kernel_samsung_a34x-permissive/drivers/media/platform/vsp1/vsp1_video.c
2024-04-28 15:51:13 +02:00

1354 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* vsp1_video.c -- R-Car VSP1 Video Node
*
* Copyright (C) 2013-2015 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*/
#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/v4l2-mediabus.h>
#include <linux/videodev2.h>
#include <linux/wait.h>
#include <media/media-entity.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-v4l2.h>
#include <media/videobuf2-dma-contig.h>
#include "vsp1.h"
#include "vsp1_brx.h"
#include "vsp1_dl.h"
#include "vsp1_entity.h"
#include "vsp1_hgo.h"
#include "vsp1_hgt.h"
#include "vsp1_pipe.h"
#include "vsp1_rwpf.h"
#include "vsp1_uds.h"
#include "vsp1_video.h"
#define VSP1_VIDEO_DEF_FORMAT V4L2_PIX_FMT_YUYV
#define VSP1_VIDEO_DEF_WIDTH 1024
#define VSP1_VIDEO_DEF_HEIGHT 768
#define VSP1_VIDEO_MIN_WIDTH 2U
#define VSP1_VIDEO_MAX_WIDTH 8190U
#define VSP1_VIDEO_MIN_HEIGHT 2U
#define VSP1_VIDEO_MAX_HEIGHT 8190U
/* -----------------------------------------------------------------------------
* Helper functions
*/
static struct v4l2_subdev *
vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
{
struct media_pad *remote;
remote = media_entity_remote_pad(local);
if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
return NULL;
if (pad)
*pad = remote->index;
return media_entity_to_v4l2_subdev(remote->entity);
}
static int vsp1_video_verify_format(struct vsp1_video *video)
{
struct v4l2_subdev_format fmt;
struct v4l2_subdev *subdev;
int ret;
subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
if (subdev == NULL)
return -EINVAL;
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
if (ret < 0)
return ret == -ENOIOCTLCMD ? -EINVAL : ret;
if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
video->rwpf->format.height != fmt.format.height ||
video->rwpf->format.width != fmt.format.width)
return -EINVAL;
return 0;
}
static int __vsp1_video_try_format(struct vsp1_video *video,
struct v4l2_pix_format_mplane *pix,
const struct vsp1_format_info **fmtinfo)
{
static const u32 xrgb_formats[][2] = {
{ V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
{ V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
{ V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
{ V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
};
const struct vsp1_format_info *info;
unsigned int width = pix->width;
unsigned int height = pix->height;
unsigned int i;
/*
* Backward compatibility: replace deprecated RGB formats by their XRGB
* equivalent. This selects the format older userspace applications want
* while still exposing the new format.
*/
for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
if (xrgb_formats[i][0] == pix->pixelformat) {
pix->pixelformat = xrgb_formats[i][1];
break;
}
}
/*
* Retrieve format information and select the default format if the
* requested format isn't supported.
*/
info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
if (info == NULL)
info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
pix->pixelformat = info->fourcc;
pix->colorspace = V4L2_COLORSPACE_SRGB;
pix->field = V4L2_FIELD_NONE;
if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
info->fourcc == V4L2_PIX_FMT_HSV32)
pix->hsv_enc = V4L2_HSV_ENC_256;
memset(pix->reserved, 0, sizeof(pix->reserved));
/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
width = round_down(width, info->hsub);
height = round_down(height, info->vsub);
/* Clamp the width and height. */
pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH);
pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT,
VSP1_VIDEO_MAX_HEIGHT);
/*
* Compute and clamp the stride and image size. While not documented in
* the datasheet, strides not aligned to a multiple of 128 bytes result
* in image corruption.
*/
for (i = 0; i < min(info->planes, 2U); ++i) {
unsigned int hsub = i > 0 ? info->hsub : 1;
unsigned int vsub = i > 0 ? info->vsub : 1;
unsigned int align = 128;
unsigned int bpl;
bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
pix->width / hsub * info->bpp[i] / 8,
round_down(65535U, align));
pix->plane_fmt[i].bytesperline = round_up(bpl, align);
pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
* pix->height / vsub;
}
if (info->planes == 3) {
/* The second and third planes must have the same stride. */
pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
}
pix->num_planes = info->planes;
if (fmtinfo)
*fmtinfo = info;
return 0;
}
/* -----------------------------------------------------------------------------
* VSP1 Partition Algorithm support
*/
/**
* vsp1_video_calculate_partition - Calculate the active partition output window
*
* @pipe: the pipeline
* @partition: partition that will hold the calculated values
* @div_size: pre-determined maximum partition division size
* @index: partition index
*/
static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe,
struct vsp1_partition *partition,
unsigned int div_size,
unsigned int index)
{
const struct v4l2_mbus_framefmt *format;
struct vsp1_partition_window window;
unsigned int modulus;
/*
* Partitions are computed on the size before rotation, use the format
* at the WPF sink.
