else
musb_ep->wedged = 0;
/* set/clear the stall and toggle bits */
DBG(2, "%s: %s stall\n", ep->name, value ? "set" : "clear");
if (musb_ep->is_in) {
csr = musb_readw(epio, MUSB_TXCSR);
csr |= MUSB_TXCSR_P_WZC_BITS | MUSB_TXCSR_CLRDATATOG;
if (value)
csr |= MUSB_TXCSR_P_SENDSTALL;
else
csr &= ~(MUSB_TXCSR_P_SENDSTALL
| MUSB_TXCSR_P_SENTSTALL);
csr &= ~MUSB_TXCSR_TXPKTRDY;
musb_writew(epio, MUSB_TXCSR, csr);
} else {
csr = musb_readw(epio, MUSB_RXCSR);
csr |= MUSB_RXCSR_P_WZC_BITS
| MUSB_RXCSR_FLUSHFIFO
| MUSB_RXCSR_CLRDATATOG;
if (value)
csr |= MUSB_RXCSR_P_SENDSTALL;
else
csr &= ~(MUSB_RXCSR_P_SENDSTALL
| MUSB_RXCSR_P_SENTSTALL);
musb_writew(epio, MUSB_RXCSR, csr);
}
/* maybe start the first request in the queue */
if (!musb_ep->busy && !value && request) {
DBG(0, "restarting the request\n");
musb_ep_restart(musb, request);
}
done:
spin_unlock_irqrestore(&musb->lock, flags);
return status;
}
/*
* Sets the halt feature with the clear requests ignored
*/
static int musb_gadget_set_wedge(struct usb_ep *ep)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
if (!ep)
return -EINVAL;
musb_ep->wedged = 1;
return usb_ep_set_halt(ep);
}
static int musb_gadget_fifo_status(struct usb_ep *ep)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
void __iomem *epio = musb_ep->hw_ep->regs;
int retval = -EINVAL;
if (musb_ep->desc && !musb_ep->is_in) {
struct musb *musb = musb_ep->musb;
int epnum = musb_ep->current_epnum;
void __iomem *mbase = musb->mregs;
unsigned long flags;
spin_lock_irqsave(&musb->lock, flags);
musb_ep_select(mbase, epnum);
/* FIXME return zero unless RXPKTRDY is set */
retval = musb_readw(epio, MUSB_RXCOUNT);
spin_unlock_irqrestore(&musb->lock, flags);
}
return retval;
}
static void musb_gadget_fifo_flush(struct usb_ep *ep)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
struct musb *musb = musb_ep->musb;
u8 epnum = musb_ep->current_epnum;
void __iomem *epio = musb->endpoints[epnum].regs;
void __iomem *mbase;
unsigned long flags;
u16 csr;
mbase = musb->mregs;
spin_lock_irqsave(&musb->lock, flags);
musb_ep_select(mbase, (u8) epnum);
#ifndef CONFIG_MTK_MUSB_QMU_SUPPORT
/* disable interrupts */
musb_writew(mbase, MUSB_INTRTXE, musb->intrtxe & ~(1 << epnum));
#endif
if (musb_ep->is_in) {
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
QMU_WARN("fifo flush(%d), sw(%d)\n", epnum, ep->address);
musb_flush_qmu(epnum, TXQ);
musb_restart_qmu(musb, epnum, TXQ);
#endif
csr = musb_readw(epio, MUSB_TXCSR);
if (csr & MUSB_TXCSR_FIFONOTEMPTY) {
csr |= MUSB_TXCSR_FLUSHFIFO | MUSB_TXCSR_P_WZC_BITS;
/*
* Setting both TXPKTRDY and FLUSHFIFO makes controller
* to interrupt current FIFO loading, but not flushing
* the already loaded ones.
