kernel_samsung_a34x-permissive/drivers/power/supply/mtk_battery.c
2024-04-28 15:51:13 +02:00

3174 lines
89 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019 MediaTek Inc.
* Author Wy Chuang<wy.chuang@mediatek.com>
*/
#include <linux/cdev.h> /* cdev */
#include <linux/err.h> /* IS_ERR, PTR_ERR */
#include <linux/init.h> /* For init/exit macros */
#include <linux/irq.h>
#include <linux/irqdesc.h> /*irq_to_desc*/
#include <linux/kernel.h>
#include <linux/kthread.h> /* For Kthread_run */
#include <linux/math64.h>
#include <linux/module.h> /* For MODULE_ marcros */
#include <linux/netlink.h> /* netlink */
#include <linux/of_fdt.h> /*of_dt API*/
#include <linux/of.h>
#include <linux/platform_device.h> /* platform device */
#include <linux/proc_fs.h>
#include <linux/reboot.h> /*kernel_power_off*/
#include <linux/sched.h> /* For wait queue*/
#include <linux/skbuff.h> /* netlink */
#include <linux/socket.h> /* netlink */
#include <linux/time.h>
#include <linux/vmalloc.h>
#include <linux/wait.h> /* For wait queue*/
#include <net/sock.h> /* netlink */
#include "mtk_battery.h"
#include "mtk_battery_table.h"
struct tag_bootmode {
u32 size;
u32 tag;
u32 bootmode;
u32 boottype;
};
int __attribute__ ((weak))
mtk_battery_daemon_init(struct platform_device *pdev)
{
struct mtk_battery *gm;
struct mtk_gauge *gauge;
gauge = dev_get_drvdata(&pdev->dev);
gm = gauge->gm;
gm->algo.active = true;
bm_err("[%s]: weak function,kernel algo=%d\n", __func__,
gm->algo.active);
return -EIO;
}
int __attribute__ ((weak))
wakeup_fg_daemon(unsigned int flow_state, int cmd, int para1)
{
return 0;
}
void __attribute__ ((weak))
fg_sw_bat_cycle_accu(struct mtk_battery *gm)
{
}
void __attribute__ ((weak))
notify_fg_chr_full(struct mtk_battery *gm)
{
}
void __attribute__ ((weak))
fg_drv_update_daemon(struct mtk_battery *gm)
{
}
void enable_gauge_irq(struct mtk_gauge *gauge,
enum gauge_irq irq)
{
struct irq_desc *desc;
if (irq >= GAUGE_IRQ_MAX)
return;
desc = irq_to_desc(gauge->irq_no[irq]);
bm_err("%s irq_no:%d:%d depth:%d\n",
__func__, irq, gauge->irq_no[irq],
desc->depth);
if (desc->depth == 1)
enable_irq(gauge->irq_no[irq]);
}
void disable_gauge_irq(struct mtk_gauge *gauge,
enum gauge_irq irq)
{
struct irq_desc *desc;
if (irq >= GAUGE_IRQ_MAX)
return;
if (gauge->irq_no[irq] == 0)
return;
desc = irq_to_desc(gauge->irq_no[irq]);
bm_err("%s irq_no:%d:%d depth:%d\n",
__func__, irq, gauge->irq_no[irq],
desc->depth);
if (desc->depth == 0)
disable_irq_nosync(gauge->irq_no[irq]);
}
struct mtk_battery *get_mtk_battery(void)
{
struct mtk_gauge *gauge;
struct power_supply *psy;
psy = power_supply_get_by_name("mtk-gauge");
if (psy == NULL) {
bm_err("[%s]psy is not rdy\n", __func__);
return NULL;
}
gauge = (struct mtk_gauge *)power_supply_get_drvdata(psy);
if (gauge == NULL) {
bm_err("[%s]mtk_gauge is not rdy\n", __func__);
return NULL;
}
return gauge->gm;
}
int bat_get_debug_level(void)
{
struct mtk_gauge *gauge;
struct power_supply *psy;
static struct mtk_battery *gm;
if (gm == NULL) {
psy = power_supply_get_by_name("mtk-gauge");
if (psy == NULL)
return BMLOG_DEBUG_LEVEL;
gauge = (struct mtk_gauge *)power_supply_get_drvdata(psy);
if (gauge == NULL || gauge->gm == NULL)
return BMLOG_DEBUG_LEVEL;
gm = gauge->gm;
}
return gm->log_level;
}
bool is_algo_active(struct mtk_battery *gm)
{
return gm->algo.active;
}
int fgauge_get_profile_id(void)
{
return 0;
}
int wakeup_fg_algo_cmd(
struct mtk_battery *gm, unsigned int flow_state, int cmd, int para1)
{
bm_debug("[%s] 0x%x %d %d\n", __func__, flow_state, cmd, para1);
if (gm->disableGM30) {
bm_err("FG daemon is disabled\n");
return -1;
}
if (is_algo_active(gm) == true)
do_fg_algo(gm, flow_state);
else
wakeup_fg_daemon(flow_state, cmd, para1);
return 0;
}
int wakeup_fg_algo(struct mtk_battery *gm, unsigned int flow_state)
{
return wakeup_fg_algo_cmd(gm, flow_state, 0, 0);
}
bool is_recovery_mode(void)
{
struct mtk_battery *gm;
gm = get_mtk_battery();
bm_debug("%s, bootmdoe = %d\n", gm->bootmode);
/* RECOVERY_BOOT */
if (gm->bootmode == 2)
return true;
return false;
}
bool is_kernel_power_off_charging(void)
{
struct mtk_battery *gm;
gm = get_mtk_battery();
bm_debug("%s, bootmdoe = %d\n", gm->bootmode);
/* KERNEL_POWER_OFF_CHARGING_BOOT */
if (gm->bootmode == 8)
return true;
return false;
}
/* ============================================================ */
/* power supply: battery */
/* ============================================================ */
int check_cap_level(int uisoc)
{
if (uisoc >= 100)
return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
else if (uisoc >= 80 && uisoc < 100)
return POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
else if (uisoc >= 20 && uisoc < 80)
return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
else if (uisoc > 0 && uisoc < 20)
return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
else if (uisoc == 0)
return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else
return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
}
static enum power_supply_property battery_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CURRENT_AVG,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_COUNTER,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
};
static int battery_psy_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret = 0;
struct mtk_battery *gm;
struct battery_data *bs_data;
gm = (struct mtk_battery *)power_supply_get_drvdata(psy);
bs_data = &gm->bs_data;
if (gm->algo.active == true)
bs_data->bat_capacity = gm->ui_soc;
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
val->intval = bs_data->bat_status;
break;
case POWER_SUPPLY_PROP_HEALTH:
val->intval = bs_data->bat_health;
break;
case POWER_SUPPLY_PROP_PRESENT:
bs_data->bat_present =
gauge_get_int_property(GAUGE_PROP_BATTERY_EXIST);
val->intval = bs_data->bat_present;
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = bs_data->bat_technology;
break;
case POWER_SUPPLY_PROP_CYCLE_COUNT:
val->intval = 1;
break;
case POWER_SUPPLY_PROP_CAPACITY:
/* 1 = META_BOOT, 4 = FACTORY_BOOT 5=ADVMETA_BOOT */
/* 6= ATE_factory_boot */
if (gm->bootmode == 1 || gm->bootmode == 4
|| gm->bootmode == 5 || gm->bootmode == 6) {
val->intval = 75;
break;
}
if (gm->fixed_uisoc != 0xffff)
val->intval = gm->fixed_uisoc;
else
val->intval = bs_data->bat_capacity;
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval =
gauge_get_int_property(GAUGE_PROP_BATTERY_CURRENT)
* 100;
break;
case POWER_SUPPLY_PROP_CURRENT_AVG:
val->intval =
gauge_get_int_property(GAUGE_PROP_BATTERY_CURRENT)
* 100;
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
val->intval =
gm->fg_table_cust_data.fg_profile[
gm->battery_id].q_max * 1000;
break;
case POWER_SUPPLY_PROP_CHARGE_COUNTER:
val->intval = gm->ui_soc *
gm->fg_table_cust_data.fg_profile[
gm->battery_id].q_max * 1000 / 100;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
gauge_get_property(GAUGE_PROP_BATTERY_VOLTAGE,
&bs_data->bat_batt_vol);
val->intval = bs_data->bat_batt_vol * 1000;
break;
case POWER_SUPPLY_PROP_TEMP:
force_get_tbat(gm, true);
val->intval = gm->tbat_precise;
break;
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
val->intval = check_cap_level(bs_data->bat_capacity);
break;
case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
/* full or unknown must return 0 */
ret = check_cap_level(bs_data->bat_capacity);
if ((ret == POWER_SUPPLY_CAPACITY_LEVEL_FULL) ||
(ret == POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN))
val->intval = 0;
else {
int q_max_now = gm->fg_table_cust_data.fg_profile[
gm->battery_id].q_max;
int remain_ui = 100 - bs_data->bat_capacity;
int remain_mah = remain_ui * q_max_now / 10;
int current_now =
gauge_get_int_property(GAUGE_PROP_BATTERY_CURRENT);
int time_to_full = 0;
if (current_now != 0)
time_to_full = remain_mah * 3600 / current_now;
bm_debug("time_to_full:%d, remain:ui:%d mah:%d, current_now:%d, qmax:%d\n",
time_to_full, remain_ui, remain_mah,
current_now, q_max_now);
val->intval = abs(time_to_full);
}
ret = 0;
break;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
if (check_cap_level(bs_data->bat_capacity) ==
POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN)
val->intval = 0;
else {
int q_max_mah = 0;
int q_max_uah = 0;
q_max_mah =
gm->fg_table_cust_data.fg_profile[
gm->battery_id].q_max / 10;
q_max_uah = q_max_mah * 1000;
if (q_max_uah <= 100000) {
bm_debug("%s q_max_mah:%d q_max_uah:%d\n",
__func__, q_max_mah, q_max_uah);
q_max_uah = 100001;
}
val->intval = q_max_uah;
}
break;
default:
ret = -EINVAL;
break;
}
bm_debug("%s psp:%d ret:%d val:%d",
__func__, psp, ret, val->intval);
return ret;
}
static void mtk_battery_external_power_changed(struct power_supply *psy)
{
struct mtk_battery *gm;
struct battery_data *bs_data;
union power_supply_propval online, status;
union power_supply_propval prop_type;
int cur_chr_type;
struct power_supply *chg_psy = NULL;
int ret;
gm = psy->drv_data;
bs_data = &gm->bs_data;
chg_psy = bs_data->chg_psy;
if (IS_ERR_OR_NULL(chg_psy)) {
chg_psy = devm_power_supply_get_by_phandle(&gm->gauge->pdev->dev,
"charger");
bm_err("%s retry to get chg_psy\n", __func__);
bs_data->chg_psy = chg_psy;
} else {
ret = power_supply_get_property(chg_psy,
POWER_SUPPLY_PROP_ONLINE, &online);
ret = power_supply_get_property(chg_psy,
POWER_SUPPLY_PROP_STATUS, &status);
if (!online.intval)
bs_data->bat_status = POWER_SUPPLY_STATUS_DISCHARGING;
else {
if (status.intval == POWER_SUPPLY_STATUS_NOT_CHARGING)
bs_data->bat_status =
POWER_SUPPLY_STATUS_NOT_CHARGING;
else
bs_data->bat_status =
POWER_SUPPLY_STATUS_CHARGING;
fg_sw_bat_cycle_accu(gm);
}
if (status.intval == POWER_SUPPLY_STATUS_FULL
&& gm->b_EOC != true) {
bm_err("POWER_SUPPLY_STATUS_FULL\n");
gm->b_EOC = true;
notify_fg_chr_full(gm);
} else
gm->b_EOC = false;
battery_update(gm);
/* check charger type */
ret = power_supply_get_property(chg_psy,
POWER_SUPPLY_PROP_USB_TYPE, &prop_type);
/* plug in out */
cur_chr_type = prop_type.intval;
if (cur_chr_type == POWER_SUPPLY_TYPE_UNKNOWN) {
if (gm->chr_type != POWER_SUPPLY_TYPE_UNKNOWN)
wakeup_fg_algo(gm, FG_INTR_CHARGER_OUT);
} else {
if (gm->chr_type == POWER_SUPPLY_TYPE_UNKNOWN)
wakeup_fg_algo(gm, FG_INTR_CHARGER_IN);
}
}
bm_err("%s event, name:%s online:%d, status:%d, EOC:%d, cur_chr_type:%d old:%d\n",
__func__, psy->desc->name, online.intval, status.intval,
gm->b_EOC, cur_chr_type, gm->chr_type);
gm->chr_type = cur_chr_type;
}
void battery_service_data_init(struct mtk_battery *gm)
{
struct battery_data *bs_data;
bs_data = &gm->bs_data;
bs_data->psd.name = "battery",
bs_data->psd.type = POWER_SUPPLY_TYPE_BATTERY;
bs_data->psd.properties = battery_props;
bs_data->psd.num_properties = ARRAY_SIZE(battery_props);
bs_data->psd.get_property = battery_psy_get_property;
bs_data->psd.external_power_changed =
mtk_battery_external_power_changed;
bs_data->psy_cfg.drv_data = gm;