*/
format = vsp1_entity_get_pad_format(&pipe->output->entity,
pipe->output->entity.config,
RWPF_PAD_SINK);
/* A single partition simply processes the output size in full. */
if (pipe->partitions <= 1) {
window.left = 0;
window.width = format->width;
vsp1_pipeline_propagate_partition(pipe, partition, index,
&window);
return;
}
/* Initialise the partition with sane starting conditions. */
window.left = index * div_size;
window.width = div_size;
modulus = format->width % div_size;
/*
* We need to prevent the last partition from being smaller than the
* *minimum* width of the hardware capabilities.
*
* If the modulus is less than half of the partition size,
* the penultimate partition is reduced to half, which is added
* to the final partition: |1234|1234|1234|12|341|
* to prevents this: |1234|1234|1234|1234|1|.
*/
if (modulus) {
/*
* pipe->partitions is 1 based, whilst index is a 0 based index.
* Normalise this locally.
*/
unsigned int partitions = pipe->partitions - 1;
if (modulus < div_size / 2) {
if (index == partitions - 1) {
/* Halve the penultimate partition. */
window.width = div_size / 2;
} else if (index == partitions) {
/* Increase the final partition. */
window.width = (div_size / 2) + modulus;
window.left -= div_size / 2;
}
} else if (index == partitions) {
window.width = modulus;
}
}
vsp1_pipeline_propagate_partition(pipe, partition, index, &window);
}
static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
{
struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
const struct v4l2_mbus_framefmt *format;
struct vsp1_entity *entity;
unsigned int div_size;
unsigned int i;
/*
* Partitions are computed on the size before rotation, use the format
* at the WPF sink.
*/
format = vsp1_entity_get_pad_format(&pipe->output->entity,
pipe->output->entity.config,
RWPF_PAD_SINK);
div_size = format->width;
/*
* Only Gen3 hardware requires image partitioning, Gen2 will operate
* with a single partition that covers the whole output.
*/
if (vsp1->info->gen == 3) {
list_for_each_entry(entity, &pipe->entities, list_pipe) {
unsigned int entity_max;
if (!entity->ops->max_width)
continue;
entity_max = entity->ops->max_width(entity, pipe);
if (entity_max)
div_size = min(div_size, entity_max);
}
}
pipe->partitions = DIV_ROUND_UP(format->width, div_size);
pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
GFP_KERNEL);
if (!pipe->part_table)
return -ENOMEM;
for (i = 0; i < pipe->partitions; ++i)
vsp1_video_calculate_partition(pipe, &pipe->part_table[i],
div_size, i);
return 0;
}
/* -----------------------------------------------------------------------------
* Pipeline Management
*/
/*
* vsp1_video_complete_buffer - Complete the current buffer
* @video: the video node
*
* This function completes the current buffer by filling its sequence number,
* time stamp and payload size, and hands it back to the videobuf core.
*
* When operating in DU output mode (deep pipeline to the DU through the LIF),
* the VSP1 needs to constantly supply frames to the display. In that case, if
* no other buffer is queued, reuse the one that has just been processed instead
* of handing it back to the videobuf core.
*
* Return the next queued buffer or NULL if the queue is empty.