*/
csr &= ~MUSB_TXCSR_TXPKTRDY;
musb_writew(epio, MUSB_TXCSR, csr);
/* REVISIT may be inappropriate w/o FIFONOTEMPTY ... */
musb_writew(epio, MUSB_TXCSR, csr);
}
} else {
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
QMU_WARN("fifo flush(%d), sw(%d)\n", epnum, ep->address);
musb_flush_qmu(epnum, RXQ);
musb_restart_qmu(musb, epnum, RXQ);
#endif
csr = musb_readw(epio, MUSB_RXCSR);
csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_P_WZC_BITS;
musb_writew(epio, MUSB_RXCSR, csr);
musb_writew(epio, MUSB_RXCSR, csr);
}
#ifndef CONFIG_MTK_MUSB_QMU_SUPPORT
/* re-enable interrupt */
musb_writew(mbase, MUSB_INTRTXE, musb->intrtxe);
#endif
spin_unlock_irqrestore(&musb->lock, flags);
}
#if defined(CONFIG_MTK_MD_DIRECT_TETHERING_SUPPORT)
static void musb_gadget_suspend_control(struct usb_ep *ep)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
struct musb *musb = musb_ep->musb;
u8 epnum = musb_ep->current_epnum;
unsigned long flags;
DBG(2, "%s : %s...", __func__, ep->name);
spin_lock_irqsave(&musb->lock, flags);
nuke(musb_ep, -ECONNRESET);
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (musb_ep->is_in) { /* TX */
musb_writeb(musb->mregs, MUSB_QIMSR,
musb_readb(musb->mregs, MUSB_QIMSR)
| ((1<<0)<<(epnum)));
} else {
musb_writeb(musb->mregs, MUSB_QIMSR,
musb_readb(musb->mregs, MUSB_QIMSR)
| ((1<<8)<<(epnum)));
}
#endif
spin_unlock_irqrestore(&musb->lock, flags);
}
static void musb_gadget_resume_control(struct usb_ep *ep)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
struct musb *musb = musb_ep->musb;
u8 epnum = musb_ep->current_epnum;
unsigned long flags;
int timeout_count = 100; /* 50ms*100 */
u32 int_md = musb_readb(musb->mregs, MUSB_USB_MDL1INTM);
DBG(2, "%s : %s...", __func__, ep->name);
/* check if MD finish deactivate follow */
while (int_md && (timeout_count != 0)) {
mdelay(50);
int_md = musb_readb(musb->mregs, MUSB_USB_MDL1INTM);
DBG(2, "%s : int_md: %d\n", __func__, int_md);
timeout_count--;
}
DBG(2,
"%s : timeout_count: %d\n", __func__
, timeout_count);
if (int_md)
DBG(2,
"ep resume timeout, U3D_LV1IER_MD:%x\n"
, int_md);
spin_lock_irqsave(&musb->lock, flags);
nuke(musb_ep, -ECONNRESET);
#ifdef CONFIG_MTK_MUSB_QMU_SUPPORT
if (musb_ep->is_in) { /* TX */
musb_writeb(musb->mregs, MUSB_USBGCSR,
musb_readb(musb->mregs, MUSB_USBGCSR)
| ((1<<0)<<(epnum)));
musb_writeb(musb->mregs, MUSB_QIMCR,
musb_readb(musb->mregs, MUSB_QIMCR)
| ((1<<0)<<(epnum)));
musb_restart_qmu(musb, epnum, 0);
} else {
musb_writeb(musb->mregs,
MUSB_USBGCSR, musb_readb(musb->mregs, MUSB_USBGCSR)
| ((16<<0)<<(epnum)));
musb_writeb(musb->mregs,
MUSB_QIMCR, musb_readb(musb->mregs, MUSB_QIMCR)
| ((8<<0)<<(epnum)));
musb_restart_qmu(musb, epnum, 1);
}
#endif
spin_unlock_irqrestore(&musb->lock, flags);
}
#endif
static const struct usb_ep_ops musb_ep_ops = {
.enable = musb_gadget_enable,
.disable = musb_gadget_disable,
.alloc_request = musb_alloc_request,
.free_request = musb_free_request,
.queue = musb_gadget_queue,
.dequeue = musb_gadget_dequeue,
.set_halt = musb_gadget_set_halt,
.set_wedge = musb_gadget_set_wedge,
.fifo_status = musb_gadget_fifo_status,
.fifo_flush = musb_gadget_fifo_flush,
#if defined(CONFIG_MTK_MD_DIRECT_TETHERING_SUPPORT)
|| defined(CONFIG_MTK_MD_DIRECT_LOGGING_SUPPORT)
.suspend_control = musb_gadget_suspend_control,
.resume_control = musb_gadget_resume_control,
#endif
};
/* ----------------------------------------------------------------------- */
static int musb_gadget_get_frame(struct usb_gadget *gadget)
{
struct musb *musb = gadget_to_musb(gadget);
return (int)musb_readw(musb->mregs, MUSB_FRAME);
}
static int musb_gadget_wakeup(struct usb_gadget *gadget)
{
struct musb *musb = gadget_to_musb(gadget);
void __iomem *mregs = musb->mregs;
unsigned long flags;
int status = -EINVAL;
u8 power, devctl;
int retries;
spin_lock_irqsave(&musb->lock, flags);
switch (musb->xceiv->otg->state) {
case OTG_STATE_B_PERIPHERAL:
/* NOTE: OTG state machine doesn't include B_SUSPENDED;
* that's part of the standard usb 1.1 state machine, and
* doesn't affect OTG transitions.
