6db4831e98
Android 14
553 lines
16 KiB
C
553 lines
16 KiB
C
/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*/
|
|
|
|
/* Devmaps primary use is as a backend map for XDP BPF helper call
|
|
* bpf_redirect_map(). Because XDP is mostly concerned with performance we
|
|
* spent some effort to ensure the datapath with redirect maps does not use
|
|
* any locking. This is a quick note on the details.
|
|
*
|
|
* We have three possible paths to get into the devmap control plane bpf
|
|
* syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
|
|
* will invoke an update, delete, or lookup operation. To ensure updates and
|
|
* deletes appear atomic from the datapath side xchg() is used to modify the
|
|
* netdev_map array. Then because the datapath does a lookup into the netdev_map
|
|
* array (read-only) from an RCU critical section we use call_rcu() to wait for
|
|
* an rcu grace period before free'ing the old data structures. This ensures the
|
|
* datapath always has a valid copy. However, the datapath does a "flush"
|
|
* operation that pushes any pending packets in the driver outside the RCU
|
|
* critical section. Each bpf_dtab_netdev tracks these pending operations using
|
|
* an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
|
|
* until all bits are cleared indicating outstanding flush operations have
|
|
* completed.
|
|
*
|
|
* BPF syscalls may race with BPF program calls on any of the update, delete
|
|
* or lookup operations. As noted above the xchg() operation also keep the
|
|
* netdev_map consistent in this case. From the devmap side BPF programs
|
|
* calling into these operations are the same as multiple user space threads
|
|
* making system calls.
|
|
*
|
|
* Finally, any of the above may race with a netdev_unregister notifier. The
|
|
* unregister notifier must search for net devices in the map structure that
|
|
* contain a reference to the net device and remove them. This is a two step
|
|
* process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
|
|
* check to see if the ifindex is the same as the net_device being removed.
|
|
* When removing the dev a cmpxchg() is used to ensure the correct dev is
|
|
* removed, in the case of a concurrent update or delete operation it is
|
|
* possible that the initially referenced dev is no longer in the map. As the
|
|
* notifier hook walks the map we know that new dev references can not be
|
|
* added by the user because core infrastructure ensures dev_get_by_index()
|
|
* calls will fail at this point.
|
|
*/
|
|
#include <linux/bpf.h>
|
|
#include <net/xdp.h>
|
|
#include <linux/filter.h>
|
|
#include <trace/events/xdp.h>
|
|
|
|
#define DEV_CREATE_FLAG_MASK \
|
|
(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
|
|
|
|
#define DEV_MAP_BULK_SIZE 16
|
|
struct xdp_bulk_queue {
|
|
struct xdp_frame *q[DEV_MAP_BULK_SIZE];
|
|
struct net_device *dev_rx;
|
|
unsigned int count;
|
|
};
|
|
|
|
struct bpf_dtab_netdev {
|
|
struct net_device *dev; /* must be first member, due to tracepoint */
|
|
struct bpf_dtab *dtab;
|
|
unsigned int bit;
|
|
struct xdp_bulk_queue __percpu *bulkq;
|
|
struct rcu_head rcu;
|
|
};
|
|
|
|
struct bpf_dtab {
|
|
struct bpf_map map;
|
|
struct bpf_dtab_netdev **netdev_map;
|
|
unsigned long __percpu *flush_needed;
|
|
struct list_head list;
|
|
};
|
|
|
|
static DEFINE_SPINLOCK(dev_map_lock);
|
|
static LIST_HEAD(dev_map_list);
|
|
|
|
static u64 dev_map_bitmap_size(const union bpf_attr *attr)
|
|
{
|
|
return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
|
|
}
|
|
|
|
static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
|
|
{
|
|
struct bpf_dtab *dtab;
|
|
int err = -EINVAL;
|
|
u64 cost;
|
|
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return ERR_PTR(-EPERM);
|
|
|
|
/* check sanity of attributes */
|
|
if (attr->max_entries == 0 || attr->key_size != 4 ||
|
|
attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
dtab = kzalloc(sizeof(*dtab), GFP_USER);
|
|
if (!dtab)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
