6db4831e98
Android 14
819 lines
18 KiB
C
819 lines
18 KiB
C
/*
|
|
* AMD CPU Microcode Update Driver for Linux
|
|
*
|
|
* This driver allows to upgrade microcode on F10h AMD
|
|
* CPUs and later.
|
|
*
|
|
* Copyright (C) 2008-2011 Advanced Micro Devices Inc.
|
|
* 2013-2016 Borislav Petkov <bp@alien8.de>
|
|
*
|
|
* Author: Peter Oruba <peter.oruba@amd.com>
|
|
*
|
|
* Based on work by:
|
|
* Tigran Aivazian <aivazian.tigran@gmail.com>
|
|
*
|
|
* early loader:
|
|
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
|
*
|
|
* Author: Jacob Shin <jacob.shin@amd.com>
|
|
* Fixes: Borislav Petkov <bp@suse.de>
|
|
*
|
|
* Licensed under the terms of the GNU General Public
|
|
* License version 2. See file COPYING for details.
|
|
*/
|
|
#define pr_fmt(fmt) "microcode: " fmt
|
|
|
|
#include <linux/earlycpio.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
|
|
#include <asm/microcode_amd.h>
|
|
#include <asm/microcode.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/msr.h>
|
|
|
|
static struct equiv_cpu_entry *equiv_cpu_table;
|
|
|
|
/*
|
|
* This points to the current valid container of microcode patches which we will
|
|
* save from the initrd/builtin before jettisoning its contents. @mc is the
|
|
* microcode patch we found to match.
|
|
*/
|
|
struct cont_desc {
|
|
struct microcode_amd *mc;
|
|
u32 cpuid_1_eax;
|
|
u32 psize;
|
|
u8 *data;
|
|
size_t size;
|
|
};
|
|
|
|
static u32 ucode_new_rev;
|
|
static u8 amd_ucode_patch[PATCH_MAX_SIZE];
|
|
|
|
/*
|
|
* Microcode patch container file is prepended to the initrd in cpio
|
|
* format. See Documentation/x86/microcode.txt
|
|
*/
|
|
static const char
|
|
ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
|
|
|
|
static u16 find_equiv_id(struct equiv_cpu_entry *equiv_table, u32 sig)
|
|
{
|
|
for (; equiv_table && equiv_table->installed_cpu; equiv_table++) {
|
|
if (sig == equiv_table->installed_cpu)
|
|
return equiv_table->equiv_cpu;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This scans the ucode blob for the proper container as we can have multiple
|
|
* containers glued together. Returns the equivalence ID from the equivalence
|
|
* table or 0 if none found.
|
|
* Returns the amount of bytes consumed while scanning. @desc contains all the
|
|
* data we're going to use in later stages of the application.
|
|
*/
|
|
static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc)
|
|
{
|
|
struct equiv_cpu_entry *eq;
|
|
ssize_t orig_size = size;
|
|
u32 *hdr = (u32 *)ucode;
|
|
u16 eq_id;
|
|
u8 *buf;
|
|
|
|
/* Am I looking at an equivalence table header? */
|
|
if (hdr[0] != UCODE_MAGIC ||
|
|
hdr[1] != UCODE_EQUIV_CPU_TABLE_TYPE ||
|
|
hdr[2] == 0)
|
|
return CONTAINER_HDR_SZ;
|
|
|
|
buf = ucode;
|
|
|
|
eq = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
|
|
|
|
/* Find the equivalence ID of our CPU in this table: */
|
|
eq_id = find_equiv_id(eq, desc->cpuid_1_eax);
|
|
|
|
buf += hdr[2] + CONTAINER_HDR_SZ;
|
|
size -= hdr[2] + CONTAINER_HDR_SZ;
|
|
|
|
/*
|
|
* Scan through the rest of the container to find where it ends. We do
|
|
* some basic sanity-checking too.
