6db4831e98
Android 14
3042 lines
75 KiB
C
3042 lines
75 KiB
C
/*
|
|
* User interface for Resource Alloction in Resource Director Technology(RDT)
|
|
*
|
|
* Copyright (C) 2016 Intel Corporation
|
|
*
|
|
* Author: Fenghua Yu <fenghua.yu@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* More information about RDT be found in the Intel (R) x86 Architecture
|
|
* Software Developer Manual.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/cacheinfo.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/kernfs.h>
|
|
#include <linux/seq_buf.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/task_work.h>
|
|
|
|
#include <uapi/linux/magic.h>
|
|
|
|
#include <asm/intel_rdt_sched.h>
|
|
#include "intel_rdt.h"
|
|
|
|
DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
|
|
DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
|
|
DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
|
|
static struct kernfs_root *rdt_root;
|
|
struct rdtgroup rdtgroup_default;
|
|
LIST_HEAD(rdt_all_groups);
|
|
|
|
/* Kernel fs node for "info" directory under root */
|
|
static struct kernfs_node *kn_info;
|
|
|
|
/* Kernel fs node for "mon_groups" directory under root */
|
|
static struct kernfs_node *kn_mongrp;
|
|
|
|
/* Kernel fs node for "mon_data" directory under root */
|
|
static struct kernfs_node *kn_mondata;
|
|
|
|
static struct seq_buf last_cmd_status;
|
|
static char last_cmd_status_buf[512];
|
|
|
|
struct dentry *debugfs_resctrl;
|
|
|
|
void rdt_last_cmd_clear(void)
|
|
{
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
seq_buf_clear(&last_cmd_status);
|
|
}
|
|
|
|
void rdt_last_cmd_puts(const char *s)
|
|
{
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
seq_buf_puts(&last_cmd_status, s);
|
|
}
|
|
|
|
void rdt_last_cmd_printf(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
seq_buf_vprintf(&last_cmd_status, fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
/*
|
|
* Trivial allocator for CLOSIDs. Since h/w only supports a small number,
|
|
* we can keep a bitmap of free CLOSIDs in a single integer.
|
|
*
|
|
* Using a global CLOSID across all resources has some advantages and
|
|
* some drawbacks:
|
|
* + We can simply set "current->closid" to assign a task to a resource
|
|
* group.
|
|
* + Context switch code can avoid extra memory references deciding which
|
|
* CLOSID to load into the PQR_ASSOC MSR
|
|
* - We give up some options in configuring resource groups across multi-socket
|
|
* systems.
|
|
* - Our choices on how to configure each resource become progressively more
|
|
* limited as the number of resources grows.
|
|
*/
|
|
static int closid_free_map;
|
|
static int closid_free_map_len;
|
|
|
|
int closids_supported(void)
|
|
{
|
|
return closid_free_map_len;
|
|
}
|
|
|
|
static void closid_init(void)
|
|
{
|
|
struct rdt_resource *r;
|
|
int rdt_min_closid = 32;
|
|
|
|
/* Compute rdt_min_closid across all resources */
|
|
for_each_alloc_enabled_rdt_resource(r)
|
|
rdt_min_closid = min(rdt_min_closid, r->num_closid);
|
|
|
|
closid_free_map = BIT_MASK(rdt_min_closid) - 1;
|
|
|
|
/* CLOSID 0 is always reserved for the default group */
|
|
closid_free_map &= ~1;
|
|
closid_free_map_len = rdt_min_closid;
|
|
}
|
|
|
|
static int closid_alloc(void)
|
|
{
|
|
u32 closid = ffs(closid_free_map);
|
|
|
|
if (closid == 0)
|
|
return -ENOSPC;
|
|
closid--;
|
|
closid_free_map &= ~(1 << closid);
|
|
|
|
return closid;
|
|
}
|
|
|
|
void closid_free(int closid)
|
|
{
|
|
closid_free_map |= 1 << closid;
|
|
}
|
|
|
|
/**
|
|
* closid_allocated - test if provided closid is in use
|
|
* @closid: closid to be tested
|
|
*
|
|
* Return: true if @closid is currently associated with a resource group,
|
|
* false if @closid is free
|
|
*/
|
|
static bool closid_allocated(unsigned int closid)
|
|
{
|
|
return (closid_free_map & (1 << closid)) == 0;
|
|
}
|
|
|
|
/**
|
|
* rdtgroup_mode_by_closid - Return mode of resource group with closid
|
|
* @closid: closid if the resource group
|
|
*
|
|
* Each resource group is associated with a @closid. Here the mode
|
|
* of a resource group can be queried by searching for it using its closid.
|
|
*
|
|
* Return: mode as &enum rdtgrp_mode of resource group with closid @closid
|
|
*/
|
|
enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
|
|
{
|
|
struct rdtgroup *rdtgrp;
|
|
|
|
list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
|
|
if (rdtgrp->closid == closid)
|
|
return rdtgrp->mode;
|
|
}
|
|
|
|
return RDT_NUM_MODES;
|
|
}
|
|
|
|
static const char * const rdt_mode_str[] = {
|
|
[RDT_MODE_SHAREABLE] = "shareable",
|
|
[RDT_MODE_EXCLUSIVE] = "exclusive",
|
|
[RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
|
|
[RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
|
|
};
|
|
|
|
/**
|
|
* rdtgroup_mode_str - Return the string representation of mode
|
|
* @mode: the resource group mode as &enum rdtgroup_mode
|
|
*
|
|
* Return: string representation of valid mode, "unknown" otherwise
|
|
*/
|
|
static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
|
|
{
|
|
if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
|
|
return "unknown";
|
|
|
|
return rdt_mode_str[mode];
|
|
}
|
|
|
|
/* set uid and gid of rdtgroup dirs and files to that of the creator */
|
|
static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
|
|
{
|
|
struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
|
|
.ia_uid = current_fsuid(),
|
|
.ia_gid = current_fsgid(), };
|
|
|
|
if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
|
|
gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
|
|
return 0;
|
|
|
|
return kernfs_setattr(kn, &iattr);
|
|
}
|
|
|
|
static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
|
|
{
|
|
struct kernfs_node *kn;
|
|
int ret;
|
|
|
|
kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
|
|
GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
|
|
0, rft->kf_ops, rft, NULL, NULL);
|
|
if (IS_ERR(kn))
|
|
return PTR_ERR(kn);
|
|
|
|
ret = rdtgroup_kn_set_ugid(kn);
|
|
if (ret) {
|
|
kernfs_remove(kn);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
|
|
{
|
|
struct kernfs_open_file *of = m->private;
|
|
struct rftype *rft = of->kn->priv;
|
|
|
|
if (rft->seq_show)
|
|
return rft->seq_show(of, m, arg);
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
|
|
size_t nbytes, loff_t off)
|
|
{
|
|
struct rftype *rft = of->kn->priv;
|
|
|
|
if (rft->write)
|
|
return rft->write(of, buf, nbytes, off);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static struct kernfs_ops rdtgroup_kf_single_ops = {
|
|
.atomic_write_len = PAGE_SIZE,
|
|
.write = rdtgroup_file_write,
|
|
.seq_show = rdtgroup_seqfile_show,
|
|
};
|
|
|
|
static struct kernfs_ops kf_mondata_ops = {
|
|
.atomic_write_len = PAGE_SIZE,
|
|
.seq_show = rdtgroup_mondata_show,
|
|
};
|
|
|
|
static bool is_cpu_list(struct kernfs_open_file *of)
|
|
{
|
|
struct rftype *rft = of->kn->priv;
|
|
|
|
return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
|
|
}
|
|
|
|
static int rdtgroup_cpus_show(struct kernfs_open_file *of,
|
|
struct seq_file *s, void *v)
|
|
{
|
|
struct rdtgroup *rdtgrp;
|
|
struct cpumask *mask;
|
|
int ret = 0;
|
|
|
|
rdtgrp = rdtgroup_kn_lock_live(of->kn);
|
|
|
|
if (rdtgrp) {
|
|
if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
|
|
if (!rdtgrp->plr->d) {
|
|
rdt_last_cmd_clear();
|
|
rdt_last_cmd_puts("Cache domain offline\n");
|
|
ret = -ENODEV;
|
|
} else {
|
|
mask = &rdtgrp->plr->d->cpu_mask;
|
|
seq_printf(s, is_cpu_list(of) ?
|
|
"%*pbl\n" : "%*pb\n",
|
|
cpumask_pr_args(mask));
|
|
}
|
|
} else {
|
|
seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
|
|
cpumask_pr_args(&rdtgrp->cpu_mask));
|
|
}
|
|
} else {
|
|
ret = -ENOENT;
|
|
}
|
|
rdtgroup_kn_unlock(of->kn);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is safe against intel_rdt_sched_in() called from __switch_to()
|
|
* because __switch_to() is executed with interrupts disabled. A local call
|
|
* from update_closid_rmid() is proteced against __switch_to() because
|
|
* preemption is disabled.
|
|
*/
|
|
static void update_cpu_closid_rmid(void *info)
|
|
{
|
|
struct rdtgroup *r = info;
|
|
|
|
if (r) {
|
|
this_cpu_write(pqr_state.default_closid, r->closid);
|
|
this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
|
|
}
|
|
|
|
/*
|
|
* We cannot unconditionally write the MSR because the current
|
|
* executing task might have its own closid selected. Just reuse
|
|
* the context switch code.
|
|
*/
|
|
intel_rdt_sched_in();
|
|
}
|
|
|
|
/*
|
|
* Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
|
|
*
|
|
* Per task closids/rmids must have been set up before calling this function.
|
|
*/
|
|
static void
|
|
update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
|
|
{
|
|
int cpu = get_cpu();
|
|
|
|
if (cpumask_test_cpu(cpu, cpu_mask))
|
|
update_cpu_closid_rmid(r);
|
|
smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
|
|
put_cpu();
|
|
}
|
|
|
|
static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
|
|
cpumask_var_t tmpmask)
|
|
{
|
|
struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
|
|
struct list_head *head;
|
|
|
|
/* Check whether cpus belong to parent ctrl group */
|
|
cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
|
|
if (cpumask_weight(tmpmask)) {
|
|
rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check whether cpus are dropped from this group */
|
|
cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
|
|
if (cpumask_weight(tmpmask)) {
|
|
/* Give any dropped cpus to parent rdtgroup */
|
|
cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
|
|
update_closid_rmid(tmpmask, prgrp);
|
|
}
|
|
|
|
/*
|
|
* If we added cpus, remove them from previous group that owned them
|
|
* and update per-cpu rmid
|
|
*/
|
|
cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
|
|
if (cpumask_weight(tmpmask)) {
|
|
head = &prgrp->mon.crdtgrp_list;
|
|
list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
|
|
if (crgrp == rdtgrp)
|
|
continue;
|
|
cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
|
|
tmpmask);
|
|
}
|
|
update_closid_rmid(tmpmask, rdtgrp);
|
|
}
|
|
|
|
/* Done pushing/pulling - update this group with new mask */
|
|
cpumask_copy(&rdtgrp->cpu_mask, newmask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
|
|
{
|
|
struct rdtgroup *crgrp;
|
|
|
|
cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
|
|
/* update the child mon group masks as well*/
|
|
list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
|
|
cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
|
|
}
|
|
|
|
static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
|
|
cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
|
|
{
|
|
struct rdtgroup *r, *crgrp;
|
|
struct list_head *head;
|
|
|
|
/* Check whether cpus are dropped from this group */
|
|
cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
|
|
if (cpumask_weight(tmpmask)) {
|
|
/* Can't drop from default group */
|
|
if (rdtgrp == &rdtgroup_default) {
|
|
rdt_last_cmd_puts("Can't drop CPUs from default group\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Give any dropped cpus to rdtgroup_default */
|
|
cpumask_or(&rdtgroup_default.cpu_mask,
|
|
&rdtgroup_default.cpu_mask, tmpmask);
|
|
update_closid_rmid(tmpmask, &rdtgroup_default);
|
|
}
|
|
|
|
/*
|
|
* If we added cpus, remove them from previous group and
|
|
* the prev group's child groups that owned them
|
|
* and update per-cpu closid/rmid.
