6db4831e98
Android 14
10981 lines
287 KiB
ArmAsm
10981 lines
287 KiB
ArmAsm
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
|
|
M68000 Hi-Performance Microprocessor Division
|
|
M68060 Software Package
|
|
Production Release P1.00 -- October 10, 1994
|
|
|
|
M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
|
|
|
|
THE SOFTWARE is provided on an "AS IS" basis and without warranty.
|
|
To the maximum extent permitted by applicable law,
|
|
MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
|
|
INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
|
|
and any warranty against infringement with regard to the SOFTWARE
|
|
(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
|
|
|
|
To the maximum extent permitted by applicable law,
|
|
IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
|
|
(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
|
|
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
|
|
ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
|
|
Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
|
|
|
|
You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
|
|
so long as this entire notice is retained without alteration in any modified and/or
|
|
redistributed versions, and that such modified versions are clearly identified as such.
|
|
No licenses are granted by implication, estoppel or otherwise under any patents
|
|
or trademarks of Motorola, Inc.
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
#
|
|
# lfptop.s:
|
|
# This file is appended to the top of the 060ILSP package
|
|
# and contains the entry points into the package. The user, in
|
|
# effect, branches to one of the branch table entries located here.
|
|
#
|
|
|
|
bra.l _facoss_
|
|
short 0x0000
|
|
bra.l _facosd_
|
|
short 0x0000
|
|
bra.l _facosx_
|
|
short 0x0000
|
|
|
|
bra.l _fasins_
|
|
short 0x0000
|
|
bra.l _fasind_
|
|
short 0x0000
|
|
bra.l _fasinx_
|
|
short 0x0000
|
|
|
|
bra.l _fatans_
|
|
short 0x0000
|
|
bra.l _fatand_
|
|
short 0x0000
|
|
bra.l _fatanx_
|
|
short 0x0000
|
|
|
|
bra.l _fatanhs_
|
|
short 0x0000
|
|
bra.l _fatanhd_
|
|
short 0x0000
|
|
bra.l _fatanhx_
|
|
short 0x0000
|
|
|
|
bra.l _fcoss_
|
|
short 0x0000
|
|
bra.l _fcosd_
|
|
short 0x0000
|
|
bra.l _fcosx_
|
|
short 0x0000
|
|
|
|
bra.l _fcoshs_
|
|
short 0x0000
|
|
bra.l _fcoshd_
|
|
short 0x0000
|
|
bra.l _fcoshx_
|
|
short 0x0000
|
|
|
|
bra.l _fetoxs_
|
|
short 0x0000
|
|
bra.l _fetoxd_
|
|
short 0x0000
|
|
bra.l _fetoxx_
|
|
short 0x0000
|
|
|
|
bra.l _fetoxm1s_
|
|
short 0x0000
|
|
bra.l _fetoxm1d_
|
|
short 0x0000
|
|
bra.l _fetoxm1x_
|
|
short 0x0000
|
|
|
|
bra.l _fgetexps_
|
|
short 0x0000
|
|
bra.l _fgetexpd_
|
|
short 0x0000
|
|
bra.l _fgetexpx_
|
|
short 0x0000
|
|
|
|
bra.l _fgetmans_
|
|
short 0x0000
|
|
bra.l _fgetmand_
|
|
short 0x0000
|
|
bra.l _fgetmanx_
|
|
short 0x0000
|
|
|
|
bra.l _flog10s_
|
|
short 0x0000
|
|
bra.l _flog10d_
|
|
short 0x0000
|
|
bra.l _flog10x_
|
|
short 0x0000
|
|
|
|
bra.l _flog2s_
|
|
short 0x0000
|
|
bra.l _flog2d_
|
|
short 0x0000
|
|
bra.l _flog2x_
|
|
short 0x0000
|
|
|
|
bra.l _flogns_
|
|
short 0x0000
|
|
bra.l _flognd_
|
|
short 0x0000
|
|
bra.l _flognx_
|
|
short 0x0000
|
|
|
|
bra.l _flognp1s_
|
|
short 0x0000
|
|
bra.l _flognp1d_
|
|
short 0x0000
|
|
bra.l _flognp1x_
|
|
short 0x0000
|
|
|
|
bra.l _fmods_
|
|
short 0x0000
|
|
bra.l _fmodd_
|
|
short 0x0000
|
|
bra.l _fmodx_
|
|
short 0x0000
|
|
|
|
bra.l _frems_
|
|
short 0x0000
|
|
bra.l _fremd_
|
|
short 0x0000
|
|
bra.l _fremx_
|
|
short 0x0000
|
|
|
|
bra.l _fscales_
|
|
short 0x0000
|
|
bra.l _fscaled_
|
|
short 0x0000
|
|
bra.l _fscalex_
|
|
short 0x0000
|
|
|
|
bra.l _fsins_
|
|
short 0x0000
|
|
bra.l _fsind_
|
|
short 0x0000
|
|
bra.l _fsinx_
|
|
short 0x0000
|
|
|
|
bra.l _fsincoss_
|
|
short 0x0000
|
|
bra.l _fsincosd_
|
|
short 0x0000
|
|
bra.l _fsincosx_
|
|
short 0x0000
|
|
|
|
bra.l _fsinhs_
|
|
short 0x0000
|
|
bra.l _fsinhd_
|
|
short 0x0000
|
|
bra.l _fsinhx_
|
|
short 0x0000
|
|
|
|
bra.l _ftans_
|
|
short 0x0000
|
|
bra.l _ftand_
|
|
short 0x0000
|
|
bra.l _ftanx_
|
|
short 0x0000
|
|
|
|
bra.l _ftanhs_
|
|
short 0x0000
|
|
bra.l _ftanhd_
|
|
short 0x0000
|
|
bra.l _ftanhx_
|
|
short 0x0000
|
|
|
|
bra.l _ftentoxs_
|
|
short 0x0000
|
|
bra.l _ftentoxd_
|
|
short 0x0000
|
|
bra.l _ftentoxx_
|
|
short 0x0000
|
|
|
|
bra.l _ftwotoxs_
|
|
short 0x0000
|
|
bra.l _ftwotoxd_
|
|
short 0x0000
|
|
bra.l _ftwotoxx_
|
|
short 0x0000
|
|
|
|
bra.l _fabss_
|
|
short 0x0000
|
|
bra.l _fabsd_
|
|
short 0x0000
|
|
bra.l _fabsx_
|
|
short 0x0000
|
|
|
|
bra.l _fadds_
|
|
short 0x0000
|
|
bra.l _faddd_
|
|
short 0x0000
|
|
bra.l _faddx_
|
|
short 0x0000
|
|
|
|
bra.l _fdivs_
|
|
short 0x0000
|
|
bra.l _fdivd_
|
|
short 0x0000
|
|
bra.l _fdivx_
|
|
short 0x0000
|
|
|
|
bra.l _fints_
|
|
short 0x0000
|
|
bra.l _fintd_
|
|
short 0x0000
|
|
bra.l _fintx_
|
|
short 0x0000
|
|
|
|
bra.l _fintrzs_
|
|
short 0x0000
|
|
bra.l _fintrzd_
|
|
short 0x0000
|
|
bra.l _fintrzx_
|
|
short 0x0000
|
|
|
|
bra.l _fmuls_
|
|
short 0x0000
|
|
bra.l _fmuld_
|
|
short 0x0000
|
|
bra.l _fmulx_
|
|
short 0x0000
|
|
|
|
bra.l _fnegs_
|
|
short 0x0000
|
|
bra.l _fnegd_
|
|
short 0x0000
|
|
bra.l _fnegx_
|
|
short 0x0000
|
|
|
|
bra.l _fsqrts_
|
|
short 0x0000
|
|
bra.l _fsqrtd_
|
|
short 0x0000
|
|
bra.l _fsqrtx_
|
|
short 0x0000
|
|
|
|
bra.l _fsubs_
|
|
short 0x0000
|
|
bra.l _fsubd_
|
|
short 0x0000
|
|
bra.l _fsubx_
|
|
short 0x0000
|
|
|
|
# leave room for future possible additions
|
|
align 0x400
|
|
|
|
#
|
|
# This file contains a set of define statements for constants
|
|
# in order to promote readability within the corecode itself.
|
|
#
|
|
|
|
set LOCAL_SIZE, 192 # stack frame size(bytes)
|
|
set LV, -LOCAL_SIZE # stack offset
|
|
|
|
set EXC_SR, 0x4 # stack status register
|
|
set EXC_PC, 0x6 # stack pc
|
|
set EXC_VOFF, 0xa # stacked vector offset
|
|
set EXC_EA, 0xc # stacked <ea>
|
|
|
|
set EXC_FP, 0x0 # frame pointer
|
|
|
|
set EXC_AREGS, -68 # offset of all address regs
|
|
set EXC_DREGS, -100 # offset of all data regs
|
|
set EXC_FPREGS, -36 # offset of all fp regs
|
|
|
|
set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7
|
|
set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7
|
|
set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6
|
|
set EXC_A5, EXC_AREGS+(5*4)
|
|
set EXC_A4, EXC_AREGS+(4*4)
|
|
set EXC_A3, EXC_AREGS+(3*4)
|
|
set EXC_A2, EXC_AREGS+(2*4)
|
|
set EXC_A1, EXC_AREGS+(1*4)
|
|
set EXC_A0, EXC_AREGS+(0*4)
|
|
set EXC_D7, EXC_DREGS+(7*4)
|
|
set EXC_D6, EXC_DREGS+(6*4)
|
|
set EXC_D5, EXC_DREGS+(5*4)
|
|
set EXC_D4, EXC_DREGS+(4*4)
|
|
set EXC_D3, EXC_DREGS+(3*4)
|
|
set EXC_D2, EXC_DREGS+(2*4)
|
|
set EXC_D1, EXC_DREGS+(1*4)
|
|
set EXC_D0, EXC_DREGS+(0*4)
|
|
|
|
set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0
|
|
set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1
|
|
set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used)
|
|
|
|
set FP_SCR1, LV+80 # fp scratch 1
|
|
set FP_SCR1_EX, FP_SCR1+0
|
|
set FP_SCR1_SGN, FP_SCR1+2
|
|
set FP_SCR1_HI, FP_SCR1+4
|
|
set FP_SCR1_LO, FP_SCR1+8
|
|
|
|
set FP_SCR0, LV+68 # fp scratch 0
|
|
set FP_SCR0_EX, FP_SCR0+0
|
|
set FP_SCR0_SGN, FP_SCR0+2
|
|
set FP_SCR0_HI, FP_SCR0+4
|
|
set FP_SCR0_LO, FP_SCR0+8
|
|
|
|
set FP_DST, LV+56 # fp destination operand
|
|
set FP_DST_EX, FP_DST+0
|
|
set FP_DST_SGN, FP_DST+2
|
|
set FP_DST_HI, FP_DST+4
|
|
set FP_DST_LO, FP_DST+8
|
|
|
|
set FP_SRC, LV+44 # fp source operand
|
|
set FP_SRC_EX, FP_SRC+0
|
|
set FP_SRC_SGN, FP_SRC+2
|
|
set FP_SRC_HI, FP_SRC+4
|
|
set FP_SRC_LO, FP_SRC+8
|
|
|
|
set USER_FPIAR, LV+40 # FP instr address register
|
|
|
|
set USER_FPSR, LV+36 # FP status register
|
|
set FPSR_CC, USER_FPSR+0 # FPSR condition codes
|
|
set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte
|
|
set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte
|
|
set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte
|
|
|
|
set USER_FPCR, LV+32 # FP control register
|
|
set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable
|
|
set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control
|
|
|
|
set L_SCR3, LV+28 # integer scratch 3
|
|
set L_SCR2, LV+24 # integer scratch 2
|
|
set L_SCR1, LV+20 # integer scratch 1
|
|
|
|
set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst)
|
|
|
|
set EXC_TEMP2, LV+24 # temporary space
|
|
set EXC_TEMP, LV+16 # temporary space
|
|
|
|
set DTAG, LV+15 # destination operand type
|
|
set STAG, LV+14 # source operand type
|
|
|
|
set SPCOND_FLG, LV+10 # flag: special case (see below)
|
|
|
|
set EXC_CC, LV+8 # saved condition codes
|
|
set EXC_EXTWPTR, LV+4 # saved current PC (active)
|
|
set EXC_EXTWORD, LV+2 # saved extension word
|
|
set EXC_CMDREG, LV+2 # saved extension word
|
|
set EXC_OPWORD, LV+0 # saved operation word
|
|
|
|
################################
|
|
|
|
# Helpful macros
|
|
|
|
set FTEMP, 0 # offsets within an
|
|
set FTEMP_EX, 0 # extended precision
|
|
set FTEMP_SGN, 2 # value saved in memory.