*/
static struct vsp1_vb2_buffer *
vsp1_video_complete_buffer(struct vsp1_video *video)
{
struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
struct vsp1_vb2_buffer *next = NULL;
struct vsp1_vb2_buffer *done;
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&video->irqlock, flags);
if (list_empty(&video->irqqueue)) {
spin_unlock_irqrestore(&video->irqlock, flags);
return NULL;
}
done = list_first_entry(&video->irqqueue,
struct vsp1_vb2_buffer, queue);
/* In DU output mode reuse the buffer if the list is singular. */
if (pipe->lif && list_is_singular(&video->irqqueue)) {
spin_unlock_irqrestore(&video->irqlock, flags);
return done;
}
list_del(&done->queue);
if (!list_empty(&video->irqqueue))
next = list_first_entry(&video->irqqueue,
struct vsp1_vb2_buffer, queue);
spin_unlock_irqrestore(&video->irqlock, flags);
done->buf.sequence = pipe->sequence;
done->buf.vb2_buf.timestamp = ktime_get_ns();
for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
vb2_set_plane_payload(&done->buf.vb2_buf, i,
vb2_plane_size(&done->buf.vb2_buf, i));
vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
return next;
}
static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
struct vsp1_rwpf *rwpf)
{
struct vsp1_video *video = rwpf->video;
struct vsp1_vb2_buffer *buf;
buf = vsp1_video_complete_buffer(video);
if (buf == NULL)
return;
video->rwpf->mem = buf->mem;
pipe->buffers_ready |= 1 << video->pipe_index;
}
static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
struct vsp1_dl_list *dl,
unsigned int partition)
{
struct vsp1_dl_body *dlb = vsp1_dl_list_get_body0(dl);
struct vsp1_entity *entity;
pipe->partition = &pipe->part_table[partition];
list_for_each_entry(entity, &pipe->entities, list_pipe)
vsp1_entity_configure_partition(entity, pipe, dl, dlb);
}
static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
{
struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
struct vsp1_entity *entity;
struct vsp1_dl_body *dlb;
struct vsp1_dl_list *dl;
unsigned int partition;
dl = vsp1_dl_list_get(pipe->output->dlm);
/*
* If the VSP hardware isn't configured yet (which occurs either when
* processing the first frame or after a system suspend/resume), add the
* cached stream configuration to the display list to perform a full
* initialisation.
*/
if (!pipe->configured)
vsp1_dl_list_add_body(dl, pipe->stream_config);
dlb = vsp1_dl_list_get_body0(dl);
list_for_each_entry(entity, &pipe->entities, list_pipe)
vsp1_entity_configure_frame(entity, pipe, dl, dlb);
/* Run the first partition. */
vsp1_video_pipeline_run_partition(pipe, dl, 0);
/* Process consecutive partitions as necessary. */
for (partition = 1; partition < pipe->partitions; ++partition) {
struct vsp1_dl_list *dl_next;
dl_next = vsp1_dl_list_get(pipe->output->dlm);
/*
* An incomplete chain will still function, but output only
* the partitions that had a dl available. The frame end
* interrupt will be marked on the last dl in the chain.
*/
if (!dl_next) {
dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
break;
}
vsp1_video_pipeline_run_partition(pipe, dl_next, partition);
vsp1_dl_list_add_chain(dl, dl_next);
}
/* Complete, and commit the head display list. */
vsp1_dl_list_commit(dl, false);
pipe->configured = true;
vsp1_pipeline_run(pipe);
}
static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe,
unsigned int completion)
{
struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
enum vsp1_pipeline_state state;
unsigned long flags;
unsigned int i;
/* M2M Pipelines should never call here with an incomplete frame. */
WARN_ON_ONCE(!(completion & VSP1_DL_FRAME_END_COMPLETED));
spin_lock_irqsave(&pipe->irqlock, flags);
/* Complete buffers on all video nodes. */
for (i = 0; i < vsp1->info->rpf_count; ++i) {
if (!pipe->inputs[i])
continue;
vsp1_video_frame_end(pipe, pipe->inputs[i]);
}
vsp1_video_frame_end(pipe, pipe->output);
state = pipe->state;
pipe->state = VSP1_PIPELINE_STOPPED;
/*
* If a stop has been requested, mark the pipeline as stopped and
* return. Otherwise restart the pipeline if ready.
*/
if (state == VSP1_PIPELINE_STOPPING)
wake_up(&pipe->wq);
else if (vsp1_pipeline_ready(pipe))
vsp1_video_pipeline_run(pipe);
spin_unlock_irqrestore(&pipe->irqlock, flags);
}
static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
struct vsp1_rwpf *input,
struct vsp1_rwpf *output)
{
struct media_entity_enum ent_enum;
struct vsp1_entity *entity;
struct media_pad *pad;
struct vsp1_brx *brx = NULL;
int ret;
ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
if (ret < 0)
return ret;
/*
* The main data path doesn't include the HGO or HGT, use
* vsp1_entity_remote_pad() to traverse the graph.
