6db4831e98
Android 14
379 lines
10 KiB
C
379 lines
10 KiB
C
/*
|
|
* Broadcom Brahma-B15 CPU read-ahead cache management functions
|
|
*
|
|
* Copyright (C) 2015-2016 Broadcom
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/io.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/reboot.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/hardware/cache-b15-rac.h>
|
|
|
|
extern void v7_flush_kern_cache_all(void);
|
|
|
|
/* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
|
|
#define RAC_CONFIG0_REG (0x78)
|
|
#define RACENPREF_MASK (0x3)
|
|
#define RACPREFINST_SHIFT (0)
|
|
#define RACENINST_SHIFT (2)
|
|
#define RACPREFDATA_SHIFT (4)
|
|
#define RACENDATA_SHIFT (6)
|
|
#define RAC_CPU_SHIFT (8)
|
|
#define RACCFG_MASK (0xff)
|
|
#define RAC_CONFIG1_REG (0x7c)
|
|
/* Brahma-B15 is a quad-core only design */
|
|
#define B15_RAC_FLUSH_REG (0x80)
|
|
/* Brahma-B53 is an octo-core design */
|
|
#define B53_RAC_FLUSH_REG (0x84)
|
|
#define FLUSH_RAC (1 << 0)
|
|
|
|
/* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
|
|
#define RAC_DATA_INST_EN_MASK (1 << RACPREFINST_SHIFT | \
|
|
RACENPREF_MASK << RACENINST_SHIFT | \
|
|
1 << RACPREFDATA_SHIFT | \
|
|
RACENPREF_MASK << RACENDATA_SHIFT)
|
|
|
|
#define RAC_ENABLED 0
|
|
/* Special state where we want to bypass the spinlock and call directly
|
|
* into the v7 cache maintenance operations during suspend/resume
|
|
*/
|
|
#define RAC_SUSPENDED 1
|
|
|
|
static void __iomem *b15_rac_base;
|
|
static DEFINE_SPINLOCK(rac_lock);
|
|
|
|
static u32 rac_config0_reg;
|
|
static u32 rac_flush_offset;
|
|
|
|
/* Initialization flag to avoid checking for b15_rac_base, and to prevent
|
|
* multi-platform kernels from crashing here as well.
|
|
*/
|
|
static unsigned long b15_rac_flags;
|
|
|
|
static inline u32 __b15_rac_disable(void)
|
|
{
|
|
u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
|
|
__raw_writel(0, b15_rac_base + RAC_CONFIG0_REG);
|
|
dmb();
|
|
return val;
|
|
}
|
|
|
|
static inline void __b15_rac_flush(void)
|
|
{
|
|
u32 reg;
|
|
|
|
__raw_writel(FLUSH_RAC, b15_rac_base + rac_flush_offset);
|
|
do {
|
|
/* This dmb() is required to force the Bus Interface Unit
|
|
* to clean oustanding writes, and forces an idle cycle
|
|
* to be inserted.
|
|
*/
|
|
dmb();
|
|
reg = __raw_readl(b15_rac_base + rac_flush_offset);
|
|
} while (reg & FLUSH_RAC);
|
|
}
|
|
|
|
static inline u32 b15_rac_disable_and_flush(void)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = __b15_rac_disable();
|
|
__b15_rac_flush();
|
|
return reg;
|
|
}
|
|
|
|
static inline void __b15_rac_enable(u32 val)
|
|
{
|
|
__raw_writel(val, b15_rac_base + RAC_CONFIG0_REG);
|
|
/* dsb() is required here to be consistent with __flush_icache_all() */
|
|
dsb();
|
|
}
|
|
|
|
#define BUILD_RAC_CACHE_OP(name, bar) \
|
|
void b15_flush_##name(void) \
|
|
{ \
|
|
unsigned int do_flush; \
|
|
u32 val = 0; \
|
|
\
|
|
if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) { \
|
|
v7_flush_##name(); \
|
|
bar; \
|
|
return; \
|
|
} \
|
|
\
|
|
spin_lock(&rac_lock); \
|
|
do_flush = test_bit(RAC_ENABLED, &b15_rac_flags); \
|
|
if (do_flush) \
|
|
val = b15_rac_disable_and_flush(); \
|
|
v7_flush_##name(); \
|
|
if (!do_flush) \
|
|
bar; \
|
|
else \
|
|
__b15_rac_enable(val); \
|
|
spin_unlock(&rac_lock); \
|
|
}
|
|
|
|
#define nobarrier
|
|
|
|
/* The readahead cache present in the Brahma-B15 CPU is a special piece of
|
|
* hardware after the integrated L2 cache of the B15 CPU complex whose purpose
|
|
* is to prefetch instruction and/or data with a line size of either 64 bytes
|
|
* or 256 bytes. The rationale is that the data-bus of the CPU interface is
|
|
* optimized for 256-bytes transactions, and enabling the readahead cache
|
|
* provides a significant performance boost we want it enabled (typically
|
|
* twice the performance for a memcpy benchmark application).