bpf_map_init_from_attr(&dtab->map, attr);
|
|
|
|
/* make sure page count doesn't overflow */
|
|
cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
|
|
cost += dev_map_bitmap_size(attr) * num_possible_cpus();
|
|
if (cost >= U32_MAX - PAGE_SIZE)
|
|
goto free_dtab;
|
|
|
|
dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
|
|
|
|
/* if map size is larger than memlock limit, reject it early */
|
|
err = bpf_map_precharge_memlock(dtab->map.pages);
|
|
if (err)
|
|
goto free_dtab;
|
|
|
|
err = -ENOMEM;
|
|
|
|
/* A per cpu bitfield with a bit per possible net device */
|
|
dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
|
|
__alignof__(unsigned long),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!dtab->flush_needed)
|
|
goto free_dtab;
|
|
|
|
dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
|
|
sizeof(struct bpf_dtab_netdev *),
|
|
dtab->map.numa_node);
|
|
if (!dtab->netdev_map)
|
|
goto free_dtab;
|
|
|
|
spin_lock(&dev_map_lock);
|
|
list_add_tail_rcu(&dtab->list, &dev_map_list);
|
|
spin_unlock(&dev_map_lock);
|
|
|
|
return &dtab->map;
|
|
free_dtab:
|
|
free_percpu(dtab->flush_needed);
|
|
kfree(dtab);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void dev_map_free(struct bpf_map *map)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
int i, cpu;
|
|
|
|
/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
|
|
* so the programs (can be more than one that used this map) were
|
|
* disconnected from events. Wait for outstanding critical sections in
|
|
* these programs to complete. The rcu critical section only guarantees
|
|
* no further reads against netdev_map. It does __not__ ensure pending
|
|
* flush operations (if any) are complete.
|
|
*/
|
|
|
|
spin_lock(&dev_map_lock);
|
|
list_del_rcu(&dtab->list);
|
|
spin_unlock(&dev_map_lock);
|
|
|
|
bpf_clear_redirect_map(map);
|
|
synchronize_rcu();
|
|
|
|
/* Make sure prior __dev_map_entry_free() have completed. */
|
|
rcu_barrier();
|
|
|
|
/* To ensure all pending flush operations have completed wait for flush
|
|
* bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
|
|
* Because the above synchronize_rcu() ensures the map is disconnected
|
|
* from the program we can assume no new bits will be set.
|
|
*/
|
|
for_each_online_cpu(cpu) {
|
|
unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
|
|
|
|
while (!bitmap_empty(bitmap, dtab->map.max_entries))
|
|
cond_resched();
|
|
}
|
|
|
|
for (i = 0; i < dtab->map.max_entries; i++) {
|
|
struct bpf_dtab_netdev *dev;
|
|
|
|
dev = dtab->netdev_map[i];
|
|
if (!dev)
|
|
continue;
|
|
|
|
free_percpu(dev->bulkq);
|
|
dev_put(dev->dev);
|
|
kfree(dev);
|
|
}
|
|
|
|
free_percpu(dtab->flush_needed);
|
|
bpf_map_area_free(dtab->netdev_map);
|
|
kfree(dtab);
|
|
}
|
|
|
|
static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
u32 index = key ? *(u32 *)key : U32_MAX;
|
|
u32 *next = next_key;
|
|
|
|
if (index >= dtab->map.max_entries) {
|
|
*next = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (index == dtab->map.max_entries - 1)
|
|
return -ENOENT;
|
|
*next = index + 1;
|
|
return 0;
|
|
}
|
|
|
|
void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
|
|
|
|
__set_bit(bit, bitmap);
|
|
}
|
|
|
|
static int bq_xmit_all(struct bpf_dtab_netdev *obj,
|
|
struct xdp_bulk_queue *bq, u32 flags,
|
|
bool in_napi_ctx)
|
|
{
|
|
struct net_device *dev = obj->dev;
|
|
int sent = 0, drops = 0, err = 0;
|
|
int i;
|
|
|
|
if (unlikely(!bq->count))
|
|
return 0;
|
|
|
|
for (i = 0; i < bq->count; i++) {
|
|
struct xdp_frame *xdpf = bq->q[i];
|
|
|
|
prefetch(xdpf);
|
|
}
|
|
|
|
sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
|
|
if (sent < 0) {
|
|
err = sent;
|
|
sent = 0;
|
|
goto error;
|
|
}
|
|
drops = bq->count - sent;
|
|
out:
|
|
bq->count = 0;
|
|
|
|
trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
|
|
sent, drops, bq->dev_rx, dev, err);
|
|
bq->dev_rx = NULL;
|
|
return 0;
|
|
error:
|
|
/* If ndo_xdp_xmit fails with an errno, no frames have been
|
|
* xmit'ed and it's our responsibility to them free all.