|
|
*/
|
|
while (size > 0) {
|
|
struct microcode_amd *mc;
|
|
u32 patch_size;
|
|
|
|
hdr = (u32 *)buf;
|
|
|
|
if (hdr[0] != UCODE_UCODE_TYPE)
|
|
break;
|
|
|
|
/* Sanity-check patch size. */
|
|
patch_size = hdr[1];
|
|
if (patch_size > PATCH_MAX_SIZE)
|
|
break;
|
|
|
|
/* Skip patch section header: */
|
|
buf += SECTION_HDR_SIZE;
|
|
size -= SECTION_HDR_SIZE;
|
|
|
|
mc = (struct microcode_amd *)buf;
|
|
if (eq_id == mc->hdr.processor_rev_id) {
|
|
desc->psize = patch_size;
|
|
desc->mc = mc;
|
|
}
|
|
|
|
buf += patch_size;
|
|
size -= patch_size;
|
|
}
|
|
|
|
/*
|
|
* If we have found a patch (desc->mc), it means we're looking at the
|
|
* container which has a patch for this CPU so return 0 to mean, @ucode
|
|
* already points to the proper container. Otherwise, we return the size
|
|
* we scanned so that we can advance to the next container in the
|
|
* buffer.
|
|
*/
|
|
if (desc->mc) {
|
|
desc->data = ucode;
|
|
desc->size = orig_size - size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return orig_size - size;
|
|
}
|
|
|
|
/*
|
|
* Scan the ucode blob for the proper container as we can have multiple
|
|
* containers glued together.
|
|
*/
|
|
static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
|
|
{
|
|
ssize_t rem = size;
|
|
|
|
while (rem >= 0) {
|
|
ssize_t s = parse_container(ucode, rem, desc);
|
|
if (!s)
|
|
return;
|
|
|
|
ucode += s;
|
|
rem -= s;
|
|
}
|
|
}
|
|
|
|
static int __apply_microcode_amd(struct microcode_amd *mc)
|
|
{
|
|
u32 rev, dummy;
|
|
|
|
native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
|
|
|
|
/* verify patch application was successful */
|
|
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
|
|
if (rev != mc->hdr.patch_id)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Early load occurs before we can vmalloc(). So we look for the microcode
|
|
* patch container file in initrd, traverse equivalent cpu table, look for a
|
|
* matching microcode patch, and update, all in initrd memory in place.
|
|
* When vmalloc() is available for use later -- on 64-bit during first AP load,
|
|
* and on 32-bit during save_microcode_in_initrd_amd() -- we can call
|
|
* load_microcode_amd() to save equivalent cpu table and microcode patches in
|
|
* kernel heap memory.
|
|
*
|
|
* Returns true if container found (sets @desc), false otherwise.
|
|
*/
|
|
static bool
|
|
apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
|
|
{
|
|
struct cont_desc desc = { 0 };
|
|
u8 (*patch)[PATCH_MAX_SIZE];
|
|
struct microcode_amd *mc;
|
|
u32 rev, dummy, *new_rev;
|
|
bool ret = false;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
|
|
patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
|
|
#else
|
|
new_rev = &ucode_new_rev;
|
|
patch = &amd_ucode_patch;
|
|
#endif
|
|
|
|
desc.cpuid_1_eax = cpuid_1_eax;
|
|
|
|
scan_containers(ucode, size, &desc);
|
|
|
|
mc = desc.mc;
|
|
if (!mc)
|
|
return ret;
|
|
|
|
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
|
|
if (rev >= mc->hdr.patch_id)
|
|
return ret;
|
|
|
|
if (!__apply_microcode_amd(mc)) {
|
|
*new_rev = mc->hdr.patch_id;
|
|
ret = true;
|
|
|
|
if (save_patch)
|
|
memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
char fw_name[36] = "amd-ucode/microcode_amd.bin";
|
|
|
|
if (family >= 0x15)
|
|
snprintf(fw_name, sizeof(fw_name),
|
|
"amd-ucode/microcode_amd_fam%.2xh.bin", family);
|
|
|
|
return get_builtin_firmware(cp, fw_name);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