|
|
*/
|
|
cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
|
|
if (cpumask_weight(tmpmask)) {
|
|
list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
|
|
if (r == rdtgrp)
|
|
continue;
|
|
cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
|
|
if (cpumask_weight(tmpmask1))
|
|
cpumask_rdtgrp_clear(r, tmpmask1);
|
|
}
|
|
update_closid_rmid(tmpmask, rdtgrp);
|
|
}
|
|
|
|
/* Done pushing/pulling - update this group with new mask */
|
|
cpumask_copy(&rdtgrp->cpu_mask, newmask);
|
|
|
|
/*
|
|
* Clear child mon group masks since there is a new parent mask
|
|
* now and update the rmid for the cpus the child lost.
|
|
*/
|
|
head = &rdtgrp->mon.crdtgrp_list;
|
|
list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
|
|
cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
|
|
update_closid_rmid(tmpmask, rdtgrp);
|
|
cpumask_clear(&crgrp->cpu_mask);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
cpumask_var_t tmpmask, newmask, tmpmask1;
|
|
struct rdtgroup *rdtgrp;
|
|
int ret;
|
|
|
|
if (!buf)
|
|
return -EINVAL;
|
|
|
|
if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
|
|
free_cpumask_var(tmpmask);
|
|
return -ENOMEM;
|
|
}
|
|
if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
|
|
free_cpumask_var(tmpmask);
|
|
free_cpumask_var(newmask);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rdtgrp = rdtgroup_kn_lock_live(of->kn);
|
|
rdt_last_cmd_clear();
|
|
if (!rdtgrp) {
|
|
ret = -ENOENT;
|
|
rdt_last_cmd_puts("directory was removed\n");
|
|
goto unlock;
|
|
}
|
|
|
|
if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
|
|
rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
|
|
ret = -EINVAL;
|
|
rdt_last_cmd_puts("pseudo-locking in progress\n");
|
|
goto unlock;
|
|
}
|
|
|
|
if (is_cpu_list(of))
|
|
ret = cpulist_parse(buf, newmask);
|
|
else
|
|
ret = cpumask_parse(buf, newmask);
|
|
|
|
if (ret) {
|
|
rdt_last_cmd_puts("bad cpu list/mask\n");
|
|
goto unlock;
|
|
}
|
|
|
|
/* check that user didn't specify any offline cpus */
|
|
cpumask_andnot(tmpmask, newmask, cpu_online_mask);
|
|
if (cpumask_weight(tmpmask)) {
|
|
ret = -EINVAL;
|
|
rdt_last_cmd_puts("can only assign online cpus\n");
|
|
goto unlock;
|
|
}
|
|
|
|
if (rdtgrp->type == RDTCTRL_GROUP)
|
|
ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
|
|
else if (rdtgrp->type == RDTMON_GROUP)
|
|
ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
|
|
else
|
|
ret = -EINVAL;
|
|
|
|
unlock:
|
|
rdtgroup_kn_unlock(of->kn);
|
|
free_cpumask_var(tmpmask);
|
|
free_cpumask_var(newmask);
|
|
free_cpumask_var(tmpmask1);
|
|
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
/**
|
|
* rdtgroup_remove - the helper to remove resource group safely
|
|
* @rdtgrp: resource group to remove
|
|
*
|
|
* On resource group creation via a mkdir, an extra kernfs_node reference is
|
|
* taken to ensure that the rdtgroup structure remains accessible for the
|
|
* rdtgroup_kn_unlock() calls where it is removed.
|
|
*
|
|
* Drop the extra reference here, then free the rdtgroup structure.
|
|
*
|
|
* Return: void
|
|
*/
|
|
static void rdtgroup_remove(struct rdtgroup *rdtgrp)
|
|
{
|
|
kernfs_put(rdtgrp->kn);
|
|
kfree(rdtgrp);
|
|
}
|
|
|
|
static void _update_task_closid_rmid(void *task)
|
|
{
|
|
/*
|
|
* If the task is still current on this CPU, update PQR_ASSOC MSR.
|
|
* Otherwise, the MSR is updated when the task is scheduled in.
|
|
*/
|
|
if (task == current)
|
|
intel_rdt_sched_in();
|
|
}
|
|
|
|
static void update_task_closid_rmid(struct task_struct *t)
|
|
{
|
|
if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
|
|
smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
|
|
else
|
|
_update_task_closid_rmid(t);
|
|
}
|
|
|
|
static int __rdtgroup_move_task(struct task_struct *tsk,
|
|
struct rdtgroup *rdtgrp)
|
|
{
|
|
/* If the task is already in rdtgrp, no need to move the task. */
|
|
if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
|
|
tsk->rmid == rdtgrp->mon.rmid) ||
|
|
(rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
|
|
tsk->closid == rdtgrp->mon.parent->closid))
|
|
return 0;
|
|
|
|
/*
|
|
* Set the task's closid/rmid before the PQR_ASSOC MSR can be
|
|
* updated by them.
|
|
*
|
|
* For ctrl_mon groups, move both closid and rmid.
|
|
* For monitor groups, can move the tasks only from
|
|
* their parent CTRL group.
|
|
*/
|
|
|
|
if (rdtgrp->type == RDTCTRL_GROUP) {
|
|
tsk->closid = rdtgrp->closid;
|
|
tsk->rmid = rdtgrp->mon.rmid;
|
|
} else if (rdtgrp->type == RDTMON_GROUP) {
|
|
if (rdtgrp->mon.parent->closid == tsk->closid) {
|
|
tsk->rmid = rdtgrp->mon.rmid;
|
|
} else {
|
|
rdt_last_cmd_puts("Can't move task to different control group\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure the task's closid and rmid are written before determining if
|
|
* the task is current that will decide if it will be interrupted.
|
|
*/
|
|
barrier();
|
|
|
|
/*
|
|
* By now, the task's closid and rmid are set. If the task is current
|
|
* on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
|
|
* group go into effect. If the task is not current, the MSR will be
|
|
* updated when the task is scheduled in.
|
|
*/
|
|
update_task_closid_rmid(tsk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
|
|
* @r: Resource group
|
|
*
|
|
* Return: 1 if tasks have been assigned to @r, 0 otherwise
|
|
*/
|
|
int rdtgroup_tasks_assigned(struct rdtgroup *r)
|
|
{
|
|
struct task_struct *p, *t;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
|
|
rcu_read_lock();
|
|
for_each_process_thread(p, t) {
|
|
if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
|
|
(r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rdtgroup_task_write_permission(struct task_struct *task,
|
|
struct kernfs_open_file *of)
|
|
{
|
|
const struct cred *tcred = get_task_cred(task);
|
|
const struct cred *cred = current_cred();
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Even if we're attaching all tasks in the thread group, we only
|
|
* need to check permissions on one of them.
|
|
*/
|
|
if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
|
|
!uid_eq(cred->euid, tcred->uid) &&
|
|
!uid_eq(cred->euid, tcred->suid)) {
|
|
rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
|
|
ret = -EPERM;
|
|
}
|
|
|
|
put_cred(tcred);
|
|
return ret;
|
|
}
|
|
|
|
static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
|
|
struct kernfs_open_file *of)
|
|
{
|
|
struct task_struct *tsk;
|
|
int ret;
|
|
|
|
rcu_read_lock();
|
|
if (pid) {
|
|
tsk = find_task_by_vpid(pid);
|
|
if (!tsk) {
|
|
rcu_read_unlock();
|
|
rdt_last_cmd_printf("No task %d\n", pid);
|
|
return -ESRCH;
|
|
}
|
|
} else {
|
|
tsk = current;
|
|
}
|
|
|
|
get_task_struct(tsk);
|
|
rcu_read_unlock();
|
|
|
|
ret = rdtgroup_task_write_permission(tsk, of);
|
|
if (!ret)
|
|
ret = __rdtgroup_move_task(tsk, rdtgrp);
|
|
|
|
put_task_struct(tsk);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
struct rdtgroup *rdtgrp;
|
|
int ret = 0;
|
|
pid_t pid;
|
|
|
|
if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
|
|
return -EINVAL;
|
|
rdtgrp = rdtgroup_kn_lock_live(of->kn);
|
|
if (!rdtgrp) {
|
|
rdtgroup_kn_unlock(of->kn);
|
|
return -ENOENT;
|
|
}
|
|
rdt_last_cmd_clear();
|
|
|
|
if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
|
|
rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
|
|
ret = -EINVAL;
|
|
rdt_last_cmd_puts("pseudo-locking in progress\n");
|
|
goto unlock;
|
|
}
|
|
|
|
ret = rdtgroup_move_task(pid, rdtgrp, of);
|
|
|
|
unlock:
|
|
rdtgroup_kn_unlock(of->kn);
|
|
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
|
|
{
|
|
struct task_struct *p, *t;
|
|
|
|
rcu_read_lock();
|
|
for_each_process_thread(p, t) {
|
|
if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
|
|
(r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
|
|
seq_printf(s, "%d\n", t->pid);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static int rdtgroup_tasks_show(struct kernfs_open_file *of,
|
|
struct seq_file *s, void *v)
|
|
{
|
|
struct rdtgroup *rdtgrp;
|
|
int ret = 0;
|
|
|
|
rdtgrp = rdtgroup_kn_lock_live(of->kn);
|
|
if (rdtgrp)
|
|
show_rdt_tasks(rdtgrp, s);
|
|
else
|
|
ret = -ENOENT;
|
|
rdtgroup_kn_unlock(of->kn);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
int len;
|
|
|
|
mutex_lock(&rdtgroup_mutex);
|
|
len = seq_buf_used(&last_cmd_status);
|
|
if (len)
|
|
seq_printf(seq, "%.*s", len, last_cmd_status_buf);
|
|
else
|
|
seq_puts(seq, "ok\n");
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int rdt_num_closids_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
|
|
seq_printf(seq, "%d\n", r->num_closid);
|
|
return 0;
|
|
}
|
|
|
|
static int rdt_default_ctrl_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
|
|
seq_printf(seq, "%x\n", r->default_ctrl);
|
|
return 0;
|
|
}
|
|
|
|
static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
|
|
seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
|
|
return 0;
|
|
}
|
|
|
|
static int rdt_shareable_bits_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
|
|
seq_printf(seq, "%x\n", r->cache.shareable_bits);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rdt_bit_usage_show - Display current usage of resources
|
|
*
|
|
* A domain is a shared resource that can now be allocated differently. Here
|
|
* we display the current regions of the domain as an annotated bitmask.