*/
pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
while (1) {
if (pad == NULL) {
ret = -EPIPE;
goto out;
}
/* We've reached a video node, that shouldn't have happened. */
if (!is_media_entity_v4l2_subdev(pad->entity)) {
ret = -EPIPE;
goto out;
}
entity = to_vsp1_entity(
media_entity_to_v4l2_subdev(pad->entity));
/*
* A BRU or BRS is present in the pipeline, store its input pad
* number in the input RPF for use when configuring the RPF.
*/
if (entity->type == VSP1_ENTITY_BRU ||
entity->type == VSP1_ENTITY_BRS) {
/* BRU and BRS can't be chained. */
if (brx) {
ret = -EPIPE;
goto out;
}
brx = to_brx(&entity->subdev);
brx->inputs[pad->index].rpf = input;
input->brx_input = pad->index;
}
/* We've reached the WPF, we're done. */
if (entity->type == VSP1_ENTITY_WPF)
break;
/* Ensure the branch has no loop. */
if (media_entity_enum_test_and_set(&ent_enum,
&entity->subdev.entity)) {
ret = -EPIPE;
goto out;
}
/* UDS can't be chained. */
if (entity->type == VSP1_ENTITY_UDS) {
if (pipe->uds) {
ret = -EPIPE;
goto out;
}
pipe->uds = entity;
pipe->uds_input = brx ? &brx->entity : &input->entity;
}
/* Follow the source link, ignoring any HGO or HGT. */
pad = &entity->pads[entity->source_pad];
pad = vsp1_entity_remote_pad(pad);
}
/* The last entity must be the output WPF. */
if (entity != &output->entity)
ret = -EPIPE;
out:
media_entity_enum_cleanup(&ent_enum);
return ret;
}
static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
struct vsp1_video *video)
{
struct media_graph graph;
struct media_entity *entity = &video->video.entity;
struct media_device *mdev = entity->graph_obj.mdev;
unsigned int i;
int ret;
/* Walk the graph to locate the entities and video nodes. */
ret = media_graph_walk_init(&graph, mdev);
if (ret)
return ret;
media_graph_walk_start(&graph, entity);
while ((entity = media_graph_walk_next(&graph))) {
struct v4l2_subdev *subdev;
struct vsp1_rwpf *rwpf;
struct vsp1_entity *e;
if (!is_media_entity_v4l2_subdev(entity))
continue;
subdev = media_entity_to_v4l2_subdev(entity);
e = to_vsp1_entity(subdev);
list_add_tail(&e->list_pipe, &pipe->entities);
e->pipe = pipe;
switch (e->type) {
case VSP1_ENTITY_RPF:
rwpf = to_rwpf(subdev);
pipe->inputs[rwpf->entity.index] = rwpf;
rwpf->video->pipe_index = ++pipe->num_inputs;
break;
case VSP1_ENTITY_WPF:
rwpf = to_rwpf(subdev);
pipe->output = rwpf;
rwpf->video->pipe_index = 0;
break;
case VSP1_ENTITY_LIF:
pipe->lif = e;
break;
case VSP1_ENTITY_BRU:
case VSP1_ENTITY_BRS:
pipe->brx = e;
break;
case VSP1_ENTITY_HGO:
pipe->hgo = e;
break;
case VSP1_ENTITY_HGT:
pipe->hgt = e;
break;
default:
break;
}
}
media_graph_walk_cleanup(&graph);
/* We need one output and at least one input. */
if (pipe->num_inputs == 0 || !pipe->output)
return -EPIPE;
/*
* Follow links downstream for each input and make sure the graph
* contains no loop and that all branches end at the output WPF.
*/
for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
if (!pipe->inputs[i])
continue;
ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
pipe->output);
if (ret < 0)
return ret;
}
return 0;
}
static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
struct vsp1_video *video)
{
vsp1_pipeline_init(pipe);
pipe->frame_end = vsp1_video_pipeline_frame_end;
return vsp1_video_pipeline_build(pipe, video);
}
static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
{
struct vsp1_pipeline *pipe;
int ret;
/*
* Get a pipeline object for the video node. If a pipeline has already
* been allocated just increment its reference count and return it.