bs_data->bat_status = POWER_SUPPLY_STATUS_DISCHARGING,
bs_data->bat_health = POWER_SUPPLY_HEALTH_GOOD,
bs_data->bat_present = 1,
bs_data->bat_technology = POWER_SUPPLY_TECHNOLOGY_LION,
bs_data->bat_capacity = -1,
bs_data->bat_batt_vol = 0,
bs_data->bat_batt_temp = 0,
gm->fixed_uisoc = 0xffff;
}
/* ============================================================ */
/* voltage to battery temperature */
/* ============================================================ */
int BattThermistorConverTemp(struct mtk_battery *gm, int Res)
{
int i = 0;
int RES1 = 0, RES2 = 0;
int TBatt_Value = -2000, TMP1 = 0, TMP2 = 0;
struct fuelgauge_temperature *ptable;
ptable = gm->tmp_table;
if (Res >= ptable[0].TemperatureR) {
TBatt_Value = -400;
} else if (Res <= ptable[20].TemperatureR) {
TBatt_Value = 600;
} else {
RES1 = ptable[0].TemperatureR;
TMP1 = ptable[0].BatteryTemp;
for (i = 0; i <= 20; i++) {
if (Res >= ptable[i].TemperatureR) {
RES2 = ptable[i].TemperatureR;
TMP2 = ptable[i].BatteryTemp;
break;
}
{ /* hidden else */
RES1 = ptable[i].TemperatureR;
TMP1 = ptable[i].BatteryTemp;
}
}
TBatt_Value = (((Res - RES2) * TMP1) +
((RES1 - Res) * TMP2)) * 10 / (RES1 - RES2);
}
bm_debug("[%s] %d %d %d %d %d %d\n",
__func__,
RES1, RES2, Res, TMP1,
TMP2, TBatt_Value);
return TBatt_Value;
}
int BattVoltToTemp(struct mtk_battery *gm, int dwVolt, int volt_cali)
{
long long TRes_temp;
long long TRes;
int sBaTTMP = -100;
int vbif28 = gm->rbat.rbat_pull_up_volt;
int delta_v;
int vbif28_raw;
int ret;
TRes_temp = (gm->rbat.rbat_pull_up_r * (long long) dwVolt);
ret = gauge_get_property(GAUGE_PROP_BIF_VOLTAGE,
&vbif28_raw);
if (ret != -ENOTSUPP) {
vbif28 = vbif28_raw + volt_cali;
delta_v = abs(vbif28 - dwVolt);
if (delta_v == 0)
delta_v = 1;
#if IS_ENABLED(__LP64__) || IS_ENABLED(_LP64)
do_div(TRes_temp, delta_v);
#else
TRes_temp = div_s64(TRes_temp, delta_v);
#endif
if (vbif28 > 3000 || vbif28 < 1700)
bm_debug("[RBAT_PULL_UP_VOLT_BY_BIF] vbif28:%d\n",
vbif28_raw);
} else {
delta_v = abs(gm->rbat.rbat_pull_up_volt - dwVolt);
if (delta_v == 0)
delta_v = 1;
#if IS_ENABLED(__LP64__) || IS_ENABLED(_LP64)
do_div(TRes_temp, delta_v);
#else
TRes_temp = div_s64(TRes_temp, delta_v);
#endif
}
#if IS_ENABLED(RBAT_PULL_DOWN_R)
TRes = (TRes_temp * RBAT_PULL_DOWN_R);
#if IS_ENABLED(__LP64__) || IS_ENABLED(_LP64)
do_div(TRes, abs(RBAT_PULL_DOWN_R - TRes_temp));
#else
TRes_temp = div_s64(TRes, abs(RBAT_PULL_DOWN_R - TRes_temp));
#endif
#else
TRes = TRes_temp;
#endif
sBaTTMP = BattThermistorConverTemp(gm, (int)TRes);
bm_debug("[%s] %d %d %d %d\n",
__func__,
dwVolt, gm->rbat.rbat_pull_up_r,
vbif28, volt_cali);
return sBaTTMP;
}
int force_get_tbat_internal(struct mtk_battery *gm, bool update)
{
int bat_temperature_volt = 2;
int bat_temperature_val = 0;
static int pre_bat_temperature_val = -1;
int fg_r_value = 0;
int fg_meter_res_value = 0;
int fg_current_temp = 0;
bool fg_current_state = false;
int bat_temperature_volt_temp = 0;
int vol_cali = 0;
static int pre_bat_temperature_volt_temp, pre_bat_temperature_volt;
static int pre_fg_current_temp;
static int pre_fg_current_state;
static int pre_fg_r_value;
static int pre_bat_temperature_val2;
static struct timespec pre_time;
struct timespec ctime, dtime;
if (update == true || pre_bat_temperature_val == -1) {
/* Get V_BAT_Temperature */
gauge_get_property(GAUGE_PROP_BATTERY_TEMPERATURE_ADC,
&bat_temperature_volt);
if (bat_temperature_volt != 0) {
fg_r_value = gm->fg_cust_data.com_r_fg_value;
if (gm->no_bat_temp_compensate == 0)
fg_meter_res_value =
gm->fg_cust_data.com_fg_meter_resistance;
else
fg_meter_res_value = 0;
gauge_get_property(GAUGE_PROP_BATTERY_CURRENT,
&fg_current_temp);
if (fg_current_temp > 0)
fg_current_state = true;
fg_current_temp = abs(fg_current_temp) / 10;
if (fg_current_state == true) {
bat_temperature_volt_temp =
bat_temperature_volt;
bat_temperature_volt =
bat_temperature_volt -
((fg_current_temp *
(fg_meter_res_value + fg_r_value))
/ 10000);
vol_cali =
-((fg_current_temp *
(fg_meter_res_value + fg_r_value))
/ 10000);
} else {
bat_temperature_volt_temp =
bat_temperature_volt;
bat_temperature_volt =
bat_temperature_volt +
((fg_current_temp *
(fg_meter_res_value + fg_r_value)) / 10000);
vol_cali =
((fg_current_temp *
(fg_meter_res_value + fg_r_value))
/ 10000);
}
bat_temperature_val =
BattVoltToTemp(gm,
bat_temperature_volt,
vol_cali);
}
bm_notice("[%s] %d,%d,%d,%d,%d,%d r:%d %d %d\n",
__func__,
bat_temperature_volt_temp, bat_temperature_volt,
fg_current_state, fg_current_temp,
fg_r_value, bat_temperature_val,
fg_meter_res_value, fg_r_value,
gm->no_bat_temp_compensate);
if (pre_bat_temperature_val2 == 0) {
pre_bat_temperature_volt_temp =
bat_temperature_volt_temp;
pre_bat_temperature_volt = bat_temperature_volt;
pre_fg_current_temp = fg_current_temp;
pre_fg_current_state = fg_current_state;
pre_fg_r_value = fg_r_value;
pre_bat_temperature_val2 = bat_temperature_val;
get_monotonic_boottime(&pre_time);
} else {
get_monotonic_boottime(&ctime);
dtime = timespec_sub(ctime, pre_time);
if (((dtime.tv_sec <= 20) &&
(abs(pre_bat_temperature_val2 -
bat_temperature_val) >= 50)) ||
bat_temperature_val >= 580) {
bm_err("[%s][err] current:%d,%d,%d,%d,%d,%d pre:%d,%d,%d,%d,%d,%d\n",
__func__,
bat_temperature_volt_temp,
bat_temperature_volt,
fg_current_state,
fg_current_temp,
fg_r_value,
bat_temperature_val,
pre_bat_temperature_volt_temp,
pre_bat_temperature_volt,
pre_fg_current_state,
pre_fg_current_temp,
pre_fg_r_value,
pre_bat_temperature_val2);
/*pmic_auxadc_debug(1);*/
WARN_ON(1);
}
pre_bat_temperature_volt_temp =
bat_temperature_volt_temp;
pre_bat_temperature_volt = bat_temperature_volt;
pre_fg_current_temp = fg_current_temp;
pre_fg_current_state = fg_current_state;
pre_fg_r_value = fg_r_value;
pre_bat_temperature_val2 = bat_temperature_val;
pre_time = ctime;
bm_trace(
"[%s] current:%d,%d,%d,%d,%d,%d pre:%d,%d,%d,%d,%d,%d time:%d\n",
__func__,
bat_temperature_volt_temp, bat_temperature_volt,
fg_current_state, fg_current_temp,
fg_r_value, bat_temperature_val,
pre_bat_temperature_volt_temp,
pre_bat_temperature_volt,
pre_fg_current_state, pre_fg_current_temp,
pre_fg_r_value,
pre_bat_temperature_val2, (int)dtime.tv_sec);
}
} else {
bat_temperature_val = pre_bat_temperature_val;
}
gm->tbat_precise = bat_temperature_val;
return bat_temperature_val / 10;
}
int force_get_tbat(struct mtk_battery *gm, bool update)
{
int bat_temperature_val = 0;
if (gm->is_probe_done == false) {
gm->tbat_precise = 250;
gm->cur_bat_temp = 25;
return 25;
}
if (gm->fixed_bat_tmp != 0xffff) {
gm->cur_bat_temp = gm->fixed_bat_tmp;
gm->tbat_precise = gm->fixed_bat_tmp * 10;
return gm->fixed_bat_tmp;
}
bat_temperature_val = force_get_tbat_internal(gm, true);
gm->cur_bat_temp = bat_temperature_val;
return bat_temperature_val;
}
/* ============================================================ */
/* gaugel hal interface */
/* ============================================================ */
int gauge_get_property(enum gauge_property gp,
int *val)
{
struct mtk_gauge *gauge;
struct power_supply *psy;
struct mtk_gauge_sysfs_field_info *attr;
psy = power_supply_get_by_name("mtk-gauge");
if (psy == NULL)
return -ENODEV;
gauge = (struct mtk_gauge *)power_supply_get_drvdata(psy);
attr = gauge->attr;
if (attr == NULL) {
bm_err("%s attr =NULL\n", __func__);
return -ENODEV;
}
if (attr[gp].prop == gp) {
mutex_lock(&gauge->ops_lock);
attr[gp].get(gauge, &attr[gp], val);
mutex_unlock(&gauge->ops_lock);
} else {
bm_err("%s gp:%d idx error\n", __func__, gp);
return -ENOTSUPP;
}
return 0;
}
int gauge_get_int_property(enum gauge_property gp)
{
int val;
gauge_get_property(gp, &val);
return val;
}
int gauge_set_property(enum gauge_property gp,
int val)
{
struct mtk_gauge *gauge;
struct power_supply *psy;
struct mtk_gauge_sysfs_field_info *attr;
psy = power_supply_get_by_name("mtk-gauge");
if (psy == NULL)
return -ENODEV;
gauge = (struct mtk_gauge *)power_supply_get_drvdata(psy);
attr = gauge->attr;
if (attr == NULL) {
bm_err("%s attr =NULL\n", __func__);
return -ENODEV;
}
if (attr[gp].prop == gp) {
mutex_lock(&gauge->ops_lock);
attr[gp].set(gauge, &attr[gp], val);
mutex_unlock(&gauge->ops_lock);
} else {
bm_err("%s gp:%d idx error\n", __func__, gp);
return -ENOTSUPP;
}
return 0;
}
/* ============================================================ */
/* load .h/dtsi */
/* ============================================================ */
void fg_custom_init_from_header(struct mtk_battery *gm)
{
int i, j;
struct fuel_gauge_custom_data *fg_cust_data;
struct fuel_gauge_table_custom_data *fg_table_cust_data;
int version = 0;
fg_cust_data = &gm->fg_cust_data;
fg_table_cust_data = &gm->fg_table_cust_data;
fgauge_get_profile_id();
fg_cust_data->versionID1 = FG_DAEMON_CMD_FROM_USER_NUMBER;
fg_cust_data->versionID2 = sizeof(gm->fg_cust_data);
fg_cust_data->versionID3 = FG_KERNEL_CMD_FROM_USER_NUMBER;
if (gm->gauge != NULL) {
gauge_get_property(GAUGE_PROP_HW_VERSION, &version);
fg_cust_data->hardwareVersion = version;
fg_cust_data->pl_charger_status =
gm->gauge->hw_status.pl_charger_status;
}
fg_cust_data->q_max_L_current = Q_MAX_L_CURRENT;
fg_cust_data->q_max_H_current = Q_MAX_H_CURRENT;
fg_cust_data->q_max_sys_voltage =
UNIT_TRANS_10 * g_Q_MAX_SYS_VOLTAGE[gm->battery_id];
fg_cust_data->pseudo1_en = PSEUDO1_EN;
fg_cust_data->pseudo100_en = PSEUDO100_EN;
fg_cust_data->pseudo100_en_dis = PSEUDO100_EN_DIS;
fg_cust_data->pseudo1_iq_offset = UNIT_TRANS_100 *
g_FG_PSEUDO1_OFFSET[gm->battery_id];
/* iboot related */
fg_cust_data->qmax_sel = QMAX_SEL;
fg_cust_data->iboot_sel = IBOOT_SEL;
fg_cust_data->shutdown_system_iboot = SHUTDOWN_SYSTEM_IBOOT;
/* multi-temp gague 0% related */
fg_cust_data->multi_temp_gauge0 = MULTI_TEMP_GAUGE0;
/*hw related */
fg_cust_data->car_tune_value = UNIT_TRANS_10 * CAR_TUNE_VALUE;
fg_cust_data->fg_meter_resistance = FG_METER_RESISTANCE;
fg_cust_data->com_fg_meter_resistance = FG_METER_RESISTANCE;
fg_cust_data->r_fg_value = UNIT_TRANS_10 * R_FG_VALUE;
fg_cust_data->com_r_fg_value = UNIT_TRANS_10 * R_FG_VALUE;
/* Aging Compensation */
fg_cust_data->aging_one_en = AGING_ONE_EN;
fg_cust_data->aging1_update_soc = UNIT_TRANS_100 * AGING1_UPDATE_SOC;
fg_cust_data->aging1_load_soc = UNIT_TRANS_100 * AGING1_LOAD_SOC;
fg_cust_data->aging4_update_soc = UNIT_TRANS_100 * AGING4_UPDATE_SOC;
fg_cust_data->aging4_load_soc = UNIT_TRANS_100 * AGING4_LOAD_SOC;
fg_cust_data->aging5_update_soc = UNIT_TRANS_100 * AGING5_UPDATE_SOC;
fg_cust_data->aging5_load_soc = UNIT_TRANS_100 * AGING5_LOAD_SOC;
fg_cust_data->aging6_update_soc = UNIT_TRANS_100 * AGING6_UPDATE_SOC;
fg_cust_data->aging6_load_soc = UNIT_TRANS_100 * AGING6_LOAD_SOC;
fg_cust_data->aging_temp_diff = AGING_TEMP_DIFF;
fg_cust_data->aging_temp_low_limit = AGING_TEMP_LOW_LIMIT;
fg_cust_data->aging_temp_high_limit = AGING_TEMP_HIGH_LIMIT;
fg_cust_data->aging_100_en = AGING_100_EN;
fg_cust_data->difference_voltage_update = DIFFERENCE_VOLTAGE_UPDATE;