|
|
*
|
|
* The readahead cache is transparent for Modified Virtual Addresses
|
|
* cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
|
|
* DCCIMVAC.
|
|
*
|
|
* It is however not transparent for the following cache maintenance
|
|
* operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
|
|
* what we are patching here with our BUILD_RAC_CACHE_OP here.
|
|
*/
|
|
BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier);
|
|
|
|
static void b15_rac_enable(void)
|
|
{
|
|
unsigned int cpu;
|
|
u32 enable = 0;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT));
|
|
|
|
b15_rac_disable_and_flush();
|
|
__b15_rac_enable(enable);
|
|
}
|
|
|
|
static int b15_rac_reboot_notifier(struct notifier_block *nb,
|
|
unsigned long action,
|
|
void *data)
|
|
{
|
|
/* During kexec, we are not yet migrated on the boot CPU, so we need to
|
|
* make sure we are SMP safe here. Once the RAC is disabled, flag it as
|
|
* suspended such that the hotplug notifier returns early.
|
|
*/
|
|
if (action == SYS_RESTART) {
|
|
spin_lock(&rac_lock);
|
|
b15_rac_disable_and_flush();
|
|
clear_bit(RAC_ENABLED, &b15_rac_flags);
|
|
set_bit(RAC_SUSPENDED, &b15_rac_flags);
|
|
spin_unlock(&rac_lock);
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block b15_rac_reboot_nb = {
|
|
.notifier_call = b15_rac_reboot_notifier,
|
|
};
|
|
|
|
/* The CPU hotplug case is the most interesting one, we basically need to make
|
|
* sure that the RAC is disabled for the entire system prior to having a CPU
|
|
* die, in particular prior to this dying CPU having exited the coherency
|
|
* domain.
|
|
*
|
|
* Once this CPU is marked dead, we can safely re-enable the RAC for the
|
|
* remaining CPUs in the system which are still online.
|
|
*
|
|
* Offlining a CPU is the problematic case, onlining a CPU is not much of an
|
|
* issue since the CPU and its cache-level hierarchy will start filling with
|
|
* the RAC disabled, so L1 and L2 only.
|
|
*
|
|
* In this function, we should NOT have to verify any unsafe setting/condition
|
|
* b15_rac_base:
|
|
*
|
|
* It is protected by the RAC_ENABLED flag which is cleared by default, and
|
|
* being cleared when initial procedure is done. b15_rac_base had been set at
|
|
* that time.
|
|
*
|
|
* RAC_ENABLED:
|
|
* There is a small timing windows, in b15_rac_init(), between
|
|
* cpuhp_setup_state_*()
|
|
* ...
|
|
* set RAC_ENABLED
|
|
* However, there is no hotplug activity based on the Linux booting procedure.
|
|
*
|
|
* Since we have to disable RAC for all cores, we keep RAC on as long as as
|
|
* possible (disable it as late as possible) to gain the cache benefit.
|
|
*
|
|
* Thus, dying/dead states are chosen here
|
|
*
|
|
* We are choosing not do disable the RAC on a per-CPU basis, here, if we did
|
|
* we would want to consider disabling it as early as possible to benefit the
|
|
* other active CPUs.
|
|
*/
|
|
|
|
/* Running on the dying CPU */
|
|
static int b15_rac_dying_cpu(unsigned int cpu)
|
|
{
|
|
/* During kexec/reboot, the RAC is disabled via the reboot notifier
|
|
* return early here.
|
|
*/
|
|
if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
|
|
return 0;
|
|
|
|
spin_lock(&rac_lock);
|
|
|
|
/* Indicate that we are starting a hotplug procedure */
|
|
__clear_bit(RAC_ENABLED, &b15_rac_flags);
|
|
|
|
/* Disable the readahead cache and save its value to a global */
|
|
rac_config0_reg = b15_rac_disable_and_flush();
|
|
|
|
spin_unlock(&rac_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Running on a non-dying CPU */
|
|
static int b15_rac_dead_cpu(unsigned int cpu)
|
|
{
|
|
/* During kexec/reboot, the RAC is disabled via the reboot notifier
|
|
* return early here.