* Otherwise allocate a new pipeline and initialize it, it will be freed
* when the last reference is released.
*/
if (!video->rwpf->entity.pipe) {
pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
if (!pipe)
return ERR_PTR(-ENOMEM);
ret = vsp1_video_pipeline_init(pipe, video);
if (ret < 0) {
vsp1_pipeline_reset(pipe);
kfree(pipe);
return ERR_PTR(ret);
}
} else {
pipe = video->rwpf->entity.pipe;
kref_get(&pipe->kref);
}
return pipe;
}
static void vsp1_video_pipeline_release(struct kref *kref)
{
struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
vsp1_pipeline_reset(pipe);
kfree(pipe);
}
static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
{
struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
mutex_lock(&mdev->graph_mutex);
kref_put(&pipe->kref, vsp1_video_pipeline_release);
mutex_unlock(&mdev->graph_mutex);
}
/* -----------------------------------------------------------------------------
* videobuf2 Queue Operations
*/
static int
vsp1_video_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers, unsigned int *nplanes,
unsigned int sizes[], struct device *alloc_devs[])
{
struct vsp1_video *video = vb2_get_drv_priv(vq);
const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
unsigned int i;
if (*nplanes) {
if (*nplanes != format->num_planes)
return -EINVAL;
for (i = 0; i < *nplanes; i++)
if (sizes[i] < format->plane_fmt[i].sizeimage)
return -EINVAL;
return 0;
}
*nplanes = format->num_planes;
for (i = 0; i < format->num_planes; ++i)
sizes[i] = format->plane_fmt[i].sizeimage;
return 0;
}
static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
unsigned int i;
if (vb->num_planes < format->num_planes)
return -EINVAL;
for (i = 0; i < vb->num_planes; ++i) {
buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
return -EINVAL;
}
for ( ; i < 3; ++i)
buf->mem.addr[i] = 0;
return 0;
}
static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
unsigned long flags;
bool empty;
spin_lock_irqsave(&video->irqlock, flags);
empty = list_empty(&video->irqqueue);
list_add_tail(&buf->queue, &video->irqqueue);
spin_unlock_irqrestore(&video->irqlock, flags);
if (!empty)
return;
spin_lock_irqsave(&pipe->irqlock, flags);
video->rwpf->mem = buf->mem;
pipe->buffers_ready |= 1 << video->pipe_index;
if (vb2_is_streaming(&video->queue) &&
vsp1_pipeline_ready(pipe))
vsp1_video_pipeline_run(pipe);
spin_unlock_irqrestore(&pipe->irqlock, flags);
}
static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
{
struct vsp1_entity *entity;
int ret;
/* Determine this pipelines sizes for image partitioning support. */
ret = vsp1_video_pipeline_setup_partitions(pipe);
if (ret < 0)
return ret;
if (pipe->uds) {
struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
/*
* If a BRU or BRS is present in the pipeline before the UDS,
* the alpha component doesn't need to be scaled as the BRU and
* BRS output alpha value is fixed to 255. Otherwise we need to
* scale the alpha component only when available at the input
* RPF.
*/
if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
pipe->uds_input->type == VSP1_ENTITY_BRS) {
uds->scale_alpha = false;
} else {
struct vsp1_rwpf *rpf =
to_rwpf(&pipe->uds_input->subdev);
uds->scale_alpha = rpf->fmtinfo->alpha;
}
}
/*
* Compute and cache the stream configuration into a body. The cached
* body will be added to the display list by vsp1_video_pipeline_run()
* whenever the pipeline needs to be fully reconfigured.