fg_cust_data->aging_factor_min = UNIT_TRANS_100 * AGING_FACTOR_MIN;
fg_cust_data->aging_factor_diff = UNIT_TRANS_100 * AGING_FACTOR_DIFF;
/* Aging Compensation 2*/
fg_cust_data->aging_two_en = AGING_TWO_EN;
/* Aging Compensation 3*/
fg_cust_data->aging_third_en = AGING_THIRD_EN;
fg_cust_data->aging_4_en = AGING_4_EN;
fg_cust_data->aging_5_en = AGING_5_EN;
fg_cust_data->aging_6_en = AGING_6_EN;
/* ui_soc related */
fg_cust_data->diff_soc_setting = DIFF_SOC_SETTING;
fg_cust_data->keep_100_percent = UNIT_TRANS_100 * KEEP_100_PERCENT;
fg_cust_data->difference_full_cv = DIFFERENCE_FULL_CV;
fg_cust_data->diff_bat_temp_setting = DIFF_BAT_TEMP_SETTING;
fg_cust_data->diff_bat_temp_setting_c = DIFF_BAT_TEMP_SETTING_C;
fg_cust_data->discharge_tracking_time = DISCHARGE_TRACKING_TIME;
fg_cust_data->charge_tracking_time = CHARGE_TRACKING_TIME;
fg_cust_data->difference_fullocv_vth = DIFFERENCE_FULLOCV_VTH;
fg_cust_data->difference_fullocv_ith =
UNIT_TRANS_10 * DIFFERENCE_FULLOCV_ITH;
fg_cust_data->charge_pseudo_full_level = CHARGE_PSEUDO_FULL_LEVEL;
fg_cust_data->over_discharge_level = OVER_DISCHARGE_LEVEL;
fg_cust_data->full_tracking_bat_int2_multiply =
FULL_TRACKING_BAT_INT2_MULTIPLY;
/* pre tracking */
fg_cust_data->fg_pre_tracking_en = FG_PRE_TRACKING_EN;
fg_cust_data->vbat2_det_time = VBAT2_DET_TIME;
fg_cust_data->vbat2_det_counter = VBAT2_DET_COUNTER;
fg_cust_data->vbat2_det_voltage1 = VBAT2_DET_VOLTAGE1;
fg_cust_data->vbat2_det_voltage2 = VBAT2_DET_VOLTAGE2;
fg_cust_data->vbat2_det_voltage3 = VBAT2_DET_VOLTAGE3;
/* sw fg */
fg_cust_data->difference_fgc_fgv_th1 = DIFFERENCE_FGC_FGV_TH1;
fg_cust_data->difference_fgc_fgv_th2 = DIFFERENCE_FGC_FGV_TH2;
fg_cust_data->difference_fgc_fgv_th3 = DIFFERENCE_FGC_FGV_TH3;
fg_cust_data->difference_fgc_fgv_th_soc1 = DIFFERENCE_FGC_FGV_TH_SOC1;
fg_cust_data->difference_fgc_fgv_th_soc2 = DIFFERENCE_FGC_FGV_TH_SOC2;
fg_cust_data->nafg_time_setting = NAFG_TIME_SETTING;
fg_cust_data->nafg_ratio = NAFG_RATIO;
fg_cust_data->nafg_ratio_en = NAFG_RATIO_EN;
fg_cust_data->nafg_ratio_tmp_thr = NAFG_RATIO_TMP_THR;
fg_cust_data->nafg_resistance = NAFG_RESISTANCE;
/* ADC resistor */
fg_cust_data->r_charger_1 = R_CHARGER_1;
fg_cust_data->r_charger_2 = R_CHARGER_2;
/* mode select */
fg_cust_data->pmic_shutdown_current = PMIC_SHUTDOWN_CURRENT;
fg_cust_data->pmic_shutdown_sw_en = PMIC_SHUTDOWN_SW_EN;
fg_cust_data->force_vc_mode = FORCE_VC_MODE;
fg_cust_data->embedded_sel = EMBEDDED_SEL;
fg_cust_data->loading_1_en = LOADING_1_EN;
fg_cust_data->loading_2_en = LOADING_2_EN;
fg_cust_data->diff_iavg_th = DIFF_IAVG_TH;
fg_cust_data->shutdown_gauge0 = SHUTDOWN_GAUGE0;
fg_cust_data->shutdown_1_time = SHUTDOWN_1_TIME;
fg_cust_data->shutdown_gauge1_xmins = SHUTDOWN_GAUGE1_XMINS;
fg_cust_data->shutdown_gauge0_voltage = SHUTDOWN_GAUGE0_VOLTAGE;
fg_cust_data->shutdown_gauge1_vbat_en = SHUTDOWN_GAUGE1_VBAT_EN;
fg_cust_data->shutdown_gauge1_vbat = SHUTDOWN_GAUGE1_VBAT;
fg_cust_data->power_on_car_chr = POWER_ON_CAR_CHR;
fg_cust_data->power_on_car_nochr = POWER_ON_CAR_NOCHR;
fg_cust_data->shutdown_car_ratio = SHUTDOWN_CAR_RATIO;
/* ZCV update */
fg_cust_data->zcv_suspend_time = ZCV_SUSPEND_TIME;
fg_cust_data->sleep_current_avg = SLEEP_CURRENT_AVG;
fg_cust_data->zcv_car_gap_percentage = ZCV_CAR_GAP_PERCENTAGE;
/* dod_init */
fg_cust_data->hwocv_oldocv_diff = HWOCV_OLDOCV_DIFF;
fg_cust_data->hwocv_oldocv_diff_chr = HWOCV_OLDOCV_DIFF_CHR;
fg_cust_data->hwocv_swocv_diff = HWOCV_SWOCV_DIFF;
fg_cust_data->hwocv_swocv_diff_lt = HWOCV_SWOCV_DIFF_LT;
fg_cust_data->hwocv_swocv_diff_lt_temp = HWOCV_SWOCV_DIFF_LT_TEMP;
fg_cust_data->swocv_oldocv_diff = SWOCV_OLDOCV_DIFF;
fg_cust_data->swocv_oldocv_diff_chr = SWOCV_OLDOCV_DIFF_CHR;
fg_cust_data->vbat_oldocv_diff = VBAT_OLDOCV_DIFF;
fg_cust_data->swocv_oldocv_diff_emb = SWOCV_OLDOCV_DIFF_EMB;
fg_cust_data->vir_oldocv_diff_emb = VIR_OLDOCV_DIFF_EMB;
fg_cust_data->vir_oldocv_diff_emb_lt = VIR_OLDOCV_DIFF_EMB_LT;
fg_cust_data->vir_oldocv_diff_emb_tmp = VIR_OLDOCV_DIFF_EMB_TMP;
fg_cust_data->pmic_shutdown_time = UNIT_TRANS_60 * PMIC_SHUTDOWN_TIME;
fg_cust_data->tnew_told_pon_diff = TNEW_TOLD_PON_DIFF;
fg_cust_data->tnew_told_pon_diff2 = TNEW_TOLD_PON_DIFF2;
gm->ext_hwocv_swocv = EXT_HWOCV_SWOCV;
gm->ext_hwocv_swocv_lt = EXT_HWOCV_SWOCV_LT;
gm->ext_hwocv_swocv_lt_temp = EXT_HWOCV_SWOCV_LT_TEMP;
fg_cust_data->dc_ratio_sel = DC_RATIO_SEL;
fg_cust_data->dc_r_cnt = DC_R_CNT;
fg_cust_data->pseudo1_sel = PSEUDO1_SEL;
fg_cust_data->d0_sel = D0_SEL;
fg_cust_data->dlpt_ui_remap_en = DLPT_UI_REMAP_EN;
fg_cust_data->aging_sel = AGING_SEL;
fg_cust_data->bat_par_i = BAT_PAR_I;
fg_cust_data->fg_tracking_current = FG_TRACKING_CURRENT;
fg_cust_data->fg_tracking_current_iboot_en =
FG_TRACKING_CURRENT_IBOOT_EN;
fg_cust_data->ui_fast_tracking_en = UI_FAST_TRACKING_EN;
fg_cust_data->ui_fast_tracking_gap = UI_FAST_TRACKING_GAP;
fg_cust_data->bat_plug_out_time = BAT_PLUG_OUT_TIME;
fg_cust_data->keep_100_percent_minsoc = KEEP_100_PERCENT_MINSOC;
fg_cust_data->uisoc_update_type = UISOC_UPDATE_TYPE;
fg_cust_data->battery_tmp_to_disable_gm30 = BATTERY_TMP_TO_DISABLE_GM30;
fg_cust_data->battery_tmp_to_disable_nafg = BATTERY_TMP_TO_DISABLE_NAFG;
fg_cust_data->battery_tmp_to_enable_nafg = BATTERY_TMP_TO_ENABLE_NAFG;
fg_cust_data->low_temp_mode = LOW_TEMP_MODE;
fg_cust_data->low_temp_mode_temp = LOW_TEMP_MODE_TEMP;
/* current limit for uisoc 100% */
fg_cust_data->ui_full_limit_en = UI_FULL_LIMIT_EN;
fg_cust_data->ui_full_limit_soc0 = UI_FULL_LIMIT_SOC0;
fg_cust_data->ui_full_limit_ith0 = UI_FULL_LIMIT_ITH0;
fg_cust_data->ui_full_limit_soc1 = UI_FULL_LIMIT_SOC1;
fg_cust_data->ui_full_limit_ith1 = UI_FULL_LIMIT_ITH1;
fg_cust_data->ui_full_limit_soc2 = UI_FULL_LIMIT_SOC2;
fg_cust_data->ui_full_limit_ith2 = UI_FULL_LIMIT_ITH2;
fg_cust_data->ui_full_limit_soc3 = UI_FULL_LIMIT_SOC3;
fg_cust_data->ui_full_limit_ith3 = UI_FULL_LIMIT_ITH3;
fg_cust_data->ui_full_limit_soc4 = UI_FULL_LIMIT_SOC4;
fg_cust_data->ui_full_limit_ith4 = UI_FULL_LIMIT_ITH4;
fg_cust_data->ui_full_limit_time = UI_FULL_LIMIT_TIME;
/* voltage limit for uisoc 1% */
fg_cust_data->ui_low_limit_en = UI_LOW_LIMIT_EN;
fg_cust_data->ui_low_limit_soc0 = UI_LOW_LIMIT_SOC0;
fg_cust_data->ui_low_limit_vth0 = UI_LOW_LIMIT_VTH0;
fg_cust_data->ui_low_limit_soc1 = UI_LOW_LIMIT_SOC1;
fg_cust_data->ui_low_limit_vth1 = UI_LOW_LIMIT_VTH1;
fg_cust_data->ui_low_limit_soc2 = UI_LOW_LIMIT_SOC2;
fg_cust_data->ui_low_limit_vth2 = UI_LOW_LIMIT_VTH2;
fg_cust_data->ui_low_limit_soc3 = UI_LOW_LIMIT_SOC3;
fg_cust_data->ui_low_limit_vth3 = UI_LOW_LIMIT_VTH3;
fg_cust_data->ui_low_limit_soc4 = UI_LOW_LIMIT_SOC4;
fg_cust_data->ui_low_limit_vth4 = UI_LOW_LIMIT_VTH4;
fg_cust_data->ui_low_limit_time = UI_LOW_LIMIT_TIME;
fg_cust_data->moving_battemp_en = MOVING_BATTEMP_EN;
fg_cust_data->moving_battemp_thr = MOVING_BATTEMP_THR;
if (version == GAUGE_HW_V2001) {
bm_debug("GAUGE_HW_V2001 disable nafg\n");
fg_cust_data->disable_nafg = 1;
}
fg_table_cust_data->active_table_number = ACTIVE_TABLE;
if (fg_table_cust_data->active_table_number == 0)
fg_table_cust_data->active_table_number = 5;
bm_debug("fg active table:%d\n",
fg_table_cust_data->active_table_number);
fg_table_cust_data->temperature_tb0 = TEMPERATURE_TB0;
fg_table_cust_data->temperature_tb1 = TEMPERATURE_TB1;
fg_table_cust_data->fg_profile[0].size =
sizeof(fg_profile_t0[gm->battery_id]) /
sizeof(struct fuelgauge_profile_struct);
memcpy(&fg_table_cust_data->fg_profile[0].fg_profile,
&fg_profile_t0[gm->battery_id],
sizeof(fg_profile_t0[gm->battery_id]));
fg_table_cust_data->fg_profile[1].size =
sizeof(fg_profile_t1[gm->battery_id]) /
sizeof(struct fuelgauge_profile_struct);
memcpy(&fg_table_cust_data->fg_profile[1].fg_profile,
&fg_profile_t1[gm->battery_id],
sizeof(fg_profile_t1[gm->battery_id]));
fg_table_cust_data->fg_profile[2].size =
sizeof(fg_profile_t2[gm->battery_id]) /
sizeof(struct fuelgauge_profile_struct);
memcpy(&fg_table_cust_data->fg_profile[2].fg_profile,
&fg_profile_t2[gm->battery_id],
sizeof(fg_profile_t2[gm->battery_id]));
fg_table_cust_data->fg_profile[3].size =
sizeof(fg_profile_t3[gm->battery_id]) /
sizeof(struct fuelgauge_profile_struct);
memcpy(&fg_table_cust_data->fg_profile[3].fg_profile,
&fg_profile_t3[gm->battery_id],
sizeof(fg_profile_t3[gm->battery_id]));
fg_table_cust_data->fg_profile[4].size =
sizeof(fg_profile_t4[gm->battery_id]) /
sizeof(struct fuelgauge_profile_struct);
memcpy(&fg_table_cust_data->fg_profile[4].fg_profile,
&fg_profile_t4[gm->battery_id],
sizeof(fg_profile_t4[gm->battery_id]));
fg_table_cust_data->fg_profile[5].size =
sizeof(fg_profile_t5[gm->battery_id]) /
sizeof(struct fuelgauge_profile_struct);
memcpy(&fg_table_cust_data->fg_profile[5].fg_profile,
&fg_profile_t5[gm->battery_id],
sizeof(fg_profile_t5[gm->battery_id]));
fg_table_cust_data->fg_profile[6].size =
sizeof(fg_profile_t6[gm->battery_id]) /
sizeof(struct fuelgauge_profile_struct);
memcpy(&fg_table_cust_data->fg_profile[6].fg_profile,
&fg_profile_t6[gm->battery_id],
sizeof(fg_profile_t6[gm->battery_id]));
fg_table_cust_data->fg_profile[7].size =
sizeof(fg_profile_t7[gm->battery_id]) /
sizeof(struct fuelgauge_profile_struct);
memcpy(&fg_table_cust_data->fg_profile[7].fg_profile,
&fg_profile_t7[gm->battery_id],
sizeof(fg_profile_t7[gm->battery_id]));
fg_table_cust_data->fg_profile[8].size =
sizeof(fg_profile_t8[gm->battery_id]) /
sizeof(struct fuelgauge_profile_struct);
memcpy(&fg_table_cust_data->fg_profile[8].fg_profile,
&fg_profile_t8[gm->battery_id],
sizeof(fg_profile_t8[gm->battery_id]));
fg_table_cust_data->fg_profile[9].size =
sizeof(fg_profile_t9[gm->battery_id]) /
sizeof(struct fuelgauge_profile_struct);
memcpy(&fg_table_cust_data->fg_profile[9].fg_profile,
&fg_profile_t9[gm->battery_id],
sizeof(fg_profile_t9[gm->battery_id]));
for (i = 0; i < MAX_TABLE; i++) {
struct fuelgauge_profile_struct *p;
p = &fg_table_cust_data->fg_profile[i].fg_profile[0];
fg_table_cust_data->fg_profile[i].temperature =
g_temperature[i];
fg_table_cust_data->fg_profile[i].q_max =
g_Q_MAX[i][gm->battery_id];
fg_table_cust_data->fg_profile[i].q_max_h_current =
g_Q_MAX_H_CURRENT[i][gm->battery_id];
fg_table_cust_data->fg_profile[i].pseudo1 =
UNIT_TRANS_100 * g_FG_PSEUDO1[i][gm->battery_id];
fg_table_cust_data->fg_profile[i].pseudo100 =
UNIT_TRANS_100 * g_FG_PSEUDO100[i][gm->battery_id];
fg_table_cust_data->fg_profile[i].pmic_min_vol =
g_PMIC_MIN_VOL[i][gm->battery_id];
fg_table_cust_data->fg_profile[i].pon_iboot =
g_PON_SYS_IBOOT[i][gm->battery_id];
fg_table_cust_data->fg_profile[i].qmax_sys_vol =
g_QMAX_SYS_VOL[i][gm->battery_id];
/* shutdown_hl_zcv */
fg_table_cust_data->fg_profile[i].shutdown_hl_zcv =
g_SHUTDOWN_HL_ZCV[i][gm->battery_id];
for (j = 0; j < 100; j++)
if (p[j].resistance2 == 0)
p[j].resistance2 = p[j].resistance;
}
/* init battery temperature table */
gm->rbat.type = 10;