*/
if (musb->may_wakeup && musb->is_suspended)
break;
goto done;
case OTG_STATE_B_IDLE:
/* Start SRP ... OTG not required. */
devctl = musb_readb(mregs, MUSB_DEVCTL);
DBG(2, "Sending SRP: devctl: %02x\n", devctl);
devctl |= MUSB_DEVCTL_SESSION;
musb_writeb(mregs, MUSB_DEVCTL, devctl);
devctl = musb_readb(mregs, MUSB_DEVCTL);
retries = 100;
while (!(devctl & MUSB_DEVCTL_SESSION)) {
devctl = musb_readb(mregs, MUSB_DEVCTL);
if (retries-- < 1)
break;
}
retries = 10000;
while (devctl & MUSB_DEVCTL_SESSION) {
devctl = musb_readb(mregs, MUSB_DEVCTL);
if (retries-- < 1)
break;
}
spin_unlock_irqrestore(&musb->lock, flags);
otg_start_srp(musb->xceiv->otg);
spin_lock_irqsave(&musb->lock, flags);
/* Block idling for at least 1s */
musb_platform_try_idle
(musb, jiffies + msecs_to_jiffies(1 * HZ));
status = 0;
goto done;
default:
DBG(2,
"Unhandled wake: %s\n",
otg_state_string(musb->xceiv->otg->state));
goto done;
}
status = 0;
power = musb_readb(mregs, MUSB_POWER);
power |= MUSB_POWER_RESUME;
musb_writeb(mregs, MUSB_POWER, power);
DBG(2, "issue wakeup\n");
/* FIXME do this next chunk in a timer callback, no udelay */
mdelay(2);
power = musb_readb(mregs, MUSB_POWER);
power &= ~MUSB_POWER_RESUME;
musb_writeb(mregs, MUSB_POWER, power);
done:
spin_unlock_irqrestore(&musb->lock, flags);
return status;
}
static int musb_gadget_set_self_powered
(struct usb_gadget *gadget, int is_selfpowered)
{
struct musb *musb = gadget_to_musb(gadget);
musb->is_self_powered = !!is_selfpowered;
return 0;
}
static void musb_pullup(struct musb *musb, int is_on, bool usb_in)
{
u8 power;
DBG(0,
"MUSB: gadget pull up %d start, musb->power:%d\n"
, is_on, musb->power);
if (musb->power) {
power = musb_readb(musb->mregs, MUSB_POWER);
if (is_on)
power |= (MUSB_POWER_SOFTCONN | MUSB_POWER_ENSUSPEND);
else
power &= ~(MUSB_POWER_SOFTCONN | MUSB_POWER_ENSUSPEND);
musb_writeb(musb->mregs, MUSB_POWER, power);
}
DBG(0, "MUSB: gadget pull up %d end\n", is_on);
}
#ifdef NEVER
static int musb_gadget_vbus_session(struct usb_gadget *gadget, int is_active)
{
DBG(2, "<= %s =>\n", __func__);
/*
* FIXME iff driver's softconnect flag is set (as it is during probe,
* though that can clear it), just musb_pullup().
*/
return -EINVAL;
}
#endif
static int musb_gadget_vbus_draw
(struct usb_gadget *gadget, unsigned int mA)
{
struct musb *musb = gadget_to_musb(gadget);
if (!musb->xceiv->set_power)
return -EOPNOTSUPP;
return usb_phy_set_power(musb->xceiv, mA);
}
bool is_usb_rdy(void)
{
return true;
}
EXPORT_SYMBOL(is_usb_rdy);
static void musb_set_usb_bootcomplete(struct musb *musb)
{
#if defined(CONFIG_BATTERY_SAMSUNG)
union power_supply_propval propval = {0,};
pr_info("%s\n", __func__);
propval.intval = 1;
psy_do_property("battery", set,
POWER_SUPPLY_EXT_PROP_USB_BOOTCOMPLETE,
propval);
#endif
musb->usb_bootcomplete = 1;
}
static int musb_gadget_pullup(struct usb_gadget *gadget, int is_on)
{
struct musb *musb = gadget_to_musb(gadget);
unsigned long flags;
bool usb_in = false;
DBG(0, "is_on=%d, softconnect=%d ++\n", is_on, musb->softconnect);
is_on = !!is_on;
pm_runtime_get_sync(musb->controller);
/* NOTE: this assumes we are sensing vbus; we'd rather
* not pullup unless the B-session is active.
*/
spin_lock_irqsave(&musb->lock, flags);
/* MTK additional */
DBG(0, "is_on=%d, softconnect=%d ++\n", is_on, musb->softconnect);
if (is_on != musb->softconnect) {
musb->softconnect = is_on;
musb_pullup(musb, is_on, usb_in);
}
if (!musb->is_ready && is_on) {
musb->is_ready = true;
/* direct issue connection work if usb is forced on */
if (musb_force_on) {
DBG(0, "mt_usb_connect() on is_ready begin\n");
mt_usb_connect();
} else {
DBG(0, "mt_usb_reconnect() on is_ready begin\n");
mt_usb_reconnect();
}
}
if (is_on && !musb->usb_bootcomplete)
musb_set_usb_bootcomplete(musb);
#ifdef CONFIG_USB_NOTIFY_PROC_LOG
if (is_on)
store_usblog_notify(NOTIFY_USBSTATE,
(void *)"USB_STATE=PULLUP:EN", NULL);
else
store_usblog_notify(NOTIFY_USBSTATE,
(void *)"USB_STATE=PULLUP:DIS", NULL);
#endif
spin_unlock_irqrestore(&musb->lock, flags);
pm_runtime_put(musb->controller);
return 0;
}
static int musb_gadget_start
(struct usb_gadget *g, struct usb_gadget_driver *driver);
static int musb_gadget_stop(struct usb_gadget *g);
static const struct usb_gadget_ops musb_gadget_operations = {
.get_frame = musb_gadget_get_frame,
.wakeup = musb_gadget_wakeup,
.set_selfpowered = musb_gadget_set_self_powered,
/* .vbus_session = musb_gadget_vbus_session, */
.vbus_draw = musb_gadget_vbus_draw,
.pullup = musb_gadget_pullup,
.udc_start = musb_gadget_start,
.udc_stop = musb_gadget_stop,
};
/* ----------------------------------------------------------------------- */
/* Registration */
/* Only this registration code "knows" the rule (from USB standards)
* about there being only one external upstream port. It assumes
* all peripheral ports are external...