|
|
{
|
|
struct ucode_cpu_info *uci;
|
|
struct cpio_data cp;
|
|
const char *path;
|
|
bool use_pa;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32)) {
|
|
uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
|
|
path = (const char *)__pa_nodebug(ucode_path);
|
|
use_pa = true;
|
|
} else {
|
|
uci = ucode_cpu_info;
|
|
path = ucode_path;
|
|
use_pa = false;
|
|
}
|
|
|
|
if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
|
|
cp = find_microcode_in_initrd(path, use_pa);
|
|
|
|
/* Needed in load_microcode_amd() */
|
|
uci->cpu_sig.sig = cpuid_1_eax;
|
|
|
|
*ret = cp;
|
|
}
|
|
|
|
void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
|
|
{
|
|
struct cpio_data cp = { };
|
|
|
|
__load_ucode_amd(cpuid_1_eax, &cp);
|
|
if (!(cp.data && cp.size))
|
|
return;
|
|
|
|
apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
|
|
}
|
|
|
|
void load_ucode_amd_ap(unsigned int cpuid_1_eax)
|
|
{
|
|
struct microcode_amd *mc;
|
|
struct cpio_data cp;
|
|
u32 *new_rev, rev, dummy;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32)) {
|
|
mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
|
|
new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
|
|
} else {
|
|
mc = (struct microcode_amd *)amd_ucode_patch;
|
|
new_rev = &ucode_new_rev;
|
|
}
|
|
|
|
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
|
|
|
|
/* Check whether we have saved a new patch already: */
|
|
if (*new_rev && rev < mc->hdr.patch_id) {
|
|
if (!__apply_microcode_amd(mc)) {
|
|
*new_rev = mc->hdr.patch_id;
|
|
return;
|
|
}
|
|
}
|
|
|
|
__load_ucode_amd(cpuid_1_eax, &cp);
|
|
if (!(cp.data && cp.size))
|
|
return;
|
|
|
|
apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
|
|
}
|
|
|
|
static enum ucode_state
|
|
load_microcode_amd(bool save, u8 family, const u8 *data, size_t size);
|
|
|
|
int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
|
|
{
|
|
struct cont_desc desc = { 0 };
|
|
enum ucode_state ret;
|
|
struct cpio_data cp;
|
|
|
|
cp = find_microcode_in_initrd(ucode_path, false);
|
|
if (!(cp.data && cp.size))
|
|
return -EINVAL;
|
|
|
|
desc.cpuid_1_eax = cpuid_1_eax;
|
|
|
|
scan_containers(cp.data, cp.size, &desc);
|
|
if (!desc.mc)
|
|
return -EINVAL;
|
|
|
|
ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size);
|
|
if (ret > UCODE_UPDATED)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void reload_ucode_amd(void)
|
|
{
|
|
struct microcode_amd *mc;
|
|
u32 rev, dummy;
|
|
|
|
mc = (struct microcode_amd *)amd_ucode_patch;
|
|
|
|
rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
|
|
|
|
if (rev < mc->hdr.patch_id) {
|
|
if (!__apply_microcode_amd(mc)) {
|
|
ucode_new_rev = mc->hdr.patch_id;
|
|
pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
|
|
}
|
|
}
|
|
}
|
|
static u16 __find_equiv_id(unsigned int cpu)
|
|
{
|
|
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
|
|
return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
|
|
}
|
|
|
|
static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
|
|
{
|
|
int i = 0;
|
|
|
|
BUG_ON(!equiv_cpu_table);
|
|
|
|
while (equiv_cpu_table[i].equiv_cpu != 0) {
|
|
if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
|
|
return equiv_cpu_table[i].installed_cpu;
|
|
i++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* a small, trivial cache of per-family ucode patches
|
|
*/
|
|
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
|
|
{
|
|
struct ucode_patch *p;
|
|
|
|