gm->rbat.rbat_pull_up_r = RBAT_PULL_UP_R;
gm->rbat.rbat_pull_up_volt = RBAT_PULL_UP_VOLT;
gm->rbat.bif_ntc_r = BIF_NTC_R;
if (IS_ENABLED(BAT_NTC_47)) {
gm->rbat.type = 47;
gm->rbat.rbat_pull_up_r = RBAT_PULL_UP_R;
}
}
#if IS_ENABLED(CONFIG_OF)
static int fg_read_dts_val(const struct device_node *np,
const char *node_srting,
int *param, int unit)
{
static unsigned int val;
if (!of_property_read_u32(np, node_srting, &val)) {
*param = (int)val * unit;
bm_debug("Get %s: %d\n",
node_srting, *param);
} else {
bm_err("Get %s failed\n", node_srting);
return -1;
}
return 0;
}
static int fg_read_dts_val_by_idx(const struct device_node *np,
const char *node_srting,
int idx, int *param, int unit)
{
unsigned int val;
if (!of_property_read_u32_index(np, node_srting, idx, &val)) {
*param = (int)val * unit;
bm_debug("Get %s %d: %d\n",
node_srting, idx, *param);
} else {
bm_err("Get %s failed, idx %d\n", node_srting, idx);
return -1;
}
return 0;
}
static void fg_custom_parse_table(struct mtk_battery *gm,
const struct device_node *np,
const char *node_srting,
struct fuelgauge_profile_struct *profile_struct, int column)
{
int mah, voltage, resistance, idx, saddles, resistance2;
struct fuelgauge_profile_struct *profile_p;
profile_p = profile_struct;
saddles = gm->fg_table_cust_data.fg_profile[0].size;
idx = 0;
bm_err("%s: %s, %d, column:%d\n",
__func__,
node_srting, saddles, column);
while (!of_property_read_u32_index(np, node_srting, idx, &mah)) {
idx++;
if (!of_property_read_u32_index(
np, node_srting, idx, &voltage)) {
}
idx++;
if (!of_property_read_u32_index(
np, node_srting, idx, &resistance)) {
}
idx++;
if (column == 4) {
if (!of_property_read_u32_index(
np, node_srting, idx, &resistance2))
idx++;
} else
resistance2 = resistance;
bm_debug("%s: mah: %d, voltage: %d, resistance: %d, resistance2: %d\n",
__func__, mah, voltage, resistance, resistance2);
profile_p->mah = mah;
profile_p->voltage = voltage;
profile_p->resistance = resistance;
profile_p->resistance2 = resistance2;
profile_p++;
if (idx >= (saddles * column))
break;
}
if (idx == 0) {
bm_err("[%s] cannot find %s in dts\n",
__func__, node_srting);
return;
}
profile_p--;
while (idx < (100 * column)) {
profile_p++;
profile_p->mah = mah;
profile_p->voltage = voltage;
profile_p->resistance = resistance;
profile_p->resistance2 = resistance2;
idx = idx + column;
}
}
void fg_custom_init_from_dts(struct platform_device *dev,
struct mtk_battery *gm)
{
struct device_node *np = dev->dev.of_node;
unsigned int val;
int bat_id, multi_battery, active_table, i, j, ret, column;
char node_name[128];
struct fuel_gauge_custom_data *fg_cust_data;
struct fuel_gauge_table_custom_data *fg_table_cust_data;
gm->battery_id = fgauge_get_profile_id();
bat_id = gm->battery_id;
fg_cust_data = &gm->fg_cust_data;
fg_table_cust_data = &gm->fg_table_cust_data;
bm_err("%s\n", __func__);
fg_cust_data->disable_nafg =
of_property_read_bool(np, "DISABLE_NAFG");
bm_err("disable_nafg:%d\n",
fg_cust_data->disable_nafg);
bm_err("swocv_v:%d swocv_i:%d shutdown_time:%d\n",
gm->ptim_lk_v, gm->ptim_lk_i, gm->pl_shutdown_time);
fg_read_dts_val(np, "MULTI_BATTERY", &(multi_battery), 1);
fg_read_dts_val(np, "ACTIVE_TABLE", &(active_table), 1);
fg_read_dts_val(np, "Q_MAX_L_CURRENT", &(fg_cust_data->q_max_L_current),
1);
fg_read_dts_val(np, "Q_MAX_H_CURRENT", &(fg_cust_data->q_max_H_current),
1);
fg_read_dts_val_by_idx(np, "g_Q_MAX_SYS_VOLTAGE", gm->battery_id,
&(fg_cust_data->q_max_sys_voltage), UNIT_TRANS_10);
fg_read_dts_val(np, "PSEUDO1_EN", &(fg_cust_data->pseudo1_en), 1);
fg_read_dts_val(np, "PSEUDO100_EN", &(fg_cust_data->pseudo100_en), 1);
fg_read_dts_val(np, "PSEUDO100_EN_DIS",
&(fg_cust_data->pseudo100_en_dis), 1);
fg_read_dts_val_by_idx(np, "g_FG_PSEUDO1_OFFSET", gm->battery_id,
&(fg_cust_data->pseudo1_iq_offset), UNIT_TRANS_100);
/* iboot related */
fg_read_dts_val(np, "QMAX_SEL", &(fg_cust_data->qmax_sel), 1);
fg_read_dts_val(np, "IBOOT_SEL", &(fg_cust_data->iboot_sel), 1);
fg_read_dts_val(np, "SHUTDOWN_SYSTEM_IBOOT",
&(fg_cust_data->shutdown_system_iboot), 1);
/*hw related */
fg_read_dts_val(np, "CAR_TUNE_VALUE", &(fg_cust_data->car_tune_value),
UNIT_TRANS_10);
gm->gauge->hw_status.car_tune_value =
fg_cust_data->car_tune_value;
fg_read_dts_val(np, "FG_METER_RESISTANCE",
&(fg_cust_data->fg_meter_resistance), 1);
ret = fg_read_dts_val(np, "COM_FG_METER_RESISTANCE",
&(fg_cust_data->com_fg_meter_resistance), 1);
if (ret == -1)
fg_cust_data->com_fg_meter_resistance =
fg_cust_data->fg_meter_resistance;
fg_read_dts_val(np, "NO_BAT_TEMP_COMPENSATE",
&(gm->no_bat_temp_compensate), 1);
fg_read_dts_val(np, "R_FG_VALUE", &(fg_cust_data->r_fg_value),
UNIT_TRANS_10);
gm->gauge->hw_status.r_fg_value =
fg_cust_data->r_fg_value;
ret = fg_read_dts_val(np, "COM_R_FG_VALUE",
&(fg_cust_data->com_r_fg_value), UNIT_TRANS_10);
if (ret == -1)
fg_cust_data->com_r_fg_value = fg_cust_data->r_fg_value;
fg_read_dts_val(np, "FULL_TRACKING_BAT_INT2_MULTIPLY",
&(fg_cust_data->full_tracking_bat_int2_multiply), 1);
fg_read_dts_val(np, "enable_tmp_intr_suspend",
&(gm->enable_tmp_intr_suspend), 1);
/* Aging Compensation */
fg_read_dts_val(np, "AGING_ONE_EN", &(fg_cust_data->aging_one_en), 1);
fg_read_dts_val(np, "AGING1_UPDATE_SOC",
&(fg_cust_data->aging1_update_soc), UNIT_TRANS_100);
fg_read_dts_val(np, "AGING1_LOAD_SOC",
&(fg_cust_data->aging1_load_soc), UNIT_TRANS_100);
fg_read_dts_val(np, "AGING_TEMP_DIFF",
&(fg_cust_data->aging_temp_diff), 1);
fg_read_dts_val(np, "AGING_100_EN", &(fg_cust_data->aging_100_en), 1);
fg_read_dts_val(np, "DIFFERENCE_VOLTAGE_UPDATE",
&(fg_cust_data->difference_voltage_update), 1);
fg_read_dts_val(np, "AGING_FACTOR_MIN",
&(fg_cust_data->aging_factor_min), UNIT_TRANS_100);
fg_read_dts_val(np, "AGING_FACTOR_DIFF",
&(fg_cust_data->aging_factor_diff), UNIT_TRANS_100);
/* Aging Compensation 2*/
fg_read_dts_val(np, "AGING_TWO_EN", &(fg_cust_data->aging_two_en), 1);
/* Aging Compensation 3*/
fg_read_dts_val(np, "AGING_THIRD_EN", &(fg_cust_data->aging_third_en),
1);
/* ui_soc related */
fg_read_dts_val(np, "DIFF_SOC_SETTING",
&(fg_cust_data->diff_soc_setting), 1);
fg_read_dts_val(np, "KEEP_100_PERCENT",
&(fg_cust_data->keep_100_percent), UNIT_TRANS_100);
fg_read_dts_val(np, "DIFFERENCE_FULL_CV",
&(fg_cust_data->difference_full_cv), 1);
fg_read_dts_val(np, "DIFF_BAT_TEMP_SETTING",
&(fg_cust_data->diff_bat_temp_setting), 1);
fg_read_dts_val(np, "DIFF_BAT_TEMP_SETTING_C",
&(fg_cust_data->diff_bat_temp_setting_c), 1);
fg_read_dts_val(np, "DISCHARGE_TRACKING_TIME",
&(fg_cust_data->discharge_tracking_time), 1);
fg_read_dts_val(np, "CHARGE_TRACKING_TIME",
&(fg_cust_data->charge_tracking_time), 1);
fg_read_dts_val(np, "DIFFERENCE_FULLOCV_VTH",
&(fg_cust_data->difference_fullocv_vth), 1);
fg_read_dts_val(np, "DIFFERENCE_FULLOCV_ITH",
&(fg_cust_data->difference_fullocv_ith), UNIT_TRANS_10);
fg_read_dts_val(np, "CHARGE_PSEUDO_FULL_LEVEL",
&(fg_cust_data->charge_pseudo_full_level), 1);
fg_read_dts_val(np, "OVER_DISCHARGE_LEVEL",
&(fg_cust_data->over_discharge_level), 1);
/* pre tracking */
fg_read_dts_val(np, "FG_PRE_TRACKING_EN",
&(fg_cust_data->fg_pre_tracking_en), 1);
fg_read_dts_val(np, "VBAT2_DET_TIME",
&(fg_cust_data->vbat2_det_time), 1);
fg_read_dts_val(np, "VBAT2_DET_COUNTER",
&(fg_cust_data->vbat2_det_counter), 1);
fg_read_dts_val(np, "VBAT2_DET_VOLTAGE1",
&(fg_cust_data->vbat2_det_voltage1), 1);
fg_read_dts_val(np, "VBAT2_DET_VOLTAGE2",
&(fg_cust_data->vbat2_det_voltage2), 1);
fg_read_dts_val(np, "VBAT2_DET_VOLTAGE3",
&(fg_cust_data->vbat2_det_voltage3), 1);
/* sw fg */
fg_read_dts_val(np, "DIFFERENCE_FGC_FGV_TH1",
&(fg_cust_data->difference_fgc_fgv_th1), 1);
fg_read_dts_val(np, "DIFFERENCE_FGC_FGV_TH2",
&(fg_cust_data->difference_fgc_fgv_th2), 1);
fg_read_dts_val(np, "DIFFERENCE_FGC_FGV_TH3",
&(fg_cust_data->difference_fgc_fgv_th3), 1);
fg_read_dts_val(np, "DIFFERENCE_FGC_FGV_TH_SOC1",
&(fg_cust_data->difference_fgc_fgv_th_soc1), 1);
fg_read_dts_val(np, "DIFFERENCE_FGC_FGV_TH_SOC2",
&(fg_cust_data->difference_fgc_fgv_th_soc2), 1);
fg_read_dts_val(np, "NAFG_TIME_SETTING",
&(fg_cust_data->nafg_time_setting), 1);
fg_read_dts_val(np, "NAFG_RATIO", &(fg_cust_data->nafg_ratio), 1);
fg_read_dts_val(np, "NAFG_RATIO_EN", &(fg_cust_data->nafg_ratio_en), 1);
fg_read_dts_val(np, "NAFG_RATIO_TMP_THR",
&(fg_cust_data->nafg_ratio_tmp_thr), 1);
fg_read_dts_val(np, "NAFG_RESISTANCE", &(fg_cust_data->nafg_resistance),
1);
/* mode select */
fg_read_dts_val(np, "PMIC_SHUTDOWN_CURRENT",
&(fg_cust_data->pmic_shutdown_current), 1);
fg_read_dts_val(np, "PMIC_SHUTDOWN_SW_EN",
&(fg_cust_data->pmic_shutdown_sw_en), 1);
fg_read_dts_val(np, "FORCE_VC_MODE", &(fg_cust_data->force_vc_mode), 1);
fg_read_dts_val(np, "EMBEDDED_SEL", &(fg_cust_data->embedded_sel), 1);
fg_read_dts_val(np, "LOADING_1_EN", &(fg_cust_data->loading_1_en), 1);
fg_read_dts_val(np, "LOADING_2_EN", &(fg_cust_data->loading_2_en), 1);
fg_read_dts_val(np, "DIFF_IAVG_TH", &(fg_cust_data->diff_iavg_th), 1);
fg_read_dts_val(np, "SHUTDOWN_GAUGE0", &(fg_cust_data->shutdown_gauge0),
1);
fg_read_dts_val(np, "SHUTDOWN_1_TIME", &(fg_cust_data->shutdown_1_time),
1);
fg_read_dts_val(np, "SHUTDOWN_GAUGE1_XMINS",
&(fg_cust_data->shutdown_gauge1_xmins), 1);
fg_read_dts_val(np, "SHUTDOWN_GAUGE0_VOLTAGE",
&(fg_cust_data->shutdown_gauge0_voltage), 1);
fg_read_dts_val(np, "SHUTDOWN_GAUGE1_VBAT_EN",
&(fg_cust_data->shutdown_gauge1_vbat_en), 1);
fg_read_dts_val(np, "SHUTDOWN_GAUGE1_VBAT",
&(fg_cust_data->shutdown_gauge1_vbat), 1);
/* ZCV update */
fg_read_dts_val(np, "ZCV_SUSPEND_TIME",
&(fg_cust_data->zcv_suspend_time), 1);
fg_read_dts_val(np, "SLEEP_CURRENT_AVG",
&(fg_cust_data->sleep_current_avg), 1);
fg_read_dts_val(np, "ZCV_CAR_GAP_PERCENTAGE",
&(fg_cust_data->zcv_car_gap_percentage), 1);
/* dod_init */
fg_read_dts_val(np, "HWOCV_OLDOCV_DIFF",
&(fg_cust_data->hwocv_oldocv_diff), 1);
fg_read_dts_val(np, "HWOCV_OLDOCV_DIFF_CHR",
&(fg_cust_data->hwocv_oldocv_diff_chr), 1);
fg_read_dts_val(np, "HWOCV_SWOCV_DIFF",
&(fg_cust_data->hwocv_swocv_diff), 1);
fg_read_dts_val(np, "HWOCV_SWOCV_DIFF_LT",
&(fg_cust_data->hwocv_swocv_diff_lt), 1);
fg_read_dts_val(np, "HWOCV_SWOCV_DIFF_LT_TEMP",
&(fg_cust_data->hwocv_swocv_diff_lt_temp), 1);
fg_read_dts_val(np, "SWOCV_OLDOCV_DIFF",
&(fg_cust_data->swocv_oldocv_diff), 1);
fg_read_dts_val(np, "SWOCV_OLDOCV_DIFF_CHR",
&(fg_cust_data->swocv_oldocv_diff_chr), 1);
fg_read_dts_val(np, "VBAT_OLDOCV_DIFF",
&(fg_cust_data->vbat_oldocv_diff), 1);
fg_read_dts_val(np, "SWOCV_OLDOCV_DIFF_EMB",
&(fg_cust_data->swocv_oldocv_diff_emb), 1);
fg_read_dts_val(np, "PMIC_SHUTDOWN_TIME",
&(fg_cust_data->pmic_shutdown_time), UNIT_TRANS_60);
fg_read_dts_val(np, "TNEW_TOLD_PON_DIFF",
&(fg_cust_data->tnew_told_pon_diff), 1);
fg_read_dts_val(np, "TNEW_TOLD_PON_DIFF2",
&(fg_cust_data->tnew_told_pon_diff2), 1);
fg_read_dts_val(np, "EXT_HWOCV_SWOCV",
&(gm->ext_hwocv_swocv), 1);