*/
static void init_peripheral_ep
(struct musb *musb,
struct musb_ep *ep,
u8 epnum, int is_in)
{
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
/* memset(ep, 0, sizeof *ep); */
ep->current_epnum = epnum;
ep->musb = musb;
ep->hw_ep = hw_ep;
ep->is_in = is_in;
INIT_LIST_HEAD(&ep->req_list);
sprintf(ep->name, "ep%d%s", epnum,
(!epnum || hw_ep->is_shared_fifo)
? "" : (is_in ? "in" : "out"));
ep->end_point.name = ep->name;
INIT_LIST_HEAD(&ep->end_point.ep_list);
if (!epnum) {
ep->end_point.maxpacket = 64;
ep->end_point.maxpacket_limit = 64;
ep->end_point.caps.type_control = true;
ep->end_point.ops = &musb_g_ep0_ops;
musb->g.ep0 = &ep->end_point;
} else {
if (is_in) {
ep->end_point.maxpacket = hw_ep->max_packet_sz_tx;
ep->end_point.maxpacket_limit = hw_ep->max_packet_sz_tx;
} else {
ep->end_point.maxpacket = hw_ep->max_packet_sz_rx;
ep->end_point.maxpacket_limit = hw_ep->max_packet_sz_rx;
}
ep->end_point.caps.type_iso = true;
ep->end_point.caps.type_bulk = true;
ep->end_point.caps.type_int = true;
ep->end_point.ops = &musb_ep_ops;
list_add_tail(&ep->end_point.ep_list, &musb->g.ep_list);
}
if (!epnum || hw_ep->is_shared_fifo) {
ep->end_point.caps.dir_in = true;
ep->end_point.caps.dir_out = true;
} else if (is_in)
ep->end_point.caps.dir_in = true;
else
ep->end_point.caps.dir_out = true;
}
/*
* Initialize the endpoints exposed to peripheral drivers, with backlinks
* to the rest of the driver state.
*/
static inline void musb_g_init_endpoints(struct musb *musb)
{
u8 epnum;
struct musb_hw_ep *hw_ep;
unsigned int count = 0;
/* initialize endpoint list just once */
INIT_LIST_HEAD(&(musb->g.ep_list));
for (epnum = 0, hw_ep = musb->endpoints;
epnum < musb->nr_endpoints; epnum++, hw_ep++) {
if (hw_ep->is_shared_fifo /* || !epnum */) {
init_peripheral_ep(musb, &hw_ep->ep_in, epnum, 0);
count++;
} else {
if (hw_ep->max_packet_sz_tx) {
init_peripheral_ep(musb, &hw_ep->ep_in
, epnum, 1);
count++;
}
if (hw_ep->max_packet_sz_rx) {
init_peripheral_ep(musb, &hw_ep->ep_out
, epnum, 0);
count++;
}
}
}
}
/* called once during driver setup to initialize and link into
* the driver model; memory is zeroed.
*/
int musb_gadget_setup(struct musb *musb)
{
int status;
/* REVISIT minor race: if (erroneously) setting up two
* musb peripherals at the same time, only the bus lock
* is probably held.
*/
musb->g.ops = &musb_gadget_operations;
musb->g.max_speed = USB_SPEED_HIGH;
musb->g.speed = USB_SPEED_UNKNOWN;
/* this "gadget" abstracts/virtualizes the controller */
musb->g.name = musb_driver_name;
musb->g.is_otg = 1;
musb_g_init_endpoints(musb);
musb->is_active = 0;
musb_platform_try_idle(musb, 0);
/* Fix: gadget device dma ops is null,so add musb controller dma ops */
/* to gadget device dma ops, otherwise will go do dma dump ops. */
#ifdef CONFIG_XEN
if (musb->controller->archdata.dev_dma_ops) {
DBG(0, "musb controller dma ops is non-null\n");
musb->g.dev.archdata.dev_dma_ops =
musb->controller->archdata.dev_dma_ops;
}
#endif
status = usb_add_gadget_udc(musb->controller, &musb->g);
if (status)
goto err;
return 0;
err:
musb->g.dev.parent = NULL;
device_unregister(&musb->g.dev);
return status;
}
void musb_gadget_cleanup(struct musb *musb)
{
usb_del_gadget_udc(&musb->g);
}
/*
* Register the gadget driver. Used by gadget drivers when
* registering themselves with the controller.