*/
pipe->stream_config = vsp1_dlm_dl_body_get(pipe->output->dlm);
if (!pipe->stream_config)
return -ENOMEM;
list_for_each_entry(entity, &pipe->entities, list_pipe) {
vsp1_entity_route_setup(entity, pipe, pipe->stream_config);
vsp1_entity_configure_stream(entity, pipe, pipe->stream_config);
}
return 0;
}
static void vsp1_video_release_buffers(struct vsp1_video *video)
{
struct vsp1_vb2_buffer *buffer;
unsigned long flags;
/* Remove all buffers from the IRQ queue. */
spin_lock_irqsave(&video->irqlock, flags);
list_for_each_entry(buffer, &video->irqqueue, queue)
vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
INIT_LIST_HEAD(&video->irqqueue);
spin_unlock_irqrestore(&video->irqlock, flags);
}
static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
{
lockdep_assert_held(&pipe->lock);
/* Release any cached configuration from our output video. */
vsp1_dl_body_put(pipe->stream_config);
pipe->stream_config = NULL;
pipe->configured = false;
/* Release our partition table allocation */
kfree(pipe->part_table);
pipe->part_table = NULL;
}
static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct vsp1_video *video = vb2_get_drv_priv(vq);
struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
bool start_pipeline = false;
unsigned long flags;
int ret;
mutex_lock(&pipe->lock);
if (pipe->stream_count == pipe->num_inputs) {
ret = vsp1_video_setup_pipeline(pipe);
if (ret < 0) {
vsp1_video_release_buffers(video);
vsp1_video_cleanup_pipeline(pipe);
mutex_unlock(&pipe->lock);
return ret;
}
start_pipeline = true;
}
pipe->stream_count++;
mutex_unlock(&pipe->lock);
/*
* vsp1_pipeline_ready() is not sufficient to establish that all streams
* are prepared and the pipeline is configured, as multiple streams
* can race through streamon with buffers already queued; Therefore we
* don't even attempt to start the pipeline until the last stream has
* called through here.
*/
if (!start_pipeline)
return 0;
spin_lock_irqsave(&pipe->irqlock, flags);
if (vsp1_pipeline_ready(pipe))
vsp1_video_pipeline_run(pipe);
spin_unlock_irqrestore(&pipe->irqlock, flags);
return 0;
}
static void vsp1_video_stop_streaming(struct vb2_queue *vq)
{
struct vsp1_video *video = vb2_get_drv_priv(vq);
struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
unsigned long flags;
int ret;
/*
* Clear the buffers ready flag to make sure the device won't be started
* by a QBUF on the video node on the other side of the pipeline.
*/
spin_lock_irqsave(&video->irqlock, flags);
pipe->buffers_ready &= ~(1 << video->pipe_index);
spin_unlock_irqrestore(&video->irqlock, flags);
mutex_lock(&pipe->lock);
if (--pipe->stream_count == pipe->num_inputs) {
/* Stop the pipeline. */
ret = vsp1_pipeline_stop(pipe);
if (ret == -ETIMEDOUT)
dev_err(video->vsp1->dev, "pipeline stop timeout\n");
vsp1_video_cleanup_pipeline(pipe);
}
mutex_unlock(&pipe->lock);
media_pipeline_stop(&video->video.entity);
vsp1_video_release_buffers(video);
vsp1_video_pipeline_put(pipe);
}
static const struct vb2_ops vsp1_video_queue_qops = {
.queue_setup = vsp1_video_queue_setup,
.buf_prepare = vsp1_video_buffer_prepare,
.buf_queue = vsp1_video_buffer_queue,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.start_streaming = vsp1_video_start_streaming,
.stop_streaming = vsp1_video_stop_streaming,
};
/* -----------------------------------------------------------------------------
* V4L2 ioctls
*/
static int
vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
{
struct v4l2_fh *vfh = file->private_data;
struct vsp1_video *video = to_vsp1_video(vfh->vdev);
cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
| V4L2_CAP_VIDEO_CAPTURE_MPLANE
| V4L2_CAP_VIDEO_OUTPUT_MPLANE;
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE
| V4L2_CAP_STREAMING;
else
cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE
| V4L2_CAP_STREAMING;
strlcpy(cap->driver, "vsp1", sizeof(cap->driver));
strlcpy(cap->card, video->video.name, sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
dev_name(video->vsp1->dev));
return 0;
}
static int
vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
{
struct v4l2_fh *vfh = file->private_data;
struct vsp1_video *video = to_vsp1_video(vfh->vdev);
if (format->type != video->queue.type)
return -EINVAL;
mutex_lock(&video->lock);
format->fmt.pix_mp = video->rwpf->format;
mutex_unlock(&video->lock);
return 0;
}
static int
vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
{
struct v4l2_fh *vfh = file->private_data;
struct vsp1_video *video = to_vsp1_video(vfh->vdev);
if (format->type != video->queue.type)
return -EINVAL;
return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
}
static int
vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
{
struct v4l2_fh *vfh = file->private_data;
struct vsp1_video *video = to_vsp1_video(vfh->vdev);
const struct vsp1_format_info *info;
int ret;
if (format->type != video->queue.type)
return -EINVAL;
ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
if (ret < 0)
return ret;
mutex_lock(&video->lock);
if (vb2_is_busy(&video->queue)) {
ret = -EBUSY;
goto done;
}
video->rwpf->format = format->fmt.pix_mp;
video->rwpf->fmtinfo = info;
done:
mutex_unlock(&video->lock);
return ret;
}
static int
vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
{
struct v4l2_fh *vfh = file->private_data;
struct vsp1_video *video = to_vsp1_video(vfh->vdev);
struct media_device *mdev = &video->vsp1->media_dev;
struct vsp1_pipeline *pipe;
int ret;
if (video->queue.owner && video->queue.owner != file->private_data)
return -EBUSY;
/*
* Get a pipeline for the video node and start streaming on it. No link
* touching an entity in the pipeline can be activated or deactivated
* once streaming is started.