fg_read_dts_val(np, "EXT_HWOCV_SWOCV_LT",
&(gm->ext_hwocv_swocv_lt), 1);
fg_read_dts_val(np, "EXT_HWOCV_SWOCV_LT_TEMP",
&(gm->ext_hwocv_swocv_lt_temp), 1);
fg_read_dts_val(np, "DC_RATIO_SEL", &(fg_cust_data->dc_ratio_sel), 1);
fg_read_dts_val(np, "DC_R_CNT", &(fg_cust_data->dc_r_cnt), 1);
fg_read_dts_val(np, "PSEUDO1_SEL", &(fg_cust_data->pseudo1_sel), 1);
fg_read_dts_val(np, "D0_SEL", &(fg_cust_data->d0_sel), 1);
fg_read_dts_val(np, "AGING_SEL", &(fg_cust_data->aging_sel), 1);
fg_read_dts_val(np, "BAT_PAR_I", &(fg_cust_data->bat_par_i), 1);
fg_read_dts_val(np, "RECORD_LOG", &(fg_cust_data->record_log), 1);
fg_read_dts_val(np, "FG_TRACKING_CURRENT",
&(fg_cust_data->fg_tracking_current), 1);
fg_read_dts_val(np, "FG_TRACKING_CURRENT_IBOOT_EN",
&(fg_cust_data->fg_tracking_current_iboot_en), 1);
fg_read_dts_val(np, "UI_FAST_TRACKING_EN",
&(fg_cust_data->ui_fast_tracking_en), 1);
fg_read_dts_val(np, "UI_FAST_TRACKING_GAP",
&(fg_cust_data->ui_fast_tracking_gap), 1);
fg_read_dts_val(np, "BAT_PLUG_OUT_TIME",
&(fg_cust_data->bat_plug_out_time), 1);
fg_read_dts_val(np, "KEEP_100_PERCENT_MINSOC",
&(fg_cust_data->keep_100_percent_minsoc), 1);
fg_read_dts_val(np, "UISOC_UPDATE_TYPE",
&(fg_cust_data->uisoc_update_type), 1);
fg_read_dts_val(np, "BATTERY_TMP_TO_DISABLE_GM30",
&(fg_cust_data->battery_tmp_to_disable_gm30), 1);
fg_read_dts_val(np, "BATTERY_TMP_TO_DISABLE_NAFG",
&(fg_cust_data->battery_tmp_to_disable_nafg), 1);
fg_read_dts_val(np, "BATTERY_TMP_TO_ENABLE_NAFG",
&(fg_cust_data->battery_tmp_to_enable_nafg), 1);
fg_read_dts_val(np, "LOW_TEMP_MODE", &(fg_cust_data->low_temp_mode), 1);
fg_read_dts_val(np, "LOW_TEMP_MODE_TEMP",
&(fg_cust_data->low_temp_mode_temp), 1);
/* current limit for uisoc 100% */
fg_read_dts_val(np, "UI_FULL_LIMIT_EN",
&(fg_cust_data->ui_full_limit_en), 1);
fg_read_dts_val(np, "UI_FULL_LIMIT_SOC0",
&(fg_cust_data->ui_full_limit_soc0), 1);
fg_read_dts_val(np, "UI_FULL_LIMIT_ITH0",
&(fg_cust_data->ui_full_limit_ith0), 1);
fg_read_dts_val(np, "UI_FULL_LIMIT_SOC1",
&(fg_cust_data->ui_full_limit_soc1), 1);
fg_read_dts_val(np, "UI_FULL_LIMIT_ITH1",
&(fg_cust_data->ui_full_limit_ith1), 1);
fg_read_dts_val(np, "UI_FULL_LIMIT_SOC2",
&(fg_cust_data->ui_full_limit_soc2), 1);
fg_read_dts_val(np, "UI_FULL_LIMIT_ITH2",
&(fg_cust_data->ui_full_limit_ith2), 1);
fg_read_dts_val(np, "UI_FULL_LIMIT_SOC3",
&(fg_cust_data->ui_full_limit_soc3), 1);
fg_read_dts_val(np, "UI_FULL_LIMIT_ITH3",
&(fg_cust_data->ui_full_limit_ith3), 1);
fg_read_dts_val(np, "UI_FULL_LIMIT_SOC4",
&(fg_cust_data->ui_full_limit_soc4), 1);
fg_read_dts_val(np, "UI_FULL_LIMIT_ITH4",
&(fg_cust_data->ui_full_limit_ith4), 1);
fg_read_dts_val(np, "UI_FULL_LIMIT_TIME",
&(fg_cust_data->ui_full_limit_time), 1);
/* voltage limit for uisoc 1% */
fg_read_dts_val(np, "UI_LOW_LIMIT_EN", &(fg_cust_data->ui_low_limit_en),
1);
fg_read_dts_val(np, "UI_LOW_LIMIT_SOC0",
&(fg_cust_data->ui_low_limit_soc0), 1);
fg_read_dts_val(np, "UI_LOW_LIMIT_VTH0",
&(fg_cust_data->ui_low_limit_vth0), 1);
fg_read_dts_val(np, "UI_LOW_LIMIT_SOC1",
&(fg_cust_data->ui_low_limit_soc1), 1);
fg_read_dts_val(np, "UI_LOW_LIMIT_VTH1",
&(fg_cust_data->ui_low_limit_vth1), 1);
fg_read_dts_val(np, "UI_LOW_LIMIT_SOC2",
&(fg_cust_data->ui_low_limit_soc2), 1);
fg_read_dts_val(np, "UI_LOW_LIMIT_VTH2",
&(fg_cust_data->ui_low_limit_vth2), 1);
fg_read_dts_val(np, "UI_LOW_LIMIT_SOC3",
&(fg_cust_data->ui_low_limit_soc3), 1);
fg_read_dts_val(np, "UI_LOW_LIMIT_VTH3",
&(fg_cust_data->ui_low_limit_vth3), 1);
fg_read_dts_val(np, "UI_LOW_LIMIT_SOC4",
&(fg_cust_data->ui_low_limit_soc4), 1);
fg_read_dts_val(np, "UI_LOW_LIMIT_VTH4",
&(fg_cust_data->ui_low_limit_vth4), 1);
fg_read_dts_val(np, "UI_LOW_LIMIT_TIME",
&(fg_cust_data->ui_low_limit_time), 1);
/* average battemp */
fg_read_dts_val(np, "MOVING_BATTEMP_EN",
&(fg_cust_data->moving_battemp_en), 1);
fg_read_dts_val(np, "MOVING_BATTEMP_THR",
&(fg_cust_data->moving_battemp_thr), 1);
gm->disableGM30 = of_property_read_bool(
np, "DISABLE_MTKBATTERY");
fg_read_dts_val(np, "MULTI_TEMP_GAUGE0",
&(fg_cust_data->multi_temp_gauge0), 1);
fg_read_dts_val(np, "FGC_FGV_TH1",
&(fg_cust_data->difference_fgc_fgv_th1), 1);
fg_read_dts_val(np, "FGC_FGV_TH2",
&(fg_cust_data->difference_fgc_fgv_th2), 1);
fg_read_dts_val(np, "FGC_FGV_TH3",
&(fg_cust_data->difference_fgc_fgv_th3), 1);
fg_read_dts_val(np, "UISOC_UPDATE_T",
&(fg_cust_data->uisoc_update_type), 1);
fg_read_dts_val(np, "UIFULLLIMIT_EN",
&(fg_cust_data->ui_full_limit_en), 1);
fg_read_dts_val(np, "MTK_CHR_EXIST", &(fg_cust_data->mtk_chr_exist), 1);
fg_read_dts_val(np, "GM30_DISABLE_NAFG", &(fg_cust_data->disable_nafg),
1);
fg_read_dts_val(np, "FIXED_BATTERY_TEMPERATURE", &(gm->fixed_bat_tmp),
1);
fg_read_dts_val(np, "ACTIVE_TABLE",
&(fg_table_cust_data->active_table_number), 1);
#if IS_ENABLED(CONFIG_MTK_ADDITIONAL_BATTERY_TABLE)
if (fg_table_cust_data->active_table_number == 0)
fg_table_cust_data->active_table_number = 5;
#else
if (fg_table_cust_data->active_table_number == 0)
fg_table_cust_data->active_table_number = 4;
#endif
bm_err("fg active table:%d\n",
fg_table_cust_data->active_table_number);
/* battery temperature related*/
fg_read_dts_val(np, "RBAT_PULL_UP_R", &(gm->rbat.rbat_pull_up_r), 1);
fg_read_dts_val(np, "RBAT_PULL_UP_VOLT",
&(gm->rbat.rbat_pull_up_volt), 1);
/* battery temperature, TEMPERATURE_T0 ~ T9 */
for (i = 0; i < fg_table_cust_data->active_table_number; i++) {
sprintf(node_name, "TEMPERATURE_T%d", i);
fg_read_dts_val(np, node_name,
&(fg_table_cust_data->fg_profile[i].temperature), 1);
}
fg_read_dts_val(np, "TEMPERATURE_TB0",
&(fg_table_cust_data->temperature_tb0), 1);
fg_read_dts_val(np, "TEMPERATURE_TB1",
&(fg_table_cust_data->temperature_tb1), 1);
for (i = 0; i < MAX_TABLE; i++) {
struct fuelgauge_profile_struct *p;
p = &fg_table_cust_data->fg_profile[i].fg_profile[0];
fg_read_dts_val_by_idx(np, "g_temperature", i,
&(fg_table_cust_data->fg_profile[i].temperature), 1);
fg_read_dts_val_by_idx(np, "g_Q_MAX",
i*TOTAL_BATTERY_NUMBER + gm->battery_id,
&(fg_table_cust_data->fg_profile[i].q_max), 1);
fg_read_dts_val_by_idx(np, "g_Q_MAX_H_CURRENT",
i*TOTAL_BATTERY_NUMBER + gm->battery_id,
&(fg_table_cust_data->fg_profile[i].q_max_h_current),
1);
fg_read_dts_val_by_idx(np, "g_FG_PSEUDO1",
i*TOTAL_BATTERY_NUMBER + gm->battery_id,
&(fg_table_cust_data->fg_profile[i].pseudo1),
UNIT_TRANS_100);
fg_read_dts_val_by_idx(np, "g_FG_PSEUDO100",
i*TOTAL_BATTERY_NUMBER + gm->battery_id,
&(fg_table_cust_data->fg_profile[i].pseudo100),
UNIT_TRANS_100);
fg_read_dts_val_by_idx(np, "g_PMIC_MIN_VOL",
i*TOTAL_BATTERY_NUMBER + gm->battery_id,
&(fg_table_cust_data->fg_profile[i].pmic_min_vol), 1);
fg_read_dts_val_by_idx(np, "g_PON_SYS_IBOOT",
i*TOTAL_BATTERY_NUMBER + gm->battery_id,
&(fg_table_cust_data->fg_profile[i].pon_iboot), 1);
fg_read_dts_val_by_idx(np, "g_QMAX_SYS_VOL",
i*TOTAL_BATTERY_NUMBER + gm->battery_id,
&(fg_table_cust_data->fg_profile[i].qmax_sys_vol), 1);
fg_read_dts_val_by_idx(np, "g_SHUTDOWN_HL_ZCV",
i*TOTAL_BATTERY_NUMBER + gm->battery_id,
&(fg_table_cust_data->fg_profile[i].shutdown_hl_zcv),
1);
for (j = 0; j < 100; j++) {
if (p[j].resistance2 == 0)
p[j].resistance2 = p[j].resistance;
}
}
if (bat_id >= 0 && bat_id < TOTAL_BATTERY_NUMBER) {
sprintf(node_name, "Q_MAX_SYS_VOLTAGE_BAT%d", bat_id);
fg_read_dts_val(np, node_name,
&(fg_cust_data->q_max_sys_voltage), UNIT_TRANS_10);
sprintf(node_name, "PSEUDO1_IQ_OFFSET_BAT%d", bat_id);
fg_read_dts_val(np, node_name,
&(fg_cust_data->pseudo1_iq_offset), UNIT_TRANS_100);
} else
bm_err(
"get Q_MAX_SYS_VOLTAGE_BAT, PSEUDO1_IQ_OFFSET_BAT %d failed\n",
bat_id);
if (fg_cust_data->multi_temp_gauge0 == 0) {
int i = 0;
int min_vol;
min_vol = fg_table_cust_data->fg_profile[0].pmic_min_vol;
if (!of_property_read_u32(np, "PMIC_MIN_VOL", &val)) {
for (i = 0; i < MAX_TABLE; i++)
fg_table_cust_data->fg_profile[i].pmic_min_vol =
(int)val;
bm_debug("Get PMIC_MIN_VOL: %d\n",
min_vol);
} else {
bm_err("Get PMIC_MIN_VOL failed\n");
}
if (!of_property_read_u32(np, "POWERON_SYSTEM_IBOOT", &val)) {
for (i = 0; i < MAX_TABLE; i++)
fg_table_cust_data->fg_profile[i].pon_iboot =
(int)val * UNIT_TRANS_10;
bm_debug("Get POWERON_SYSTEM_IBOOT: %d\n",
fg_table_cust_data->fg_profile[0].pon_iboot);
} else {
bm_err("Get POWERON_SYSTEM_IBOOT failed\n");
}
}
if (active_table == 0 && multi_battery == 0) {
fg_read_dts_val(np, "g_FG_PSEUDO100_T0",
&(fg_table_cust_data->fg_profile[0].pseudo100),
UNIT_TRANS_100);
fg_read_dts_val(np, "g_FG_PSEUDO100_T1",
&(fg_table_cust_data->fg_profile[1].pseudo100),
UNIT_TRANS_100);
fg_read_dts_val(np, "g_FG_PSEUDO100_T2",
&(fg_table_cust_data->fg_profile[2].pseudo100),
UNIT_TRANS_100);
fg_read_dts_val(np, "g_FG_PSEUDO100_T3",
&(fg_table_cust_data->fg_profile[3].pseudo100),
UNIT_TRANS_100);
fg_read_dts_val(np, "g_FG_PSEUDO100_T4",
&(fg_table_cust_data->fg_profile[4].pseudo100),
UNIT_TRANS_100);
}
/* compatiable with old dtsi*/
if (active_table == 0) {
fg_read_dts_val(np, "TEMPERATURE_T0",
&(fg_table_cust_data->fg_profile[0].temperature), 1);
fg_read_dts_val(np, "TEMPERATURE_T1",
&(fg_table_cust_data->fg_profile[1].temperature), 1);
fg_read_dts_val(np, "TEMPERATURE_T2",
&(fg_table_cust_data->fg_profile[2].temperature), 1);
fg_read_dts_val(np, "TEMPERATURE_T3",
&(fg_table_cust_data->fg_profile[3].temperature), 1);
fg_read_dts_val(np, "TEMPERATURE_T4",
&(fg_table_cust_data->fg_profile[4].temperature), 1);
}
for (i = 0; i < fg_table_cust_data->active_table_number; i++) {
sprintf(node_name, "battery%d_profile_t%d_num", bat_id, i);
fg_read_dts_val(np, node_name,
&(fg_table_cust_data->fg_profile[i].size), 1);
/* compatiable with old dtsi table*/
sprintf(node_name, "battery%d_profile_t%d_col", bat_id, i);
ret = fg_read_dts_val(np, node_name, &(column), 1);
if (ret == -1)
column = 3;
if (column < 3 || column > 4) {
bm_err("%s, %s,column:%d ERROR!",
__func__, node_name, column);
/* correction */
column = 3;
}
sprintf(node_name, "battery%d_profile_t%d", bat_id, i);
fg_custom_parse_table(gm, np, node_name,
fg_table_cust_data->fg_profile[i].fg_profile, column);
}
}
#endif /* end of CONFIG_OF */
/* ============================================================ */
/* power supply battery */
/* ============================================================ */
void battery_update_psd(struct mtk_battery *gm)
{
struct battery_data *bat_data = &gm->bs_data;
gauge_get_property(GAUGE_PROP_BATTERY_VOLTAGE, &bat_data->bat_batt_vol);
bat_data->bat_batt_temp = force_get_tbat(gm, true);
}
void battery_update(struct mtk_battery *gm)
{
struct battery_data *bat_data = &gm->bs_data;
struct power_supply *bat_psy = bat_data->psy;
if (gm->is_probe_done == false || bat_psy == NULL) {
bm_err("[%s]battery is not rdy:probe:%d\n",
__func__, gm->is_probe_done);
return;
}
battery_update_psd(gm);
bat_data->bat_technology = POWER_SUPPLY_TECHNOLOGY_LION;
bat_data->bat_health = POWER_SUPPLY_HEALTH_GOOD;
bat_data->bat_present =