*
* -EINVAL something went wrong (not driver)
* -EBUSY another gadget is already using the controller
* -ENOMEM no memory to perform the operation
*
* @param driver the gadget driver
* @return <0 if error, 0 if everything is fine
*/
static int musb_gadget_start
(struct usb_gadget *g, struct usb_gadget_driver *driver)
{
struct musb *musb = gadget_to_musb(g);
struct usb_otg *otg = musb->xceiv->otg;
unsigned long flags;
int retval = 0;
enum usb_otg_state state = OTG_STATE_UNDEFINED;
unsigned int is_active = 0;
DBG(0, "%s\n", __func__);
if (driver->max_speed < USB_SPEED_HIGH) {
retval = -EINVAL;
goto err;
}
pm_runtime_get_sync(musb->controller);
DBG(2, "registering driver %s\n", driver->function);
musb->softconnect = 0;
musb->gadget_driver = driver;
spin_lock_irqsave(&musb->lock, flags);
if (is_host_active(musb)) {
is_active = musb->is_active;
state = musb->xceiv->otg->state;
}
/* MTK hack, leave this to connection work */
musb->is_active = 0;
otg_set_peripheral(otg, &musb->g);
musb->xceiv->otg->state = OTG_STATE_B_IDLE;
if (is_host_active(musb)) {
musb->is_active = is_active;
musb->xceiv->otg->state = state;
}
spin_unlock_irqrestore(&musb->lock, flags);
/* REVISIT: funcall to other code, which also
* handles power budgeting ... this way also
* ensures HdrcStart is indirectly called.
*/
if ((musb->xceiv->last_event == USB_EVENT_ID)
&& otg->set_vbus)
otg_set_vbus(otg, 1);
if (musb->xceiv->last_event == USB_EVENT_NONE)
pm_runtime_put(musb->controller);
return 0;
err:
return retval;
}
#ifdef CONFIG_USB_G_ANDROID
static void stop_activity(struct musb *musb)
{
int i;
struct musb_hw_ep *hw_ep;
/* don't disconnect if it's not connected */
if (musb->g.speed != USB_SPEED_UNKNOWN)
musb->g.speed = USB_SPEED_UNKNOWN;
/* deactivate the hardware */
if (musb->softconnect) {
musb->softconnect = 0;
musb_pullup(musb, 0, false);
}
musb_stop(musb);
/* killing any outstanding requests will quiesce the driver;
* then report disconnect
*/
if (musb) {
for (i = 0, hw_ep = musb->endpoints;
i < musb->nr_endpoints; i++, hw_ep++) {
musb_ep_select(musb->mregs, i);
if (hw_ep->is_shared_fifo /* || !epnum */) {
nuke(&hw_ep->ep_in, -ESHUTDOWN);
} else {
if (hw_ep->max_packet_sz_tx)
nuke(&hw_ep->ep_in, -ESHUTDOWN);
if (hw_ep->max_packet_sz_rx)
nuke(&hw_ep->ep_out, -ESHUTDOWN);
}
}
}
}
#endif
/*
* Unregister the gadget driver. Used by gadget drivers when
* unregistering themselves from the controller.
*
* @param driver the gadget driver to unregister
*/
static int musb_gadget_stop(struct usb_gadget *g)
{
struct musb *musb = gadget_to_musb(g);
unsigned long flags;
enum usb_otg_state state = OTG_STATE_UNDEFINED;
unsigned int is_active = 0;
DBG(0, "%s\n", __func__);
if (musb->xceiv->last_event == USB_EVENT_NONE)
pm_runtime_get_sync(musb->controller);
/*
* REVISIT always use otg_set_peripheral() here too;
* this needs to shut down the OTG engine.
*/
spin_lock_irqsave(&musb->lock, flags);
musb_hnp_stop(musb);
(void)musb_gadget_vbus_draw(&musb->g, 0);
if (is_host_active(musb)) {
is_active = musb->is_active;
state = musb->xceiv->otg->state;
}
musb->xceiv->otg->state = OTG_STATE_UNDEFINED;
#ifdef CONFIG_USB_G_ANDROID
stop_activity(musb);
#endif
otg_set_peripheral(musb->xceiv->otg, NULL);
musb->is_active = 0;
musb->gadget_driver = NULL;
musb_platform_try_idle(musb, 0);
if (is_host_active(musb)) {
musb->is_active = is_active;
musb->xceiv->otg->state = state;
}
#if IS_ENABLED(CONFIG_USB_NOTIFY_LAYER)
if (musb->rst_err_noti) {
musb->event_state = RELEASE;
musb->rst_err_noti = false;
schedule_delayed_work(&musb->usb_event_work, msecs_to_jiffies(0));
}
musb->rst_err_cnt = 0;
acc_dev_status = 0;
#endif
spin_unlock_irqrestore(&musb->lock, flags);
/*
* FIXME we need to be able to register another
* gadget driver here and have everything work;
* that currently misbehaves.