|
|
set FTEMP_HI, 4
|
|
set FTEMP_LO, 8
|
|
set FTEMP_GRS, 12
|
|
|
|
set LOCAL, 0 # offsets within an
|
|
set LOCAL_EX, 0 # extended precision
|
|
set LOCAL_SGN, 2 # value saved in memory.
|
|
set LOCAL_HI, 4
|
|
set LOCAL_LO, 8
|
|
set LOCAL_GRS, 12
|
|
|
|
set DST, 0 # offsets within an
|
|
set DST_EX, 0 # extended precision
|
|
set DST_HI, 4 # value saved in memory.
|
|
set DST_LO, 8
|
|
|
|
set SRC, 0 # offsets within an
|
|
set SRC_EX, 0 # extended precision
|
|
set SRC_HI, 4 # value saved in memory.
|
|
set SRC_LO, 8
|
|
|
|
set SGL_LO, 0x3f81 # min sgl prec exponent
|
|
set SGL_HI, 0x407e # max sgl prec exponent
|
|
set DBL_LO, 0x3c01 # min dbl prec exponent
|
|
set DBL_HI, 0x43fe # max dbl prec exponent
|
|
set EXT_LO, 0x0 # min ext prec exponent
|
|
set EXT_HI, 0x7ffe # max ext prec exponent
|
|
|
|
set EXT_BIAS, 0x3fff # extended precision bias
|
|
set SGL_BIAS, 0x007f # single precision bias
|
|
set DBL_BIAS, 0x03ff # double precision bias
|
|
|
|
set NORM, 0x00 # operand type for STAG/DTAG
|
|
set ZERO, 0x01 # operand type for STAG/DTAG
|
|
set INF, 0x02 # operand type for STAG/DTAG
|
|
set QNAN, 0x03 # operand type for STAG/DTAG
|
|
set DENORM, 0x04 # operand type for STAG/DTAG
|
|
set SNAN, 0x05 # operand type for STAG/DTAG
|
|
set UNNORM, 0x06 # operand type for STAG/DTAG
|
|
|
|
##################
|
|
# FPSR/FPCR bits #
|
|
##################
|
|
set neg_bit, 0x3 # negative result
|
|
set z_bit, 0x2 # zero result
|
|
set inf_bit, 0x1 # infinite result
|
|
set nan_bit, 0x0 # NAN result
|
|
|
|
set q_sn_bit, 0x7 # sign bit of quotient byte
|
|
|
|
set bsun_bit, 7 # branch on unordered
|
|
set snan_bit, 6 # signalling NAN
|
|
set operr_bit, 5 # operand error
|
|
set ovfl_bit, 4 # overflow
|
|
set unfl_bit, 3 # underflow
|
|
set dz_bit, 2 # divide by zero
|
|
set inex2_bit, 1 # inexact result 2
|
|
set inex1_bit, 0 # inexact result 1
|
|
|
|
set aiop_bit, 7 # accrued inexact operation bit
|
|
set aovfl_bit, 6 # accrued overflow bit
|
|
set aunfl_bit, 5 # accrued underflow bit
|
|
set adz_bit, 4 # accrued dz bit
|
|
set ainex_bit, 3 # accrued inexact bit
|
|
|
|
#############################
|
|
# FPSR individual bit masks #
|
|
#############################
|
|
set neg_mask, 0x08000000 # negative bit mask (lw)
|
|
set inf_mask, 0x02000000 # infinity bit mask (lw)
|
|
set z_mask, 0x04000000 # zero bit mask (lw)
|
|
set nan_mask, 0x01000000 # nan bit mask (lw)
|
|
|
|
set neg_bmask, 0x08 # negative bit mask (byte)
|
|
set inf_bmask, 0x02 # infinity bit mask (byte)
|
|
set z_bmask, 0x04 # zero bit mask (byte)
|
|
set nan_bmask, 0x01 # nan bit mask (byte)
|
|
|
|
set bsun_mask, 0x00008000 # bsun exception mask
|
|
set snan_mask, 0x00004000 # snan exception mask
|
|
set operr_mask, 0x00002000 # operr exception mask
|
|
set ovfl_mask, 0x00001000 # overflow exception mask
|
|
set unfl_mask, 0x00000800 # underflow exception mask
|
|
set dz_mask, 0x00000400 # dz exception mask
|
|
set inex2_mask, 0x00000200 # inex2 exception mask
|
|
set inex1_mask, 0x00000100 # inex1 exception mask
|
|
|
|
set aiop_mask, 0x00000080 # accrued illegal operation
|
|
set aovfl_mask, 0x00000040 # accrued overflow
|
|
set aunfl_mask, 0x00000020 # accrued underflow
|
|
set adz_mask, 0x00000010 # accrued divide by zero
|
|
set ainex_mask, 0x00000008 # accrued inexact
|
|
|
|
######################################
|
|
# FPSR combinations used in the FPSP #
|
|
######################################
|
|
set dzinf_mask, inf_mask+dz_mask+adz_mask
|
|
set opnan_mask, nan_mask+operr_mask+aiop_mask
|
|
set nzi_mask, 0x01ffffff #clears N, Z, and I
|
|
set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask
|
|
set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask
|
|
set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask
|
|
set inx1a_mask, inex1_mask+ainex_mask
|
|
set inx2a_mask, inex2_mask+ainex_mask
|
|
set snaniop_mask, nan_mask+snan_mask+aiop_mask
|
|
set snaniop2_mask, snan_mask+aiop_mask
|
|
set naniop_mask, nan_mask+aiop_mask
|
|
set neginf_mask, neg_mask+inf_mask
|
|
set infaiop_mask, inf_mask+aiop_mask
|
|
set negz_mask, neg_mask+z_mask
|
|
set opaop_mask, operr_mask+aiop_mask
|
|
set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask
|
|
set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask
|
|
|
|
#########
|
|
# misc. #
|
|
#########
|
|
set rnd_stky_bit, 29 # stky bit pos in longword
|
|
|
|
set sign_bit, 0x7 # sign bit
|
|
set signan_bit, 0x6 # signalling nan bit
|
|
|
|
set sgl_thresh, 0x3f81 # minimum sgl exponent
|
|
set dbl_thresh, 0x3c01 # minimum dbl exponent
|
|
|
|
set x_mode, 0x0 # extended precision
|
|
set s_mode, 0x4 # single precision
|
|
set d_mode, 0x8 # double precision
|
|
|
|
set rn_mode, 0x0 # round-to-nearest
|
|
set rz_mode, 0x1 # round-to-zero
|
|
set rm_mode, 0x2 # round-tp-minus-infinity
|
|
set rp_mode, 0x3 # round-to-plus-infinity
|
|
|
|
set mantissalen, 64 # length of mantissa in bits
|
|
|
|
set BYTE, 1 # len(byte) == 1 byte
|
|
set WORD, 2 # len(word) == 2 bytes
|
|
set LONG, 4 # len(longword) == 2 bytes
|
|
|
|
set BSUN_VEC, 0xc0 # bsun vector offset
|
|
set INEX_VEC, 0xc4 # inexact vector offset
|
|
set DZ_VEC, 0xc8 # dz vector offset
|
|
set UNFL_VEC, 0xcc # unfl vector offset
|
|
set OPERR_VEC, 0xd0 # operr vector offset
|
|
set OVFL_VEC, 0xd4 # ovfl vector offset
|
|
set SNAN_VEC, 0xd8 # snan vector offset
|
|
|
|
###########################
|
|
# SPecial CONDition FLaGs #
|
|
###########################
|
|
set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception
|
|
set fbsun_flg, 0x02 # flag bit: bsun exception
|
|
set mia7_flg, 0x04 # flag bit: (a7)+ <ea>
|
|
set mda7_flg, 0x08 # flag bit: -(a7) <ea>
|
|
set fmovm_flg, 0x40 # flag bit: fmovm instruction
|
|
set immed_flg, 0x80 # flag bit: &<data> <ea>
|
|
|
|
set ftrapcc_bit, 0x0
|
|
set fbsun_bit, 0x1
|
|
set mia7_bit, 0x2
|
|
set mda7_bit, 0x3
|
|
set immed_bit, 0x7
|
|
|
|
##################################
|
|
# TRANSCENDENTAL "LAST-OP" FLAGS #
|
|
##################################
|
|
set FMUL_OP, 0x0 # fmul instr performed last
|
|
set FDIV_OP, 0x1 # fdiv performed last
|
|
set FADD_OP, 0x2 # fadd performed last
|
|
set FMOV_OP, 0x3 # fmov performed last
|
|
|
|
#############
|
|
# CONSTANTS #
|
|
#############
|
|
T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD
|
|
T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL
|
|
|
|
PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000
|
|
PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
|
|
|
|
TWOBYPI:
|
|
long 0x3FE45F30,0x6DC9C883
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fsins_
|
|
_fsins_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L0_2s
|
|
bsr.l ssin # operand is a NORM
|
|
bra.b _L0_6s
|
|
_L0_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L0_3s # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L0_6s
|
|
_L0_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L0_4s # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L0_6s
|
|
_L0_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L0_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L0_6s
|
|
_L0_5s:
|
|
bsr.l ssind # operand is a DENORM
|
|
_L0_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fsind_
|
|
_fsind_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L0_2d
|
|
bsr.l ssin # operand is a NORM
|
|
bra.b _L0_6d
|
|
_L0_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L0_3d # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L0_6d
|
|
_L0_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L0_4d # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L0_6d
|
|
_L0_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L0_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L0_6d
|
|
_L0_5d:
|
|
bsr.l ssind # operand is a DENORM
|
|
_L0_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fsinx_
|
|
_fsinx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L0_2x
|
|
bsr.l ssin # operand is a NORM
|
|
bra.b _L0_6x
|
|
_L0_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L0_3x # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L0_6x
|
|
_L0_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L0_4x # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L0_6x
|
|
_L0_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L0_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L0_6x
|
|
_L0_5x:
|
|
bsr.l ssind # operand is a DENORM
|
|
_L0_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fcoss_
|
|
_fcoss_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L1_2s
|
|
bsr.l scos # operand is a NORM
|
|
bra.b _L1_6s
|
|
_L1_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L1_3s # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L1_6s
|
|
_L1_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L1_4s # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L1_6s
|
|
_L1_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L1_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L1_6s
|
|
_L1_5s:
|
|
bsr.l scosd # operand is a DENORM
|
|
_L1_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fcosd_
|
|
_fcosd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L1_2d
|
|
bsr.l scos # operand is a NORM
|
|
bra.b _L1_6d
|
|
_L1_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L1_3d # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L1_6d
|
|
_L1_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L1_4d # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L1_6d
|
|
_L1_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L1_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L1_6d
|
|
_L1_5d:
|
|
bsr.l scosd # operand is a DENORM
|
|
_L1_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fcosx_
|
|
_fcosx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L1_2x
|
|
bsr.l scos # operand is a NORM
|
|
bra.b _L1_6x
|
|
_L1_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L1_3x # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L1_6x
|
|
_L1_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L1_4x # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L1_6x
|
|
_L1_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L1_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L1_6x
|
|
_L1_5x:
|
|
bsr.l scosd # operand is a DENORM
|
|
_L1_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fsinhs_
|
|
_fsinhs_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L2_2s
|
|
bsr.l ssinh # operand is a NORM
|
|
bra.b _L2_6s
|
|
_L2_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L2_3s # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L2_6s
|
|
_L2_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L2_4s # no
|
|
bsr.l src_inf # yes
|
|
bra.b _L2_6s
|
|
_L2_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L2_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L2_6s
|
|
_L2_5s:
|
|
bsr.l ssinhd # operand is a DENORM
|
|
_L2_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fsinhd_
|
|
_fsinhd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L2_2d
|
|
bsr.l ssinh # operand is a NORM
|
|
bra.b _L2_6d
|
|
_L2_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L2_3d # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L2_6d
|
|
_L2_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L2_4d # no
|
|
bsr.l src_inf # yes
|
|
bra.b _L2_6d
|
|
_L2_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L2_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L2_6d
|
|
_L2_5d:
|
|
bsr.l ssinhd # operand is a DENORM
|
|
_L2_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fsinhx_
|
|
_fsinhx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L2_2x
|
|
bsr.l ssinh # operand is a NORM
|
|
bra.b _L2_6x
|
|
_L2_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L2_3x # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L2_6x
|
|
_L2_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L2_4x # no
|
|
bsr.l src_inf # yes
|
|
bra.b _L2_6x
|
|
_L2_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L2_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L2_6x
|
|
_L2_5x:
|
|
bsr.l ssinhd # operand is a DENORM
|
|
_L2_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _flognp1s_
|
|
_flognp1s_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L3_2s
|
|
bsr.l slognp1 # operand is a NORM
|
|
bra.b _L3_6s
|
|
_L3_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L3_3s # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L3_6s
|
|
_L3_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L3_4s # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L3_6s
|
|
_L3_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L3_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L3_6s
|
|
_L3_5s:
|
|
bsr.l slognp1d # operand is a DENORM
|
|
_L3_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _flognp1d_
|
|
_flognp1d_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L3_2d
|
|
bsr.l slognp1 # operand is a NORM
|
|
bra.b _L3_6d
|
|
_L3_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L3_3d # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L3_6d
|
|
_L3_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L3_4d # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L3_6d
|
|
_L3_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L3_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L3_6d
|
|
_L3_5d:
|
|
bsr.l slognp1d # operand is a DENORM
|
|
_L3_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _flognp1x_
|
|
_flognp1x_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L3_2x
|
|
bsr.l slognp1 # operand is a NORM
|
|
bra.b _L3_6x
|
|
_L3_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L3_3x # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L3_6x
|
|
_L3_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L3_4x # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L3_6x
|
|
_L3_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L3_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L3_6x
|
|
_L3_5x:
|
|
bsr.l slognp1d # operand is a DENORM
|
|
_L3_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fetoxm1s_
|
|
