kernel_samsung_a34x-permissive/drivers/tty/serial/mps2-uart.c
2024-04-28 15:51:13 +02:00

602 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* MPS2 UART driver
*
* Copyright (C) 2015 ARM Limited
*
* Author: Vladimir Murzin <vladimir.murzin@arm.com>
*
* TODO: support for SysRq
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/console.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/serial_core.h>
#include <linux/tty_flip.h>
#include <linux/types.h>
#define SERIAL_NAME "ttyMPS"
#define DRIVER_NAME "mps2-uart"
#define MAKE_NAME(x) (DRIVER_NAME # x)
#define UARTn_DATA 0x00
#define UARTn_STATE 0x04
#define UARTn_STATE_TX_FULL BIT(0)
#define UARTn_STATE_RX_FULL BIT(1)
#define UARTn_STATE_TX_OVERRUN BIT(2)
#define UARTn_STATE_RX_OVERRUN BIT(3)
#define UARTn_CTRL 0x08
#define UARTn_CTRL_TX_ENABLE BIT(0)
#define UARTn_CTRL_RX_ENABLE BIT(1)
#define UARTn_CTRL_TX_INT_ENABLE BIT(2)
#define UARTn_CTRL_RX_INT_ENABLE BIT(3)
#define UARTn_CTRL_TX_OVERRUN_INT_ENABLE BIT(4)
#define UARTn_CTRL_RX_OVERRUN_INT_ENABLE BIT(5)
#define UARTn_INT 0x0c
#define UARTn_INT_TX BIT(0)
#define UARTn_INT_RX BIT(1)
#define UARTn_INT_TX_OVERRUN BIT(2)
#define UARTn_INT_RX_OVERRUN BIT(3)
#define UARTn_BAUDDIV 0x10
#define UARTn_BAUDDIV_MASK GENMASK(20, 0)
/*
* Helpers to make typical enable/disable operations more readable.
*/
#define UARTn_CTRL_TX_GRP (UARTn_CTRL_TX_ENABLE |\
UARTn_CTRL_TX_INT_ENABLE |\
UARTn_CTRL_TX_OVERRUN_INT_ENABLE)
#define UARTn_CTRL_RX_GRP (UARTn_CTRL_RX_ENABLE |\
UARTn_CTRL_RX_INT_ENABLE |\
UARTn_CTRL_RX_OVERRUN_INT_ENABLE)
#define MPS2_MAX_PORTS 3
struct mps2_uart_port {
struct uart_port port;
struct clk *clk;
unsigned int tx_irq;
unsigned int rx_irq;
};
static inline struct mps2_uart_port *to_mps2_port(struct uart_port *port)
{
return container_of(port, struct mps2_uart_port, port);
}
static void mps2_uart_write8(struct uart_port *port, u8 val, unsigned int off)
{
struct mps2_uart_port *mps_port = to_mps2_port(port);
writeb(val, mps_port->port.membase + off);
}
static u8 mps2_uart_read8(struct uart_port *port, unsigned int off)
{
struct mps2_uart_port *mps_port = to_mps2_port(port);
return readb(mps_port->port.membase + off);
}
static void mps2_uart_write32(struct uart_port *port, u32 val, unsigned int off)
{
struct mps2_uart_port *mps_port = to_mps2_port(port);
writel_relaxed(val, mps_port->port.membase + off);
}
static unsigned int mps2_uart_tx_empty(struct uart_port *port)
{
u8 status = mps2_uart_read8(port, UARTn_STATE);
return (status & UARTn_STATE_TX_FULL) ? 0 : TIOCSER_TEMT;
}
static void mps2_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
}
static unsigned int mps2_uart_get_mctrl(struct uart_port *port)
{
return TIOCM_CAR | TIOCM_CTS | TIOCM_DSR;
}
static void mps2_uart_stop_tx(struct uart_port *port)
{
u8 control = mps2_uart_read8(port, UARTn_CTRL);
control &= ~UARTn_CTRL_TX_INT_ENABLE;
mps2_uart_write8(port, control, UARTn_CTRL);
}
static void mps2_uart_tx_chars(struct uart_port *port)
{
struct circ_buf *xmit = &port->state->xmit;
while (!(mps2_uart_read8(port, UARTn_STATE) & UARTn_STATE_TX_FULL)) {
if (port->x_char) {
mps2_uart_write8(port, port->x_char, UARTn_DATA);
port->x_char = 0;
port->icount.tx++;
continue;
}
if (uart_circ_empty(xmit) || uart_tx_stopped(port))
break;
mps2_uart_write8(port, xmit->buf[xmit->tail], UARTn_DATA);
xmit->tail = (xmit->tail + 1) % UART_XMIT_SIZE;
port->icount.tx++;
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
if (uart_circ_empty(xmit))
mps2_uart_stop_tx(port);
}
static void mps2_uart_start_tx(struct uart_port *port)
{
u8 control = mps2_uart_read8(port, UARTn_CTRL);
control |= UARTn_CTRL_TX_INT_ENABLE;
mps2_uart_write8(port, control, UARTn_CTRL);
/*
* We've just unmasked the TX IRQ and now slow-starting via
* polling; if there is enough data to fill up the internal
* write buffer in one go, the TX IRQ should assert, at which
* point we switch to fully interrupt-driven TX.