list_for_each_entry(p, µcode_cache, plist)
|
|
if (p->equiv_cpu == equiv_cpu)
|
|
return p;
|
|
return NULL;
|
|
}
|
|
|
|
static void update_cache(struct ucode_patch *new_patch)
|
|
{
|
|
struct ucode_patch *p;
|
|
|
|
list_for_each_entry(p, µcode_cache, plist) {
|
|
if (p->equiv_cpu == new_patch->equiv_cpu) {
|
|
if (p->patch_id >= new_patch->patch_id) {
|
|
/* we already have the latest patch */
|
|
kfree(new_patch->data);
|
|
kfree(new_patch);
|
|
return;
|
|
}
|
|
|
|
list_replace(&p->plist, &new_patch->plist);
|
|
kfree(p->data);
|
|
kfree(p);
|
|
return;
|
|
}
|
|
}
|
|
/* no patch found, add it */
|
|
list_add_tail(&new_patch->plist, µcode_cache);
|
|
}
|
|
|
|
static void free_cache(void)
|
|
{
|
|
struct ucode_patch *p, *tmp;
|
|
|
|
list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
|
|
__list_del(p->plist.prev, p->plist.next);
|
|
kfree(p->data);
|
|
kfree(p);
|
|
}
|
|
}
|
|
|
|
static struct ucode_patch *find_patch(unsigned int cpu)
|
|
{
|
|
u16 equiv_id;
|
|
|
|
equiv_id = __find_equiv_id(cpu);
|
|
if (!equiv_id)
|
|
return NULL;
|
|
|
|
return cache_find_patch(equiv_id);
|
|
}
|
|
|
|
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
|
|
struct ucode_patch *p;
|
|
|
|
csig->sig = cpuid_eax(0x00000001);
|
|
csig->rev = c->microcode;
|
|
|
|
/*
|
|
* a patch could have been loaded early, set uci->mc so that
|
|
* mc_bp_resume() can call apply_microcode()
|
|
*/
|
|
p = find_patch(cpu);
|
|
if (p && (p->patch_id == csig->rev))
|
|
uci->mc = p->data;
|
|
|
|
pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int verify_patch_size(u8 family, u32 patch_size,
|
|
unsigned int size)
|
|
{
|
|
u32 max_size;
|
|
|
|
#define F1XH_MPB_MAX_SIZE 2048
|
|
#define F14H_MPB_MAX_SIZE 1824
|
|
#define F15H_MPB_MAX_SIZE 4096
|
|
#define F16H_MPB_MAX_SIZE 3458
|
|
#define F17H_MPB_MAX_SIZE 3200
|
|
|
|
switch (family) {
|
|
case 0x14:
|
|
max_size = F14H_MPB_MAX_SIZE;
|
|
break;
|
|
case 0x15:
|
|
max_size = F15H_MPB_MAX_SIZE;
|
|
break;
|
|
case 0x16:
|
|
max_size = F16H_MPB_MAX_SIZE;
|
|
break;
|
|
case 0x17:
|
|
max_size = F17H_MPB_MAX_SIZE;
|
|
break;
|
|
default:
|
|
max_size = F1XH_MPB_MAX_SIZE;
|
|
break;
|
|
}
|
|
|
|
if (patch_size > min_t(u32, size, max_size)) {
|
|
pr_err("patch size mismatch\n");
|
|
return 0;
|
|
}
|
|
|
|
return patch_size;
|
|
}
|
|
|
|
static enum ucode_state apply_microcode_amd(int cpu)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
struct microcode_amd *mc_amd;
|
|
struct ucode_cpu_info *uci;
|
|
struct ucode_patch *p;
|
|
enum ucode_state ret;
|
|
u32 rev, dummy;
|
|
|
|
BUG_ON(raw_smp_processor_id() != cpu);
|
|
|
|
uci = ucode_cpu_info + cpu;
|
|
|
|
p = find_patch(cpu);
|
|
if (!p)
|
|
return UCODE_NFOUND;
|
|
|
|
mc_amd = p->data;
|
|
uci->mc = p->data;
|
|
|
|
rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
|
|
|
|
/* need to apply patch? */
|
|
if (rev >= mc_amd->hdr.patch_id) {
|
|
ret = UCODE_OK;
|
|
goto out;
|
|
}
|
|
|
|
if (__apply_microcode_amd(mc_amd)) {
|
|
pr_err("CPU%d: update failed for patch_level=0x%08x\n",
|
|
cpu, mc_amd->hdr.patch_id);
|
|
return UCODE_ERROR;
|
|
}
|
|
|
|
rev = mc_amd->hdr.patch_id;
|
|
ret = UCODE_UPDATED;
|
|
|
|
pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
|
|
|
|
out:
|
|
uci->cpu_sig.rev = rev;
|
|
c->microcode = rev;
|
|
|
|
/* Update boot_cpu_data's revision too, if we're on the BSP: */
|
|
if (c->cpu_index == boot_cpu_data.cpu_index)
|
|