_fetoxm1s_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L4_2s
|
|
bsr.l setoxm1 # operand is a NORM
|
|
bra.b _L4_6s
|
|
_L4_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L4_3s # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L4_6s
|
|
_L4_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L4_4s # no
|
|
bsr.l setoxm1i # yes
|
|
bra.b _L4_6s
|
|
_L4_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L4_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L4_6s
|
|
_L4_5s:
|
|
bsr.l setoxm1d # operand is a DENORM
|
|
_L4_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fetoxm1d_
|
|
_fetoxm1d_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L4_2d
|
|
bsr.l setoxm1 # operand is a NORM
|
|
bra.b _L4_6d
|
|
_L4_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L4_3d # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L4_6d
|
|
_L4_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L4_4d # no
|
|
bsr.l setoxm1i # yes
|
|
bra.b _L4_6d
|
|
_L4_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L4_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L4_6d
|
|
_L4_5d:
|
|
bsr.l setoxm1d # operand is a DENORM
|
|
_L4_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fetoxm1x_
|
|
_fetoxm1x_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L4_2x
|
|
bsr.l setoxm1 # operand is a NORM
|
|
bra.b _L4_6x
|
|
_L4_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L4_3x # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L4_6x
|
|
_L4_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L4_4x # no
|
|
bsr.l setoxm1i # yes
|
|
bra.b _L4_6x
|
|
_L4_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L4_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L4_6x
|
|
_L4_5x:
|
|
bsr.l setoxm1d # operand is a DENORM
|
|
_L4_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _ftanhs_
|
|
_ftanhs_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L5_2s
|
|
bsr.l stanh # operand is a NORM
|
|
bra.b _L5_6s
|
|
_L5_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L5_3s # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L5_6s
|
|
_L5_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L5_4s # no
|
|
bsr.l src_one # yes
|
|
bra.b _L5_6s
|
|
_L5_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L5_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L5_6s
|
|
_L5_5s:
|
|
bsr.l stanhd # operand is a DENORM
|
|
_L5_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _ftanhd_
|
|
_ftanhd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L5_2d
|
|
bsr.l stanh # operand is a NORM
|
|
bra.b _L5_6d
|
|
_L5_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L5_3d # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L5_6d
|
|
_L5_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L5_4d # no
|
|
bsr.l src_one # yes
|
|
bra.b _L5_6d
|
|
_L5_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L5_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L5_6d
|
|
_L5_5d:
|
|
bsr.l stanhd # operand is a DENORM
|
|
_L5_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _ftanhx_
|
|
_ftanhx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L5_2x
|
|
bsr.l stanh # operand is a NORM
|
|
bra.b _L5_6x
|
|
_L5_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L5_3x # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L5_6x
|
|
_L5_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L5_4x # no
|
|
bsr.l src_one # yes
|
|
bra.b _L5_6x
|
|
_L5_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L5_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L5_6x
|
|
_L5_5x:
|
|
bsr.l stanhd # operand is a DENORM
|
|
_L5_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fatans_
|
|
_fatans_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L6_2s
|
|
bsr.l satan # operand is a NORM
|
|
bra.b _L6_6s
|
|
_L6_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L6_3s # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L6_6s
|
|
_L6_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L6_4s # no
|
|
bsr.l spi_2 # yes
|
|
bra.b _L6_6s
|
|
_L6_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L6_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L6_6s
|
|
_L6_5s:
|
|
bsr.l satand # operand is a DENORM
|
|
_L6_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fatand_
|
|
_fatand_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L6_2d
|
|
bsr.l satan # operand is a NORM
|
|
bra.b _L6_6d
|
|
_L6_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L6_3d # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L6_6d
|
|
_L6_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L6_4d # no
|
|
bsr.l spi_2 # yes
|
|
bra.b _L6_6d
|
|
_L6_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L6_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L6_6d
|
|
_L6_5d:
|
|
bsr.l satand # operand is a DENORM
|
|
_L6_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fatanx_
|
|
_fatanx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L6_2x
|
|
bsr.l satan # operand is a NORM
|
|
bra.b _L6_6x
|
|
_L6_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L6_3x # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L6_6x
|
|
_L6_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L6_4x # no
|
|
bsr.l spi_2 # yes
|
|
bra.b _L6_6x
|
|
_L6_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L6_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L6_6x
|
|
_L6_5x:
|
|
bsr.l satand # operand is a DENORM
|
|
_L6_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fasins_
|
|
_fasins_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L7_2s
|
|
bsr.l sasin # operand is a NORM
|
|
bra.b _L7_6s
|
|
_L7_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L7_3s # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L7_6s
|
|
_L7_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L7_4s # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L7_6s
|
|
_L7_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L7_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L7_6s
|
|
_L7_5s:
|
|
bsr.l sasind # operand is a DENORM
|
|
_L7_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fasind_
|
|
_fasind_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L7_2d
|
|
bsr.l sasin # operand is a NORM
|
|
bra.b _L7_6d
|
|
_L7_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L7_3d # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L7_6d
|
|
_L7_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L7_4d # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L7_6d
|
|
_L7_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L7_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L7_6d
|
|
_L7_5d:
|
|
bsr.l sasind # operand is a DENORM
|
|
_L7_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fasinx_
|
|
_fasinx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L7_2x
|
|
bsr.l sasin # operand is a NORM
|
|
bra.b _L7_6x
|
|
_L7_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L7_3x # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L7_6x
|
|
_L7_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L7_4x # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L7_6x
|
|
_L7_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L7_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L7_6x
|
|
_L7_5x:
|
|
bsr.l sasind # operand is a DENORM
|
|
_L7_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fatanhs_
|
|
_fatanhs_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L8_2s
|
|
bsr.l satanh # operand is a NORM
|
|
bra.b _L8_6s
|
|
_L8_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L8_3s # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L8_6s
|
|
_L8_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L8_4s # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L8_6s
|
|
_L8_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L8_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L8_6s
|
|
_L8_5s:
|
|
bsr.l satanhd # operand is a DENORM
|
|
_L8_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fatanhd_
|
|
_fatanhd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L8_2d
|
|
bsr.l satanh # operand is a NORM
|
|
bra.b _L8_6d
|
|
_L8_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L8_3d # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L8_6d
|
|
_L8_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L8_4d # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L8_6d
|
|
_L8_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L8_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L8_6d
|
|
_L8_5d:
|
|
bsr.l satanhd # operand is a DENORM
|
|
_L8_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fatanhx_
|
|
_fatanhx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L8_2x
|
|
bsr.l satanh # operand is a NORM
|
|
bra.b _L8_6x
|
|
_L8_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L8_3x # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L8_6x
|
|
_L8_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L8_4x # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L8_6x
|
|
_L8_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L8_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L8_6x
|
|
_L8_5x:
|
|
bsr.l satanhd # operand is a DENORM
|
|
_L8_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _ftans_
|
|
_ftans_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L9_2s
|
|
bsr.l stan # operand is a NORM
|
|
bra.b _L9_6s
|
|
_L9_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L9_3s # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L9_6s
|
|
_L9_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L9_4s # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L9_6s
|
|
_L9_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L9_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L9_6s
|
|
_L9_5s:
|
|
bsr.l stand # operand is a DENORM
|
|
_L9_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _ftand_
|
|
_ftand_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L9_2d
|
|
bsr.l stan # operand is a NORM
|
|
bra.b _L9_6d
|
|
_L9_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L9_3d # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L9_6d
|
|
_L9_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L9_4d # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L9_6d
|
|
_L9_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L9_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L9_6d
|
|
_L9_5d:
|
|
bsr.l stand # operand is a DENORM
|
|
_L9_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _ftanx_
|
|
_ftanx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L9_2x
|
|
bsr.l stan # operand is a NORM
|
|
bra.b _L9_6x
|
|
_L9_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L9_3x # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L9_6x
|
|
_L9_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L9_4x # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L9_6x
|
|
_L9_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L9_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L9_6x
|
|
_L9_5x:
|
|
bsr.l stand # operand is a DENORM
|
|
_L9_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fetoxs_
|
|
_fetoxs_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L10_2s
|
|
bsr.l setox # operand is a NORM
|
|
bra.b _L10_6s
|
|
_L10_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L10_3s # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L10_6s
|
|
_L10_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L10_4s # no
|
|
bsr.l szr_inf # yes
|
|
bra.b _L10_6s
|
|
_L10_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L10_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L10_6s
|
|
_L10_5s:
|
|
bsr.l setoxd # operand is a DENORM
|
|
_L10_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fetoxd_
|
|
_fetoxd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L10_2d
|
|
bsr.l setox # operand is a NORM
|
|
bra.b _L10_6d
|
|
_L10_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L10_3d # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L10_6d
|
|
_L10_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L10_4d # no
|
|
bsr.l szr_inf # yes
|
|
bra.b _L10_6d
|
|
_L10_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L10_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L10_6d
|
|
_L10_5d:
|
|
bsr.l setoxd # operand is a DENORM
|
|
_L10_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fetoxx_
|
|
_fetoxx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L10_2x
|
|
bsr.l setox # operand is a NORM
|
|
bra.b _L10_6x
|
|
_L10_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L10_3x # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L10_6x
|
|
_L10_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L10_4x # no
|
|
bsr.l szr_inf # yes
|
|
bra.b _L10_6x
|
|
_L10_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L10_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L10_6x
|
|
_L10_5x:
|
|
bsr.l setoxd # operand is a DENORM
|
|
_L10_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _ftwotoxs_
|
|
_ftwotoxs_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L11_2s
|
|
bsr.l stwotox # operand is a NORM
|
|
bra.b _L11_6s
|
|
_L11_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L11_3s # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L11_6s
|
|
_L11_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L11_4s # no
|
|
bsr.l szr_inf # yes
|
|
bra.b _L11_6s
|
|
_L11_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L11_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L11_6s
|
|
_L11_5s:
|
|
bsr.l stwotoxd # operand is a DENORM
|
|
_L11_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _ftwotoxd_
|
|
_ftwotoxd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L11_2d
|
|
bsr.l stwotox # operand is a NORM
|
|
bra.b _L11_6d
|
|
_L11_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L11_3d # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L11_6d
|
|
_L11_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L11_4d # no
|
|
bsr.l szr_inf # yes
|
|
bra.b _L11_6d
|
|
_L11_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L11_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L11_6d