gauge_get_int_property(GAUGE_PROP_BATTERY_EXIST);
if (battery_get_int_property(BAT_PROP_DISABLE))
bat_data->bat_capacity = 50;
if (gm->algo.active == true)
bat_data->bat_capacity = gm->ui_soc;
power_supply_changed(bat_psy);
}
/* ============================================================ */
/* interrupt handler */
/* ============================================================ */
void disable_fg(struct mtk_battery *gm)
{
gm->disableGM30 = true;
gm->ui_soc = 50;
gm->bs_data.bat_capacity = 50;
disable_gauge_irq(gm->gauge, COULOMB_H_IRQ);
disable_gauge_irq(gm->gauge, COULOMB_L_IRQ);
disable_gauge_irq(gm->gauge, VBAT_H_IRQ);
disable_gauge_irq(gm->gauge, VBAT_L_IRQ);
disable_gauge_irq(gm->gauge, NAFG_IRQ);
disable_gauge_irq(gm->gauge, BAT_PLUGOUT_IRQ);
disable_gauge_irq(gm->gauge, ZCV_IRQ);
disable_gauge_irq(gm->gauge, FG_N_CHARGE_L_IRQ);
disable_gauge_irq(gm->gauge, FG_IAVG_H_IRQ);
disable_gauge_irq(gm->gauge, FG_IAVG_L_IRQ);
disable_gauge_irq(gm->gauge, BAT_TMP_H_IRQ);
disable_gauge_irq(gm->gauge, BAT_TMP_L_IRQ);
}
bool fg_interrupt_check(struct mtk_battery *gm)
{
if (gm->disableGM30) {
disable_fg(gm);
return false;
}
return true;
}
int fg_coulomb_int_h_handler(struct gauge_consumer *consumer)
{
struct mtk_battery *gm;
int fg_coulomb = 0;
gm = get_mtk_battery();
fg_coulomb = gauge_get_int_property(GAUGE_PROP_COULOMB);
gm->coulomb_int_ht = fg_coulomb + gm->coulomb_int_gap;
gm->coulomb_int_lt = fg_coulomb - gm->coulomb_int_gap;
gauge_coulomb_start(&gm->coulomb_plus, gm->coulomb_int_gap);
gauge_coulomb_start(&gm->coulomb_minus, -gm->coulomb_int_gap);
bm_err("[%s] car:%d ht:%d lt:%d gap:%d\n",
__func__,
fg_coulomb, gm->coulomb_int_ht,
gm->coulomb_int_lt, gm->coulomb_int_gap);
wakeup_fg_algo(gm, FG_INTR_BAT_INT1_HT);
return 0;
}
int fg_coulomb_int_l_handler(struct gauge_consumer *consumer)
{
struct mtk_battery *gm;
int fg_coulomb = 0;
gm = get_mtk_battery();
fg_coulomb = gauge_get_int_property(GAUGE_PROP_COULOMB);
fg_sw_bat_cycle_accu(gm);
gm->coulomb_int_ht = fg_coulomb + gm->coulomb_int_gap;
gm->coulomb_int_lt = fg_coulomb - gm->coulomb_int_gap;
gauge_coulomb_start(&gm->coulomb_plus, gm->coulomb_int_gap);
gauge_coulomb_start(&gm->coulomb_minus, -gm->coulomb_int_gap);
bm_err("[%s] car:%d ht:%d lt:%d gap:%d\n",
__func__,
fg_coulomb, gm->coulomb_int_ht,
gm->coulomb_int_lt, gm->coulomb_int_gap);
wakeup_fg_algo(gm, FG_INTR_BAT_INT1_LT);
return 0;
}
int fg_bat_int2_h_handler(struct gauge_consumer *consumer)
{
struct mtk_battery *gm;
int fg_coulomb = 0;
gm = get_mtk_battery();
fg_coulomb = gauge_get_int_property(GAUGE_PROP_COULOMB);
bm_debug("[%s] car:%d ht:%d\n",
__func__,
fg_coulomb, gm->uisoc_int_ht_en);
fg_sw_bat_cycle_accu(gm);
wakeup_fg_algo(gm, FG_INTR_BAT_INT2_HT);
return 0;
}
int fg_bat_int2_l_handler(struct gauge_consumer *consumer)
{
struct mtk_battery *gm;
int fg_coulomb = 0;
gm = get_mtk_battery();
fg_coulomb = gauge_get_int_property(GAUGE_PROP_COULOMB);
bm_debug("[%s] car:%d ht:%d\n",
__func__,
fg_coulomb, gm->uisoc_int_lt_gap);
fg_sw_bat_cycle_accu(gm);
wakeup_fg_algo(gm, FG_INTR_BAT_INT2_LT);
return 0;
}
/* ============================================================ */
/* sysfs */
/* ============================================================ */
static int temperature_get(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int *val)
{
gm->bs_data.bat_batt_temp = force_get_tbat(gm, true);
*val = gm->bs_data.bat_batt_temp;
bm_debug("%s %d\n", __func__, *val);
return 0;
}
static int temperature_set(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int val)
{
gm->fixed_bat_tmp = val;
bm_debug("%s %d\n", __func__, val);
return 0;
}
static int log_level_get(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int *val)
{
*val = gm->log_level;
return 0;
}
static int log_level_set(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int val)
{
gm->log_level = val;
return 0;
}
static int coulomb_int_gap_set(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int val)
{
int fg_coulomb = 0;
gauge_get_property(GAUGE_PROP_COULOMB, &fg_coulomb);
gm->coulomb_int_gap = val;
gm->coulomb_int_ht = fg_coulomb + gm->coulomb_int_gap;
gm->coulomb_int_lt = fg_coulomb - gm->coulomb_int_gap;
gauge_coulomb_start(&gm->coulomb_plus, gm->coulomb_int_gap);
gauge_coulomb_start(&gm->coulomb_minus, -gm->coulomb_int_gap);
bm_debug("[%s]BAT_PROP_COULOMB_INT_GAP = %d car:%d\n",
__func__,
gm->coulomb_int_gap, fg_coulomb);
return 0;
}
static int uisoc_ht_int_gap_set(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int val)
{
gm->uisoc_int_ht_gap = val;
gauge_coulomb_start(&gm->uisoc_plus, gm->uisoc_int_ht_gap);
bm_debug("[%s]BATTERY_UISOC_INT_HT_GAP = %d\n",
__func__,
gm->uisoc_int_ht_gap);
return 0;
}
static int uisoc_lt_int_gap_set(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int val)
{
gm->uisoc_int_lt_gap = val;
gauge_coulomb_start(&gm->uisoc_minus, -gm->uisoc_int_lt_gap);
bm_debug("[%s]BATTERY_UISOC_INT_LT_GAP = %d\n",
__func__,
gm->uisoc_int_lt_gap);
return 0;
}
static int en_uisoc_ht_int_set(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int val)
{
gm->uisoc_int_ht_en = val;
if (gm->uisoc_int_ht_en == 0)
gauge_coulomb_stop(&gm->uisoc_plus);
bm_debug("[%s][fg_bat_int2] FG_DAEMON_CMD_ENABLE_FG_BAT_INT2_HT = %d\n",
__func__,
gm->uisoc_int_ht_en);
return 0;
}
static int en_uisoc_lt_int_set(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int val)
{
gm->uisoc_int_lt_en = val;
if (gm->uisoc_int_lt_en == 0)
gauge_coulomb_stop(&gm->uisoc_minus);
bm_debug("[%s][fg_bat_int2] FG_DAEMON_CMD_ENABLE_FG_BAT_INT2_HT = %d\n",
__func__,
gm->uisoc_int_lt_en);
return 0;
}
static int uisoc_set(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int val)
{
int daemon_ui_soc;
int old_uisoc;
struct timespec now_time, diff;
struct mtk_battery_algo *algo;
struct fuel_gauge_table_custom_data *ptable;
struct fuel_gauge_custom_data *pdata;
algo = &gm->algo;
ptable = &gm->fg_table_cust_data;
pdata = &gm->fg_cust_data;
daemon_ui_soc = val;
if (daemon_ui_soc < 0) {
bm_debug("[%s] error,daemon_ui_soc:%d\n",
__func__,
daemon_ui_soc);
daemon_ui_soc = 0;
}
pdata->ui_old_soc = daemon_ui_soc;
old_uisoc = gm->ui_soc;
if (gm->disableGM30 == true)
gm->ui_soc = 50;
else
gm->ui_soc = (daemon_ui_soc + 50) / 100;
/* when UISOC changes, check the diff time for smooth */
if (old_uisoc != gm->ui_soc) {
get_monotonic_boottime(&now_time);
diff = timespec_sub(now_time, gm->uisoc_oldtime);
bm_debug("[%s] FG_DAEMON_CMD_SET_KERNEL_UISOC = %d %d GM3:%d old:%d diff=%ld\n",
__func__,
daemon_ui_soc, gm->ui_soc,
gm->disableGM30, old_uisoc, diff.tv_sec);
gm->uisoc_oldtime = now_time;
gm->bs_data.bat_capacity = gm->ui_soc;
battery_update(gm);
} else {
bm_debug("[%s] FG_DAEMON_CMD_SET_KERNEL_UISOC = %d %d GM3:%d\n",
__func__,
daemon_ui_soc, gm->ui_soc, gm->disableGM30);
/* ac_update(&ac_main); */
gm->bs_data.bat_capacity = gm->ui_soc;
battery_update(gm);
}
return 0;
}
static int disable_get(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int *val)
{
*val = gm->disableGM30;
return 0;
}
static int disable_set(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int val)
{
gm->disableGM30 = val;
if (gm->disableGM30 == true)
battery_update(gm);
return 0;
}
static int init_done_get(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int *val)
{
*val = gm->init_flag;
return 0;
}
static int init_done_set(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int val)
{
gm->init_flag = val;
bm_debug("[%s] init_flag = %d\n",
__func__,
gm->init_flag);
return 0;
}
static int reset_set(struct mtk_battery *gm,
struct mtk_battery_sysfs_field_info *attr,
int val)
{
int car;
if (gm->disableGM30)
return 0;
/* must handle sw_ncar before reset car */
fg_sw_bat_cycle_accu(gm);
gm->bat_cycle_car = 0;
car = gauge_get_int_property(GAUGE_PROP_COULOMB);
gm->log.car_diff += car;
bm_err("%s car:%d\n",
__func__, car);
gauge_coulomb_before_reset(gm);
gauge_set_property(GAUGE_PROP_RESET, 0);
gauge_coulomb_after_reset(gm);
get_monotonic_boottime(&gm->sw_iavg_time);
gm->sw_iavg_car = gauge_get_int_property(GAUGE_PROP_COULOMB);
gm->bat_cycle_car = 0;
return 0;
}
static ssize_t bat_sysfs_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct power_supply *psy;
struct mtk_battery *gm;
struct mtk_battery_sysfs_field_info *battery_attr;
int val;
ssize_t ret;
ret = kstrtos32(buf, 0, &val);
if (ret < 0)
return ret;
psy = dev_get_drvdata(dev);
gm = (struct mtk_battery *)power_supply_get_drvdata(psy);
battery_attr = container_of(attr,
struct mtk_battery_sysfs_field_info, attr);
if (battery_attr->set != NULL)
battery_attr->set(gm, battery_attr, val);
return count;
}
static ssize_t bat_sysfs_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct power_supply *psy;
struct mtk_battery *gm;
struct mtk_battery_sysfs_field_info *battery_attr;
int val = 0;
ssize_t count;
psy = dev_get_drvdata(dev);
gm = (struct mtk_battery *)power_supply_get_drvdata(psy);
battery_attr = container_of(attr,
struct mtk_battery_sysfs_field_info, attr);
if (battery_attr->get != NULL)
battery_attr->get(gm, battery_attr, &val);
count = scnprintf(buf, PAGE_SIZE, "%d\n", val);
return count;
}
/* Must be in the same order as BAT_PROP_* */
static struct mtk_battery_sysfs_field_info battery_sysfs_field_tbl[] = {
BAT_SYSFS_FIELD_RW(temperature, BAT_PROP_TEMPERATURE),
BAT_SYSFS_FIELD_WO(coulomb_int_gap, BAT_PROP_COULOMB_INT_GAP),
BAT_SYSFS_FIELD_WO(uisoc_ht_int_gap, BAT_PROP_UISOC_HT_INT_GAP),
BAT_SYSFS_FIELD_WO(uisoc_lt_int_gap, BAT_PROP_UISOC_LT_INT_GAP),
BAT_SYSFS_FIELD_WO(en_uisoc_ht_int, BAT_PROP_ENABLE_UISOC_HT_INT),
BAT_SYSFS_FIELD_WO(en_uisoc_lt_int, BAT_PROP_ENABLE_UISOC_LT_INT),
BAT_SYSFS_FIELD_WO(uisoc, BAT_PROP_UISOC),
BAT_SYSFS_FIELD_RW(disable, BAT_PROP_DISABLE),
BAT_SYSFS_FIELD_RW(init_done, BAT_PROP_INIT_DONE),
BAT_SYSFS_FIELD_WO(reset, BAT_PROP_FG_RESET),
BAT_SYSFS_FIELD_RW(log_level, BAT_PROP_LOG_LEVEL),
};
int battery_get_property(enum battery_property bp,
int *val)
{
struct mtk_battery *gm;
struct power_supply *psy;
psy = power_supply_get_by_name("battery");
if (psy == NULL)
return -ENODEV;
gm = (struct mtk_battery *)power_supply_get_drvdata(psy);
if (battery_sysfs_field_tbl[bp].prop == bp)
battery_sysfs_field_tbl[bp].get(gm,
&battery_sysfs_field_tbl[bp], val);
else {
bm_err("%s bp:%d idx error\n", __func__, bp);
return -ENOTSUPP;
}
return 0;
}
int battery_get_int_property(enum battery_property bp)
{
int val;
battery_get_property(bp, &val);
return val;
}
int battery_set_property(enum battery_property bp,
int val)
{
struct mtk_battery *gm;
struct power_supply *psy;
psy = power_supply_get_by_name("battery");
if (psy == NULL)
return -ENODEV;
gm = (struct mtk_battery *)power_supply_get_drvdata(psy);
if (battery_sysfs_field_tbl[bp].prop == bp)
battery_sysfs_field_tbl[bp].set(gm,
&battery_sysfs_field_tbl[bp], val);
else {
bm_err("%s bp:%d idx error\n", __func__, bp);
return -ENOTSUPP;
}
return 0;
}