*/
mutex_lock(&mdev->graph_mutex);
pipe = vsp1_video_pipeline_get(video);
if (IS_ERR(pipe)) {
mutex_unlock(&mdev->graph_mutex);
return PTR_ERR(pipe);
}
ret = __media_pipeline_start(&video->video.entity, &pipe->pipe);
if (ret < 0) {
mutex_unlock(&mdev->graph_mutex);
goto err_pipe;
}
mutex_unlock(&mdev->graph_mutex);
/*
* Verify that the configured format matches the output of the connected
* subdev.
*/
ret = vsp1_video_verify_format(video);
if (ret < 0)
goto err_stop;
/* Start the queue. */
ret = vb2_streamon(&video->queue, type);
if (ret < 0)
goto err_stop;
return 0;
err_stop:
media_pipeline_stop(&video->video.entity);
err_pipe:
vsp1_video_pipeline_put(pipe);
return ret;
}
static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
.vidioc_querycap = vsp1_video_querycap,
.vidioc_g_fmt_vid_cap_mplane = vsp1_video_get_format,
.vidioc_s_fmt_vid_cap_mplane = vsp1_video_set_format,
.vidioc_try_fmt_vid_cap_mplane = vsp1_video_try_format,
.vidioc_g_fmt_vid_out_mplane = vsp1_video_get_format,
.vidioc_s_fmt_vid_out_mplane = vsp1_video_set_format,
.vidioc_try_fmt_vid_out_mplane = vsp1_video_try_format,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_streamon = vsp1_video_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
};
/* -----------------------------------------------------------------------------
* V4L2 File Operations
*/
static int vsp1_video_open(struct file *file)
{
struct vsp1_video *video = video_drvdata(file);
struct v4l2_fh *vfh;
int ret = 0;
vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
if (vfh == NULL)
return -ENOMEM;
v4l2_fh_init(vfh, &video->video);
v4l2_fh_add(vfh);
file->private_data = vfh;
ret = vsp1_device_get(video->vsp1);
if (ret < 0) {
v4l2_fh_del(vfh);
v4l2_fh_exit(vfh);
kfree(vfh);
}
return ret;
}
static int vsp1_video_release(struct file *file)
{
struct vsp1_video *video = video_drvdata(file);
struct v4l2_fh *vfh = file->private_data;
mutex_lock(&video->lock);
if (video->queue.owner == vfh) {
vb2_queue_release(&video->queue);
video->queue.owner = NULL;
}
mutex_unlock(&video->lock);
vsp1_device_put(video->vsp1);
v4l2_fh_release(file);
file->private_data = NULL;
return 0;
}
static const struct v4l2_file_operations vsp1_video_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = video_ioctl2,
.open = vsp1_video_open,
.release = vsp1_video_release,
.poll = vb2_fop_poll,
.mmap = vb2_fop_mmap,
};
/* -----------------------------------------------------------------------------
* Suspend and Resume
*/
void vsp1_video_suspend(struct vsp1_device *vsp1)
{
unsigned long flags;
unsigned int i;
int ret;
/*
* To avoid increasing the system suspend time needlessly, loop over the
* pipelines twice, first to set them all to the stopping state, and
* then to wait for the stop to complete.