|
|
_L11_5d:
|
|
bsr.l stwotoxd # operand is a DENORM
|
|
_L11_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _ftwotoxx_
|
|
_ftwotoxx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L11_2x
|
|
bsr.l stwotox # operand is a NORM
|
|
bra.b _L11_6x
|
|
_L11_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L11_3x # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L11_6x
|
|
_L11_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L11_4x # no
|
|
bsr.l szr_inf # yes
|
|
bra.b _L11_6x
|
|
_L11_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L11_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L11_6x
|
|
_L11_5x:
|
|
bsr.l stwotoxd # operand is a DENORM
|
|
_L11_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _ftentoxs_
|
|
_ftentoxs_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L12_2s
|
|
bsr.l stentox # operand is a NORM
|
|
bra.b _L12_6s
|
|
_L12_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L12_3s # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L12_6s
|
|
_L12_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L12_4s # no
|
|
bsr.l szr_inf # yes
|
|
bra.b _L12_6s
|
|
_L12_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L12_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L12_6s
|
|
_L12_5s:
|
|
bsr.l stentoxd # operand is a DENORM
|
|
_L12_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _ftentoxd_
|
|
_ftentoxd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L12_2d
|
|
bsr.l stentox # operand is a NORM
|
|
bra.b _L12_6d
|
|
_L12_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L12_3d # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L12_6d
|
|
_L12_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L12_4d # no
|
|
bsr.l szr_inf # yes
|
|
bra.b _L12_6d
|
|
_L12_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L12_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L12_6d
|
|
_L12_5d:
|
|
bsr.l stentoxd # operand is a DENORM
|
|
_L12_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _ftentoxx_
|
|
_ftentoxx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L12_2x
|
|
bsr.l stentox # operand is a NORM
|
|
bra.b _L12_6x
|
|
_L12_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L12_3x # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L12_6x
|
|
_L12_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L12_4x # no
|
|
bsr.l szr_inf # yes
|
|
bra.b _L12_6x
|
|
_L12_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L12_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L12_6x
|
|
_L12_5x:
|
|
bsr.l stentoxd # operand is a DENORM
|
|
_L12_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _flogns_
|
|
_flogns_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L13_2s
|
|
bsr.l slogn # operand is a NORM
|
|
bra.b _L13_6s
|
|
_L13_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L13_3s # no
|
|
bsr.l t_dz2 # yes
|
|
bra.b _L13_6s
|
|
_L13_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L13_4s # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L13_6s
|
|
_L13_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L13_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L13_6s
|
|
_L13_5s:
|
|
bsr.l slognd # operand is a DENORM
|
|
_L13_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _flognd_
|
|
_flognd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L13_2d
|
|
bsr.l slogn # operand is a NORM
|
|
bra.b _L13_6d
|
|
_L13_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L13_3d # no
|
|
bsr.l t_dz2 # yes
|
|
bra.b _L13_6d
|
|
_L13_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L13_4d # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L13_6d
|
|
_L13_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L13_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L13_6d
|
|
_L13_5d:
|
|
bsr.l slognd # operand is a DENORM
|
|
_L13_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _flognx_
|
|
_flognx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L13_2x
|
|
bsr.l slogn # operand is a NORM
|
|
bra.b _L13_6x
|
|
_L13_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L13_3x # no
|
|
bsr.l t_dz2 # yes
|
|
bra.b _L13_6x
|
|
_L13_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L13_4x # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L13_6x
|
|
_L13_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L13_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L13_6x
|
|
_L13_5x:
|
|
bsr.l slognd # operand is a DENORM
|
|
_L13_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _flog10s_
|
|
_flog10s_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L14_2s
|
|
bsr.l slog10 # operand is a NORM
|
|
bra.b _L14_6s
|
|
_L14_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L14_3s # no
|
|
bsr.l t_dz2 # yes
|
|
bra.b _L14_6s
|
|
_L14_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L14_4s # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L14_6s
|
|
_L14_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L14_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L14_6s
|
|
_L14_5s:
|
|
bsr.l slog10d # operand is a DENORM
|
|
_L14_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _flog10d_
|
|
_flog10d_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L14_2d
|
|
bsr.l slog10 # operand is a NORM
|
|
bra.b _L14_6d
|
|
_L14_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L14_3d # no
|
|
bsr.l t_dz2 # yes
|
|
bra.b _L14_6d
|
|
_L14_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L14_4d # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L14_6d
|
|
_L14_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L14_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L14_6d
|
|
_L14_5d:
|
|
bsr.l slog10d # operand is a DENORM
|
|
_L14_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _flog10x_
|
|
_flog10x_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L14_2x
|
|
bsr.l slog10 # operand is a NORM
|
|
bra.b _L14_6x
|
|
_L14_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L14_3x # no
|
|
bsr.l t_dz2 # yes
|
|
bra.b _L14_6x
|
|
_L14_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L14_4x # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L14_6x
|
|
_L14_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L14_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L14_6x
|
|
_L14_5x:
|
|
bsr.l slog10d # operand is a DENORM
|
|
_L14_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _flog2s_
|
|
_flog2s_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L15_2s
|
|
bsr.l slog2 # operand is a NORM
|
|
bra.b _L15_6s
|
|
_L15_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L15_3s # no
|
|
bsr.l t_dz2 # yes
|
|
bra.b _L15_6s
|
|
_L15_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L15_4s # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L15_6s
|
|
_L15_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L15_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L15_6s
|
|
_L15_5s:
|
|
bsr.l slog2d # operand is a DENORM
|
|
_L15_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _flog2d_
|
|
_flog2d_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L15_2d
|
|
bsr.l slog2 # operand is a NORM
|
|
bra.b _L15_6d
|
|
_L15_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L15_3d # no
|
|
bsr.l t_dz2 # yes
|
|
bra.b _L15_6d
|
|
_L15_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L15_4d # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L15_6d
|
|
_L15_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L15_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L15_6d
|
|
_L15_5d:
|
|
bsr.l slog2d # operand is a DENORM
|
|
_L15_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _flog2x_
|
|
_flog2x_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L15_2x
|
|
bsr.l slog2 # operand is a NORM
|
|
bra.b _L15_6x
|
|
_L15_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L15_3x # no
|
|
bsr.l t_dz2 # yes
|
|
bra.b _L15_6x
|
|
_L15_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L15_4x # no
|
|
bsr.l sopr_inf # yes
|
|
bra.b _L15_6x
|
|
_L15_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L15_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L15_6x
|
|
_L15_5x:
|
|
bsr.l slog2d # operand is a DENORM
|
|
_L15_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fcoshs_
|
|
_fcoshs_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L16_2s
|
|
bsr.l scosh # operand is a NORM
|
|
bra.b _L16_6s
|
|
_L16_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L16_3s # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L16_6s
|
|
_L16_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L16_4s # no
|
|
bsr.l ld_pinf # yes
|
|
bra.b _L16_6s
|
|
_L16_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L16_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L16_6s
|
|
_L16_5s:
|
|
bsr.l scoshd # operand is a DENORM
|
|
_L16_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fcoshd_
|
|
_fcoshd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L16_2d
|
|
bsr.l scosh # operand is a NORM
|
|
bra.b _L16_6d
|
|
_L16_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L16_3d # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L16_6d
|
|
_L16_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L16_4d # no
|
|
bsr.l ld_pinf # yes
|
|
bra.b _L16_6d
|
|
_L16_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L16_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L16_6d
|
|
_L16_5d:
|
|
bsr.l scoshd # operand is a DENORM
|
|
_L16_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fcoshx_
|
|
_fcoshx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L16_2x
|
|
bsr.l scosh # operand is a NORM
|
|
bra.b _L16_6x
|
|
_L16_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L16_3x # no
|
|
bsr.l ld_pone # yes
|
|
bra.b _L16_6x
|
|
_L16_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L16_4x # no
|
|
bsr.l ld_pinf # yes
|
|
bra.b _L16_6x
|
|
_L16_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L16_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L16_6x
|
|
_L16_5x:
|
|
bsr.l scoshd # operand is a DENORM
|
|
_L16_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _facoss_
|
|
_facoss_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L17_2s
|
|
bsr.l sacos # operand is a NORM
|
|
bra.b _L17_6s
|
|
_L17_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L17_3s # no
|
|
bsr.l ld_ppi2 # yes
|
|
bra.b _L17_6s
|
|
_L17_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L17_4s # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L17_6s
|
|
_L17_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L17_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L17_6s
|
|
_L17_5s:
|
|
bsr.l sacosd # operand is a DENORM
|
|
_L17_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _facosd_
|
|
_facosd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L17_2d
|
|
bsr.l sacos # operand is a NORM
|
|
bra.b _L17_6d
|
|
_L17_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L17_3d # no
|
|
bsr.l ld_ppi2 # yes
|
|
bra.b _L17_6d
|
|
_L17_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L17_4d # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L17_6d
|
|
_L17_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L17_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L17_6d
|
|
_L17_5d:
|
|
bsr.l sacosd # operand is a DENORM
|
|
_L17_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _facosx_
|
|
_facosx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L17_2x
|
|
bsr.l sacos # operand is a NORM
|
|
bra.b _L17_6x
|
|
_L17_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L17_3x # no
|
|
bsr.l ld_ppi2 # yes
|
|
bra.b _L17_6x
|
|
_L17_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L17_4x # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L17_6x
|
|
_L17_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L17_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L17_6x
|
|
_L17_5x:
|
|
bsr.l sacosd # operand is a DENORM
|
|
_L17_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fgetexps_
|
|
_fgetexps_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L18_2s
|
|
bsr.l sgetexp # operand is a NORM
|
|
bra.b _L18_6s
|
|
_L18_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L18_3s # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L18_6s
|
|
_L18_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L18_4s # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L18_6s
|
|
_L18_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L18_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L18_6s
|
|
_L18_5s:
|
|
bsr.l sgetexpd # operand is a DENORM
|
|
_L18_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fgetexpd_
|
|
_fgetexpd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L18_2d
|
|
bsr.l sgetexp # operand is a NORM
|
|
bra.b _L18_6d
|
|
_L18_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L18_3d # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L18_6d
|
|
_L18_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L18_4d # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L18_6d
|
|
_L18_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L18_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L18_6d
|
|
_L18_5d:
|
|
bsr.l sgetexpd # operand is a DENORM
|
|
_L18_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fgetexpx_
|
|
_fgetexpx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L18_2x
|
|
bsr.l sgetexp # operand is a NORM
|
|
bra.b _L18_6x
|
|
_L18_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L18_3x # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L18_6x
|
|
_L18_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L18_4x # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L18_6x
|
|
_L18_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L18_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L18_6x
|
|
_L18_5x:
|
|
bsr.l sgetexpd # operand is a DENORM
|
|
_L18_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fgetmans_
|
|
_fgetmans_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L19_2s
|
|
bsr.l sgetman # operand is a NORM
|
|
bra.b _L19_6s
|
|