|
|
*/
|
|
for (i = 0; i < bq->count; i++) {
|
|
struct xdp_frame *xdpf = bq->q[i];
|
|
|
|
/* RX path under NAPI protection, can return frames faster */
|
|
if (likely(in_napi_ctx))
|
|
xdp_return_frame_rx_napi(xdpf);
|
|
else
|
|
xdp_return_frame(xdpf);
|
|
drops++;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
|
|
* from the driver before returning from its napi->poll() routine. The poll()
|
|
* routine is called either from busy_poll context or net_rx_action signaled
|
|
* from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
|
|
* net device can be torn down. On devmap tear down we ensure the ctx bitmap
|
|
* is zeroed before completing to ensure all flush operations have completed.
|
|
*/
|
|
void __dev_map_flush(struct bpf_map *map)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
|
|
u32 bit;
|
|
|
|
rcu_read_lock();
|
|
for_each_set_bit(bit, bitmap, map->max_entries) {
|
|
struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
|
|
struct xdp_bulk_queue *bq;
|
|
|
|
/* This is possible if the dev entry is removed by user space
|
|
* between xdp redirect and flush op.
|
|
*/
|
|
if (unlikely(!dev))
|
|
continue;
|
|
|
|
bq = this_cpu_ptr(dev->bulkq);
|
|
bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
|
|
|
|
__clear_bit(bit, bitmap);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
|
|
* update happens in parallel here a dev_put wont happen until after reading the
|
|
* ifindex.
|
|
*/
|
|
struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *obj;
|
|
|
|
if (key >= map->max_entries)
|
|
return NULL;
|
|
|
|
obj = READ_ONCE(dtab->netdev_map[key]);
|
|
return obj;
|
|
}
|
|
|
|
/* Runs under RCU-read-side, plus in softirq under NAPI protection.
|
|
* Thus, safe percpu variable access.
|
|
*/
|
|
static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
|
|
struct net_device *dev_rx)
|
|
|
|
{
|
|
struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
|
|
|
|
if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
|
|
bq_xmit_all(obj, bq, 0, true);
|
|
|
|
/* Ingress dev_rx will be the same for all xdp_frame's in
|
|
* bulk_queue, because bq stored per-CPU and must be flushed
|
|
* from net_device drivers NAPI func end.
|
|
*/
|
|
if (!bq->dev_rx)
|
|
bq->dev_rx = dev_rx;
|
|
|
|
bq->q[bq->count++] = xdpf;
|
|
return 0;
|
|
}
|
|
|
|
int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
|
|
struct net_device *dev_rx)
|
|
{
|
|
struct net_device *dev = dst->dev;
|
|
struct xdp_frame *xdpf;
|
|
int err;
|
|
|
|
if (!dev->netdev_ops->ndo_xdp_xmit)
|
|
return -EOPNOTSUPP;
|
|
|
|
err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
xdpf = convert_to_xdp_frame(xdp);
|
|
if (unlikely(!xdpf))
|
|
return -EOVERFLOW;
|
|
|
|
return bq_enqueue(dst, xdpf, dev_rx);
|
|
}
|
|
|
|
int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
|
|
struct bpf_prog *xdp_prog)
|
|
{
|
|
int err;
|
|
|
|
err = xdp_ok_fwd_dev(dst->dev, skb->len);
|
|
if (unlikely(err))
|
|
return err;
|
|
skb->dev = dst->dev;
|
|
generic_xdp_tx(skb, xdp_prog);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
|
|
struct net_device *dev = obj ? obj->dev : NULL;
|
|
|
|
return dev ? &dev->ifindex : NULL;
|
|
}
|
|
|
|
static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
|
|
{
|
|
if (dev->dev->netdev_ops->ndo_xdp_xmit) {
|
|
struct xdp_bulk_queue *bq;
|
|
unsigned long *bitmap;
|
|
|
|
int cpu;
|
|
|
|
rcu_read_lock();
|
|
for_each_online_cpu(cpu) {
|
|
bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
|
|
__clear_bit(dev->bit, bitmap);
|
|
|
|
bq = per_cpu_ptr(dev->bulkq, cpu);
|
|
bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
}
|
|
|
|
static void __dev_map_entry_free(struct rcu_head *rcu)
|
|
{
|
|
struct bpf_dtab_netdev *dev;
|
|
|
|
dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
|
|
dev_map_flush_old(dev);
|
|
free_percpu(dev->bulkq);
|
|
dev_put(dev->dev);
|
|
kfree(dev);
|
|
}
|
|
|
|
static int dev_map_delete_elem(struct bpf_map *map, void *key)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct bpf_dtab_netdev *old_dev;
|
|
int k = *(u32 *)key;
|
|
|
|
if (k >= map->max_entries)
|
|
return -EINVAL;
|
|
|
|
/* Use call_rcu() here to ensure any rcu critical sections have
|
|
* completed, but this does not guarantee a flush has happened
|
|
* yet. Because driver side rcu_read_lock/unlock only protects the
|
|
* running XDP program. However, for pending flush operations the
|
|
* dev and ctx are stored in another per cpu map. And additionally,
|
|
* the driver tear down ensures all soft irqs are complete before
|
|
* removing the net device in the case of dev_put equals zero.