*/
mps2_uart_tx_chars(port);
}
static void mps2_uart_stop_rx(struct uart_port *port)
{
u8 control = mps2_uart_read8(port, UARTn_CTRL);
control &= ~UARTn_CTRL_RX_GRP;
mps2_uart_write8(port, control, UARTn_CTRL);
}
static void mps2_uart_break_ctl(struct uart_port *port, int ctl)
{
}
static void mps2_uart_rx_chars(struct uart_port *port)
{
struct tty_port *tport = &port->state->port;
while (mps2_uart_read8(port, UARTn_STATE) & UARTn_STATE_RX_FULL) {
u8 rxdata = mps2_uart_read8(port, UARTn_DATA);
port->icount.rx++;
tty_insert_flip_char(&port->state->port, rxdata, TTY_NORMAL);
}
tty_flip_buffer_push(tport);
}
static irqreturn_t mps2_uart_rxirq(int irq, void *data)
{
struct uart_port *port = data;
u8 irqflag = mps2_uart_read8(port, UARTn_INT);
if (unlikely(!(irqflag & UARTn_INT_RX)))
return IRQ_NONE;
spin_lock(&port->lock);
mps2_uart_write8(port, UARTn_INT_RX, UARTn_INT);
mps2_uart_rx_chars(port);
spin_unlock(&port->lock);
return IRQ_HANDLED;
}
static irqreturn_t mps2_uart_txirq(int irq, void *data)
{
struct uart_port *port = data;
u8 irqflag = mps2_uart_read8(port, UARTn_INT);
if (unlikely(!(irqflag & UARTn_INT_TX)))
return IRQ_NONE;
spin_lock(&port->lock);
mps2_uart_write8(port, UARTn_INT_TX, UARTn_INT);
mps2_uart_tx_chars(port);
spin_unlock(&port->lock);
return IRQ_HANDLED;
}
static irqreturn_t mps2_uart_oerrirq(int irq, void *data)
{
irqreturn_t handled = IRQ_NONE;
struct uart_port *port = data;
u8 irqflag = mps2_uart_read8(port, UARTn_INT);
spin_lock(&port->lock);
if (irqflag & UARTn_INT_RX_OVERRUN) {
struct tty_port *tport = &port->state->port;
mps2_uart_write8(port, UARTn_INT_RX_OVERRUN, UARTn_INT);
port->icount.overrun++;
tty_insert_flip_char(tport, 0, TTY_OVERRUN);
tty_flip_buffer_push(tport);
handled = IRQ_HANDLED;
}
/*
* It's never been seen in practice and it never *should* happen since
* we check if there is enough room in TX buffer before sending data.
* So we keep this check in case something suspicious has happened.