_L19_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L19_3s # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L19_6s
|
|
_L19_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L19_4s # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L19_6s
|
|
_L19_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L19_5s # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L19_6s
|
|
_L19_5s:
|
|
bsr.l sgetmand # operand is a DENORM
|
|
_L19_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fgetmand_
|
|
_fgetmand_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L19_2d
|
|
bsr.l sgetman # operand is a NORM
|
|
bra.b _L19_6d
|
|
_L19_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L19_3d # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L19_6d
|
|
_L19_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L19_4d # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L19_6d
|
|
_L19_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L19_5d # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L19_6d
|
|
_L19_5d:
|
|
bsr.l sgetmand # operand is a DENORM
|
|
_L19_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fgetmanx_
|
|
_fgetmanx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L19_2x
|
|
bsr.l sgetman # operand is a NORM
|
|
bra.b _L19_6x
|
|
_L19_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L19_3x # no
|
|
bsr.l src_zero # yes
|
|
bra.b _L19_6x
|
|
_L19_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L19_4x # no
|
|
bsr.l t_operr # yes
|
|
bra.b _L19_6x
|
|
_L19_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L19_5x # no
|
|
bsr.l src_qnan # yes
|
|
bra.b _L19_6x
|
|
_L19_5x:
|
|
bsr.l sgetmand # operand is a DENORM
|
|
_L19_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# MONADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fsincoss_
|
|
_fsincoss_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L20_2s
|
|
bsr.l ssincos # operand is a NORM
|
|
bra.b _L20_6s
|
|
_L20_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L20_3s # no
|
|
bsr.l ssincosz # yes
|
|
bra.b _L20_6s
|
|
_L20_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L20_4s # no
|
|
bsr.l ssincosi # yes
|
|
bra.b _L20_6s
|
|
_L20_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L20_5s # no
|
|
bsr.l ssincosqnan # yes
|
|
bra.b _L20_6s
|
|
_L20_5s:
|
|
bsr.l ssincosd # operand is a DENORM
|
|
_L20_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x &0x03,-(%sp) # store off fp0/fp1
|
|
fmovm.x (%sp)+,&0x40 # fp0 now in fp1
|
|
fmovm.x (%sp)+,&0x80 # fp1 now in fp0
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fsincosd_
|
|
_fsincosd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl input
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
mov.b %d1,STAG(%a6)
|
|
tst.b %d1
|
|
bne.b _L20_2d
|
|
bsr.l ssincos # operand is a NORM
|
|
bra.b _L20_6d
|
|
_L20_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L20_3d # no
|
|
bsr.l ssincosz # yes
|
|
bra.b _L20_6d
|
|
_L20_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L20_4d # no
|
|
bsr.l ssincosi # yes
|
|
bra.b _L20_6d
|
|
_L20_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L20_5d # no
|
|
bsr.l ssincosqnan # yes
|
|
bra.b _L20_6d
|
|
_L20_5d:
|
|
bsr.l ssincosd # operand is a DENORM
|
|
_L20_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x &0x03,-(%sp) # store off fp0/fp1
|
|
fmovm.x (%sp)+,&0x40 # fp0 now in fp1
|
|
fmovm.x (%sp)+,&0x80 # fp1 now in fp0
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fsincosx_
|
|
_fsincosx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.b %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
tst.b %d1
|
|
bne.b _L20_2x
|
|
bsr.l ssincos # operand is a NORM
|
|
bra.b _L20_6x
|
|
_L20_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L20_3x # no
|
|
bsr.l ssincosz # yes
|
|
bra.b _L20_6x
|
|
_L20_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L20_4x # no
|
|
bsr.l ssincosi # yes
|
|
bra.b _L20_6x
|
|
_L20_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L20_5x # no
|
|
bsr.l ssincosqnan # yes
|
|
bra.b _L20_6x
|
|
_L20_5x:
|
|
bsr.l ssincosd # operand is a DENORM
|
|
_L20_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x &0x03,-(%sp) # store off fp0/fp1
|
|
fmovm.x (%sp)+,&0x40 # fp0 now in fp1
|
|
fmovm.x (%sp)+,&0x80 # fp1 now in fp0
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# DYADIC TEMPLATE #
|
|
#########################################################################
|
|
global _frems_
|
|
_frems_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl dst
|
|
fmov.x %fp0,FP_DST(%a6)
|
|
lea FP_DST(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,DTAG(%a6)
|
|
|
|
fmov.s 0xc(%a6),%fp0 # load sgl src
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.l %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
lea FP_SRC(%a6),%a0 # pass ptr to src
|
|
lea FP_DST(%a6),%a1 # pass ptr to dst
|
|
|
|
tst.b %d1
|
|
bne.b _L21_2s
|
|
bsr.l srem_snorm # operand is a NORM
|
|
bra.b _L21_6s
|
|
_L21_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L21_3s # no
|
|
bsr.l srem_szero # yes
|
|
bra.b _L21_6s
|
|
_L21_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L21_4s # no
|
|
bsr.l srem_sinf # yes
|
|
bra.b _L21_6s
|
|
_L21_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L21_5s # no
|
|
bsr.l sop_sqnan # yes
|
|
bra.b _L21_6s
|
|
_L21_5s:
|
|
bsr.l srem_sdnrm # operand is a DENORM
|
|
_L21_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fremd_
|
|
_fremd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl dst
|
|
fmov.x %fp0,FP_DST(%a6)
|
|
lea FP_DST(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,DTAG(%a6)
|
|
|
|
fmov.d 0x10(%a6),%fp0 # load dbl src
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.l %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
lea FP_SRC(%a6),%a0 # pass ptr to src
|
|
lea FP_DST(%a6),%a1 # pass ptr to dst
|
|
|
|
tst.b %d1
|
|
bne.b _L21_2d
|
|
bsr.l srem_snorm # operand is a NORM
|
|
bra.b _L21_6d
|
|
_L21_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L21_3d # no
|
|
bsr.l srem_szero # yes
|
|
bra.b _L21_6d
|
|
_L21_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L21_4d # no
|
|
bsr.l srem_sinf # yes
|
|
bra.b _L21_6d
|
|
_L21_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L21_5d # no
|
|
bsr.l sop_sqnan # yes
|
|
bra.b _L21_6d
|
|
_L21_5d:
|
|
bsr.l srem_sdnrm # operand is a DENORM
|
|
_L21_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fremx_
|
|
_fremx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_DST(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,DTAG(%a6)
|
|
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src
|
|
mov.l 0x14+0x4(%a6),0x4(%a0)
|
|
mov.l 0x14+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.l %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
lea FP_SRC(%a6),%a0 # pass ptr to src
|
|
lea FP_DST(%a6),%a1 # pass ptr to dst
|
|
|
|
tst.b %d1
|
|
bne.b _L21_2x
|
|
bsr.l srem_snorm # operand is a NORM
|
|
bra.b _L21_6x
|
|
_L21_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L21_3x # no
|
|
bsr.l srem_szero # yes
|
|
bra.b _L21_6x
|
|
_L21_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L21_4x # no
|
|
bsr.l srem_sinf # yes
|
|
bra.b _L21_6x
|
|
_L21_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L21_5x # no
|
|
bsr.l sop_sqnan # yes
|
|
bra.b _L21_6x
|
|
_L21_5x:
|
|
bsr.l srem_sdnrm # operand is a DENORM
|
|
_L21_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# DYADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fmods_
|
|
_fmods_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl dst
|
|
fmov.x %fp0,FP_DST(%a6)
|
|
lea FP_DST(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,DTAG(%a6)
|
|
|
|
fmov.s 0xc(%a6),%fp0 # load sgl src
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.l %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
lea FP_SRC(%a6),%a0 # pass ptr to src
|
|
lea FP_DST(%a6),%a1 # pass ptr to dst
|
|
|
|
tst.b %d1
|
|
bne.b _L22_2s
|
|
bsr.l smod_snorm # operand is a NORM
|
|
bra.b _L22_6s
|
|
_L22_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L22_3s # no
|
|
bsr.l smod_szero # yes
|
|
bra.b _L22_6s
|
|
_L22_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L22_4s # no
|
|
bsr.l smod_sinf # yes
|
|
bra.b _L22_6s
|
|
_L22_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L22_5s # no
|
|
bsr.l sop_sqnan # yes
|
|
bra.b _L22_6s
|
|
_L22_5s:
|
|
bsr.l smod_sdnrm # operand is a DENORM
|
|
_L22_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fmodd_
|
|
_fmodd_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl dst
|
|
fmov.x %fp0,FP_DST(%a6)
|
|
lea FP_DST(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,DTAG(%a6)
|
|
|
|
fmov.d 0x10(%a6),%fp0 # load dbl src
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.l %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
lea FP_SRC(%a6),%a0 # pass ptr to src
|
|
lea FP_DST(%a6),%a1 # pass ptr to dst
|
|
|
|
tst.b %d1
|
|
bne.b _L22_2d
|
|
bsr.l smod_snorm # operand is a NORM
|
|
bra.b _L22_6d
|
|
_L22_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L22_3d # no
|
|
bsr.l smod_szero # yes
|
|
bra.b _L22_6d
|
|
_L22_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L22_4d # no
|
|
bsr.l smod_sinf # yes
|
|
bra.b _L22_6d
|
|
_L22_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L22_5d # no
|
|
bsr.l sop_sqnan # yes
|
|
bra.b _L22_6d
|
|
_L22_5d:
|
|
bsr.l smod_sdnrm # operand is a DENORM
|
|
_L22_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fmodx_
|
|
_fmodx_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_DST(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,DTAG(%a6)
|
|
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src
|
|
mov.l 0x14+0x4(%a6),0x4(%a0)
|
|
mov.l 0x14+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.l %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
lea FP_SRC(%a6),%a0 # pass ptr to src
|
|
lea FP_DST(%a6),%a1 # pass ptr to dst
|
|
|
|
tst.b %d1
|
|
bne.b _L22_2x
|
|
bsr.l smod_snorm # operand is a NORM
|
|
bra.b _L22_6x
|
|
_L22_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L22_3x # no
|
|
bsr.l smod_szero # yes
|
|
bra.b _L22_6x
|
|
_L22_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L22_4x # no
|
|
bsr.l smod_sinf # yes
|
|
bra.b _L22_6x
|
|
_L22_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L22_5x # no
|
|
bsr.l sop_sqnan # yes
|
|
bra.b _L22_6x
|
|
_L22_5x:
|
|
bsr.l smod_sdnrm # operand is a DENORM
|
|
_L22_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# DYADIC TEMPLATE #
|
|
#########################################################################
|
|
global _fscales_
|
|
_fscales_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.s 0x8(%a6),%fp0 # load sgl dst
|
|
fmov.x %fp0,FP_DST(%a6)
|
|
lea FP_DST(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,DTAG(%a6)
|
|
|
|
fmov.s 0xc(%a6),%fp0 # load sgl src
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.l %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
lea FP_SRC(%a6),%a0 # pass ptr to src
|
|
lea FP_DST(%a6),%a1 # pass ptr to dst
|
|
|
|
tst.b %d1
|
|
bne.b _L23_2s
|
|
bsr.l sscale_snorm # operand is a NORM
|
|
bra.b _L23_6s
|
|
_L23_2s:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L23_3s # no
|
|
bsr.l sscale_szero # yes
|
|
bra.b _L23_6s
|
|
_L23_3s:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L23_4s # no
|
|
bsr.l sscale_sinf # yes
|
|
bra.b _L23_6s
|
|
_L23_4s:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L23_5s # no
|
|
bsr.l sop_sqnan # yes
|
|
bra.b _L23_6s
|
|
_L23_5s:
|
|
bsr.l sscale_sdnrm # operand is a DENORM
|
|
_L23_6s:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fscaled_
|
|
_fscaled_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
fmov.d 0x8(%a6),%fp0 # load dbl dst
|
|
fmov.x %fp0,FP_DST(%a6)
|
|
lea FP_DST(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,DTAG(%a6)
|
|
|
|
fmov.d 0x10(%a6),%fp0 # load dbl src
|
|
fmov.x %fp0,FP_SRC(%a6)
|
|
lea FP_SRC(%a6),%a0
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.l %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
lea FP_SRC(%a6),%a0 # pass ptr to src
|
|
lea FP_DST(%a6),%a1 # pass ptr to dst
|
|
|
|
tst.b %d1
|
|
bne.b _L23_2d
|
|
bsr.l sscale_snorm # operand is a NORM
|
|
bra.b _L23_6d
|
|
_L23_2d:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L23_3d # no
|
|
bsr.l sscale_szero # yes
|
|
bra.b _L23_6d
|
|
_L23_3d:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L23_4d # no
|
|
bsr.l sscale_sinf # yes
|
|
bra.b _L23_6d
|
|
_L23_4d:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L23_5d # no
|
|
bsr.l sop_sqnan # yes
|
|
bra.b _L23_6d
|
|
_L23_5d:
|
|
bsr.l sscale_sdnrm # operand is a DENORM
|
|
_L23_6d:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
global _fscalex_
|
|
_fscalex_:
|
|
link %a6,&-LOCAL_SIZE
|
|
|
|
movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
|
|
fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs
|
|
fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1
|
|
|
|
fmov.l &0x0,%fpcr # zero FPCR
|
|
|
|
#
|
|
# copy, convert, and tag input argument
|
|
#
|
|
lea FP_DST(%a6),%a0
|
|
mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst
|
|
mov.l 0x8+0x4(%a6),0x4(%a0)
|
|
mov.l 0x8+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,DTAG(%a6)
|
|
|
|
lea FP_SRC(%a6),%a0
|
|
mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src
|
|
mov.l 0x14+0x4(%a6),0x4(%a0)
|
|
mov.l 0x14+0x8(%a6),0x8(%a0)
|
|
bsr.l tag # fetch operand type
|
|
mov.b %d0,STAG(%a6)
|
|
mov.l %d0,%d1
|
|
|
|
andi.l &0x00ff00ff,USER_FPSR(%a6)
|
|
|
|
clr.l %d0
|
|
mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec
|
|
|
|
lea FP_SRC(%a6),%a0 # pass ptr to src
|
|
lea FP_DST(%a6),%a1 # pass ptr to dst
|
|
|
|
tst.b %d1
|
|
bne.b _L23_2x
|
|
bsr.l sscale_snorm # operand is a NORM
|
|
bra.b _L23_6x
|
|
_L23_2x:
|
|
cmpi.b %d1,&ZERO # is operand a ZERO?
|
|
bne.b _L23_3x # no
|
|
bsr.l sscale_szero # yes
|
|
bra.b _L23_6x
|
|
_L23_3x:
|
|
cmpi.b %d1,&INF # is operand an INF?
|
|
bne.b _L23_4x # no
|
|
bsr.l sscale_sinf # yes
|
|
bra.b _L23_6x
|
|
_L23_4x:
|
|
cmpi.b %d1,&QNAN # is operand a QNAN?