|
|
* For each domain of this resource its allocation bitmask
|
|
* is annotated as below to indicate the current usage of the corresponding bit:
|
|
* 0 - currently unused
|
|
* X - currently available for sharing and used by software and hardware
|
|
* H - currently used by hardware only but available for software use
|
|
* S - currently used and shareable by software only
|
|
* E - currently used exclusively by one resource group
|
|
* P - currently pseudo-locked by one resource group
|
|
*/
|
|
static int rdt_bit_usage_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
/*
|
|
* Use unsigned long even though only 32 bits are used to ensure
|
|
* test_bit() is used safely.
|
|
*/
|
|
unsigned long sw_shareable = 0, hw_shareable = 0;
|
|
unsigned long exclusive = 0, pseudo_locked = 0;
|
|
struct rdt_domain *dom;
|
|
int i, hwb, swb, excl, psl;
|
|
enum rdtgrp_mode mode;
|
|
bool sep = false;
|
|
u32 *ctrl;
|
|
|
|
mutex_lock(&rdtgroup_mutex);
|
|
hw_shareable = r->cache.shareable_bits;
|
|
list_for_each_entry(dom, &r->domains, list) {
|
|
if (sep)
|
|
seq_putc(seq, ';');
|
|
ctrl = dom->ctrl_val;
|
|
sw_shareable = 0;
|
|
exclusive = 0;
|
|
seq_printf(seq, "%d=", dom->id);
|
|
for (i = 0; i < closids_supported(); i++, ctrl++) {
|
|
if (!closid_allocated(i))
|
|
continue;
|
|
mode = rdtgroup_mode_by_closid(i);
|
|
switch (mode) {
|
|
case RDT_MODE_SHAREABLE:
|
|
sw_shareable |= *ctrl;
|
|
break;
|
|
case RDT_MODE_EXCLUSIVE:
|
|
exclusive |= *ctrl;
|
|
break;
|
|
case RDT_MODE_PSEUDO_LOCKSETUP:
|
|
/*
|
|
* RDT_MODE_PSEUDO_LOCKSETUP is possible
|
|
* here but not included since the CBM
|
|
* associated with this CLOSID in this mode
|
|
* is not initialized and no task or cpu can be
|
|
* assigned this CLOSID.
|
|
*/
|
|
break;
|
|
case RDT_MODE_PSEUDO_LOCKED:
|
|
case RDT_NUM_MODES:
|
|
WARN(1,
|
|
"invalid mode for closid %d\n", i);
|
|
break;
|
|
}
|
|
}
|
|
for (i = r->cache.cbm_len - 1; i >= 0; i--) {
|
|
pseudo_locked = dom->plr ? dom->plr->cbm : 0;
|
|
hwb = test_bit(i, &hw_shareable);
|
|
swb = test_bit(i, &sw_shareable);
|
|
excl = test_bit(i, &exclusive);
|
|
psl = test_bit(i, &pseudo_locked);
|
|
if (hwb && swb)
|
|
seq_putc(seq, 'X');
|
|
else if (hwb && !swb)
|
|
seq_putc(seq, 'H');
|
|
else if (!hwb && swb)
|
|
seq_putc(seq, 'S');
|
|
else if (excl)
|
|
seq_putc(seq, 'E');
|
|
else if (psl)
|
|
seq_putc(seq, 'P');
|
|
else /* Unused bits remain */
|
|
seq_putc(seq, '0');
|
|
}
|
|
sep = true;
|
|
}
|
|
seq_putc(seq, '\n');
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int rdt_min_bw_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
|
|
seq_printf(seq, "%u\n", r->membw.min_bw);
|
|
return 0;
|
|
}
|
|
|
|
static int rdt_num_rmids_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
|
|
seq_printf(seq, "%d\n", r->num_rmid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rdt_mon_features_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
struct mon_evt *mevt;
|
|
|
|
list_for_each_entry(mevt, &r->evt_list, list)
|
|
seq_printf(seq, "%s\n", mevt->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rdt_bw_gran_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
|
|
seq_printf(seq, "%u\n", r->membw.bw_gran);
|
|
return 0;
|
|
}
|
|
|
|
static int rdt_delay_linear_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
|
|
seq_printf(seq, "%u\n", r->membw.delay_linear);
|
|
return 0;
|
|
}
|
|
|
|
static int max_threshold_occ_show(struct kernfs_open_file *of,
|
|
struct seq_file *seq, void *v)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
|
|
seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
struct rdt_resource *r = of->kn->parent->priv;
|
|
unsigned int bytes;
|
|
int ret;
|
|
|
|
ret = kstrtouint(buf, 0, &bytes);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (bytes > (boot_cpu_data.x86_cache_size * 1024))
|
|
return -EINVAL;
|
|
|
|
intel_cqm_threshold = bytes / r->mon_scale;
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
/*
|
|
* rdtgroup_mode_show - Display mode of this resource group
|
|
*/
|
|
static int rdtgroup_mode_show(struct kernfs_open_file *of,
|
|
struct seq_file *s, void *v)
|
|
{
|
|
struct rdtgroup *rdtgrp;
|
|
|
|
rdtgrp = rdtgroup_kn_lock_live(of->kn);
|
|
if (!rdtgrp) {
|
|
rdtgroup_kn_unlock(of->kn);
|
|
return -ENOENT;
|
|
}
|
|
|
|
seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
|
|
|
|
rdtgroup_kn_unlock(of->kn);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rdt_cdp_peer_get - Retrieve CDP peer if it exists
|
|
* @r: RDT resource to which RDT domain @d belongs
|
|
* @d: Cache instance for which a CDP peer is requested
|
|
* @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
|
|
* Used to return the result.
|
|
* @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
|
|
* Used to return the result.
|
|
*
|
|
* RDT resources are managed independently and by extension the RDT domains
|
|
* (RDT resource instances) are managed independently also. The Code and
|
|
* Data Prioritization (CDP) RDT resources, while managed independently,
|
|
* could refer to the same underlying hardware. For example,
|
|
* RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
|
|
*
|
|
* When provided with an RDT resource @r and an instance of that RDT
|
|
* resource @d rdt_cdp_peer_get() will return if there is a peer RDT
|
|
* resource and the exact instance that shares the same hardware.
|
|
*
|
|
* Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
|
|
* If a CDP peer was found, @r_cdp will point to the peer RDT resource
|
|
* and @d_cdp will point to the peer RDT domain.
|
|
*/
|
|
static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
|
|
struct rdt_resource **r_cdp,
|
|
struct rdt_domain **d_cdp)
|
|
{
|
|
struct rdt_resource *_r_cdp = NULL;
|
|
struct rdt_domain *_d_cdp = NULL;
|
|
int ret = 0;
|
|
|
|
switch (r->rid) {
|
|
case RDT_RESOURCE_L3DATA:
|
|
_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
|
|
break;
|
|
case RDT_RESOURCE_L3CODE:
|
|
_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA];
|
|
break;
|
|
case RDT_RESOURCE_L2DATA:
|
|
_r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE];
|
|
break;
|
|
case RDT_RESOURCE_L2CODE:
|
|
_r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA];
|
|
break;
|
|
default:
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* When a new CPU comes online and CDP is enabled then the new
|
|
* RDT domains (if any) associated with both CDP RDT resources
|
|
* are added in the same CPU online routine while the
|
|
* rdtgroup_mutex is held. It should thus not happen for one
|
|
* RDT domain to exist and be associated with its RDT CDP
|
|
* resource but there is no RDT domain associated with the
|
|
* peer RDT CDP resource. Hence the WARN.
|
|
*/
|
|
_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
|
|
if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
|
|
_r_cdp = NULL;
|
|
_d_cdp = NULL;
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
out:
|
|
*r_cdp = _r_cdp;
|
|
*d_cdp = _d_cdp;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
|
|
* @r: Resource to which domain instance @d belongs.
|
|
* @d: The domain instance for which @closid is being tested.
|
|
* @cbm: Capacity bitmask being tested.
|
|
* @closid: Intended closid for @cbm.
|
|
* @exclusive: Only check if overlaps with exclusive resource groups
|
|
*
|
|
* Checks if provided @cbm intended to be used for @closid on domain
|
|
* @d overlaps with any other closids or other hardware usage associated
|
|
* with this domain. If @exclusive is true then only overlaps with
|
|
* resource groups in exclusive mode will be considered. If @exclusive
|
|
* is false then overlaps with any resource group or hardware entities
|
|
* will be considered.
|
|
*
|
|
* @cbm is unsigned long, even if only 32 bits are used, to make the
|
|
* bitmap functions work correctly.
|
|
*
|
|
* Return: false if CBM does not overlap, true if it does.
|
|
*/
|
|
static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
|
|
unsigned long cbm, int closid, bool exclusive)
|
|
{
|
|
enum rdtgrp_mode mode;
|
|
unsigned long ctrl_b;
|
|
u32 *ctrl;
|
|
int i;
|
|
|
|
/* Check for any overlap with regions used by hardware directly */
|
|
if (!exclusive) {
|
|
ctrl_b = r->cache.shareable_bits;
|
|
if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
|
|
return true;
|
|
}
|
|
|
|
/* Check for overlap with other resource groups */
|
|
ctrl = d->ctrl_val;
|
|
for (i = 0; i < closids_supported(); i++, ctrl++) {
|
|
ctrl_b = *ctrl;
|
|
mode = rdtgroup_mode_by_closid(i);
|
|
if (closid_allocated(i) && i != closid &&
|
|
mode != RDT_MODE_PSEUDO_LOCKSETUP) {
|
|
if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
|
|
if (exclusive) {
|
|
if (mode == RDT_MODE_EXCLUSIVE)
|
|
return true;
|
|
continue;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
|
|
* @r: Resource to which domain instance @d belongs.
|
|
* @d: The domain instance for which @closid is being tested.
|
|
* @cbm: Capacity bitmask being tested.
|
|
* @closid: Intended closid for @cbm.
|
|
* @exclusive: Only check if overlaps with exclusive resource groups
|
|
*
|
|
* Resources that can be allocated using a CBM can use the CBM to control
|
|
* the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
|
|
* for overlap. Overlap test is not limited to the specific resource for
|
|
* which the CBM is intended though - when dealing with CDP resources that
|
|
* share the underlying hardware the overlap check should be performed on
|
|
* the CDP resource sharing the hardware also.
|
|
*
|
|
* Refer to description of __rdtgroup_cbm_overlaps() for the details of the
|
|
* overlap test.
|
|
*
|
|
* Return: true if CBM overlap detected, false if there is no overlap
|
|
*/
|
|
bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
|
|
unsigned long cbm, int closid, bool exclusive)
|
|
{
|
|
struct rdt_resource *r_cdp;
|
|
struct rdt_domain *d_cdp;
|
|
|
|
if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
|
|
return true;
|
|
|
|
if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
|
|
return false;
|
|
|
|
return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
|
|
}
|
|
|
|
/**
|
|
* rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
|
|
*
|
|
* An exclusive resource group implies that there should be no sharing of
|
|
* its allocated resources. At the time this group is considered to be
|
|
* exclusive this test can determine if its current schemata supports this
|
|
* setting by testing for overlap with all other resource groups.
|
|
*
|
|
* Return: true if resource group can be exclusive, false if there is overlap
|
|
* with allocations of other resource groups and thus this resource group
|
|
* cannot be exclusive.