|
|
*/
|
|
old_dev = xchg(&dtab->netdev_map[k], NULL);
|
|
if (old_dev)
|
|
call_rcu(&old_dev->rcu, __dev_map_entry_free);
|
|
return 0;
|
|
}
|
|
|
|
static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
|
|
u64 map_flags)
|
|
{
|
|
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
|
|
struct net *net = current->nsproxy->net_ns;
|
|
gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
|
|
struct bpf_dtab_netdev *dev, *old_dev;
|
|
u32 i = *(u32 *)key;
|
|
u32 ifindex = *(u32 *)value;
|
|
|
|
if (unlikely(map_flags > BPF_EXIST))
|
|
return -EINVAL;
|
|
if (unlikely(i >= dtab->map.max_entries))
|
|
return -E2BIG;
|
|
if (unlikely(map_flags == BPF_NOEXIST))
|
|
return -EEXIST;
|
|
|
|
if (!ifindex) {
|
|
dev = NULL;
|
|
} else {
|
|
dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
|
|
sizeof(void *), gfp);
|
|
if (!dev->bulkq) {
|
|
kfree(dev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dev->dev = dev_get_by_index(net, ifindex);
|
|
if (!dev->dev) {
|
|
free_percpu(dev->bulkq);
|
|
kfree(dev);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev->bit = i;
|
|
dev->dtab = dtab;
|
|
}
|
|
|
|
/* Use call_rcu() here to ensure rcu critical sections have completed
|
|
* Remembering the driver side flush operation will happen before the
|
|
* net device is removed.
|
|
*/
|
|
old_dev = xchg(&dtab->netdev_map[i], dev);
|
|
if (old_dev)
|
|
call_rcu(&old_dev->rcu, __dev_map_entry_free);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_map_ops dev_map_ops = {
|
|
.map_alloc = dev_map_alloc,
|
|
.map_free = dev_map_free,
|
|
.map_get_next_key = dev_map_get_next_key,
|
|
.map_lookup_elem = dev_map_lookup_elem,
|
|
.map_update_elem = dev_map_update_elem,
|
|
.map_delete_elem = dev_map_delete_elem,
|
|
.map_check_btf = map_check_no_btf,
|
|
};
|
|
|
|
static int dev_map_notification(struct notifier_block *notifier,
|
|
ulong event, void *ptr)
|
|
{
|
|
struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
|
|
struct bpf_dtab *dtab;
|
|
int i;
|
|
|
|
switch (event) {
|
|
case NETDEV_UNREGISTER:
|
|
/* This rcu_read_lock/unlock pair is needed because
|
|
* dev_map_list is an RCU list AND to ensure a delete
|
|
* operation does not free a netdev_map entry while we
|
|
* are comparing it against the netdev being unregistered.
|
|
*/
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(dtab, &dev_map_list, list) {
|
|
for (i = 0; i < dtab->map.max_entries; i++) {
|
|
struct bpf_dtab_netdev *dev, *odev;
|
|
|
|
dev = READ_ONCE(dtab->netdev_map[i]);
|
|
if (!dev || netdev != dev->dev)
|
|
continue;
|
|
odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
|
|
if (dev == odev)
|
|
call_rcu(&dev->rcu,
|
|
__dev_map_entry_free);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block dev_map_notifier = {
|
|
.notifier_call = dev_map_notification,
|
|
};
|
|
|
|
static int __init dev_map_init(void)
|
|
{
|
|
/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
|
|
BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
|
|
offsetof(struct _bpf_dtab_netdev, dev));
|
|
register_netdevice_notifier(&dev_map_notifier);
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(dev_map_init);
|