|
|
bne.b _L23_5x # no
|
|
bsr.l sop_sqnan # yes
|
|
bra.b _L23_6x
|
|
_L23_5x:
|
|
bsr.l sscale_sdnrm # operand is a DENORM
|
|
_L23_6x:
|
|
|
|
#
|
|
# Result is now in FP0
|
|
#
|
|
movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
|
|
fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs
|
|
fmovm.x EXC_FP1(%a6),&0x40 # restore fp1
|
|
unlk %a6
|
|
rts
|
|
|
|
|
|
#########################################################################
|
|
# ssin(): computes the sine of a normalized input #
|
|
# ssind(): computes the sine of a denormalized input #
|
|
# scos(): computes the cosine of a normalized input #
|
|
# scosd(): computes the cosine of a denormalized input #
|
|
# ssincos(): computes the sine and cosine of a normalized input #
|
|
# ssincosd(): computes the sine and cosine of a denormalized input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = sin(X) or cos(X) #
|
|
# #
|
|
# For ssincos(X): #
|
|
# fp0 = sin(X) #
|
|
# fp1 = cos(X) #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 1 ulp in 64 significant bit, i.e. #
|
|
# within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# #
|
|
# SIN and COS: #
|
|
# 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. #
|
|
# #
|
|
# 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. #
|
|
# #
|
|
# 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
|
|
# k = N mod 4, so in particular, k = 0,1,2,or 3. #
|
|
# Overwrite k by k := k + AdjN. #
|
|
# #
|
|
# 4. If k is even, go to 6. #
|
|
# #
|
|
# 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. #
|
|
# Return sgn*cos(r) where cos(r) is approximated by an #
|
|
# even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), #
|
|
# s = r*r. #
|
|
# Exit. #
|
|
# #
|
|
# 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) #
|
|
# where sin(r) is approximated by an odd polynomial in r #
|
|
# r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. #
|
|
# Exit. #
|
|
# #
|
|
# 7. If |X| > 1, go to 9. #
|
|
# #
|
|
# 8. (|X|<2**(-40)) If SIN is invoked, return X; #
|
|
# otherwise return 1. #
|
|
# #
|
|
# 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
|
|
# go back to 3. #
|
|
# #
|
|
# SINCOS: #
|
|
# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
|
|
# #
|
|
# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
|
|
# k = N mod 4, so in particular, k = 0,1,2,or 3. #
|
|
# #
|
|
# 3. If k is even, go to 5. #
|
|
# #
|
|
# 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. #
|
|
# j1 exclusive or with the l.s.b. of k. #
|
|
# sgn1 := (-1)**j1, sgn2 := (-1)**j2. #
|
|
# SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where #
|
|
# sin(r) and cos(r) are computed as odd and even #
|
|
# polynomials in r, respectively. Exit #
|
|
# #
|
|
# 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. #
|
|
# SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where #
|
|
# sin(r) and cos(r) are computed as odd and even #
|
|
# polynomials in r, respectively. Exit #
|
|
# #
|
|
# 6. If |X| > 1, go to 8. #
|
|
# #
|
|
# 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. #
|
|
# #
|
|
# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
|
|
# go back to 2. #
|
|
# #
|
|
#########################################################################
|
|
|
|
SINA7: long 0xBD6AAA77,0xCCC994F5
|
|
SINA6: long 0x3DE61209,0x7AAE8DA1
|
|
SINA5: long 0xBE5AE645,0x2A118AE4
|
|
SINA4: long 0x3EC71DE3,0xA5341531
|
|
SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
|
|
SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000
|
|
SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
|
|
|
|
COSB8: long 0x3D2AC4D0,0xD6011EE3
|
|
COSB7: long 0xBDA9396F,0x9F45AC19
|
|
COSB6: long 0x3E21EED9,0x0612C972
|
|
COSB5: long 0xBE927E4F,0xB79D9FCF
|
|
COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
|
|
COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
|
|
COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
|
|
COSB1: long 0xBF000000
|
|
|
|
set INARG,FP_SCR0
|
|
|
|
set X,FP_SCR0
|
|
# set XDCARE,X+2
|
|
set XFRAC,X+4
|
|
|
|
set RPRIME,FP_SCR0
|
|
set SPRIME,FP_SCR1
|
|
|
|
set POSNEG1,L_SCR1
|
|
set TWOTO63,L_SCR1
|
|
|
|
set ENDFLAG,L_SCR2
|
|
set INT,L_SCR2
|
|
|
|
set ADJN,L_SCR3
|
|
|
|
############################################
|
|
global ssin
|
|
ssin:
|
|
mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0
|
|
bra.b SINBGN
|
|
|
|
############################################
|
|
global scos
|
|
scos:
|
|
mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1
|
|
|
|
############################################
|
|
SINBGN:
|
|
#--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
|
|
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
fmov.x %fp0,X(%a6) # save input at X
|
|
|
|
# "COMPACTIFY" X
|
|
mov.l (%a0),%d1 # put exp in hi word
|
|
mov.w 4(%a0),%d1 # fetch hi(man)
|
|
and.l &0x7FFFFFFF,%d1 # strip sign
|
|
|
|
cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)?
|
|
bge.b SOK1 # no
|
|
bra.w SINSM # yes; input is very small
|
|
|
|
SOK1:
|
|
cmp.l %d1,&0x4004BC7E # is |X| < 15 PI?
|
|
blt.b SINMAIN # no
|
|
bra.w SREDUCEX # yes; input is very large
|
|
|
|
#--THIS IS THE USUAL CASE, |X| <= 15 PI.
|
|
#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
|
|
SINMAIN:
|
|
fmov.x %fp0,%fp1
|
|
fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
|
|
|
|
lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
|
|
|
|
fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER
|
|
|
|
mov.l INT(%a6),%d1 # make a copy of N
|
|
asl.l &4,%d1 # N *= 16
|
|
add.l %d1,%a1 # tbl_addr = a1 + (N*16)
|
|
|
|
# A1 IS THE ADDRESS OF N*PIBY2
|
|
# ...WHICH IS IN TWO PIECES Y1 & Y2
|
|
fsub.x (%a1)+,%fp0 # X-Y1
|
|
fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2
|
|
|
|
SINCONT:
|
|
#--continuation from REDUCEX
|
|
|
|
#--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
|
|
mov.l INT(%a6),%d1
|
|
add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN
|
|
ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE
|
|
cmp.l %d1,&0
|
|
blt.w COSPOLY
|
|
|
|
#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
|
|
#--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
|
|
#--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
|
|
#--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
|
|
#--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
|
|
#--WHERE T=S*S.
|
|
#--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
|
|
#--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
|
|
SINPOLY:
|
|
fmovm.x &0x0c,-(%sp) # save fp2/fp3
|
|
|
|
fmov.x %fp0,X(%a6) # X IS R
|
|
fmul.x %fp0,%fp0 # FP0 IS S
|
|
|
|
fmov.d SINA7(%pc),%fp3
|
|
fmov.d SINA6(%pc),%fp2
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.x %fp1,%fp1 # FP1 IS T
|
|
|
|
ror.l &1,%d1
|
|
and.l &0x80000000,%d1
|
|
# ...LEAST SIG. BIT OF D0 IN SIGN POSITION
|
|
eor.l %d1,X(%a6) # X IS NOW R'= SGN*R
|
|
|
|
fmul.x %fp1,%fp3 # TA7
|
|
fmul.x %fp1,%fp2 # TA6
|
|
|
|
fadd.d SINA5(%pc),%fp3 # A5+TA7
|
|
fadd.d SINA4(%pc),%fp2 # A4+TA6
|
|
|
|
fmul.x %fp1,%fp3 # T(A5+TA7)
|
|
fmul.x %fp1,%fp2 # T(A4+TA6)
|
|
|
|
fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7)
|
|
fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6)
|
|
|
|
fmul.x %fp3,%fp1 # T(A3+T(A5+TA7))
|
|
|
|
fmul.x %fp0,%fp2 # S(A2+T(A4+TA6))
|
|
fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7))
|
|
fmul.x X(%a6),%fp0 # R'*S
|
|
|
|
fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
|
|
|
|
fmul.x %fp1,%fp0 # SIN(R')-R'
|
|
|
|
fmovm.x (%sp)+,&0x30 # restore fp2/fp3
|
|
|
|
fmov.l %d0,%fpcr # restore users round mode,prec
|
|
fadd.x X(%a6),%fp0 # last inst - possible exception set
|
|
bra t_inx2
|
|
|
|
#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
|
|
#--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
|
|
#--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
|
|
#--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
|
|
#--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
|
|
#--WHERE T=S*S.
|
|
#--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
|
|
#--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
|
|
#--AND IS THEREFORE STORED AS SINGLE PRECISION.
|
|
COSPOLY:
|
|
fmovm.x &0x0c,-(%sp) # save fp2/fp3
|
|
|
|
fmul.x %fp0,%fp0 # FP0 IS S
|
|
|
|
fmov.d COSB8(%pc),%fp2
|
|
fmov.d COSB7(%pc),%fp3
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.x %fp1,%fp1 # FP1 IS T
|
|
|
|
fmov.x %fp0,X(%a6) # X IS S
|
|
ror.l &1,%d1
|
|
and.l &0x80000000,%d1
|
|
# ...LEAST SIG. BIT OF D0 IN SIGN POSITION
|
|
|
|
fmul.x %fp1,%fp2 # TB8
|
|
|
|
eor.l %d1,X(%a6) # X IS NOW S'= SGN*S
|
|
and.l &0x80000000,%d1
|
|
|
|
fmul.x %fp1,%fp3 # TB7
|
|
|
|
or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE
|
|
mov.l %d1,POSNEG1(%a6)
|
|
|
|
fadd.d COSB6(%pc),%fp2 # B6+TB8
|
|
fadd.d COSB5(%pc),%fp3 # B5+TB7
|
|
|
|
fmul.x %fp1,%fp2 # T(B6+TB8)
|
|
fmul.x %fp1,%fp3 # T(B5+TB7)
|
|
|
|
fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8)
|
|
fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7)
|
|
|
|
fmul.x %fp1,%fp2 # T(B4+T(B6+TB8))
|
|
fmul.x %fp3,%fp1 # T(B3+T(B5+TB7))
|
|
|
|
fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8))
|
|
fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7))
|
|
|
|
fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8)))
|
|
|
|
fadd.x %fp1,%fp0
|
|
|
|
fmul.x X(%a6),%fp0
|
|
|
|
fmovm.x (%sp)+,&0x30 # restore fp2/fp3
|
|
|
|
fmov.l %d0,%fpcr # restore users round mode,prec
|
|
fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set
|
|
bra t_inx2
|
|
|
|
##############################################
|
|
|
|
# SINe: Big OR Small?
|
|
#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
|
|
#--IF |X| < 2**(-40), RETURN X OR 1.
|
|
SINBORS:
|
|
cmp.l %d1,&0x3FFF8000
|
|
bgt.l SREDUCEX
|
|
|
|
SINSM:
|
|
mov.l ADJN(%a6),%d1
|
|
cmp.l %d1,&0
|
|
bgt.b COSTINY
|
|
|
|
# here, the operation may underflow iff the precision is sgl or dbl.
|
|
# extended denorms are handled through another entry point.
|
|
SINTINY:
|
|
# mov.w &0x0000,XDCARE(%a6) # JUST IN CASE
|
|
|
|
fmov.l %d0,%fpcr # restore users round mode,prec
|
|
mov.b &FMOV_OP,%d1 # last inst is MOVE
|
|
fmov.x X(%a6),%fp0 # last inst - possible exception set
|
|
bra t_catch
|
|
|
|
COSTINY:
|
|
fmov.s &0x3F800000,%fp0 # fp0 = 1.0
|
|
fmov.l %d0,%fpcr # restore users round mode,prec
|
|
fadd.s &0x80800000,%fp0 # last inst - possible exception set
|
|
bra t_pinx2
|
|
|
|
################################################
|
|
global ssind
|
|
#--SIN(X) = X FOR DENORMALIZED X
|
|
ssind:
|
|
bra t_extdnrm
|
|
|
|
############################################
|
|
global scosd
|
|
#--COS(X) = 1 FOR DENORMALIZED X
|
|
scosd:
|
|
fmov.s &0x3F800000,%fp0 # fp0 = 1.0
|
|
bra t_pinx2
|
|
|
|
##################################################
|
|
|
|
global ssincos
|
|
ssincos:
|
|
#--SET ADJN TO 4
|
|
mov.l &4,ADJN(%a6)
|
|
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
fmov.x %fp0,X(%a6)
|
|
|
|
mov.l (%a0),%d1
|
|
mov.w 4(%a0),%d1
|
|
and.l &0x7FFFFFFF,%d1 # COMPACTIFY X
|
|
|
|
cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)?
|
|
bge.b SCOK1
|
|
bra.w SCSM
|
|
|
|
SCOK1:
|
|
cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
|
|
blt.b SCMAIN
|
|
bra.w SREDUCEX
|
|
|
|
|
|
#--THIS IS THE USUAL CASE, |X| <= 15 PI.