boot_cpu_data.microcode = rev;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int install_equiv_cpu_table(const u8 *buf)
|
|
{
|
|
unsigned int *ibuf = (unsigned int *)buf;
|
|
unsigned int type = ibuf[1];
|
|
unsigned int size = ibuf[2];
|
|
|
|
if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
|
|
pr_err("empty section/"
|
|
"invalid type field in container file section header\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
equiv_cpu_table = vmalloc(size);
|
|
if (!equiv_cpu_table) {
|
|
pr_err("failed to allocate equivalent CPU table\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
|
|
|
|
/* add header length */
|
|
return size + CONTAINER_HDR_SZ;
|
|
}
|
|
|
|
static void free_equiv_cpu_table(void)
|
|
{
|
|
vfree(equiv_cpu_table);
|
|
equiv_cpu_table = NULL;
|
|
}
|
|
|
|
static void cleanup(void)
|
|
{
|
|
free_equiv_cpu_table();
|
|
free_cache();
|
|
}
|
|
|
|
/*
|
|
* We return the current size even if some of the checks failed so that
|
|
* we can skip over the next patch. If we return a negative value, we
|
|
* signal a grave error like a memory allocation has failed and the
|
|
* driver cannot continue functioning normally. In such cases, we tear
|
|
* down everything we've used up so far and exit.
|
|
*/
|
|
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
|
|
{
|
|
struct microcode_header_amd *mc_hdr;
|
|
struct ucode_patch *patch;
|
|
unsigned int patch_size, crnt_size, ret;
|
|
u32 proc_fam;
|
|
u16 proc_id;
|
|
|
|
patch_size = *(u32 *)(fw + 4);
|
|
crnt_size = patch_size + SECTION_HDR_SIZE;
|
|
mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
|
|
proc_id = mc_hdr->processor_rev_id;
|
|
|
|
proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
|
|
if (!proc_fam) {
|
|
pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
|
|
return crnt_size;
|
|
}
|
|
|
|
/* check if patch is for the current family */
|
|
proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
|
|
if (proc_fam != family)
|
|
return crnt_size;
|
|
|
|
if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
|
|
pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
|
|
mc_hdr->patch_id);
|
|
return crnt_size;
|
|
}
|
|
|
|
ret = verify_patch_size(family, patch_size, leftover);
|
|
if (!ret) {
|
|
pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
|
|
return crnt_size;
|
|
}
|
|
|
|
patch = kzalloc(sizeof(*patch), GFP_KERNEL);
|
|
if (!patch) {
|
|
pr_err("Patch allocation failure.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
|
|
if (!patch->data) {
|
|
pr_err("Patch data allocation failure.\n");
|
|
kfree(patch);
|
|
return -EINVAL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&patch->plist);
|
|
patch->patch_id = mc_hdr->patch_id;
|
|
patch->equiv_cpu = proc_id;
|
|
|
|
pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
|
|
__func__, patch->patch_id, proc_id);
|
|
|
|
/* ... and add to cache. */
|
|
update_cache(patch);
|
|
|
|
return crnt_size;
|
|
}
|
|
|
|
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
|
|
size_t size)
|
|
{
|
|
enum ucode_state ret = UCODE_ERROR;
|
|
unsigned int leftover;
|
|
u8 *fw = (u8 *)data;
|
|
int crnt_size = 0;
|
|
int offset;
|
|
|
|
offset = install_equiv_cpu_table(data);
|
|
if (offset < 0) {
|
|
pr_err("failed to create equivalent cpu table\n");
|
|
return ret;
|
|
}
|
|
fw += offset;
|
|
leftover = size - offset;
|
|
|
|
if (*(u32 *)fw != UCODE_UCODE_TYPE) {
|
|
pr_err("invalid type field in container file section header\n");
|
|
free_equiv_cpu_table();
|
|
return ret;