*/
pm_runtime_put(musb->controller);
return 0;
}
/* ----------------------------------------------------------------------- */
/* lifecycle operations called through plat_uds.c */
void musb_g_resume(struct musb *musb)
{
musb->is_suspended = 0;
switch (musb->xceiv->otg->state) {
case OTG_STATE_B_IDLE:
break;
case OTG_STATE_B_WAIT_ACON:
case OTG_STATE_B_PERIPHERAL:
musb->is_active = 1;
if (musb->gadget_driver && musb->gadget_driver->resume) {
spin_unlock(&musb->lock);
musb->gadget_driver->resume(&musb->g);
spin_lock(&musb->lock);
}
break;
default:
pr_notice("unhandled RESUME transition (%s)\n"
, otg_state_string(musb->xceiv->otg->state));
}
}
/* called when SOF packets stop for 3+ msec */
void musb_g_suspend(struct musb *musb)
{
u8 devctl;
devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
DBG(0, "devctl %02x\n", devctl);
switch (musb->xceiv->otg->state) {
case OTG_STATE_B_IDLE:
if ((devctl & MUSB_DEVCTL_VBUS) == MUSB_DEVCTL_VBUS)
musb->xceiv->otg->state = OTG_STATE_B_PERIPHERAL;
break;
case OTG_STATE_B_PERIPHERAL:
musb->is_suspended = 1;
if (musb->gadget_driver && musb->gadget_driver->suspend) {
spin_unlock(&musb->lock);
musb->gadget_driver->suspend(&musb->g);
spin_lock(&musb->lock);
}
musb_sync_with_bat(musb, USB_SUSPEND);
break;
default:
/* REVISIT if B_HOST, clear DEVCTL.HOSTREQ;
* A_PERIPHERAL may need care too
*/
pr_notice("unhandled SUSPEND transition (%s)\n",
otg_state_string(musb->xceiv->otg->state));
}
}
/* Called during SRP */
void musb_g_wakeup(struct musb *musb)
{
musb_gadget_wakeup(&musb->g);
}
#if defined(CONFIG_USBIF_COMPLIANCE)
static unsigned long vbus_polling_timeout;
int polling_vbus_value(void *data)
{
unsigned int vbus_value;
bool timeout_flag = false;
u8 devctl;
u8 power;
u8 opstate;
while (!kthread_should_stop()) {
timeout_flag = false;
#if defined(CONFIG_USBIF_COMPLIANCE_PMIC)
polling_vbus = true;
vbus_value = PMIC_IMM_GetOneChannelValue(AUX_VCDT_AP, 1, 1);
vbus_value = (((R_CHARGER_1 + R_CHARGER_2) * 100 * vbus_value)
/ R_CHARGER_2) / 100;
#else
vbus_value = battery_meter_get_charger_voltage();
#endif
DBG(0, "musb::Vbus (%d)\n", vbus_value);
DBG(0,
"OTG_State: (%s)\n"
, otg_state_string(mtk_musb->xceiv->state));
switch (mtk_musb->xceiv->otg->state) {
case OTG_STATE_B_IDLE:
case OTG_STATE_B_PERIPHERAL:
vbus_polling_timeout = jiffies + 5 * HZ;
while (vbus_value < 3800) {
DBG(0,
"%s: not above B-device operating voltage! (%d)\n"
, __func__,
vbus_value);
if (time_after(jiffies, vbus_polling_timeout)) {
timeout_flag = true;
break;
}
mdelay(10);
#if defined(CONFIG_USBIF_COMPLIANCE_PMIC)
vbus_value =
PMIC_IMM_GetOneChannelValue(AUX_VCDT_AP
, 1, 1);
vbus_value =
(((R_CHARGER_1 +
R_CHARGER_2) * 100 * vbus_value)
/ R_CHARGER_2) / 100;
#else
vbus_value =
battery_meter_get_charger_voltage();
#endif
}
DBG(0, "%s: Vbus (%d)\n", __func__, vbus_value);
if (!timeout_flag) {
DBG(0,
"CONNECT USB (B-device Operating Voltage! (%d)\n",
vbus_value);
mt_usb_connect();
}
break;
case OTG_STATE_B_SRP_INIT:
while (vbus_value > 700) {
if (time_after(jiffies, vbus_polling_timeout)) {
timeout_flag = true;
break;
}
mdelay(10);
#if defined(CONFIG_USBIF_COMPLIANCE_PMIC)
vbus_value =
PMIC_IMM_GetOneChannelValue(AUX_VCDT_AP
, 1, 1);
vbus_value =
(((R_CHARGER_1 +
R_CHARGER_2) * 100 * vbus_value)
/ R_CHARGER_2) / 100;
#else
vbus_value =
battery_meter_get_charger_voltage();
#endif
}
DBG(0, "%s: Vbus (%d)\n", __func__, vbus_value);
{
u32 val = 0;
val = USBPHY_READ32(0x6c);
val = (val & ~(0xff<<0)) | (0x13<<0);
USBPHY_WRITE32(0x6c, val);
val = USBPHY_READ32(0x6c);
val = (val & ~(0xff<<8)) | (0x3f<<8);
USBPHY_WRITE32(0x6c, val);
}
/* Set Vbus Pulsing Length */
musb_writeb(mtk_musb->mregs, 0x7B, 1);
mdelay(1800);