|
|
#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
|
|
SCMAIN:
|
|
fmov.x %fp0,%fp1
|
|
|
|
fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
|
|
|
|
lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
|
|
|
|
fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER
|
|
|
|
mov.l INT(%a6),%d1
|
|
asl.l &4,%d1
|
|
add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2
|
|
|
|
fsub.x (%a1)+,%fp0 # X-Y1
|
|
fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2
|
|
|
|
SCCONT:
|
|
#--continuation point from REDUCEX
|
|
|
|
mov.l INT(%a6),%d1
|
|
ror.l &1,%d1
|
|
cmp.l %d1,&0 # D0 < 0 IFF N IS ODD
|
|
bge.w NEVEN
|
|
|
|
SNODD:
|
|
#--REGISTERS SAVED SO FAR: D0, A0, FP2.
|
|
fmovm.x &0x04,-(%sp) # save fp2
|
|
|
|
fmov.x %fp0,RPRIME(%a6)
|
|
fmul.x %fp0,%fp0 # FP0 IS S = R*R
|
|
fmov.d SINA7(%pc),%fp1 # A7
|
|
fmov.d COSB8(%pc),%fp2 # B8
|
|
fmul.x %fp0,%fp1 # SA7
|
|
fmul.x %fp0,%fp2 # SB8
|
|
|
|
mov.l %d2,-(%sp)
|
|
mov.l %d1,%d2
|
|
ror.l &1,%d2
|
|
and.l &0x80000000,%d2
|
|
eor.l %d1,%d2
|
|
and.l &0x80000000,%d2
|
|
|
|
fadd.d SINA6(%pc),%fp1 # A6+SA7
|
|
fadd.d COSB7(%pc),%fp2 # B7+SB8
|
|
|
|
fmul.x %fp0,%fp1 # S(A6+SA7)
|
|
eor.l %d2,RPRIME(%a6)
|
|
mov.l (%sp)+,%d2
|
|
fmul.x %fp0,%fp2 # S(B7+SB8)
|
|
ror.l &1,%d1
|
|
and.l &0x80000000,%d1
|
|
mov.l &0x3F800000,POSNEG1(%a6)
|
|
eor.l %d1,POSNEG1(%a6)
|
|
|
|
fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7)
|
|
fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8)
|
|
|
|
fmul.x %fp0,%fp1 # S(A5+S(A6+SA7))
|
|
fmul.x %fp0,%fp2 # S(B6+S(B7+SB8))
|
|
fmov.x %fp0,SPRIME(%a6)
|
|
|
|
fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7))
|
|
eor.l %d1,SPRIME(%a6)
|
|
fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8))
|
|
|
|
fmul.x %fp0,%fp1 # S(A4+...)
|
|
fmul.x %fp0,%fp2 # S(B5+...)
|
|
|
|
fadd.d SINA3(%pc),%fp1 # A3+S(A4+...)
|
|
fadd.d COSB4(%pc),%fp2 # B4+S(B5+...)
|
|
|
|
fmul.x %fp0,%fp1 # S(A3+...)
|
|
fmul.x %fp0,%fp2 # S(B4+...)
|
|
|
|
fadd.x SINA2(%pc),%fp1 # A2+S(A3+...)
|
|
fadd.x COSB3(%pc),%fp2 # B3+S(B4+...)
|
|
|
|
fmul.x %fp0,%fp1 # S(A2+...)
|
|
fmul.x %fp0,%fp2 # S(B3+...)
|
|
|
|
fadd.x SINA1(%pc),%fp1 # A1+S(A2+...)
|
|
fadd.x COSB2(%pc),%fp2 # B2+S(B3+...)
|
|
|
|
fmul.x %fp0,%fp1 # S(A1+...)
|
|
fmul.x %fp2,%fp0 # S(B2+...)
|
|
|
|
fmul.x RPRIME(%a6),%fp1 # R'S(A1+...)
|
|
fadd.s COSB1(%pc),%fp0 # B1+S(B2...)
|
|
fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...))
|
|
|
|
fmovm.x (%sp)+,&0x20 # restore fp2
|
|
|
|
fmov.l %d0,%fpcr
|
|
fadd.x RPRIME(%a6),%fp1 # COS(X)
|
|
bsr sto_cos # store cosine result
|
|
fadd.s POSNEG1(%a6),%fp0 # SIN(X)
|
|
bra t_inx2
|
|
|
|
NEVEN:
|
|
#--REGISTERS SAVED SO FAR: FP2.
|
|
fmovm.x &0x04,-(%sp) # save fp2
|
|
|
|
fmov.x %fp0,RPRIME(%a6)
|
|
fmul.x %fp0,%fp0 # FP0 IS S = R*R
|
|
|
|
fmov.d COSB8(%pc),%fp1 # B8
|
|
fmov.d SINA7(%pc),%fp2 # A7
|
|
|
|
fmul.x %fp0,%fp1 # SB8
|
|
fmov.x %fp0,SPRIME(%a6)
|
|
fmul.x %fp0,%fp2 # SA7
|
|
|
|
ror.l &1,%d1
|
|
and.l &0x80000000,%d1
|
|
|
|
fadd.d COSB7(%pc),%fp1 # B7+SB8
|
|
fadd.d SINA6(%pc),%fp2 # A6+SA7
|
|
|
|
eor.l %d1,RPRIME(%a6)
|
|
eor.l %d1,SPRIME(%a6)
|
|
|
|
fmul.x %fp0,%fp1 # S(B7+SB8)
|
|
|
|
or.l &0x3F800000,%d1
|
|
mov.l %d1,POSNEG1(%a6)
|
|
|
|
fmul.x %fp0,%fp2 # S(A6+SA7)
|
|
|
|
fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8)
|
|
fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7)
|
|
|
|
fmul.x %fp0,%fp1 # S(B6+S(B7+SB8))
|
|
fmul.x %fp0,%fp2 # S(A5+S(A6+SA7))
|
|
|
|
fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8))
|
|
fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7))
|
|
|
|
fmul.x %fp0,%fp1 # S(B5+...)
|
|
fmul.x %fp0,%fp2 # S(A4+...)
|
|
|
|
fadd.d COSB4(%pc),%fp1 # B4+S(B5+...)
|
|
fadd.d SINA3(%pc),%fp2 # A3+S(A4+...)
|
|
|
|
fmul.x %fp0,%fp1 # S(B4+...)
|
|
fmul.x %fp0,%fp2 # S(A3+...)
|
|
|
|
fadd.x COSB3(%pc),%fp1 # B3+S(B4+...)
|
|
fadd.x SINA2(%pc),%fp2 # A2+S(A3+...)
|
|
|
|
fmul.x %fp0,%fp1 # S(B3+...)
|
|
fmul.x %fp0,%fp2 # S(A2+...)
|
|
|
|
fadd.x COSB2(%pc),%fp1 # B2+S(B3+...)
|
|
fadd.x SINA1(%pc),%fp2 # A1+S(A2+...)
|
|
|
|
fmul.x %fp0,%fp1 # S(B2+...)
|
|
fmul.x %fp2,%fp0 # s(a1+...)
|
|
|
|
|
|
fadd.s COSB1(%pc),%fp1 # B1+S(B2...)
|
|
fmul.x RPRIME(%a6),%fp0 # R'S(A1+...)
|
|
fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...))
|
|
|
|
fmovm.x (%sp)+,&0x20 # restore fp2
|
|
|
|
fmov.l %d0,%fpcr
|
|
fadd.s POSNEG1(%a6),%fp1 # COS(X)
|
|
bsr sto_cos # store cosine result
|
|
fadd.x RPRIME(%a6),%fp0 # SIN(X)
|
|
bra t_inx2
|
|
|
|
################################################
|
|
|
|
SCBORS:
|
|
cmp.l %d1,&0x3FFF8000
|
|
bgt.w SREDUCEX
|
|
|
|
################################################
|
|
|
|
SCSM:
|
|
# mov.w &0x0000,XDCARE(%a6)
|
|
fmov.s &0x3F800000,%fp1
|
|
|
|
fmov.l %d0,%fpcr
|
|
fsub.s &0x00800000,%fp1
|
|
bsr sto_cos # store cosine result
|
|
fmov.l %fpcr,%d0 # d0 must have fpcr,too
|
|
mov.b &FMOV_OP,%d1 # last inst is MOVE
|
|
fmov.x X(%a6),%fp0
|
|
bra t_catch
|
|
|
|
##############################################
|
|
|
|
global ssincosd
|
|
#--SIN AND COS OF X FOR DENORMALIZED X
|
|
ssincosd:
|
|
mov.l %d0,-(%sp) # save d0
|
|
fmov.s &0x3F800000,%fp1
|
|
bsr sto_cos # store cosine result
|
|
mov.l (%sp)+,%d0 # restore d0
|
|
bra t_extdnrm
|
|
|
|
############################################
|
|
|
|
#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
|
|
#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
|
|
#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
|
|
SREDUCEX:
|
|
fmovm.x &0x3c,-(%sp) # save {fp2-fp5}
|
|
mov.l %d2,-(%sp) # save d2
|
|
fmov.s &0x00000000,%fp1 # fp1 = 0
|
|
|
|
#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
|
|
#--there is a danger of unwanted overflow in first LOOP iteration. In this
|
|
#--case, reduce argument by one remainder step to make subsequent reduction
|
|
#--safe.
|
|
cmp.l %d1,&0x7ffeffff # is arg dangerously large?
|
|
bne.b SLOOP # no
|
|
|
|
# yes; create 2**16383*PI/2
|
|
mov.w &0x7ffe,FP_SCR0_EX(%a6)
|
|
mov.l &0xc90fdaa2,FP_SCR0_HI(%a6)
|
|
clr.l FP_SCR0_LO(%a6)
|
|
|
|
# create low half of 2**16383*PI/2 at FP_SCR1
|
|
mov.w &0x7fdc,FP_SCR1_EX(%a6)
|
|
mov.l &0x85a308d3,FP_SCR1_HI(%a6)
|
|
clr.l FP_SCR1_LO(%a6)
|
|
|
|
ftest.x %fp0 # test sign of argument
|
|
fblt.w sred_neg
|
|
|
|
or.b &0x80,FP_SCR0_EX(%a6) # positive arg
|
|
or.b &0x80,FP_SCR1_EX(%a6)
|
|
sred_neg:
|
|
fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact
|
|
fmov.x %fp0,%fp1 # save high result in fp1
|
|
fadd.x FP_SCR1(%a6),%fp0 # low part of reduction
|
|
fsub.x %fp0,%fp1 # determine low component of result
|
|
fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument.
|
|
|
|
#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
|
|
#--integer quotient will be stored in N
|
|
#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
|
|
SLOOP:
|
|
fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2
|
|
mov.w INARG(%a6),%d1
|
|
mov.l %d1,%a1 # save a copy of D0
|
|
and.l &0x00007FFF,%d1
|
|
sub.l &0x00003FFF,%d1 # d0 = K
|
|
cmp.l %d1,&28
|
|
ble.b SLASTLOOP
|
|
SCONTLOOP:
|
|
sub.l &27,%d1 # d0 = L := K-27
|
|
mov.b &0,ENDFLAG(%a6)
|
|
bra.b SWORK
|
|
SLASTLOOP:
|
|
clr.l %d1 # d0 = L := 0
|
|
mov.b &1,ENDFLAG(%a6)
|
|
|
|
SWORK:
|
|
#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
|
|
#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
|
|
|
|
#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
|
|
#--2**L * (PIby2_1), 2**L * (PIby2_2)
|
|
|
|
mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
|
|
sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
|
|
|
|
mov.l &0xA2F9836E,FP_SCR0_HI(%a6)
|
|
mov.l &0x4E44152A,FP_SCR0_LO(%a6)
|
|
mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
|
|
|
|
fmov.x %fp0,%fp2
|
|
fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
|
|
|
|
#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
|
|
#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
|
|
#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
|
|
#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
|
|
#--US THE DESIRED VALUE IN FLOATING POINT.