|
|
}
|
|
|
|
while (leftover) {
|
|
crnt_size = verify_and_add_patch(family, fw, leftover);
|
|
if (crnt_size < 0)
|
|
return ret;
|
|
|
|
fw += crnt_size;
|
|
leftover -= crnt_size;
|
|
}
|
|
|
|
return UCODE_OK;
|
|
}
|
|
|
|
static enum ucode_state
|
|
load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
|
|
{
|
|
struct ucode_patch *p;
|
|
enum ucode_state ret;
|
|
|
|
/* free old equiv table */
|
|
free_equiv_cpu_table();
|
|
|
|
ret = __load_microcode_amd(family, data, size);
|
|
if (ret != UCODE_OK) {
|
|
cleanup();
|
|
return ret;
|
|
}
|
|
|
|
p = find_patch(0);
|
|
if (!p) {
|
|
return ret;
|
|
} else {
|
|
if (boot_cpu_data.microcode >= p->patch_id)
|
|
return ret;
|
|
|
|
ret = UCODE_NEW;
|
|
}
|
|
|
|
/* save BSP's matching patch for early load */
|
|
if (!save)
|
|
return ret;
|
|
|
|
memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
|
|
memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data), PATCH_MAX_SIZE));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* AMD microcode firmware naming convention, up to family 15h they are in
|
|
* the legacy file:
|
|
*
|
|
* amd-ucode/microcode_amd.bin
|
|
*
|
|
* This legacy file is always smaller than 2K in size.
|
|
*
|
|
* Beginning with family 15h, they are in family-specific firmware files:
|
|
*
|
|
* amd-ucode/microcode_amd_fam15h.bin
|
|
* amd-ucode/microcode_amd_fam16h.bin
|
|
* ...
|
|
*
|
|
* These might be larger than 2K.
|
|
*/
|
|
static enum ucode_state request_microcode_amd(int cpu, struct device *device,
|
|
bool refresh_fw)
|
|
{
|
|
char fw_name[36] = "amd-ucode/microcode_amd.bin";
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
|
|
enum ucode_state ret = UCODE_NFOUND;
|
|
const struct firmware *fw;
|
|
|
|
/* reload ucode container only on the boot cpu */
|
|
if (!refresh_fw || !bsp)
|
|
return UCODE_OK;
|
|
|
|
if (c->x86 >= 0x15)
|
|
snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
|
|
|
|
if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
|
|
pr_debug("failed to load file %s\n", fw_name);
|
|
goto out;
|
|
}
|
|
|
|
ret = UCODE_ERROR;
|
|
if (*(u32 *)fw->data != UCODE_MAGIC) {
|
|
pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
|
|
goto fw_release;
|
|
}
|
|
|
|
ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);
|
|
|
|
fw_release:
|
|
release_firmware(fw);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static enum ucode_state
|
|
request_microcode_user(int cpu, const void __user *buf, size_t size)
|
|
{
|
|
return UCODE_ERROR;
|
|
}
|
|
|
|
static void microcode_fini_cpu_amd(int cpu)
|
|
{
|
|
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
|
|
|
|
uci->mc = NULL;
|
|
}
|
|
|
|
static struct microcode_ops microcode_amd_ops = {
|
|
.request_microcode_user = request_microcode_user,
|
|
.request_microcode_fw = request_microcode_amd,
|
|
.collect_cpu_info = collect_cpu_info_amd,
|
|
.apply_microcode = apply_microcode_amd,
|
|
.microcode_fini_cpu = microcode_fini_cpu_amd,
|
|
};
|
|
|
|
struct microcode_ops * __init init_amd_microcode(void)
|
|
{
|
|
struct cpuinfo_x86 *c = &boot_cpu_data;
|
|
|
|
if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
|
|
pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
|
|
return NULL;
|
|
}
|
|
|
|
if (ucode_new_rev)
|
|
pr_info_once("microcode updated early to new patch_level=0x%08x\n",
|
|
ucode_new_rev);
|
|
|
|
return µcode_amd_ops;
|
|
}
|
|
|
|
void __exit exit_amd_microcode(void)
|
|
{
|
|
cleanup();
|
|
}
|