static struct attribute *
battery_sysfs_attrs[ARRAY_SIZE(battery_sysfs_field_tbl) + 1];
static const struct attribute_group battery_sysfs_attr_group = {
.attrs = battery_sysfs_attrs,
};
static void battery_sysfs_init_attrs(void)
{
int i, limit = ARRAY_SIZE(battery_sysfs_field_tbl);
for (i = 0; i < limit; i++)
battery_sysfs_attrs[i] = &battery_sysfs_field_tbl[i].attr.attr;
battery_sysfs_attrs[limit] = NULL; /* Has additional entry for this */
}
static int battery_sysfs_create_group(struct power_supply *psy)
{
battery_sysfs_init_attrs();
return sysfs_create_group(&psy->dev.kobj,
&battery_sysfs_attr_group);
}
/* ============================================================ */
/* nafg monitor */
/* ============================================================ */
void fg_nafg_monitor(struct mtk_battery *gm)
{
int nafg_cnt = 0;
struct timespec now_time, dtime;
if (gm->disableGM30 || gm->cmd_disable_nafg || gm->ntc_disable_nafg)
return;
now_time.tv_sec = 0;
now_time.tv_nsec = 0;
dtime.tv_sec = 0;
dtime.tv_nsec = 0;
nafg_cnt = gauge_get_int_property(GAUGE_PROP_NAFG_CNT);
if (gm->last_nafg_cnt != nafg_cnt) {
gm->last_nafg_cnt = nafg_cnt;
get_monotonic_boottime(&gm->last_nafg_update_time);
} else {
get_monotonic_boottime(&now_time);
dtime = timespec_sub(now_time, gm->last_nafg_update_time);
if (dtime.tv_sec >= 600) {
gm->is_nafg_broken = true;
wakeup_fg_algo_cmd(
gm,
FG_INTR_KERNEL_CMD,
FG_KERNEL_CMD_DISABLE_NAFG,
true);
}
}
bm_debug("[%s]time:%d nafg_cnt:%d, now:%d, last_t:%d\n",
__func__,
(int)dtime.tv_sec,
gm->last_nafg_cnt,
(int)now_time.tv_sec,
(int)gm->last_nafg_update_time.tv_sec);
}
/* ============================================================ */
/* periodic timer */
/* ============================================================ */
void fg_drv_update_hw_status(struct mtk_battery *gm)
{
ktime_t ktime;
bm_err("car[%d,%ld,%ld,%ld,%ld] tmp:%d soc:%d uisoc:%d vbat:%d ibat:%d algo:%d gm3:%d %d %d %d,boot:%d\n",
gauge_get_int_property(GAUGE_PROP_COULOMB),
gm->coulomb_plus.end, gm->coulomb_minus.end,
gm->uisoc_plus.end, gm->uisoc_minus.end,
force_get_tbat_internal(gm, true),
gm->soc, gm->ui_soc,
gauge_get_int_property(GAUGE_PROP_BATTERY_VOLTAGE),
gauge_get_int_property(GAUGE_PROP_BATTERY_CURRENT),
gm->algo.active,
gm->disableGM30, gm->fg_cust_data.disable_nafg,
gm->ntc_disable_nafg, gm->cmd_disable_nafg,
gm->bootmode);
fg_drv_update_daemon(gm);
/* kernel mode need regular update info */
if (gm->algo.active == true)
battery_update(gm);
if (bat_get_debug_level() >= BMLOG_DEBUG_LEVEL)
ktime = ktime_set(10, 0);
else
ktime = ktime_set(60, 0);
hrtimer_start(&gm->fg_hrtimer, ktime, HRTIMER_MODE_REL);
}
int battery_update_routine(void *arg)
{
struct mtk_battery *gm = (struct mtk_battery *)arg;
battery_update_psd(gm);
while (1) {
bm_err("%s\n", __func__);
wait_event(gm->wait_que, (gm->fg_update_flag > 0));
gm->fg_update_flag = 0;
fg_drv_update_hw_status(gm);
}
}
void fg_update_routine_wakeup(struct mtk_battery *gm)
{
bm_err("%s\n", __func__);
gm->fg_update_flag = 1;
wake_up(&gm->wait_que);
}
enum hrtimer_restart fg_drv_thread_hrtimer_func(struct hrtimer *timer)
{
struct mtk_battery *gm;
bm_err("%s\n", __func__);
gm = container_of(timer,
struct mtk_battery, fg_hrtimer);
fg_update_routine_wakeup(gm);
return HRTIMER_NORESTART;
}
void fg_drv_thread_hrtimer_init(struct mtk_battery *gm)
{
ktime_t ktime;
ktime = ktime_set(10, 0);
hrtimer_init(&gm->fg_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
gm->fg_hrtimer.function = fg_drv_thread_hrtimer_func;
hrtimer_start(&gm->fg_hrtimer, ktime, HRTIMER_MODE_REL);
}
/* ============================================================ */
/* alarm timer handler */
/* ============================================================ */
static void tracking_timer_work_handler(struct work_struct *data)
{
struct mtk_battery *gm;
gm = container_of(data,
struct mtk_battery, tracking_timer_work);
bm_debug("[%s]\n", __func__);
wakeup_fg_algo(gm, FG_INTR_FG_TIME);
}
static enum alarmtimer_restart tracking_timer_callback(
struct alarm *alarm, ktime_t now)
{
struct mtk_battery *gm;
gm = container_of(alarm,
struct mtk_battery, tracking_timer);
bm_debug("[%s]\n", __func__);
schedule_work(&gm->tracking_timer_work);
return ALARMTIMER_NORESTART;
}
static void one_percent_timer_work_handler(struct work_struct *data)
{
struct mtk_battery *gm;
gm = container_of(data,
struct mtk_battery, one_percent_timer_work);
bm_debug("[%s]\n", __func__);
wakeup_fg_algo_cmd(gm, FG_INTR_FG_TIME, 0, 1);
}
static enum alarmtimer_restart one_percent_timer_callback(
struct alarm *alarm, ktime_t now)
{
struct mtk_battery *gm;
gm = container_of(alarm,
struct mtk_battery, one_percent_timer);
bm_debug("[%s]\n", __func__);
schedule_work(&gm->one_percent_timer_work);
return ALARMTIMER_NORESTART;
}
static void sw_uisoc_timer_work_handler(struct work_struct *data)
{
struct mtk_battery *gm;
gm = container_of(data,
struct mtk_battery, one_percent_timer_work);
bm_debug("[%s] %d %d\n", __func__,
gm->soc, gm->ui_soc);
if (gm->soc > gm->ui_soc)
wakeup_fg_algo(gm, FG_INTR_BAT_INT2_HT);
else if (gm->soc < gm->ui_soc)
wakeup_fg_algo(gm, FG_INTR_BAT_INT2_LT);
}
static enum alarmtimer_restart sw_uisoc_timer_callback(
struct alarm *alarm, ktime_t now)
{
struct mtk_battery *gm;
gm = container_of(alarm,
struct mtk_battery, sw_uisoc_timer);
bm_debug("[%s]\n", __func__);
schedule_work(&gm->sw_uisoc_timer_work);
return ALARMTIMER_NORESTART;
}
/* ============================================================ */
/* power misc */
/* ============================================================ */
static void wake_up_power_misc(struct shutdown_controller *sdd)
{
sdd->timeout = true;
wake_up(&sdd->wait_que);
}
static void wake_up_overheat(struct shutdown_controller *sdd)
{
sdd->overheat = true;
wake_up(&sdd->wait_que);
}
void set_shutdown_vbat_lt(struct mtk_battery *gm, int vbat_lt, int vbat_lt_lv1)
{
gm->sdc.vbat_lt = vbat_lt;
gm->sdc.vbat_lt_lv1 = vbat_lt_lv1;
}
int get_shutdown_cond(struct mtk_battery *gm)
{
int ret = 0;
int vbat = gauge_get_int_property(GAUGE_PROP_BATTERY_VOLTAGE);
struct shutdown_controller *sdc;
sdc = &gm->sdc;
if (sdc->shutdown_status.is_soc_zero_percent)
ret |= 1;
if (sdc->shutdown_status.is_uisoc_one_percent)
ret |= 1;
if (sdc->lowbatteryshutdown)
ret |= 1;
bm_debug("%s ret:%d %d %d %d vbat:%d\n",
__func__,
ret, sdc->shutdown_status.is_soc_zero_percent,
sdc->shutdown_status.is_uisoc_one_percent,
sdc->lowbatteryshutdown, vbat);
return ret;
}
void set_shutdown_cond_flag(struct mtk_battery *gm, int val)
{
gm->sdc.shutdown_cond_flag = val;
}
int get_shutdown_cond_flag(struct mtk_battery *gm)
{
return gm->sdc.shutdown_cond_flag;
}
int disable_shutdown_cond(struct mtk_battery *gm, int shutdown_cond)
{
int now_current;
int now_is_charging = 0;
int now_is_kpoc;
struct shutdown_controller *sdc;
sdc = &gm->sdc;
now_current = gauge_get_int_property(GAUGE_PROP_BATTERY_CURRENT);
now_is_kpoc = is_kernel_power_off_charging();
/* todo: can not get charger status now */
/* if (mt_get_charger_type() != CHARGER_UNKNOWN)*/
/* now_is_charging = 1;*/
bm_debug("%s %d, is kpoc %d curr %d is_charging %d flag:%d lb:%d\n",
__func__,
shutdown_cond, now_is_kpoc, now_current, now_is_charging,
sdc->shutdown_cond_flag,
gauge_get_int_property(GAUGE_PROP_BATTERY_VOLTAGE));
switch (shutdown_cond) {
#ifdef SHUTDOWN_CONDITION_LOW_BAT_VOLT
case LOW_BAT_VOLT:
sdc->shutdown_status.is_under_shutdown_voltage = false;
sdc->lowbatteryshutdown = false;
bm_debug("disable LOW_BAT_VOLT avgvbat %d ,threshold:%d %d %d\n",
sdc->avgvbat,
BAT_VOLTAGE_HIGH_BOUND,
sdc->vbat_lt,
sdc->vbat_lt_lv1);
break;
#endif
default:
break;
}
return 0;
}
int set_shutdown_cond(struct mtk_battery *gm, int shutdown_cond)
{
int now_current;
int now_is_charging = 0;
int now_is_kpoc;
int vbat;
struct shutdown_controller *sdc;
struct shutdown_condition *sds;
int enable_lbat_shutdown;
#ifdef SHUTDOWN_CONDITION_LOW_BAT_VOLT
enable_lbat_shutdown = 1;
#else
enable_lbat_shutdown = 0;
#endif
now_current = gauge_get_int_property(GAUGE_PROP_BATTERY_CURRENT);
now_is_kpoc = is_kernel_power_off_charging();
vbat = gauge_get_int_property(GAUGE_PROP_BATTERY_VOLTAGE);
sdc = &gm->sdc;
sds = &gm->sdc.shutdown_status;
if (now_current >= 0)
now_is_charging = 1;
bm_debug("%s %d %d kpoc %d curr %d is_charging %d flag:%d lb:%d\n",
__func__,
shutdown_cond, enable_lbat_shutdown,
now_is_kpoc, now_current, now_is_charging,
sdc->shutdown_cond_flag, vbat);
if (sdc->shutdown_cond_flag == 1)
return 0;
if (sdc->shutdown_cond_flag == 2 && shutdown_cond != LOW_BAT_VOLT)
return 0;
if (sdc->shutdown_cond_flag == 3 && shutdown_cond != DLPT_SHUTDOWN)
return 0;
switch (shutdown_cond) {
case OVERHEAT:
mutex_lock(&sdc->lock);
sdc->shutdown_status.is_overheat = true;
mutex_unlock(&sdc->lock);
bm_debug("[%s]OVERHEAT shutdown!\n", __func__);
kernel_power_off();
break;
case SOC_ZERO_PERCENT:
if (sdc->shutdown_status.is_soc_zero_percent != true) {
mutex_lock(&sdc->lock);
if (now_is_kpoc != 1) {
if (now_is_charging != 1) {
sds->is_soc_zero_percent =
true;
get_monotonic_boottime(
&sdc->pre_time[
SOC_ZERO_PERCENT]);
bm_debug("[%s]soc_zero_percent shutdown\n",
__func__);
wakeup_fg_algo(gm, FG_INTR_SHUTDOWN);
}
}
mutex_unlock(&sdc->lock);
}
break;
case UISOC_ONE_PERCENT:
if (sdc->shutdown_status.is_uisoc_one_percent != true) {
mutex_lock(&sdc->lock);
if (now_is_kpoc != 1) {
if (now_is_charging != 1) {
sds->is_uisoc_one_percent =
true;
get_monotonic_boottime(
&sdc->pre_time[UISOC_ONE_PERCENT]);
bm_debug("[%s]uisoc 1 percent shutdown\n",
__func__);
wakeup_fg_algo(gm, FG_INTR_SHUTDOWN);
}
}
mutex_unlock(&sdc->lock);
}
break;
#ifdef SHUTDOWN_CONDITION_LOW_BAT_VOLT
case LOW_BAT_VOLT:
if (sdc->shutdown_status.is_under_shutdown_voltage != true) {
int i;
mutex_lock(&sdc->lock);
if (now_is_kpoc != 1) {
sds->is_under_shutdown_voltage = true;
for (i = 0; i < AVGVBAT_ARRAY_SIZE; i++)
sdc->batdata[i] =
VBAT2_DET_VOLTAGE1 / 10;
sdc->batidx = 0;
}
bm_debug("LOW_BAT_VOLT:vbat %d %d",
vbat, VBAT2_DET_VOLTAGE1 / 10);
mutex_unlock(&sdc->lock);
}
break;
#endif
case DLPT_SHUTDOWN:
if (sdc->shutdown_status.is_dlpt_shutdown != true) {
mutex_lock(&sdc->lock);
sdc->shutdown_status.is_dlpt_shutdown = true;
get_monotonic_boottime(&sdc->pre_time[DLPT_SHUTDOWN]);
wakeup_fg_algo(gm, FG_INTR_DLPT_SD);
mutex_unlock(&sdc->lock);
}
break;
default:
break;
}
wake_up_power_misc(sdc);
return 0;
}
int next_waketime(int polling)
{
if (polling <= 0)
return 0;
else
return 10;
}
static int shutdown_event_handler(struct mtk_battery *gm)
{
struct timespec now, duraction;
int polling = 0;
static int ui_zero_time_flag;
static int down_to_low_bat;
int now_current = 0;
int current_ui_soc = gm->ui_soc;
int current_soc = gm->soc;
int vbat = gauge_get_int_property(GAUGE_PROP_BATTERY_VOLTAGE);
int tmp = 25;
struct shutdown_controller *sdd = &gm->sdc;
now.tv_sec = 0;
now.tv_nsec = 0;
duraction.tv_sec = 0;