devctl = musb_readb(mtk_musb->mregs, MUSB_DEVCTL);
DBG(0, "Sending SRP: devctl: %02x\n", devctl);
devctl |= MUSB_DEVCTL_SESSION;
musb_writeb(mtk_musb->mregs, MUSB_DEVCTL, devctl);
devctl = musb_readb(mtk_musb->mregs, MUSB_DEVCTL);
DBG(0, "Sending SRP Done: devctl: %02x\n", devctl);
DBG(0, "before OTG_STATE_B_IDLE\n");
mtk_musb->xceiv->otg->state = OTG_STATE_B_IDLE;
DBG(0, "%s - after OTG_STATE_B_IDLE\n", __func__);
vbus_polling_timeout = jiffies + 5 * HZ;
while (vbus_value < 4000) {
DBG(0,
"musb::not above Session-Valid! (%d)\n",
vbus_value);
if (time_after(jiffies, vbus_polling_timeout)) {
timeout_flag = true;
break;
}
mdelay(20);
#if defined(CONFIG_USBIF_COMPLIANCE_PMIC)
vbus_value =
PMIC_IMM_GetOneChannelValue(AUX_VCDT_AP
, 1, 1);
vbus_value =
(((R_CHARGER_1 +
R_CHARGER_2) * 100 * vbus_value)
/ R_CHARGER_2) / 100;
#else
vbus_value =
battery_meter_get_charger_voltage();
#endif
}
DBG(0, "musb::Vbus (%d)\n", vbus_value);
if (!timeout_flag) {
u32 val = 0;
val = USBPHY_READ32(0x6c);
val = (val & ~(0xff<<0)) | (0x2f<<0);
USBPHY_WRITE32(0x6c, val);
power = musb_readb(mtk_musb->mregs, MUSB_POWER);
DBG(0, "Setting SOFT CONNECT: power: %02x\n"
, power);
power |= MUSB_POWER_SOFTCONN;
musb_writeb(mtk_musb->mregs, MUSB_POWER, power);
power = musb_readb(mtk_musb->mregs, MUSB_POWER);
DBG(0,
"Setting SOFT CONNECT Done: power: %02x\n"
, power);
} else {
devctl = musb_readb(mtk_musb->mregs
, MUSB_DEVCTL);
opstate = musb_readb(mtk_musb->mregs
, MUSB_OPSTATE);
DBG(0,
"SRP: Polling VBUS TimeOut, DEVCTL: 0x%x, OPSTATE: 0x%x\n"
, devctl, opstate);
send_otg_event(OTG_EVENT_NO_RESP_FOR_SRP);
polling_vbus = false;
mt_usb_disconnect();
}
DBG(0, "%s - Done - %s\n", __func__,
otg_state_string(mtk_musb->xceiv->otg->state));
break;
#ifdef NEVER
case OTG_STATE_A_WAIT_BCON:
case OTG_STATE_A_IDLE:
case OTG_STATE_A_WAIT_VRISE:
case OTG_STATE_A_WAIT_BCON:
case OTG_STATE_A_HOST:
case OTG_STATE_A_SUSPEND:
case OTG_STATE_A_WAIT_VFALL:
case OTG_STATE_A_VBUS_ERR:
case OTG_STATE_A_PERIPHERAL:
pmic_bvalid_det_int_en(0);
break;
#endif
}
DBG(0, "musb::enable mt_usb_disconnect!\n");
polling_vbus = false;
DBG(0, "Re-Schedule vbus_polling_tsk (TASK_INTERRRUPTIBLE)!\n");
set_current_state(TASK_INTERRUPTIBLE);
schedule();
}
DBG(0, "SET Current State - vbus_polling_tsk (TASK_RUNNING)!\n");
__set_current_state(TASK_RUNNING);
return 1;
}
#endif
/* called when VBUS drops below session threshold, and in other cases */
void musb_g_disconnect(struct musb *musb)
{
void __iomem *mregs = musb->mregs;
u8 devctl = musb_readb(mregs, MUSB_DEVCTL);
DBG(2, "devctl %02x\n", devctl);
#if defined(CONFIG_USBIF_COMPLIANCE)
pr_info("%s: %02x, otg_srp_rqd: 0x%x (%s)\n"
, __func__, devctl, musb->g.otg_srp_reqd,
otg_state_string(musb->xceiv->otg->state));
pr_info("devctl %02x\n", devctl);
if (musb->g.otg_srp_reqd)
musb->xceiv->otg->state = OTG_STATE_B_SRP_INIT;
#endif
/* clear HR */
musb_writeb(mregs, MUSB_DEVCTL, devctl & MUSB_DEVCTL_SESSION);
/* don't draw vbus until new b-default session */
(void)musb_gadget_vbus_draw(&musb->g, 0);
musb->g.speed = USB_SPEED_UNKNOWN;
if (musb->gadget_driver && musb->gadget_driver->disconnect) {
spin_unlock(&musb->lock);
musb->gadget_driver->disconnect(&musb->g);
spin_lock(&musb->lock);
}
switch (musb->xceiv->otg->state) {
default:
DBG(2, "Unhandled disconnect %s, setting a_idle\n",
otg_state_string(musb->xceiv->otg->state));
musb->xceiv->otg->state = OTG_STATE_A_IDLE;
MUSB_HST_MODE(musb);
break;
case OTG_STATE_A_PERIPHERAL:
musb->xceiv->otg->state = OTG_STATE_A_WAIT_BCON;
MUSB_HST_MODE(musb);
break;
case OTG_STATE_B_WAIT_ACON:
case OTG_STATE_B_HOST:
case OTG_STATE_B_PERIPHERAL:
case OTG_STATE_B_IDLE:
musb->xceiv->otg->state = OTG_STATE_B_IDLE;