|
|
*/
|
|
static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
|
|
{
|
|
int closid = rdtgrp->closid;
|
|
struct rdt_resource *r;
|
|
bool has_cache = false;
|
|
struct rdt_domain *d;
|
|
|
|
for_each_alloc_enabled_rdt_resource(r) {
|
|
if (r->rid == RDT_RESOURCE_MBA)
|
|
continue;
|
|
has_cache = true;
|
|
list_for_each_entry(d, &r->domains, list) {
|
|
if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
|
|
rdtgrp->closid, false)) {
|
|
rdt_last_cmd_puts("schemata overlaps\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!has_cache) {
|
|
rdt_last_cmd_puts("cannot be exclusive without CAT/CDP\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* rdtgroup_mode_write - Modify the resource group's mode
|
|
*
|
|
*/
|
|
static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
struct rdtgroup *rdtgrp;
|
|
enum rdtgrp_mode mode;
|
|
int ret = 0;
|
|
|
|
/* Valid input requires a trailing newline */
|
|
if (nbytes == 0 || buf[nbytes - 1] != '\n')
|
|
return -EINVAL;
|
|
buf[nbytes - 1] = '\0';
|
|
|
|
rdtgrp = rdtgroup_kn_lock_live(of->kn);
|
|
if (!rdtgrp) {
|
|
rdtgroup_kn_unlock(of->kn);
|
|
return -ENOENT;
|
|
}
|
|
|
|
rdt_last_cmd_clear();
|
|
|
|
mode = rdtgrp->mode;
|
|
|
|
if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
|
|
(!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
|
|
(!strcmp(buf, "pseudo-locksetup") &&
|
|
mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
|
|
(!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
|
|
goto out;
|
|
|
|
if (mode == RDT_MODE_PSEUDO_LOCKED) {
|
|
rdt_last_cmd_printf("cannot change pseudo-locked group\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!strcmp(buf, "shareable")) {
|
|
if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
|
|
ret = rdtgroup_locksetup_exit(rdtgrp);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
rdtgrp->mode = RDT_MODE_SHAREABLE;
|
|
} else if (!strcmp(buf, "exclusive")) {
|
|
if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
|
|
ret = rdtgroup_locksetup_exit(rdtgrp);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
rdtgrp->mode = RDT_MODE_EXCLUSIVE;
|
|
} else if (!strcmp(buf, "pseudo-locksetup")) {
|
|
ret = rdtgroup_locksetup_enter(rdtgrp);
|
|
if (ret)
|
|
goto out;
|
|
rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
|
|
} else {
|
|
rdt_last_cmd_printf("unknown/unsupported mode\n");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
out:
|
|
rdtgroup_kn_unlock(of->kn);
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
/**
|
|
* rdtgroup_cbm_to_size - Translate CBM to size in bytes
|
|
* @r: RDT resource to which @d belongs.
|
|
* @d: RDT domain instance.
|
|
* @cbm: bitmask for which the size should be computed.
|
|
*
|
|
* The bitmask provided associated with the RDT domain instance @d will be
|
|
* translated into how many bytes it represents. The size in bytes is
|
|
* computed by first dividing the total cache size by the CBM length to
|
|
* determine how many bytes each bit in the bitmask represents. The result
|
|
* is multiplied with the number of bits set in the bitmask.
|
|
*
|
|
* @cbm is unsigned long, even if only 32 bits are used to make the
|
|
* bitmap functions work correctly.
|
|
*/
|
|
unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
|
|
struct rdt_domain *d, unsigned long cbm)
|
|
{
|
|
struct cpu_cacheinfo *ci;
|
|
unsigned int size = 0;
|
|
int num_b, i;
|
|
|
|
num_b = bitmap_weight(&cbm, r->cache.cbm_len);
|
|
ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
|
|
for (i = 0; i < ci->num_leaves; i++) {
|
|
if (ci->info_list[i].level == r->cache_level) {
|
|
size = ci->info_list[i].size / r->cache.cbm_len * num_b;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* rdtgroup_size_show - Display size in bytes of allocated regions
|
|
*
|
|
* The "size" file mirrors the layout of the "schemata" file, printing the
|
|
* size in bytes of each region instead of the capacity bitmask.
|
|
*
|
|
*/
|
|
static int rdtgroup_size_show(struct kernfs_open_file *of,
|
|
struct seq_file *s, void *v)
|
|
{
|
|
struct rdtgroup *rdtgrp;
|
|
struct rdt_resource *r;
|
|
struct rdt_domain *d;
|
|
unsigned int size;
|
|
int ret = 0;
|
|
bool sep;
|
|
u32 ctrl;
|
|
|
|
rdtgrp = rdtgroup_kn_lock_live(of->kn);
|
|
if (!rdtgrp) {
|
|
rdtgroup_kn_unlock(of->kn);
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
|
|
if (!rdtgrp->plr->d) {
|
|
rdt_last_cmd_clear();
|
|
rdt_last_cmd_puts("Cache domain offline\n");
|
|
ret = -ENODEV;
|
|
} else {
|
|
seq_printf(s, "%*s:", max_name_width,
|
|
rdtgrp->plr->r->name);
|
|
size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
|
|
rdtgrp->plr->d,
|
|
rdtgrp->plr->cbm);
|
|
seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
for_each_alloc_enabled_rdt_resource(r) {
|
|
sep = false;
|
|
seq_printf(s, "%*s:", max_name_width, r->name);
|
|
list_for_each_entry(d, &r->domains, list) {
|
|
if (sep)
|
|
seq_putc(s, ';');
|
|
if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
|
|
size = 0;
|
|
} else {
|
|
ctrl = (!is_mba_sc(r) ?
|
|
d->ctrl_val[rdtgrp->closid] :
|
|
d->mbps_val[rdtgrp->closid]);
|
|
if (r->rid == RDT_RESOURCE_MBA)
|
|
size = ctrl;
|
|
else
|
|
size = rdtgroup_cbm_to_size(r, d, ctrl);
|
|
}
|
|
seq_printf(s, "%d=%u", d->id, size);
|
|
sep = true;
|
|
}
|
|
seq_putc(s, '\n');
|
|
}
|
|
|
|
out:
|
|
rdtgroup_kn_unlock(of->kn);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* rdtgroup information files for one cache resource. */
|
|
static struct rftype res_common_files[] = {
|
|
{
|
|
.name = "last_cmd_status",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdt_last_cmd_status_show,
|
|
.fflags = RF_TOP_INFO,
|
|
},
|
|
{
|
|
.name = "num_closids",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdt_num_closids_show,
|
|
.fflags = RF_CTRL_INFO,
|
|
},
|
|
{
|
|
.name = "mon_features",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdt_mon_features_show,
|
|
.fflags = RF_MON_INFO,
|
|
},
|
|
{
|
|
.name = "num_rmids",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdt_num_rmids_show,
|
|
.fflags = RF_MON_INFO,
|
|
},
|
|
{
|
|
.name = "cbm_mask",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdt_default_ctrl_show,
|
|
.fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
|
|
},
|
|
{
|
|
.name = "min_cbm_bits",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdt_min_cbm_bits_show,
|
|
.fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
|
|
},
|
|
{
|
|
.name = "shareable_bits",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdt_shareable_bits_show,
|
|
.fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
|
|
},
|
|
{
|
|
.name = "bit_usage",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdt_bit_usage_show,
|
|
.fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
|
|
},
|
|
{
|
|
.name = "min_bandwidth",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdt_min_bw_show,
|
|
.fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
|
|
},
|
|
{
|
|
.name = "bandwidth_gran",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdt_bw_gran_show,
|
|
.fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
|
|
},
|
|
{
|
|
.name = "delay_linear",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdt_delay_linear_show,
|
|
.fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
|
|
},
|
|
{
|
|
.name = "max_threshold_occupancy",
|
|
.mode = 0644,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.write = max_threshold_occ_write,
|
|
.seq_show = max_threshold_occ_show,
|
|
.fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
|
|
},
|
|
{
|
|
.name = "cpus",
|
|
.mode = 0644,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.write = rdtgroup_cpus_write,
|
|
.seq_show = rdtgroup_cpus_show,
|
|
.fflags = RFTYPE_BASE,
|
|
},
|
|
{
|
|
.name = "cpus_list",
|
|
.mode = 0644,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.write = rdtgroup_cpus_write,
|
|
.seq_show = rdtgroup_cpus_show,
|
|
.flags = RFTYPE_FLAGS_CPUS_LIST,
|
|
.fflags = RFTYPE_BASE,
|
|
},
|
|
{
|
|
.name = "tasks",
|
|
.mode = 0644,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.write = rdtgroup_tasks_write,
|
|
.seq_show = rdtgroup_tasks_show,
|
|
.fflags = RFTYPE_BASE,
|
|
},
|
|
{
|
|
.name = "schemata",
|
|
.mode = 0644,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.write = rdtgroup_schemata_write,
|
|
.seq_show = rdtgroup_schemata_show,
|
|
.fflags = RF_CTRL_BASE,
|
|
},
|
|
{
|
|
.name = "mode",
|
|
.mode = 0644,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.write = rdtgroup_mode_write,
|
|
.seq_show = rdtgroup_mode_show,
|
|
.fflags = RF_CTRL_BASE,
|
|
},
|
|
{
|
|
.name = "size",
|
|
.mode = 0444,
|
|
.kf_ops = &rdtgroup_kf_single_ops,
|
|
.seq_show = rdtgroup_size_show,
|
|
.fflags = RF_CTRL_BASE,
|
|
},
|
|
|
|
};
|
|
|
|
static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
|
|
{
|
|
struct rftype *rfts, *rft;
|
|
int ret, len;
|
|
|
|
rfts = res_common_files;
|
|
len = ARRAY_SIZE(res_common_files);
|
|
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
|
|
for (rft = rfts; rft < rfts + len; rft++) {
|
|
if ((fflags & rft->fflags) == rft->fflags) {
|
|
ret = rdtgroup_add_file(kn, rft);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
|
|
while (--rft >= rfts) {
|
|
if ((fflags & rft->fflags) == rft->fflags)
|
|
kernfs_remove_by_name(kn, rft->name);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
|
|
* @r: The resource group with which the file is associated.
|
|
* @name: Name of the file
|
|
*
|
|
* The permissions of named resctrl file, directory, or link are modified
|
|
* to not allow read, write, or execute by any user.
|
|
*
|
|
* WARNING: This function is intended to communicate to the user that the
|
|
* resctrl file has been locked down - that it is not relevant to the
|
|
* particular state the system finds itself in. It should not be relied
|
|
* on to protect from user access because after the file's permissions
|
|
* are restricted the user can still change the permissions using chmod
|
|
* from the command line.
|
|
*
|
|
* Return: 0 on success, <0 on failure.
|
|
*/
|
|
int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
|
|
{
|
|
struct iattr iattr = {.ia_valid = ATTR_MODE,};
|
|
struct kernfs_node *kn;
|
|
int ret = 0;
|
|
|
|
kn = kernfs_find_and_get_ns(r->kn, name, NULL);
|
|
if (!kn)
|
|
return -ENOENT;
|
|
|
|
switch (kernfs_type(kn)) {
|
|
case KERNFS_DIR:
|
|
iattr.ia_mode = S_IFDIR;
|
|
break;
|
|
case KERNFS_FILE:
|
|
iattr.ia_mode = S_IFREG;
|
|
break;
|
|
case KERNFS_LINK:
|
|
iattr.ia_mode = S_IFLNK;
|
|
break;
|
|
}
|
|
|
|
ret = kernfs_setattr(kn, &iattr);
|
|
kernfs_put(kn);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rdtgroup_kn_mode_restore - Restore user access to named resctrl file
|
|
* @r: The resource group with which the file is associated.