duraction.tv_nsec = 0;
get_monotonic_boottime(&now);
bm_debug("%s:soc_zero:%d,ui 1percent:%d,dlpt_shut:%d,under_shutdown_volt:%d\n",
__func__,
sdd->shutdown_status.is_soc_zero_percent,
sdd->shutdown_status.is_uisoc_one_percent,
sdd->shutdown_status.is_dlpt_shutdown,
sdd->shutdown_status.is_under_shutdown_voltage);
if (sdd->shutdown_status.is_soc_zero_percent) {
if (current_ui_soc == 0) {
duraction = timespec_sub(
now, sdd->pre_time[SOC_ZERO_PERCENT]);
polling++;
if (duraction.tv_sec >= SHUTDOWN_TIME) {
bm_debug("soc zero shutdown\n");
kernel_power_off();
return next_waketime(polling);
}
} else if (current_soc > 0) {
sdd->shutdown_status.is_soc_zero_percent = false;
} else {
/* ui_soc is not zero, check it after 10s */
polling++;
}
}
if (sdd->shutdown_status.is_uisoc_one_percent) {
now_current = gauge_get_int_property(
GAUGE_PROP_BATTERY_CURRENT);
if (current_ui_soc == 0) {
duraction =
timespec_sub(
now, sdd->pre_time[UISOC_ONE_PERCENT]);
if (duraction.tv_sec >= SHUTDOWN_TIME) {
bm_debug("uisoc one percent shutdown\n");
kernel_power_off();
return next_waketime(polling);
}
} else if (now_current > 0 && current_soc > 0) {
polling = 0;
sdd->shutdown_status.is_uisoc_one_percent = 0;
bm_debug("disable uisoc_one_percent shutdown cur:%d soc:%d\n",
now_current, current_soc);
return next_waketime(polling);
}
/* ui_soc is not zero, check it after 10s */
polling++;
}
if (sdd->shutdown_status.is_dlpt_shutdown) {
duraction = timespec_sub(now, sdd->pre_time[DLPT_SHUTDOWN]);
polling++;
if (duraction.tv_sec >= SHUTDOWN_TIME) {
bm_debug("dlpt shutdown count, %d\n",
(int)duraction.tv_sec);
return next_waketime(polling);
}
}
if (sdd->shutdown_status.is_under_shutdown_voltage) {
int vbatcnt = 0, i;
sdd->batdata[sdd->batidx] = vbat;
for (i = 0; i < AVGVBAT_ARRAY_SIZE; i++)
vbatcnt += sdd->batdata[i];
sdd->avgvbat = vbatcnt / AVGVBAT_ARRAY_SIZE;
tmp = force_get_tbat(gm, true);
bm_debug("lbatcheck vbat:%d avgvbat:%d %d,%d tmp:%d,bound:%d,th:%d %d,en:%d\n",
vbat,
sdd->avgvbat,
sdd->vbat_lt,
sdd->vbat_lt_lv1,
tmp,
BAT_VOLTAGE_LOW_BOUND,
LOW_TEMP_THRESHOLD,
LOW_TMP_BAT_VOLTAGE_LOW_BOUND,
LOW_TEMP_DISABLE_LOW_BAT_SHUTDOWN);
if (sdd->avgvbat < BAT_VOLTAGE_LOW_BOUND) {
/* avg vbat less than 3.4v */
sdd->lowbatteryshutdown = true;
polling++;
if (down_to_low_bat == 0) {
if (IS_ENABLED(
LOW_TEMP_DISABLE_LOW_BAT_SHUTDOWN)) {
if (tmp >= LOW_TEMP_THRESHOLD) {
down_to_low_bat = 1;
bm_debug("normal tmp, battery voltage is low shutdown\n");
wakeup_fg_algo(gm,
FG_INTR_SHUTDOWN);
} else if (sdd->avgvbat <=
LOW_TMP_BAT_VOLTAGE_LOW_BOUND) {
down_to_low_bat = 1;
bm_debug("cold tmp, battery voltage is low shutdown\n");
wakeup_fg_algo(gm,
FG_INTR_SHUTDOWN);
} else
bm_debug("low temp disable low battery sd\n");
} else {
down_to_low_bat = 1;
bm_debug("[%s]avg vbat is low to shutdown\n",
__func__);
wakeup_fg_algo(gm, FG_INTR_SHUTDOWN);
}
}
if ((current_ui_soc == 0) && (ui_zero_time_flag == 0)) {
get_monotonic_boottime(
&sdd->pre_time[LOW_BAT_VOLT]);
ui_zero_time_flag = 1;
}
if (current_ui_soc == 0) {
duraction = timespec_sub(
now, sdd->pre_time[LOW_BAT_VOLT]);
if (duraction.tv_sec >= SHUTDOWN_TIME) {
bm_debug("low bat shutdown, over %d second\n",
SHUTDOWN_TIME);
kernel_power_off();
return next_waketime(polling);
}
}
} else {
/* greater than 3.4v, clear status */
down_to_low_bat = 0;
ui_zero_time_flag = 0;
sdd->pre_time[LOW_BAT_VOLT].tv_sec = 0;
sdd->lowbatteryshutdown = false;
polling++;
}
polling++;
bm_debug("[%s][UT] V %d ui_soc %d dur %d [%d:%d:%d:%d] batdata[%d] %d\n",
__func__,
sdd->avgvbat, current_ui_soc,
(int)duraction.tv_sec,
down_to_low_bat, ui_zero_time_flag,
(int)sdd->pre_time[LOW_BAT_VOLT].tv_sec,
sdd->lowbatteryshutdown,
sdd->batidx, sdd->batdata[sdd->batidx]);
sdd->batidx++;
if (sdd->batidx >= AVGVBAT_ARRAY_SIZE)
sdd->batidx = 0;
}
bm_debug(
"%s %d avgvbat:%d sec:%d lowst:%d\n",
__func__,
polling, sdd->avgvbat,
(int)duraction.tv_sec, sdd->lowbatteryshutdown);
return next_waketime(polling);
}
static enum alarmtimer_restart power_misc_kthread_fgtimer_func(
struct alarm *alarm, ktime_t now)
{
struct shutdown_controller *info =
container_of(
alarm, struct shutdown_controller, kthread_fgtimer);
wake_up_power_misc(info);
return ALARMTIMER_NORESTART;
}
static void power_misc_handler(void *arg)
{
struct mtk_battery *gm = arg;
struct shutdown_controller *sdd = &gm->sdc;
struct timespec time, time_now, end_time;
ktime_t ktime;
int secs = 0;
secs = shutdown_event_handler(gm);
if (secs != 0 && gm->disableGM30 == false) {
get_monotonic_boottime(&time_now);
time.tv_sec = secs;
time.tv_nsec = 0;
end_time = timespec_add(time_now, time);
ktime = ktime_set(end_time.tv_sec, end_time.tv_nsec);
alarm_start(&sdd->kthread_fgtimer, ktime);
bm_debug("%s:set new alarm timer:%ds\n",
__func__, secs);
}
}
static int power_misc_routine_thread(void *arg)
{
struct mtk_battery *gm = arg;
struct shutdown_controller *sdd = &gm->sdc;
while (1) {
wait_event(sdd->wait_que, (sdd->timeout == true)
|| (sdd->overheat == true));
if (sdd->timeout == true) {
sdd->timeout = false;
power_misc_handler(gm);
}
if (sdd->overheat == true) {
sdd->overheat = false;
bm_debug("%s battery overheat~ power off\n",
__func__);
kernel_power_off();
return 1;
}
}
return 0;
}
static int mtk_power_misc_psy_event(
struct notifier_block *nb, unsigned long event, void *v)
{
struct power_supply *psy = v;
struct shutdown_controller *sdc;
struct mtk_battery *gm;
int tmp = 0;
gm = get_mtk_battery();
if (strcmp(psy->desc->name, "battery") == 0) {
if (gm != NULL) {
sdc = container_of(
nb, struct shutdown_controller, psy_nb);
if (gm->cur_bat_temp >= BATTERY_SHUTDOWN_TEMPERATURE) {
bm_debug(
"%d battery temperature >= %d,shutdown",
gm->cur_bat_temp, tmp);
wake_up_overheat(sdc);
}
}
}
return NOTIFY_DONE;
}
void mtk_power_misc_init(struct mtk_battery *gm)
{
mutex_init(&gm->sdc.lock);
alarm_init(&gm->sdc.kthread_fgtimer, ALARM_BOOTTIME,
power_misc_kthread_fgtimer_func);
init_waitqueue_head(&gm->sdc.wait_que);
kthread_run(power_misc_routine_thread, gm, "power_misc_thread");
gm->sdc.psy_nb.notifier_call = mtk_power_misc_psy_event;
power_supply_reg_notifier(&gm->sdc.psy_nb);
}
int battery_psy_init(struct platform_device *pdev)
{
struct mtk_battery *gm;
struct mtk_gauge *gauge;
int ret;
bm_err("[%s]\n", __func__);
gm = devm_kzalloc(&pdev->dev, sizeof(*gm), GFP_KERNEL);
if (!gm)
return -ENOMEM;
gauge = dev_get_drvdata(&pdev->dev);
gauge->gm = gm;
gm->gauge = gauge;
mutex_init(&gm->ops_lock);
gm->bs_data.chg_psy = devm_power_supply_get_by_phandle(&pdev->dev,
"charger");
if (IS_ERR_OR_NULL(gm->bs_data.chg_psy))
bm_err("[BAT_probe] %s: fail to get chg_psy !!\n", __func__);
battery_service_data_init(gm);
gm->bs_data.psy =
power_supply_register(
&(pdev->dev), &gm->bs_data.psd, &gm->bs_data.psy_cfg);
if (IS_ERR(gm->bs_data.psy)) {
bm_err("[BAT_probe] power_supply_register Battery Fail !!\n");
ret = PTR_ERR(gm->bs_data.psy);
return ret;
}
bm_err("[BAT_probe] power_supply_register Battery Success !!\n");
return 0;
}
void fg_check_bootmode(struct device *dev,
struct mtk_battery *gm)
{
struct device_node *boot_node = NULL;
struct tag_bootmode *tag = NULL;
boot_node = of_parse_phandle(dev->of_node, "bootmode", 0);
if (!boot_node)
bm_err("%s: failed to get boot mode phandle\n", __func__);
else {
tag = (struct tag_bootmode *)of_get_property(boot_node,
"atag,boot", NULL);
if (!tag)
bm_err("%s: failed to get atag,boot\n", __func__);
else {
bm_err("%s: size:0x%x tag:0x%x bootmode:0x%x boottype:0x%x\n",
__func__, tag->size, tag->tag,
tag->bootmode, tag->boottype);
gm->bootmode = tag->bootmode;
gm->boottype = tag->boottype;
}
}
}
void fg_check_lk_swocv(struct device *dev,
struct mtk_battery *gm)
{
struct device_node *boot_node = NULL;
int len = 0;
char temp[10];
int *prop;
boot_node = of_parse_phandle(dev->of_node, "bootmode", 0);
if (!boot_node)
bm_err("%s: failed to get boot mode phandle\n", __func__);
else {
prop = (void *)of_get_property(
boot_node, "atag,fg_swocv_v", &len);
if (prop == NULL) {
bm_err("fg_swocv_v prop == NULL, len=%d\n", len);
} else {
snprintf(temp, (len + 1), "%s", prop);
kstrtoint(temp, 10, &gm->ptim_lk_v);
bm_err("temp %s gm->ptim_lk_v=%d\n",
temp, gm->ptim_lk_v);
}
prop = (void *)of_get_property(
boot_node, "atag,fg_swocv_i", &len);
if (prop == NULL) {
bm_err("fg_swocv_i prop == NULL, len=%d\n", len);
} else {
snprintf(temp, (len + 1), "%s", prop);
kstrtoint(temp, 10, &gm->ptim_lk_i);
bm_err("temp %s gm->ptim_lk_i=%d\n",
temp, gm->ptim_lk_i);
}
prop = (void *)of_get_property(
boot_node, "atag,shutdown_time", &len);
if (prop == NULL) {
bm_err("shutdown_time prop == NULL, len=%d\n", len);
} else {
snprintf(temp, (len + 1), "%s", prop);
kstrtoint(temp, 10, &gm->pl_shutdown_time);
bm_err("temp %s gm->pl_shutdown_time=%d\n",
temp, gm->pl_shutdown_time);
}
}
bm_err("swocv_v:%d swocv_i:%d shutdown_time:%d\n",
gm->ptim_lk_v, gm->ptim_lk_i, gm->pl_shutdown_time);
}
int battery_init(struct platform_device *pdev)
{
int ret = 0;
bool b_recovery_mode = 0;
struct mtk_battery *gm;
struct mtk_gauge *gauge;
gauge = dev_get_drvdata(&pdev->dev);
gm = gauge->gm;
gm->fixed_bat_tmp = 0xffff;
gm->tmp_table = Fg_Temperature_Table;
gm->log_level = BMLOG_ERROR_LEVEL;
gm->sw_iavg_gap = 3000;
init_waitqueue_head(&gm->wait_que);
fg_check_bootmode(&pdev->dev, gm);
fg_check_lk_swocv(&pdev->dev, gm);
fg_custom_init_from_header(gm);
fg_custom_init_from_dts(pdev, gm);
gauge_coulomb_service_init(gm);
gm->coulomb_plus.callback = fg_coulomb_int_h_handler;
gauge_coulomb_consumer_init(&gm->coulomb_plus, &pdev->dev, "car+1%");
gm->coulomb_minus.callback = fg_coulomb_int_l_handler;
gauge_coulomb_consumer_init(&gm->coulomb_minus, &pdev->dev, "car-1%");
gauge_coulomb_consumer_init(&gm->uisoc_plus, &pdev->dev, "uisoc+1%");
gm->uisoc_plus.callback = fg_bat_int2_h_handler;
gauge_coulomb_consumer_init(&gm->uisoc_minus, &pdev->dev, "uisoc-1%");
gm->uisoc_minus.callback = fg_bat_int2_l_handler;
alarm_init(&gm->tracking_timer, ALARM_BOOTTIME,
tracking_timer_callback);
INIT_WORK(&gm->tracking_timer_work, tracking_timer_work_handler);
alarm_init(&gm->one_percent_timer, ALARM_BOOTTIME,
one_percent_timer_callback);
INIT_WORK(&gm->one_percent_timer_work, one_percent_timer_work_handler);
alarm_init(&gm->sw_uisoc_timer, ALARM_BOOTTIME,
sw_uisoc_timer_callback);
INIT_WORK(&gm->sw_uisoc_timer_work, sw_uisoc_timer_work_handler);
kthread_run(battery_update_routine, gm, "battery_thread");
fg_drv_thread_hrtimer_init(gm);
battery_sysfs_create_group(gm->bs_data.psy);
gm->is_probe_done = true;
/* for gauge hal hw ocv */
gm->bs_data.bat_batt_temp = force_get_tbat(gm, true);
mtk_power_misc_init(gm);
ret = mtk_battery_daemon_init(pdev);
b_recovery_mode = is_recovery_mode();
if (ret == 0 && b_recovery_mode == 0)
bm_err("[%s]: daemon mode DONE\n", __func__);
else {
gm->algo.active = true;
battery_algo_init(gm);
bm_err("[%s]: kernel mode DONE\n", __func__);
}
return 0;
}