#if defined(CONFIG_USBIF_COMPLIANCE)
pr_info("%s: %x\n", __func__, musb->g.host_request);
musb_set_host_request_flag(musb, 0);
#endif
break;
case OTG_STATE_B_SRP_INIT:
#if defined(CONFIG_USBIF_COMPLIANCE)
pr_info("%s: %s\n", __func__,
otg_state_string(musb->xceiv->otg->state));
if (musb->g.otg_srp_reqd) {
pr_info("disconnect, Check otg_srp_reqd: 0x%x, devctl %02x\n",
musb->g.otg_srp_reqd, devctl);
musb->g.otg_srp_reqd = 0;
/* Add 0.5 seconds to fix TD 5.1-5s. */
vbus_polling_timeout = jiffies + 5 * HZ;
wake_up_process(vbus_polling_tsk);
}
#endif
break;
}
musb->is_active = 0;
}
void musb_g_reset(struct musb *musb)
__releases(musb->lock) __acquires(musb->lock)
{
void __iomem *mbase = musb->mregs;
u8 devctl = musb_readb(mbase, MUSB_DEVCTL);
u8 power;
struct musb_ep *ep;
#if IS_ENABLED(CONFIG_USB_NOTIFY_LAYER)
ktime_t current_time;
#endif
DBG(2, "<== %s driver '%s'\n", (devctl & MUSB_DEVCTL_BDEVICE)
? "B-Device" : "A-Device",
musb->gadget_driver ? musb->gadget_driver->driver.name : NULL);
if (musb->test_mode == 0)
musb_sync_with_bat(musb, USB_UNCONFIGURED);
/* report disconnect, if we didn't already (flushing EP state) */
if (musb->g.speed != USB_SPEED_UNKNOWN)
musb_g_disconnect(musb);
/* clear HR */
else if (devctl & MUSB_DEVCTL_HR)
musb_writeb(mbase, MUSB_DEVCTL, MUSB_DEVCTL_SESSION);
/* active wake lock */
if (!musb->usb_lock->active)
__pm_stay_awake(musb->usb_lock);
#ifndef FPGA_PLATFORM
musb_platform_reset(musb);
musb_generic_disable(musb);
#endif
/* re-init interrupt setting */
musb->intrrxe = 0;
musb_writew(mbase, MUSB_INTRRXE, musb->intrrxe);
musb->intrtxe = 0x1;
musb_writew(mbase, MUSB_INTRTXE, musb->intrtxe);
musb_writeb(mbase, MUSB_INTRUSBE,
MUSB_INTR_SUSPEND
| MUSB_INTR_RESUME
| MUSB_INTR_RESET
#if defined(CONFIG_USBIF_COMPLIANCE)
/*
* Trying to Fix not CONNECT
* in B_WAIT_ACON
*/
| MUSB_INTR_CONNECT
#endif
| MUSB_INTR_DISCONNECT);
/* what speed did we negotiate? */
power = musb_readb(mbase, MUSB_POWER);
musb->g.speed = (power & MUSB_POWER_HSMODE)
? USB_SPEED_HIGH : USB_SPEED_FULL;
/* clear address */
musb_writeb(musb->mregs, MUSB_FADDR, 0);
/* reset fifo size */
musb->fifo_addr = FIFO_START_ADDR;
/* start in USB_STATE_DEFAULT */
musb->is_active = 1;
musb->is_suspended = 0;
MUSB_DEV_MODE(musb);
musb->address = 0;
musb->ep0_state = MUSB_EP0_STAGE_SETUP;
musb->may_wakeup = 0;
musb->g.b_hnp_enable = 0;
musb->g.a_alt_hnp_support = 0;
musb->g.a_hnp_support = 0;
ep = &musb->endpoints[0].ep_in;
if (!list_empty(&ep->req_list)) {
DBG(0, "%s reinit EP[0] req_list\n", __func__);
INIT_LIST_HEAD(&ep->req_list);
}
/* Normal reset, as B-Device;
* or else after HNP, as A-Device
*/
if (devctl & MUSB_DEVCTL_BDEVICE) {
musb->xceiv->otg->state = OTG_STATE_B_PERIPHERAL;
musb->g.is_a_peripheral = 0;
} else {
musb->xceiv->otg->state = OTG_STATE_A_PERIPHERAL;
musb->g.is_a_peripheral = 1;
}
#if IS_ENABLED(CONFIG_USB_NOTIFY_LAYER)
if (acc_dev_status && (musb->rst_err_noti == false)) {
current_time = ktime_to_ms(ktime_get_boottime());
if (musb->rst_err_cnt == 0) {
if ((current_time - musb->rst_time_before) < 1000) {
musb->rst_err_cnt++;
musb->rst_time_first = musb->rst_time_before;
}
} else {
if ((current_time - musb->rst_time_first) < 1000)
musb->rst_err_cnt++;
else
musb->rst_err_cnt = 0;
}
if (musb->rst_err_cnt > ERR_RESET_CNT) {
musb->event_state = NOTIFY;
schedule_delayed_work(&musb->usb_event_work, msecs_to_jiffies(0));
musb->rst_err_noti = true;
}
pr_info("usb: %s rst_err_cnt: %d, time_current: %d, time_before: %d\n",
__func__, musb->rst_err_cnt, current_time, musb->rst_time_before);
musb->rst_time_before = current_time;
}
#endif
/* start with default limits on VBUS power draw */
(void)musb_gadget_vbus_draw(&musb->g, 8);
}