|
|
* @name: Name of the file
|
|
* @mask: Mask of permissions that should be restored
|
|
*
|
|
* Restore the permissions of the named file. If @name is a directory the
|
|
* permissions of its parent will be used.
|
|
*
|
|
* Return: 0 on success, <0 on failure.
|
|
*/
|
|
int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
|
|
umode_t mask)
|
|
{
|
|
struct iattr iattr = {.ia_valid = ATTR_MODE,};
|
|
struct kernfs_node *kn, *parent;
|
|
struct rftype *rfts, *rft;
|
|
int ret, len;
|
|
|
|
rfts = res_common_files;
|
|
len = ARRAY_SIZE(res_common_files);
|
|
|
|
for (rft = rfts; rft < rfts + len; rft++) {
|
|
if (!strcmp(rft->name, name))
|
|
iattr.ia_mode = rft->mode & mask;
|
|
}
|
|
|
|
kn = kernfs_find_and_get_ns(r->kn, name, NULL);
|
|
if (!kn)
|
|
return -ENOENT;
|
|
|
|
switch (kernfs_type(kn)) {
|
|
case KERNFS_DIR:
|
|
parent = kernfs_get_parent(kn);
|
|
if (parent) {
|
|
iattr.ia_mode |= parent->mode;
|
|
kernfs_put(parent);
|
|
}
|
|
iattr.ia_mode |= S_IFDIR;
|
|
break;
|
|
case KERNFS_FILE:
|
|
iattr.ia_mode |= S_IFREG;
|
|
break;
|
|
case KERNFS_LINK:
|
|
iattr.ia_mode |= S_IFLNK;
|
|
break;
|
|
}
|
|
|
|
ret = kernfs_setattr(kn, &iattr);
|
|
kernfs_put(kn);
|
|
return ret;
|
|
}
|
|
|
|
static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
|
|
unsigned long fflags)
|
|
{
|
|
struct kernfs_node *kn_subdir;
|
|
int ret;
|
|
|
|
kn_subdir = kernfs_create_dir(kn_info, name,
|
|
kn_info->mode, r);
|
|
if (IS_ERR(kn_subdir))
|
|
return PTR_ERR(kn_subdir);
|
|
|
|
ret = rdtgroup_kn_set_ugid(kn_subdir);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = rdtgroup_add_files(kn_subdir, fflags);
|
|
if (!ret)
|
|
kernfs_activate(kn_subdir);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
|
|
{
|
|
struct rdt_resource *r;
|
|
unsigned long fflags;
|
|
char name[32];
|
|
int ret;
|
|
|
|
/* create the directory */
|
|
kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
|
|
if (IS_ERR(kn_info))
|
|
return PTR_ERR(kn_info);
|
|
|
|
ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
|
|
if (ret)
|
|
goto out_destroy;
|
|
|
|
for_each_alloc_enabled_rdt_resource(r) {
|
|
fflags = r->fflags | RF_CTRL_INFO;
|
|
ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
|
|
if (ret)
|
|
goto out_destroy;
|
|
}
|
|
|
|
for_each_mon_enabled_rdt_resource(r) {
|
|
fflags = r->fflags | RF_MON_INFO;
|
|
sprintf(name, "%s_MON", r->name);
|
|
ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
|
|
if (ret)
|
|
goto out_destroy;
|
|
}
|
|
|
|
ret = rdtgroup_kn_set_ugid(kn_info);
|
|
if (ret)
|
|
goto out_destroy;
|
|
|
|
kernfs_activate(kn_info);
|
|
|
|
return 0;
|
|
|
|
out_destroy:
|
|
kernfs_remove(kn_info);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
|
|
char *name, struct kernfs_node **dest_kn)
|
|
{
|
|
struct kernfs_node *kn;
|
|
int ret;
|
|
|
|
/* create the directory */
|
|
kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
|
|
if (IS_ERR(kn))
|
|
return PTR_ERR(kn);
|
|
|
|
if (dest_kn)
|
|
*dest_kn = kn;
|
|
|
|
ret = rdtgroup_kn_set_ugid(kn);
|
|
if (ret)
|
|
goto out_destroy;
|
|
|
|
kernfs_activate(kn);
|
|
|
|
return 0;
|
|
|
|
out_destroy:
|
|
kernfs_remove(kn);
|
|
return ret;
|
|
}
|
|
|
|
static void l3_qos_cfg_update(void *arg)
|
|
{
|
|
bool *enable = arg;
|
|
|
|
wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
|
|
}
|
|
|
|
static void l2_qos_cfg_update(void *arg)
|
|
{
|
|
bool *enable = arg;
|
|
|
|
wrmsrl(IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
|
|
}
|
|
|
|
static inline bool is_mba_linear(void)
|
|
{
|
|
return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
|
|
}
|
|
|
|
static int set_cache_qos_cfg(int level, bool enable)
|
|
{
|
|
void (*update)(void *arg);
|
|
struct rdt_resource *r_l;
|
|
cpumask_var_t cpu_mask;
|
|
struct rdt_domain *d;
|
|
int cpu;
|
|
|
|
if (level == RDT_RESOURCE_L3)
|
|
update = l3_qos_cfg_update;
|
|
else if (level == RDT_RESOURCE_L2)
|
|
update = l2_qos_cfg_update;
|
|
else
|
|
return -EINVAL;
|
|
|
|
if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
r_l = &rdt_resources_all[level];
|
|
list_for_each_entry(d, &r_l->domains, list) {
|
|
/* Pick one CPU from each domain instance to update MSR */
|
|
cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
|
|
}
|
|
cpu = get_cpu();
|
|
/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
|
|
if (cpumask_test_cpu(cpu, cpu_mask))
|
|
update(&enable);
|
|
/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
|
|
smp_call_function_many(cpu_mask, update, &enable, 1);
|
|
put_cpu();
|
|
|
|
free_cpumask_var(cpu_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Restore the qos cfg state when a domain comes online */
|
|
void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
|
|
{
|
|
if (!r->alloc_capable)
|
|
return;
|
|
|
|
if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA])
|
|
l2_qos_cfg_update(&r->alloc_enabled);
|
|
|
|
if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA])
|
|
l3_qos_cfg_update(&r->alloc_enabled);
|
|
}
|
|
|
|
/*
|
|
* Enable or disable the MBA software controller
|
|
* which helps user specify bandwidth in MBps.
|
|
* MBA software controller is supported only if
|
|
* MBM is supported and MBA is in linear scale.
|
|
*/
|
|
static int set_mba_sc(bool mba_sc)
|
|
{
|
|
struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
|
|
struct rdt_domain *d;
|
|
|
|
if (!is_mbm_enabled() || !is_mba_linear() ||
|
|
mba_sc == is_mba_sc(r))
|
|
return -EINVAL;
|
|
|
|
r->membw.mba_sc = mba_sc;
|
|
list_for_each_entry(d, &r->domains, list)
|
|
setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cdp_enable(int level, int data_type, int code_type)
|
|
{
|
|
struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
|
|
struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
|
|
struct rdt_resource *r_l = &rdt_resources_all[level];
|
|
int ret;
|
|
|
|
if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
|
|
!r_lcode->alloc_capable)
|
|
return -EINVAL;
|
|
|
|
ret = set_cache_qos_cfg(level, true);
|
|
if (!ret) {
|
|
r_l->alloc_enabled = false;
|
|
r_ldata->alloc_enabled = true;
|
|
r_lcode->alloc_enabled = true;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int cdpl3_enable(void)
|
|
{
|
|
return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
|
|
RDT_RESOURCE_L3CODE);
|
|
}
|
|
|
|
static int cdpl2_enable(void)
|
|
{
|
|
return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
|
|
RDT_RESOURCE_L2CODE);
|
|
}
|
|
|
|
static void cdp_disable(int level, int data_type, int code_type)
|
|
{
|
|
struct rdt_resource *r = &rdt_resources_all[level];
|
|
|
|
r->alloc_enabled = r->alloc_capable;
|
|
|
|
if (rdt_resources_all[data_type].alloc_enabled) {
|
|
rdt_resources_all[data_type].alloc_enabled = false;
|
|
rdt_resources_all[code_type].alloc_enabled = false;
|
|
set_cache_qos_cfg(level, false);
|
|
}
|
|
}
|
|
|
|
static void cdpl3_disable(void)
|
|
{
|
|
cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
|
|
}
|
|
|
|
static void cdpl2_disable(void)
|
|
{
|
|
cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
|
|
}
|
|
|
|
static void cdp_disable_all(void)
|
|
{
|
|
if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
|
|
cdpl3_disable();
|
|
if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
|
|
cdpl2_disable();
|
|
}
|
|
|
|
static int parse_rdtgroupfs_options(char *data)
|
|
{
|
|
char *token, *o = data;
|
|
int ret = 0;
|
|
|
|
while ((token = strsep(&o, ",")) != NULL) {
|
|
if (!*token) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!strcmp(token, "cdp")) {
|
|
ret = cdpl3_enable();
|
|
if (ret)
|
|
goto out;
|
|
} else if (!strcmp(token, "cdpl2")) {
|
|
ret = cdpl2_enable();
|
|
if (ret)
|
|
goto out;
|
|
} else if (!strcmp(token, "mba_MBps")) {
|
|
ret = set_mba_sc(true);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
pr_err("Invalid mount option \"%s\"\n", token);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We don't allow rdtgroup directories to be created anywhere
|
|
* except the root directory. Thus when looking for the rdtgroup
|
|
* structure for a kernfs node we are either looking at a directory,
|
|
* in which case the rdtgroup structure is pointed at by the "priv"
|
|
* field, otherwise we have a file, and need only look to the parent
|
|
* to find the rdtgroup.
|
|
*/
|
|
static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
|
|
{
|
|
if (kernfs_type(kn) == KERNFS_DIR) {
|
|
/*
|
|
* All the resource directories use "kn->priv"
|
|
* to point to the "struct rdtgroup" for the
|
|
* resource. "info" and its subdirectories don't
|
|
* have rdtgroup structures, so return NULL here.
|
|
*/
|
|
if (kn == kn_info || kn->parent == kn_info)
|
|
return NULL;
|
|
else
|
|
return kn->priv;
|
|
} else {
|
|
return kn->parent->priv;
|
|
}
|
|
}
|
|
|
|
struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
|
|
{
|
|
struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
|
|
|
|
if (!rdtgrp)
|
|
return NULL;
|
|
|
|
atomic_inc(&rdtgrp->waitcount);
|
|
kernfs_break_active_protection(kn);
|
|
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
/* Was this group deleted while we waited? */
|
|
if (rdtgrp->flags & RDT_DELETED)
|
|
return NULL;
|
|
|
|
return rdtgrp;
|
|
}
|
|
|
|
void rdtgroup_kn_unlock(struct kernfs_node *kn)
|
|
{
|
|
struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
|
|
|
|
if (!rdtgrp)
|
|
return;
|
|
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
|
|
if (atomic_dec_and_test(&rdtgrp->waitcount) &&
|
|
(rdtgrp->flags & RDT_DELETED)) {
|
|
if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
|
|
rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
|
|
rdtgroup_pseudo_lock_remove(rdtgrp);
|
|
kernfs_unbreak_active_protection(kn);
|
|
rdtgroup_remove(rdtgrp);
|
|
} else {
|
|
kernfs_unbreak_active_protection(kn);
|
|
}
|
|
}
|
|
|
|
static int mkdir_mondata_all(struct kernfs_node *parent_kn,
|
|
struct rdtgroup *prgrp,
|
|
struct kernfs_node **mon_data_kn);
|
|
|
|
static struct dentry *rdt_mount(struct file_system_type *fs_type,
|
|
int flags, const char *unused_dev_name,
|
|
void *data)
|
|
{
|
|
struct rdt_domain *dom;
|
|
struct rdt_resource *r;
|
|
struct dentry *dentry;
|
|
int ret;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&rdtgroup_mutex);
|
|
/*
|
|
* resctrl file system can only be mounted once.