|
|
*/
|
|
if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
|
|
return 0;
|
|
|
|
spin_lock(&rac_lock);
|
|
|
|
/* And enable it */
|
|
__b15_rac_enable(rac_config0_reg);
|
|
__set_bit(RAC_ENABLED, &b15_rac_flags);
|
|
|
|
spin_unlock(&rac_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int b15_rac_suspend(void)
|
|
{
|
|
/* Suspend the read-ahead cache oeprations, forcing our cache
|
|
* implementation to fallback to the regular ARMv7 calls.
|
|
*
|
|
* We are guaranteed to be running on the boot CPU at this point and
|
|
* with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
|
|
* here.
|
|
*/
|
|
rac_config0_reg = b15_rac_disable_and_flush();
|
|
set_bit(RAC_SUSPENDED, &b15_rac_flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void b15_rac_resume(void)
|
|
{
|
|
/* Coming out of a S3 suspend/resume cycle, the read-ahead cache
|
|
* register RAC_CONFIG0_REG will be restored to its default value, make
|
|
* sure we re-enable it and set the enable flag, we are also guaranteed
|
|
* to run on the boot CPU, so not racy again.
|
|
*/
|
|
__b15_rac_enable(rac_config0_reg);
|
|
clear_bit(RAC_SUSPENDED, &b15_rac_flags);
|
|
}
|
|
|
|
static struct syscore_ops b15_rac_syscore_ops = {
|
|
.suspend = b15_rac_suspend,
|
|
.resume = b15_rac_resume,
|
|
};
|
|
|
|
static int __init b15_rac_init(void)
|
|
{
|
|
struct device_node *dn, *cpu_dn;
|
|
int ret = 0, cpu;
|
|
u32 reg, en_mask = 0;
|
|
|
|
dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");
|
|
if (!dn)
|
|
return -ENODEV;
|
|
|
|
if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
|
|
goto out;
|
|
|
|
b15_rac_base = of_iomap(dn, 0);
|
|
if (!b15_rac_base) {
|
|
pr_err("failed to remap BIU control base\n");
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
cpu_dn = of_get_cpu_node(0, NULL);
|
|
if (!cpu_dn) {
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15"))
|
|
rac_flush_offset = B15_RAC_FLUSH_REG;
|
|
else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53"))
|
|
rac_flush_offset = B53_RAC_FLUSH_REG;
|
|
else {
|
|
pr_err("Unsupported CPU\n");
|
|
of_node_put(cpu_dn);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
of_node_put(cpu_dn);
|
|
|
|
ret = register_reboot_notifier(&b15_rac_reboot_nb);
|
|
if (ret) {
|
|
pr_err("failed to register reboot notifier\n");
|
|
iounmap(b15_rac_base);
|
|
goto out;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
|
|
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
|
|
"arm/cache-b15-rac:dead",
|
|
NULL, b15_rac_dead_cpu);
|
|
if (ret)
|
|
goto out_unmap;
|
|
|
|
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,
|
|
"arm/cache-b15-rac:dying",
|
|
NULL, b15_rac_dying_cpu);
|
|
if (ret)
|
|
goto out_cpu_dead;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_PM_SLEEP))
|
|
register_syscore_ops(&b15_rac_syscore_ops);
|
|
|
|
spin_lock(&rac_lock);
|
|
reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
|
|
for_each_possible_cpu(cpu)
|
|
en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT));
|
|
WARN(reg & en_mask, "Read-ahead cache not previously disabled\n");
|
|
|
|
b15_rac_enable();
|
|
set_bit(RAC_ENABLED, &b15_rac_flags);
|
|
spin_unlock(&rac_lock);
|
|
|
|
pr_info("Broadcom Brahma-B15 readahead cache at: 0x%p\n",
|
|
b15_rac_base + RAC_CONFIG0_REG);
|
|
|
|
goto out;
|
|
|
|
out_cpu_dead:
|
|
cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);
|
|
out_unmap:
|
|
unregister_reboot_notifier(&b15_rac_reboot_nb);
|
|
iounmap(b15_rac_base);
|
|
out:
|
|
of_node_put(dn);
|
|
return ret;
|
|
}
|
|
arch_initcall(b15_rac_init);
|