*/
if (irqflag & UARTn_INT_TX_OVERRUN) {
mps2_uart_write8(port, UARTn_INT_TX_OVERRUN, UARTn_INT);
handled = IRQ_HANDLED;
}
spin_unlock(&port->lock);
return handled;
}
static int mps2_uart_startup(struct uart_port *port)
{
struct mps2_uart_port *mps_port = to_mps2_port(port);
u8 control = mps2_uart_read8(port, UARTn_CTRL);
int ret;
control &= ~(UARTn_CTRL_RX_GRP | UARTn_CTRL_TX_GRP);
mps2_uart_write8(port, control, UARTn_CTRL);
ret = request_irq(mps_port->rx_irq, mps2_uart_rxirq, 0,
MAKE_NAME(-rx), mps_port);
if (ret) {
dev_err(port->dev, "failed to register rxirq (%d)\n", ret);
return ret;
}
ret = request_irq(mps_port->tx_irq, mps2_uart_txirq, 0,
MAKE_NAME(-tx), mps_port);
if (ret) {
dev_err(port->dev, "failed to register txirq (%d)\n", ret);
goto err_free_rxirq;
}
ret = request_irq(port->irq, mps2_uart_oerrirq, IRQF_SHARED,
MAKE_NAME(-overrun), mps_port);
if (ret) {
dev_err(port->dev, "failed to register oerrirq (%d)\n", ret);
goto err_free_txirq;
}
control |= UARTn_CTRL_RX_GRP | UARTn_CTRL_TX_GRP;
mps2_uart_write8(port, control, UARTn_CTRL);
return 0;
err_free_txirq:
free_irq(mps_port->tx_irq, mps_port);
err_free_rxirq:
free_irq(mps_port->rx_irq, mps_port);
return ret;
}
static void mps2_uart_shutdown(struct uart_port *port)
{
struct mps2_uart_port *mps_port = to_mps2_port(port);
u8 control = mps2_uart_read8(port, UARTn_CTRL);
control &= ~(UARTn_CTRL_RX_GRP | UARTn_CTRL_TX_GRP);
mps2_uart_write8(port, control, UARTn_CTRL);
free_irq(mps_port->rx_irq, mps_port);
free_irq(mps_port->tx_irq, mps_port);
free_irq(port->irq, mps_port);
}
static void
mps2_uart_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
unsigned long flags;
unsigned int baud, bauddiv;
termios->c_cflag &= ~(CRTSCTS | CMSPAR);
termios->c_cflag &= ~CSIZE;
termios->c_cflag |= CS8;
termios->c_cflag &= ~PARENB;
termios->c_cflag &= ~CSTOPB;
baud = uart_get_baud_rate(port, termios, old,
DIV_ROUND_CLOSEST(port->uartclk, UARTn_BAUDDIV_MASK),
DIV_ROUND_CLOSEST(port->uartclk, 16));
bauddiv = DIV_ROUND_CLOSEST(port->uartclk, baud);
spin_lock_irqsave(&port->lock, flags);
uart_update_timeout(port, termios->c_cflag, baud);
mps2_uart_write32(port, bauddiv, UARTn_BAUDDIV);
spin_unlock_irqrestore(&port->lock, flags);
if (tty_termios_baud_rate(termios))
tty_termios_encode_baud_rate(termios, baud, baud);
}
static const char *mps2_uart_type(struct uart_port *port)
{
return (port->type == PORT_MPS2UART) ? DRIVER_NAME : NULL;
}
static void mps2_uart_release_port(struct uart_port *port)
{
}
static int mps2_uart_request_port(struct uart_port *port)
{
return 0;
}
static void mps2_uart_config_port(struct uart_port *port, int type)
{
if (type & UART_CONFIG_TYPE && !mps2_uart_request_port(port))
port->type = PORT_MPS2UART;
}
static int mps2_uart_verify_port(struct uart_port *port, struct serial_struct *serinfo)
{
return -EINVAL;
}
static const struct uart_ops mps2_uart_pops = {
.tx_empty = mps2_uart_tx_empty,
.set_mctrl = mps2_uart_set_mctrl,
.get_mctrl = mps2_uart_get_mctrl,
.stop_tx = mps2_uart_stop_tx,
.start_tx = mps2_uart_start_tx,
.stop_rx = mps2_uart_stop_rx,
.break_ctl = mps2_uart_break_ctl,
.startup = mps2_uart_startup,
.shutdown = mps2_uart_shutdown,
.set_termios = mps2_uart_set_termios,
.type = mps2_uart_type,
.release_port = mps2_uart_release_port,
.request_port = mps2_uart_request_port,
.config_port = mps2_uart_config_port,
.verify_port = mps2_uart_verify_port,
};
static struct mps2_uart_port mps2_uart_ports[MPS2_MAX_PORTS];
#ifdef CONFIG_SERIAL_MPS2_UART_CONSOLE
static void mps2_uart_console_putchar(struct uart_port *port, int ch)
{
while (mps2_uart_read8(port, UARTn_STATE) & UARTn_STATE_TX_FULL)
cpu_relax();
mps2_uart_write8(port, ch, UARTn_DATA);
}
static void mps2_uart_console_write(struct console *co, const char *s, unsigned int cnt)
{
struct uart_port *port = &mps2_uart_ports[co->index].port;