|
|
*/
|
|
if (static_branch_unlikely(&rdt_enable_key)) {
|
|
dentry = ERR_PTR(-EBUSY);
|
|
goto out;
|
|
}
|
|
|
|
ret = parse_rdtgroupfs_options(data);
|
|
if (ret) {
|
|
dentry = ERR_PTR(ret);
|
|
goto out_cdp;
|
|
}
|
|
|
|
closid_init();
|
|
|
|
ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
|
|
if (ret) {
|
|
dentry = ERR_PTR(ret);
|
|
goto out_cdp;
|
|
}
|
|
|
|
if (rdt_mon_capable) {
|
|
ret = mongroup_create_dir(rdtgroup_default.kn,
|
|
&rdtgroup_default, "mon_groups",
|
|
&kn_mongrp);
|
|
if (ret) {
|
|
dentry = ERR_PTR(ret);
|
|
goto out_info;
|
|
}
|
|
|
|
ret = mkdir_mondata_all(rdtgroup_default.kn,
|
|
&rdtgroup_default, &kn_mondata);
|
|
if (ret) {
|
|
dentry = ERR_PTR(ret);
|
|
goto out_mongrp;
|
|
}
|
|
rdtgroup_default.mon.mon_data_kn = kn_mondata;
|
|
}
|
|
|
|
ret = rdt_pseudo_lock_init();
|
|
if (ret) {
|
|
dentry = ERR_PTR(ret);
|
|
goto out_mondata;
|
|
}
|
|
|
|
dentry = kernfs_mount(fs_type, flags, rdt_root,
|
|
RDTGROUP_SUPER_MAGIC, NULL);
|
|
if (IS_ERR(dentry))
|
|
goto out_psl;
|
|
|
|
if (rdt_alloc_capable)
|
|
static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
|
|
if (rdt_mon_capable)
|
|
static_branch_enable_cpuslocked(&rdt_mon_enable_key);
|
|
|
|
if (rdt_alloc_capable || rdt_mon_capable)
|
|
static_branch_enable_cpuslocked(&rdt_enable_key);
|
|
|
|
if (is_mbm_enabled()) {
|
|
r = &rdt_resources_all[RDT_RESOURCE_L3];
|
|
list_for_each_entry(dom, &r->domains, list)
|
|
mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
|
|
}
|
|
|
|
goto out;
|
|
|
|
out_psl:
|
|
rdt_pseudo_lock_release();
|
|
out_mondata:
|
|
if (rdt_mon_capable)
|
|
kernfs_remove(kn_mondata);
|
|
out_mongrp:
|
|
if (rdt_mon_capable)
|
|
kernfs_remove(kn_mongrp);
|
|
out_info:
|
|
kernfs_remove(kn_info);
|
|
out_cdp:
|
|
cdp_disable_all();
|
|
out:
|
|
rdt_last_cmd_clear();
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
cpus_read_unlock();
|
|
|
|
return dentry;
|
|
}
|
|
|
|
static int reset_all_ctrls(struct rdt_resource *r)
|
|
{
|
|
struct msr_param msr_param;
|
|
cpumask_var_t cpu_mask;
|
|
struct rdt_domain *d;
|
|
int i, cpu;
|
|
|
|
if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
msr_param.res = r;
|
|
msr_param.low = 0;
|
|
msr_param.high = r->num_closid;
|
|
|
|
/*
|
|
* Disable resource control for this resource by setting all
|
|
* CBMs in all domains to the maximum mask value. Pick one CPU
|
|
* from each domain to update the MSRs below.
|
|
*/
|
|
list_for_each_entry(d, &r->domains, list) {
|
|
cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
|
|
|
|
for (i = 0; i < r->num_closid; i++)
|
|
d->ctrl_val[i] = r->default_ctrl;
|
|
}
|
|
cpu = get_cpu();
|
|
/* Update CBM on this cpu if it's in cpu_mask. */
|
|
if (cpumask_test_cpu(cpu, cpu_mask))
|
|
rdt_ctrl_update(&msr_param);
|
|
/* Update CBM on all other cpus in cpu_mask. */
|
|
smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
|
|
put_cpu();
|
|
|
|
free_cpumask_var(cpu_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
|
|
{
|
|
return (rdt_alloc_capable &&
|
|
(r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
|
|
}
|
|
|
|
static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
|
|
{
|
|
return (rdt_mon_capable &&
|
|
(r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
|
|
}
|
|
|
|
/*
|
|
* Move tasks from one to the other group. If @from is NULL, then all tasks
|
|
* in the systems are moved unconditionally (used for teardown).
|
|
*
|
|
* If @mask is not NULL the cpus on which moved tasks are running are set
|
|
* in that mask so the update smp function call is restricted to affected
|
|
* cpus.
|
|
*/
|
|
static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
|
|
struct cpumask *mask)
|
|
{
|
|
struct task_struct *p, *t;
|
|
|
|
read_lock(&tasklist_lock);
|
|
for_each_process_thread(p, t) {
|
|
if (!from || is_closid_match(t, from) ||
|
|
is_rmid_match(t, from)) {
|
|
t->closid = to->closid;
|
|
t->rmid = to->mon.rmid;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* This is safe on x86 w/o barriers as the ordering
|
|
* of writing to task_cpu() and t->on_cpu is
|
|
* reverse to the reading here. The detection is
|
|
* inaccurate as tasks might move or schedule
|
|
* before the smp function call takes place. In
|
|
* such a case the function call is pointless, but
|
|
* there is no other side effect.
|
|
*/
|
|
if (mask && t->on_cpu)
|
|
cpumask_set_cpu(task_cpu(t), mask);
|
|
#endif
|
|
}
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
|
|
{
|
|
struct rdtgroup *sentry, *stmp;
|
|
struct list_head *head;
|
|
|
|
head = &rdtgrp->mon.crdtgrp_list;
|
|
list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
|
|
free_rmid(sentry->mon.rmid);
|
|
list_del(&sentry->mon.crdtgrp_list);
|
|
|
|
if (atomic_read(&sentry->waitcount) != 0)
|
|
sentry->flags = RDT_DELETED;
|
|
else
|
|
rdtgroup_remove(sentry);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Forcibly remove all of subdirectories under root.
|
|
*/
|
|
static void rmdir_all_sub(void)
|
|
{
|
|
struct rdtgroup *rdtgrp, *tmp;
|
|
|
|
/* Move all tasks to the default resource group */
|
|
rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
|
|
|
|
list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
|
|
/* Free any child rmids */
|
|
free_all_child_rdtgrp(rdtgrp);
|
|
|
|
/* Remove each rdtgroup other than root */
|
|
if (rdtgrp == &rdtgroup_default)
|
|
continue;
|
|
|
|
if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
|
|
rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
|
|
rdtgroup_pseudo_lock_remove(rdtgrp);
|
|
|
|
/*
|
|
* Give any CPUs back to the default group. We cannot copy
|
|
* cpu_online_mask because a CPU might have executed the
|
|
* offline callback already, but is still marked online.
|
|
*/
|
|
cpumask_or(&rdtgroup_default.cpu_mask,
|
|
&rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
|
|
|
|
free_rmid(rdtgrp->mon.rmid);
|
|
|
|
kernfs_remove(rdtgrp->kn);
|
|
list_del(&rdtgrp->rdtgroup_list);
|
|
|
|
if (atomic_read(&rdtgrp->waitcount) != 0)
|
|
rdtgrp->flags = RDT_DELETED;
|
|
else
|
|
rdtgroup_remove(rdtgrp);
|
|
}
|
|
/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
|
|
update_closid_rmid(cpu_online_mask, &rdtgroup_default);
|
|
|
|
kernfs_remove(kn_info);
|
|
kernfs_remove(kn_mongrp);
|
|
kernfs_remove(kn_mondata);
|
|
}
|
|
|
|
static void rdt_kill_sb(struct super_block *sb)
|
|
{
|
|
struct rdt_resource *r;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
set_mba_sc(false);
|
|
|
|
/*Put everything back to default values. */
|
|
for_each_alloc_enabled_rdt_resource(r)
|
|
reset_all_ctrls(r);
|
|
cdp_disable_all();
|
|
rmdir_all_sub();
|
|
rdt_pseudo_lock_release();
|
|
rdtgroup_default.mode = RDT_MODE_SHAREABLE;
|
|
static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
|
|
static_branch_disable_cpuslocked(&rdt_mon_enable_key);
|
|
static_branch_disable_cpuslocked(&rdt_enable_key);
|
|
kernfs_kill_sb(sb);
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
static struct file_system_type rdt_fs_type = {
|
|
.name = "resctrl",
|
|
.mount = rdt_mount,
|
|
.kill_sb = rdt_kill_sb,
|
|
};
|
|
|
|
static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
|
|
void *priv)
|
|
{
|
|
struct kernfs_node *kn;
|
|
int ret = 0;
|
|
|
|
kn = __kernfs_create_file(parent_kn, name, 0444,
|
|
GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
|
|
&kf_mondata_ops, priv, NULL, NULL);
|
|
if (IS_ERR(kn))
|
|
return PTR_ERR(kn);
|
|
|
|
ret = rdtgroup_kn_set_ugid(kn);
|
|
if (ret) {
|
|
kernfs_remove(kn);
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove all subdirectories of mon_data of ctrl_mon groups
|
|
* and monitor groups with given domain id.
|
|
*/
|
|
void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
|
|
{
|
|
struct rdtgroup *prgrp, *crgrp;
|
|
char name[32];
|
|
|
|
if (!r->mon_enabled)
|
|
return;
|
|
|
|
list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
|
|
sprintf(name, "mon_%s_%02d", r->name, dom_id);
|
|
kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
|
|
|
|
list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
|
|
kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
|
|
}
|
|
}
|
|
|
|
static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
|
|
struct rdt_domain *d,
|
|
struct rdt_resource *r, struct rdtgroup *prgrp)
|
|
{
|
|
union mon_data_bits priv;
|
|
struct kernfs_node *kn;
|
|
struct mon_evt *mevt;
|
|
struct rmid_read rr;
|
|
char name[32];
|
|
int ret;
|
|
|
|
sprintf(name, "mon_%s_%02d", r->name, d->id);
|
|
/* create the directory */
|
|
kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
|
|
if (IS_ERR(kn))
|
|
return PTR_ERR(kn);
|
|
|
|
ret = rdtgroup_kn_set_ugid(kn);
|
|
if (ret)
|
|
goto out_destroy;
|
|
|
|
if (WARN_ON(list_empty(&r->evt_list))) {
|
|
ret = -EPERM;
|
|
goto out_destroy;
|
|
}
|
|
|
|
priv.u.rid = r->rid;
|
|
priv.u.domid = d->id;
|
|
list_for_each_entry(mevt, &r->evt_list, list) {
|
|
priv.u.evtid = mevt->evtid;
|
|
ret = mon_addfile(kn, mevt->name, priv.priv);
|
|
if (ret)
|
|
goto out_destroy;
|
|
|
|
if (is_mbm_event(mevt->evtid))
|
|
mon_event_read(&rr, d, prgrp, mevt->evtid, true);
|
|
}
|
|
kernfs_activate(kn);
|
|
return 0;
|
|
|
|
out_destroy:
|
|
kernfs_remove(kn);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Add all subdirectories of mon_data for "ctrl_mon" groups
|
|
* and "monitor" groups with given domain id.