*/
for (i = 0; i < vsp1->info->wpf_count; ++i) {
struct vsp1_rwpf *wpf = vsp1->wpf[i];
struct vsp1_pipeline *pipe;
if (wpf == NULL)
continue;
pipe = wpf->entity.pipe;
if (pipe == NULL)
continue;
spin_lock_irqsave(&pipe->irqlock, flags);
if (pipe->state == VSP1_PIPELINE_RUNNING)
pipe->state = VSP1_PIPELINE_STOPPING;
spin_unlock_irqrestore(&pipe->irqlock, flags);
}
for (i = 0; i < vsp1->info->wpf_count; ++i) {
struct vsp1_rwpf *wpf = vsp1->wpf[i];
struct vsp1_pipeline *pipe;
if (wpf == NULL)
continue;
pipe = wpf->entity.pipe;
if (pipe == NULL)
continue;
ret = wait_event_timeout(pipe->wq, vsp1_pipeline_stopped(pipe),
msecs_to_jiffies(500));
if (ret == 0)
dev_warn(vsp1->dev, "pipeline %u stop timeout\n",
wpf->entity.index);
}
}
void vsp1_video_resume(struct vsp1_device *vsp1)
{
unsigned long flags;
unsigned int i;
/* Resume all running pipelines. */
for (i = 0; i < vsp1->info->wpf_count; ++i) {
struct vsp1_rwpf *wpf = vsp1->wpf[i];
struct vsp1_pipeline *pipe;
if (wpf == NULL)
continue;
pipe = wpf->entity.pipe;
if (pipe == NULL)
continue;
/*
* The hardware may have been reset during a suspend and will
* need a full reconfiguration.
*/
pipe->configured = false;
spin_lock_irqsave(&pipe->irqlock, flags);
if (vsp1_pipeline_ready(pipe))
vsp1_video_pipeline_run(pipe);
spin_unlock_irqrestore(&pipe->irqlock, flags);
}
}
/* -----------------------------------------------------------------------------
* Initialization and Cleanup
*/
struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
struct vsp1_rwpf *rwpf)
{
struct vsp1_video *video;
const char *direction;
int ret;
video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
if (!video)
return ERR_PTR(-ENOMEM);
rwpf->video = video;
video->vsp1 = vsp1;
video->rwpf = rwpf;
if (rwpf->entity.type == VSP1_ENTITY_RPF) {
direction = "input";
video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
video->pad.flags = MEDIA_PAD_FL_SOURCE;
video->video.vfl_dir = VFL_DIR_TX;
} else {
direction = "output";
video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
video->pad.flags = MEDIA_PAD_FL_SINK;
video->video.vfl_dir = VFL_DIR_RX;
}
mutex_init(&video->lock);
spin_lock_init(&video->irqlock);
INIT_LIST_HEAD(&video->irqqueue);
/* Initialize the media entity... */
ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
if (ret < 0)
return ERR_PTR(ret);
/* ... and the format ... */
rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
__vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
/* ... and the video node... */
video->video.v4l2_dev = &video->vsp1->v4l2_dev;
video->video.fops = &vsp1_video_fops;
snprintf(video->video.name, sizeof(video->video.name), "%s %s",
rwpf->entity.subdev.name, direction);
video->video.vfl_type = VFL_TYPE_GRABBER;
video->video.release = video_device_release_empty;
video->video.ioctl_ops = &vsp1_video_ioctl_ops;
video_set_drvdata(&video->video, video);
video->queue.type = video->type;
video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
video->queue.lock = &video->lock;
video->queue.drv_priv = video;
video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
video->queue.ops = &vsp1_video_queue_qops;
video->queue.mem_ops = &vb2_dma_contig_memops;
video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
video->queue.dev = video->vsp1->bus_master;
ret = vb2_queue_init(&video->queue);
if (ret < 0) {
dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
goto error;
}
/* ... and register the video device. */
video->video.queue = &video->queue;
ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
if (ret < 0) {
dev_err(video->vsp1->dev, "failed to register video device\n");
goto error;
}
return video;
error:
vsp1_video_cleanup(video);
return ERR_PTR(ret);
}
void vsp1_video_cleanup(struct vsp1_video *video)
{
if (video_is_registered(&video->video))
video_unregister_device(&video->video);
media_entity_cleanup(&video->video.entity);
}