uart_console_write(port, s, cnt, mps2_uart_console_putchar);
}
static int mps2_uart_console_setup(struct console *co, char *options)
{
struct mps2_uart_port *mps_port;
int baud = 9600;
int bits = 8;
int parity = 'n';
int flow = 'n';
if (co->index < 0 || co->index >= MPS2_MAX_PORTS)
return -ENODEV;
mps_port = &mps2_uart_ports[co->index];
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
return uart_set_options(&mps_port->port, co, baud, parity, bits, flow);
}
static struct uart_driver mps2_uart_driver;
static struct console mps2_uart_console = {
.name = SERIAL_NAME,
.device = uart_console_device,
.write = mps2_uart_console_write,
.setup = mps2_uart_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &mps2_uart_driver,
};
#define MPS2_SERIAL_CONSOLE (&mps2_uart_console)
static void mps2_early_putchar(struct uart_port *port, int ch)
{
while (readb(port->membase + UARTn_STATE) & UARTn_STATE_TX_FULL)
cpu_relax();
writeb((unsigned char)ch, port->membase + UARTn_DATA);
}
static void mps2_early_write(struct console *con, const char *s, unsigned int n)
{
struct earlycon_device *dev = con->data;
uart_console_write(&dev->port, s, n, mps2_early_putchar);
}
static int __init mps2_early_console_setup(struct earlycon_device *device,
const char *opt)
{
if (!device->port.membase)
return -ENODEV;
device->con->write = mps2_early_write;
return 0;
}
OF_EARLYCON_DECLARE(mps2, "arm,mps2-uart", mps2_early_console_setup);
#else
#define MPS2_SERIAL_CONSOLE NULL
#endif
static struct uart_driver mps2_uart_driver = {
.driver_name = DRIVER_NAME,
.dev_name = SERIAL_NAME,
.nr = MPS2_MAX_PORTS,
.cons = MPS2_SERIAL_CONSOLE,
};
static struct mps2_uart_port *mps2_of_get_port(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
int id;
if (!np)
return NULL;
id = of_alias_get_id(np, "serial");
if (id < 0)
id = 0;
if (WARN_ON(id >= MPS2_MAX_PORTS))
return NULL;
mps2_uart_ports[id].port.line = id;
return &mps2_uart_ports[id];
}
static int mps2_init_port(struct mps2_uart_port *mps_port,
struct platform_device *pdev)
{
struct resource *res;
int ret;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mps_port->port.membase = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mps_port->port.membase))
return PTR_ERR(mps_port->port.membase);
mps_port->port.mapbase = res->start;
mps_port->port.mapsize = resource_size(res);
mps_port->rx_irq = platform_get_irq(pdev, 0);
mps_port->tx_irq = platform_get_irq(pdev, 1);
mps_port->port.irq = platform_get_irq(pdev, 2);
mps_port->port.iotype = UPIO_MEM;
mps_port->port.flags = UPF_BOOT_AUTOCONF;
mps_port->port.fifosize = 1;
mps_port->port.ops = &mps2_uart_pops;
mps_port->port.dev = &pdev->dev;
mps_port->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(mps_port->clk))
return PTR_ERR(mps_port->clk);
ret = clk_prepare_enable(mps_port->clk);
if (ret)
return ret;
mps_port->port.uartclk = clk_get_rate(mps_port->clk);
clk_disable_unprepare(mps_port->clk);
return ret;
}
static int mps2_serial_probe(struct platform_device *pdev)
{
struct mps2_uart_port *mps_port;
int ret;
mps_port = mps2_of_get_port(pdev);
if (!mps_port)
return -ENODEV;
ret = mps2_init_port(mps_port, pdev);
if (ret)
return ret;
ret = uart_add_one_port(&mps2_uart_driver, &mps_port->port);
if (ret)
return ret;
platform_set_drvdata(pdev, mps_port);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id mps2_match[] = {
{ .compatible = "arm,mps2-uart", },
{},
};
#endif
static struct platform_driver mps2_serial_driver = {
.probe = mps2_serial_probe,
.driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(mps2_match),
.suppress_bind_attrs = true,
},
};
static int __init mps2_uart_init(void)
{
int ret;
ret = uart_register_driver(&mps2_uart_driver);
if (ret)
return ret;
ret = platform_driver_register(&mps2_serial_driver);
if (ret)
uart_unregister_driver(&mps2_uart_driver);
return ret;
}
arch_initcall(mps2_uart_init);