|
|
*/
|
|
void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
|
|
struct rdt_domain *d)
|
|
{
|
|
struct kernfs_node *parent_kn;
|
|
struct rdtgroup *prgrp, *crgrp;
|
|
struct list_head *head;
|
|
|
|
if (!r->mon_enabled)
|
|
return;
|
|
|
|
list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
|
|
parent_kn = prgrp->mon.mon_data_kn;
|
|
mkdir_mondata_subdir(parent_kn, d, r, prgrp);
|
|
|
|
head = &prgrp->mon.crdtgrp_list;
|
|
list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
|
|
parent_kn = crgrp->mon.mon_data_kn;
|
|
mkdir_mondata_subdir(parent_kn, d, r, crgrp);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
|
|
struct rdt_resource *r,
|
|
struct rdtgroup *prgrp)
|
|
{
|
|
struct rdt_domain *dom;
|
|
int ret;
|
|
|
|
list_for_each_entry(dom, &r->domains, list) {
|
|
ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This creates a directory mon_data which contains the monitored data.
|
|
*
|
|
* mon_data has one directory for each domain whic are named
|
|
* in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
|
|
* with L3 domain looks as below:
|
|
* ./mon_data:
|
|
* mon_L3_00
|
|
* mon_L3_01
|
|
* mon_L3_02
|
|
* ...
|
|
*
|
|
* Each domain directory has one file per event:
|
|
* ./mon_L3_00/:
|
|
* llc_occupancy
|
|
*
|
|
*/
|
|
static int mkdir_mondata_all(struct kernfs_node *parent_kn,
|
|
struct rdtgroup *prgrp,
|
|
struct kernfs_node **dest_kn)
|
|
{
|
|
struct rdt_resource *r;
|
|
struct kernfs_node *kn;
|
|
int ret;
|
|
|
|
/*
|
|
* Create the mon_data directory first.
|
|
*/
|
|
ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (dest_kn)
|
|
*dest_kn = kn;
|
|
|
|
/*
|
|
* Create the subdirectories for each domain. Note that all events
|
|
* in a domain like L3 are grouped into a resource whose domain is L3
|
|
*/
|
|
for_each_mon_enabled_rdt_resource(r) {
|
|
ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
|
|
if (ret)
|
|
goto out_destroy;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_destroy:
|
|
kernfs_remove(kn);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cbm_ensure_valid - Enforce validity on provided CBM
|
|
* @_val: Candidate CBM
|
|
* @r: RDT resource to which the CBM belongs
|
|
*
|
|
* The provided CBM represents all cache portions available for use. This
|
|
* may be represented by a bitmap that does not consist of contiguous ones
|
|
* and thus be an invalid CBM.
|
|
* Here the provided CBM is forced to be a valid CBM by only considering
|
|
* the first set of contiguous bits as valid and clearing all bits.
|
|
* The intention here is to provide a valid default CBM with which a new
|
|
* resource group is initialized. The user can follow this with a
|
|
* modification to the CBM if the default does not satisfy the
|
|
* requirements.
|
|
*/
|
|
static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r)
|
|
{
|
|
unsigned long val = *_val;
|
|
unsigned int cbm_len = r->cache.cbm_len;
|
|
unsigned long first_bit, zero_bit;
|
|
|
|
if (val == 0)
|
|
return;
|
|
|
|
first_bit = find_first_bit(&val, cbm_len);
|
|
zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
|
|
|
|
/* Clear any remaining bits to ensure contiguous region */
|
|
bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
|
|
*_val = (u32)val;
|
|
}
|
|
|
|
/**
|
|
* rdtgroup_init_alloc - Initialize the new RDT group's allocations
|
|
*
|
|
* A new RDT group is being created on an allocation capable (CAT)
|
|
* supporting system. Set this group up to start off with all usable
|
|
* allocations. That is, all shareable and unused bits.
|
|
*
|
|
* All-zero CBM is invalid. If there are no more shareable bits available
|
|
* on any domain then the entire allocation will fail.
|
|
*/
|
|
static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
|
|
{
|
|
u32 used_b = 0, unused_b = 0;
|
|
u32 closid = rdtgrp->closid;
|
|
struct rdt_resource *r;
|
|
unsigned long tmp_cbm;
|
|
enum rdtgrp_mode mode;
|
|
struct rdt_domain *d;
|
|
int i, ret;
|
|
u32 *ctrl;
|
|
|
|
for_each_alloc_enabled_rdt_resource(r) {
|
|
/*
|
|
* Only initialize default allocations for CBM cache
|
|
* resources
|
|
*/
|
|
if (r->rid == RDT_RESOURCE_MBA)
|
|
continue;
|
|
list_for_each_entry(d, &r->domains, list) {
|
|
d->have_new_ctrl = false;
|
|
d->new_ctrl = r->cache.shareable_bits;
|
|
used_b = r->cache.shareable_bits;
|
|
ctrl = d->ctrl_val;
|
|
for (i = 0; i < closids_supported(); i++, ctrl++) {
|
|
if (closid_allocated(i) && i != closid) {
|
|
mode = rdtgroup_mode_by_closid(i);
|
|
if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
|
|
continue;
|
|
used_b |= *ctrl;
|
|
if (mode == RDT_MODE_SHAREABLE)
|
|
d->new_ctrl |= *ctrl;
|
|
}
|
|
}
|
|
if (d->plr && d->plr->cbm > 0)
|
|
used_b |= d->plr->cbm;
|
|
unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
|
|
unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
|
|
d->new_ctrl |= unused_b;
|
|
/*
|
|
* Force the initial CBM to be valid, user can
|
|
* modify the CBM based on system availability.
|
|
*/
|
|
cbm_ensure_valid(&d->new_ctrl, r);
|
|
/*
|
|
* Assign the u32 CBM to an unsigned long to ensure
|
|
* that bitmap_weight() does not access out-of-bound
|
|
* memory.
|
|
*/
|
|
tmp_cbm = d->new_ctrl;
|
|
if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) <
|
|
r->cache.min_cbm_bits) {
|
|
rdt_last_cmd_printf("no space on %s:%d\n",
|
|
r->name, d->id);
|
|
return -ENOSPC;
|
|
}
|
|
d->have_new_ctrl = true;
|
|
}
|
|
}
|
|
|
|
for_each_alloc_enabled_rdt_resource(r) {
|
|
/*
|
|
* Only initialize default allocations for CBM cache
|
|
* resources
|
|
*/
|
|
if (r->rid == RDT_RESOURCE_MBA)
|
|
continue;
|
|
ret = update_domains(r, rdtgrp->closid);
|
|
if (ret < 0) {
|
|
rdt_last_cmd_puts("failed to initialize allocations\n");
|
|
return ret;
|
|
}
|
|
rdtgrp->mode = RDT_MODE_SHAREABLE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
|
|
struct kernfs_node *prgrp_kn,
|
|
const char *name, umode_t mode,
|
|
enum rdt_group_type rtype, struct rdtgroup **r)
|
|
{
|
|
struct rdtgroup *prdtgrp, *rdtgrp;
|
|
struct kernfs_node *kn;
|
|
uint files = 0;
|
|
int ret;
|
|
|
|
prdtgrp = rdtgroup_kn_lock_live(parent_kn);
|
|
rdt_last_cmd_clear();
|
|
if (!prdtgrp) {
|
|
ret = -ENODEV;
|
|
rdt_last_cmd_puts("directory was removed\n");
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (rtype == RDTMON_GROUP &&
|
|
(prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
|
|
prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
|
|
ret = -EINVAL;
|
|
rdt_last_cmd_puts("pseudo-locking in progress\n");
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* allocate the rdtgroup. */
|
|
rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
|
|
if (!rdtgrp) {
|
|
ret = -ENOSPC;
|
|
rdt_last_cmd_puts("kernel out of memory\n");
|
|
goto out_unlock;
|
|
}
|
|
*r = rdtgrp;
|
|
rdtgrp->mon.parent = prdtgrp;
|
|
rdtgrp->type = rtype;
|
|
INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
|
|
|
|
/* kernfs creates the directory for rdtgrp */
|
|
kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
|
|
if (IS_ERR(kn)) {
|
|
ret = PTR_ERR(kn);
|
|
rdt_last_cmd_puts("kernfs create error\n");
|
|
goto out_free_rgrp;
|
|
}
|
|
rdtgrp->kn = kn;
|
|
|
|
/*
|
|
* kernfs_remove() will drop the reference count on "kn" which
|
|
* will free it. But we still need it to stick around for the
|
|
* rdtgroup_kn_unlock(kn) call. Take one extra reference here,
|
|
* which will be dropped by kernfs_put() in rdtgroup_remove().
|
|
*/
|
|
kernfs_get(kn);
|
|
|
|
ret = rdtgroup_kn_set_ugid(kn);
|
|
if (ret) {
|
|
rdt_last_cmd_puts("kernfs perm error\n");
|
|
goto out_destroy;
|
|
}
|
|
|
|
files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
|
|
ret = rdtgroup_add_files(kn, files);
|
|
if (ret) {
|
|
rdt_last_cmd_puts("kernfs fill error\n");
|
|
goto out_destroy;
|
|
}
|
|
|
|
if (rdt_mon_capable) {
|
|
ret = alloc_rmid();
|
|
if (ret < 0) {
|
|
rdt_last_cmd_puts("out of RMIDs\n");
|
|
goto out_destroy;
|
|
}
|
|
rdtgrp->mon.rmid = ret;
|
|
|
|
ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
|
|
if (ret) {
|
|
rdt_last_cmd_puts("kernfs subdir error\n");
|
|
goto out_idfree;
|
|
}
|
|
}
|
|
kernfs_activate(kn);
|
|
|
|
/*
|
|
* The caller unlocks the parent_kn upon success.
|
|
*/
|
|
return 0;
|
|
|
|
out_idfree:
|
|
free_rmid(rdtgrp->mon.rmid);
|
|
out_destroy:
|
|
kernfs_put(rdtgrp->kn);
|
|
kernfs_remove(rdtgrp->kn);
|
|
out_free_rgrp:
|
|
kfree(rdtgrp);
|
|
out_unlock:
|
|
rdtgroup_kn_unlock(parent_kn);
|
|
return ret;
|
|
}
|
|
|
|
static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
|
|
{
|
|
kernfs_remove(rgrp->kn);
|
|
free_rmid(rgrp->mon.rmid);
|
|
rdtgroup_remove(rgrp);
|
|
}
|
|
|
|
/*
|
|
* Create a monitor group under "mon_groups" directory of a control
|
|
* and monitor group(ctrl_mon). This is a resource group
|
|
* to monitor a subset of tasks and cpus in its parent ctrl_mon group.
|
|
*/
|
|
static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
|
|
struct kernfs_node *prgrp_kn,
|
|
const char *name,
|
|
umode_t mode)
|
|
{
|
|
struct rdtgroup *rdtgrp, *prgrp;
|
|
int ret;
|
|
|
|
ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
|
|
&rdtgrp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
prgrp = rdtgrp->mon.parent;
|
|
rdtgrp->closid = prgrp->closid;
|
|
|
|
/*
|
|
* Add the rdtgrp to the list of rdtgrps the parent
|
|
* ctrl_mon group has to track.
|
|
*/
|
|
list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
|
|
|
|
rdtgroup_kn_unlock(parent_kn);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* These are rdtgroups created under the root directory. Can be used
|
|
* to allocate and monitor resources.
|
|
*/
|
|
static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
|
|
struct kernfs_node *prgrp_kn,
|
|
const char *name, umode_t mode)
|
|
{
|
|
struct rdtgroup *rdtgrp;
|
|
struct kernfs_node *kn;
|
|
u32 closid;
|
|
int ret;
|
|
|
|
ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
|
|
&rdtgrp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
kn = rdtgrp->kn;
|
|
ret = closid_alloc();
|
|
if (ret < 0) {
|
|
rdt_last_cmd_puts("out of CLOSIDs\n");
|
|
goto out_common_fail;
|
|
}
|
|
closid = ret;
|
|
ret = 0;
|
|
|
|
rdtgrp->closid = closid;
|
|
ret = rdtgroup_init_alloc(rdtgrp);
|
|
if (ret < 0)
|
|
goto out_id_free;
|
|
|
|
list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
|
|
|
|
if (rdt_mon_capable) {
|
|
/*
|
|
* Create an empty mon_groups directory to hold the subset
|
|
* of tasks and cpus to monitor.
|
|
*/
|
|
ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
|
|
if (ret) {
|
|
rdt_last_cmd_puts("kernfs subdir error\n");
|
|
goto out_del_list;
|
|
}
|
|
}
|
|
|
|
goto out_unlock;
|
|
|
|
out_del_list:
|
|
list_del(&rdtgrp->rdtgroup_list);
|
|
out_id_free:
|
|
closid_free(closid);
|
|
out_common_fail:
|
|
mkdir_rdt_prepare_clean(rdtgrp);
|
|
out_unlock:
|
|
rdtgroup_kn_unlock(parent_kn);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We allow creating mon groups only with in a directory called "mon_groups"
|
|
* which is present in every ctrl_mon group. Check if this is a valid
|
|
* "mon_groups" directory.
|
|
*
|
|
* 1. The directory should be named "mon_groups".
|
|
* 2. The mon group itself should "not" be named "mon_groups".
|
|
* This makes sure "mon_groups" directory always has a ctrl_mon group
|
|
* as parent.
|
|
*/
|
|
static bool is_mon_groups(struct kernfs_node *kn, const char *name)
|
|
{
|
|
return (!strcmp(kn->name, "mon_groups") &&
|
|
strcmp(name, "mon_groups"));
|
|
}
|
|
|
|
static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
|
|
umode_t mode)
|
|
{
|
|
/* Do not accept '\n' to avoid unparsable situation. */
|
|
if (strchr(name, '\n'))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If the parent directory is the root directory and RDT
|
|
* allocation is supported, add a control and monitoring
|
|
* subdirectory
|
|
*/
|
|
if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
|
|
return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
|
|
|
|
/*
|
|
* If RDT monitoring is supported and the parent directory is a valid
|
|
* "mon_groups" directory, add a monitoring subdirectory.
|
|
*/
|
|
if (rdt_mon_capable && is_mon_groups(parent_kn, name))
|
|
return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
|
|
|
|
return -EPERM;
|
|
}
|
|
|
|
static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
|
|
cpumask_var_t tmpmask)
|
|
{
|
|
struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
|
|
int cpu;
|
|
|
|
/* Give any tasks back to the parent group */
|
|
rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
|
|
|
|
/* Update per cpu rmid of the moved CPUs first */
|
|
for_each_cpu(cpu, &rdtgrp->cpu_mask)
|
|
per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
|
|
/*
|
|
* Update the MSR on moved CPUs and CPUs which have moved
|
|
* task running on them.
|
|
*/
|
|
cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
|
|
update_closid_rmid(tmpmask, NULL);
|
|
|
|
rdtgrp->flags = RDT_DELETED;
|
|
free_rmid(rdtgrp->mon.rmid);
|
|
|
|
/*
|
|
* Remove the rdtgrp from the parent ctrl_mon group's list
|
|
*/
|
|
WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
|
|
list_del(&rdtgrp->mon.crdtgrp_list);
|
|
|
|
kernfs_remove(rdtgrp->kn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
|
|
struct rdtgroup *rdtgrp)
|
|
{
|
|
rdtgrp->flags = RDT_DELETED;
|
|
list_del(&rdtgrp->rdtgroup_list);
|
|
|
|
kernfs_remove(rdtgrp->kn);
|
|
return 0;
|
|
}
|
|
|
|
static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
|
|
cpumask_var_t tmpmask)
|
|
{
|
|
int cpu;
|
|
|
|
/* Give any tasks back to the default group */
|
|
rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
|
|
|
|
/* Give any CPUs back to the default group */
|
|
cpumask_or(&rdtgroup_default.cpu_mask,
|
|
&rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
|
|
|
|
/* Update per cpu closid and rmid of the moved CPUs first */
|
|
for_each_cpu(cpu, &rdtgrp->cpu_mask) {
|
|
per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
|
|
per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
|
|
}
|
|
|
|
/*
|
|
* Update the MSR on moved CPUs and CPUs which have moved
|
|
* task running on them.
|
|
*/
|
|
cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
|
|
update_closid_rmid(tmpmask, NULL);
|
|
|
|
closid_free(rdtgrp->closid);
|
|
free_rmid(rdtgrp->mon.rmid);
|
|
|
|
rdtgroup_ctrl_remove(kn, rdtgrp);
|
|
|
|
/*
|
|
* Free all the child monitor group rmids.
|
|
*/
|
|
free_all_child_rdtgrp(rdtgrp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rdtgroup_rmdir(struct kernfs_node *kn)
|
|
{
|
|
struct kernfs_node *parent_kn = kn->parent;
|
|
struct rdtgroup *rdtgrp;
|
|
cpumask_var_t tmpmask;
|
|
int ret = 0;
|
|
|
|
if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
rdtgrp = rdtgroup_kn_lock_live(kn);
|
|
if (!rdtgrp) {
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the rdtgroup is a ctrl_mon group and parent directory
|
|
* is the root directory, remove the ctrl_mon group.
|
|
*
|
|
* If the rdtgroup is a mon group and parent directory
|
|
* is a valid "mon_groups" directory, remove the mon group.
|
|
*/
|
|
if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
|
|
rdtgrp != &rdtgroup_default) {
|
|
if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
|
|
rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
|
|
ret = rdtgroup_ctrl_remove(kn, rdtgrp);
|
|
} else {
|
|
ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
|
|
}
|
|
} else if (rdtgrp->type == RDTMON_GROUP &&
|
|
is_mon_groups(parent_kn, kn->name)) {
|
|
ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
|
|
} else {
|
|
ret = -EPERM;
|
|
}
|
|
|
|
out:
|
|
rdtgroup_kn_unlock(kn);
|
|
free_cpumask_var(tmpmask);
|
|
return ret;
|
|
}
|
|
|
|
static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
|
|
{
|
|
if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
|
|
seq_puts(seq, ",cdp");
|
|
|
|
if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
|
|
seq_puts(seq, ",cdpl2");
|
|
|
|
if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
|
|
seq_puts(seq, ",mba_MBps");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
|
|
.mkdir = rdtgroup_mkdir,
|
|
.rmdir = rdtgroup_rmdir,
|
|
.show_options = rdtgroup_show_options,
|
|
};
|
|
|
|
static int __init rdtgroup_setup_root(void)
|
|
{
|
|
int ret;
|
|
|
|
rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
|
|
KERNFS_ROOT_CREATE_DEACTIVATED |
|
|
KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
|
|
&rdtgroup_default);
|
|
if (IS_ERR(rdt_root))
|
|
return PTR_ERR(rdt_root);
|
|
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
rdtgroup_default.closid = 0;
|
|
rdtgroup_default.mon.rmid = 0;
|
|
rdtgroup_default.type = RDTCTRL_GROUP;
|
|
INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
|
|
|
|
list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
|
|
|
|
ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
|
|
if (ret) {
|
|
kernfs_destroy_root(rdt_root);
|
|
goto out;
|
|
}
|
|
|
|
rdtgroup_default.kn = rdt_root->kn;
|
|
kernfs_activate(rdtgroup_default.kn);
|
|
|
|
out:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* rdtgroup_init - rdtgroup initialization
|
|
*
|
|
* Setup resctrl file system including set up root, create mount point,
|
|
* register rdtgroup filesystem, and initialize files under root directory.
|
|
*
|
|
* Return: 0 on success or -errno
|
|
*/
|
|
int __init rdtgroup_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
seq_buf_init(&last_cmd_status, last_cmd_status_buf,
|
|
sizeof(last_cmd_status_buf));
|
|
|
|
ret = rdtgroup_setup_root();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = sysfs_create_mount_point(fs_kobj, "resctrl");
|
|
if (ret)
|
|
goto cleanup_root;
|
|
|
|
ret = register_filesystem(&rdt_fs_type);
|
|
if (ret)
|
|
goto cleanup_mountpoint;
|
|
|
|
/*
|
|
* Adding the resctrl debugfs directory here may not be ideal since
|
|
* it would let the resctrl debugfs directory appear on the debugfs
|
|
* filesystem before the resctrl filesystem is mounted.
|
|
* It may also be ok since that would enable debugging of RDT before
|
|
* resctrl is mounted.
|
|
* The reason why the debugfs directory is created here and not in
|
|
* rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
|
|
* during the debugfs directory creation also &sb->s_type->i_mutex_key
|
|
* (the lockdep class of inode->i_rwsem). Other filesystem
|
|
* interactions (eg. SyS_getdents) have the lock ordering:
|
|
* &sb->s_type->i_mutex_key --> &mm->mmap_sem
|
|
* During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
|
|
* is taken, thus creating dependency:
|
|
* &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
|
|
* issues considering the other two lock dependencies.
|
|
* By creating the debugfs directory here we avoid a dependency
|
|
* that may cause deadlock (even though file operations cannot
|
|
* occur until the filesystem is mounted, but I do not know how to
|
|
* tell lockdep that).
|
|
*/
|
|
debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
|
|
|
|
return 0;
|
|
|
|
cleanup_mountpoint:
|
|
sysfs_remove_mount_point(fs_kobj, "resctrl");
|
|
cleanup_root:
|
|
kernfs_destroy_root(rdt_root);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void __exit rdtgroup_exit(void)
|
|
{
|
|
debugfs_remove_recursive(debugfs_resctrl);
|
|
unregister_filesystem(&rdt_fs_type);
|
|
sysfs_remove_mount_point(fs_kobj, "resctrl");
|
|
kernfs_destroy_root(rdt_root);
|
|
}
|