|
|
mov.l %a1,%d2
|
|
swap %d2
|
|
and.l &0x80000000,%d2
|
|
or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL
|
|
mov.l %d2,TWOTO63(%a6)
|
|
fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED
|
|
fsub.s TWOTO63(%a6),%fp2 # fp2 = N
|
|
# fint.x %fp2
|
|
|
|
#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
|
|
mov.l %d1,%d2 # d2 = L
|
|
|
|
add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
|
|
mov.w %d2,FP_SCR0_EX(%a6)
|
|
mov.l &0xC90FDAA2,FP_SCR0_HI(%a6)
|
|
clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1
|
|
|
|
add.l &0x00003FDD,%d1
|
|
mov.w %d1,FP_SCR1_EX(%a6)
|
|
mov.l &0x85A308D3,FP_SCR1_HI(%a6)
|
|
clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2
|
|
|
|
mov.b ENDFLAG(%a6),%d1
|
|
|
|
#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
|
|
#--P2 = 2**(L) * Piby2_2
|
|
fmov.x %fp2,%fp4 # fp4 = N
|
|
fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1
|
|
fmov.x %fp2,%fp5 # fp5 = N
|
|
fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2
|
|
fmov.x %fp4,%fp3 # fp3 = W = N*P1
|
|
|
|
#--we want P+p = W+w but |p| <= half ulp of P
|
|
#--Then, we need to compute A := R-P and a := r-p
|
|
fadd.x %fp5,%fp3 # fp3 = P
|
|
fsub.x %fp3,%fp4 # fp4 = W-P
|
|
|
|
fsub.x %fp3,%fp0 # fp0 = A := R - P
|
|
fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w
|
|
|
|
fmov.x %fp0,%fp3 # fp3 = A
|
|
fsub.x %fp4,%fp1 # fp1 = a := r - p
|
|
|
|
#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
|
|
#--|r| <= half ulp of R.
|
|
fadd.x %fp1,%fp0 # fp0 = R := A+a
|
|
#--No need to calculate r if this is the last loop
|
|
cmp.b %d1,&0
|
|
bgt.w SRESTORE
|
|
|
|
#--Need to calculate r
|
|
fsub.x %fp0,%fp3 # fp3 = A-R
|
|
fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
|
|
bra.w SLOOP
|
|
|
|
SRESTORE:
|
|
fmov.l %fp2,INT(%a6)
|
|
mov.l (%sp)+,%d2 # restore d2
|
|
fmovm.x (%sp)+,&0x3c # restore {fp2-fp5}
|
|
|
|
mov.l ADJN(%a6),%d1
|
|
cmp.l %d1,&4
|
|
|
|
blt.w SINCONT
|
|
bra.w SCCONT
|
|
|
|
#########################################################################
|
|
# stan(): computes the tangent of a normalized input #
|
|
# stand(): computes the tangent of a denormalized input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = tan(X) #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 3 ulp in 64 significant bit, i.e. #
|
|
# within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# #
|
|
# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
|
|
# #
|
|
# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
|
|
# k = N mod 2, so in particular, k = 0 or 1. #
|
|
# #
|
|
# 3. If k is odd, go to 5. #
|
|
# #
|
|
# 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a #
|
|
# rational function U/V where #
|
|
# U = r + r*s*(P1 + s*(P2 + s*P3)), and #
|
|
# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. #
|
|
# Exit. #
|
|
# #
|
|
# 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by #
|
|
# a rational function U/V where #
|
|
# U = r + r*s*(P1 + s*(P2 + s*P3)), and #
|
|
# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, #
|
|
# -Cot(r) = -V/U. Exit. #
|
|
# #
|
|
# 6. If |X| > 1, go to 8. #
|
|
# #
|
|
# 7. (|X|<2**(-40)) Tan(X) = X. Exit. #
|
|
# #
|
|
# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back #
|
|
# to 2. #
|
|
# #
|
|
#########################################################################
|
|
|
|
TANQ4:
|
|
long 0x3EA0B759,0xF50F8688
|
|
TANP3:
|
|
long 0xBEF2BAA5,0xA8924F04
|
|
|
|
TANQ3:
|
|
long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
|
|
|
|
TANP2:
|
|
long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
|
|
|
|
TANQ2:
|
|
long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
|
|
|
|
TANP1:
|
|
long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
|
|
|
|
TANQ1:
|
|
long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
|
|
|
|
INVTWOPI:
|
|
long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
|
|
|
|
TWOPI1:
|
|
long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
|
|
TWOPI2:
|
|
long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
|
|
|
|
#--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
|
|
#--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
|
|
#--MOST 69 BITS LONG.
|
|
# global PITBL
|
|
PITBL:
|
|
long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
|
|
long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
|
|
long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
|
|
long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
|
|
long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
|
|
long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
|
|
long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
|
|
long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
|
|
long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
|
|
long 0xC0040000,0x90836524,0x88034B96,0x20B00000
|
|
long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
|
|
long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
|
|
long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
|
|
long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
|
|
long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
|
|
long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
|
|
long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
|
|
long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
|
|
long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
|
|
long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
|
|
long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
|
|
long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
|
|
long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
|
|
long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
|
|
long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
|
|
long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
|
|
long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
|
|
long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
|
|
long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
|
|
long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
|
|
long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
|
|
long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
|
|
long 0x00000000,0x00000000,0x00000000,0x00000000
|
|
long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
|
|
long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
|
|
long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
|
|
long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
|
|
long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
|
|
long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
|
|
long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
|
|
long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
|
|
long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
|
|
long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
|
|
long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
|
|
long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
|
|
long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
|
|
long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
|
|
long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
|
|
long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
|
|
long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
|
|
long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
|
|
long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
|
|
long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
|
|
long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
|
|
long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
|
|
long 0x40040000,0x90836524,0x88034B96,0xA0B00000
|
|
long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
|
|
long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
|
|
long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
|
|
long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
|
|
long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
|
|
long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
|
|
long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
|
|
long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
|
|
long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
|
|
|
|
set INARG,FP_SCR0
|
|
|
|
set TWOTO63,L_SCR1
|
|
set INT,L_SCR1
|
|
set ENDFLAG,L_SCR2
|
|
|
|
global stan
|
|
stan:
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
|
|
mov.l (%a0),%d1
|
|
mov.w 4(%a0),%d1
|
|
and.l &0x7FFFFFFF,%d1
|
|
|
|
cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)?
|
|
bge.b TANOK1
|
|
bra.w TANSM
|
|
TANOK1:
|
|
cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
|
|
blt.b TANMAIN
|
|
bra.w REDUCEX
|
|
|
|
TANMAIN:
|
|
#--THIS IS THE USUAL CASE, |X| <= 15 PI.
|
|
#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
|
|
fmov.x %fp0,%fp1
|
|
fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
|
|
|
|
lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
|
|
|
|
fmov.l %fp1,%d1 # CONVERT TO INTEGER
|
|
|
|
asl.l &4,%d1
|
|
add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2
|
|
|
|
fsub.x (%a1)+,%fp0 # X-Y1
|
|
|
|
fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2
|
|
|
|
ror.l &5,%d1
|
|
and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0
|
|
|
|
TANCONT:
|
|
fmovm.x &0x0c,-(%sp) # save fp2,fp3
|
|
|
|
cmp.l %d1,&0
|
|
blt.w NODD
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.x %fp1,%fp1 # S = R*R
|
|
|
|
fmov.d TANQ4(%pc),%fp3
|
|
fmov.d TANP3(%pc),%fp2
|
|
|
|
fmul.x %fp1,%fp3 # SQ4
|
|
fmul.x %fp1,%fp2 # SP3
|
|
|
|
fadd.d TANQ3(%pc),%fp3 # Q3+SQ4
|
|
fadd.x TANP2(%pc),%fp2 # P2+SP3
|
|
|
|
fmul.x %fp1,%fp3 # S(Q3+SQ4)
|
|
fmul.x %fp1,%fp2 # S(P2+SP3)
|
|
|
|
fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4)
|
|
fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3)
|
|
|
|
fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4))
|
|
fmul.x %fp1,%fp2 # S(P1+S(P2+SP3))
|
|
|
|
fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4))
|
|
fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3))
|
|
|
|
fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4)))
|
|
|
|
fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3))
|
|
|
|
fadd.s &0x3F800000,%fp1 # 1+S(Q1+...)
|
|
|
|
fmovm.x (%sp)+,&0x30 # restore fp2,fp3
|
|
|
|
fmov.l %d0,%fpcr # restore users round mode,prec
|
|
fdiv.x %fp1,%fp0 # last inst - possible exception set
|
|
bra t_inx2
|
|
|
|
NODD:
|
|
fmov.x %fp0,%fp1
|
|
fmul.x %fp0,%fp0 # S = R*R
|
|
|
|
fmov.d TANQ4(%pc),%fp3
|
|
fmov.d TANP3(%pc),%fp2
|
|
|
|
fmul.x %fp0,%fp3 # SQ4
|
|
fmul.x %fp0,%fp2 # SP3
|
|
|
|
fadd.d TANQ3(%pc),%fp3 # Q3+SQ4
|
|
fadd.x TANP2(%pc),%fp2 # P2+SP3
|
|
|
|
fmul.x %fp0,%fp3 # S(Q3+SQ4)
|
|
fmul.x %fp0,%fp2 # S(P2+SP3)
|
|
|
|
fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4)
|
|
fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3)
|
|
|
|
fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4))
|
|
fmul.x %fp0,%fp2 # S(P1+S(P2+SP3))
|
|
|
|
fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4))
|
|
fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3))
|
|
|
|
fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4)))
|
|
|
|
fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3))
|
|
fadd.s &0x3F800000,%fp0 # 1+S(Q1+...)
|
|
|
|
fmovm.x (%sp)+,&0x30 # restore fp2,fp3
|
|
|
|
fmov.x %fp1,-(%sp)
|
|
eor.l &0x80000000,(%sp)
|
|
|
|
fmov.l %d0,%fpcr # restore users round mode,prec
|
|
fdiv.x (%sp)+,%fp0 # last inst - possible exception set
|
|
bra t_inx2
|
|
|
|
TANBORS:
|
|
#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
|
|
#--IF |X| < 2**(-40), RETURN X OR 1.
|
|
cmp.l %d1,&0x3FFF8000
|
|
bgt.b REDUCEX
|
|
|
|
TANSM:
|
|
fmov.x %fp0,-(%sp)
|
|
fmov.l %d0,%fpcr # restore users round mode,prec
|
|
mov.b &FMOV_OP,%d1 # last inst is MOVE
|
|
fmov.x (%sp)+,%fp0 # last inst - posibble exception set
|
|
bra t_catch
|
|
|
|
global stand
|
|
#--TAN(X) = X FOR DENORMALIZED X
|
|
stand:
|
|
bra t_extdnrm
|
|
|
|
#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
|
|
#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
|
|
#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
|
|
REDUCEX:
|
|
fmovm.x &0x3c,-(%sp) # save {fp2-fp5}
|
|
mov.l %d2,-(%sp) # save d2
|
|
fmov.s &0x00000000,%fp1 # fp1 = 0
|
|
|
|
#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
|
|
#--there is a danger of unwanted overflow in first LOOP iteration. In this
|
|
#--case, reduce argument by one remainder step to make subsequent reduction
|
|
#--safe.
|
|
cmp.l %d1,&0x7ffeffff # is arg dangerously large?
|
|
bne.b LOOP # no
|
|
|
|
# yes; create 2**16383*PI/2
|
|
mov.w &0x7ffe,FP_SCR0_EX(%a6)
|
|
mov.l &0xc90fdaa2,FP_SCR0_HI(%a6)
|
|
clr.l FP_SCR0_LO(%a6)
|
|
|
|
# create low half of 2**16383*PI/2 at FP_SCR1
|
|
mov.w &0x7fdc,FP_SCR1_EX(%a6)
|
|
mov.l &0x85a308d3,FP_SCR1_HI(%a6)
|
|
clr.l FP_SCR1_LO(%a6)
|
|
|
|
ftest.x %fp0 # test sign of argument
|
|
fblt.w red_neg
|
|
|
|
or.b &0x80,FP_SCR0_EX(%a6) # positive arg
|
|
or.b &0x80,FP_SCR1_EX(%a6)
|
|
red_neg:
|
|
fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact
|
|
fmov.x %fp0,%fp1 # save high result in fp1
|
|
fadd.x FP_SCR1(%a6),%fp0 # low part of reduction
|
|
fsub.x %fp0,%fp1 # determine low component of result
|
|
fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument.
|
|
|
|
#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
|
|
#--integer quotient will be stored in N
|
|
#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
|
|
LOOP:
|
|
fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2
|
|
mov.w INARG(%a6),%d1
|
|
mov.l %d1,%a1 # save a copy of D0
|
|
and.l &0x00007FFF,%d1
|
|
sub.l &0x00003FFF,%d1 # d0 = K
|
|
cmp.l %d1,&28
|
|
ble.b LASTLOOP
|
|
CONTLOOP:
|
|
sub.l &27,%d1 # d0 = L := K-27
|
|
mov.b &0,ENDFLAG(%a6)
|
|
bra.b WORK
|
|
LASTLOOP:
|
|
clr.l %d1 # d0 = L := 0
|
|
mov.b &1,ENDFLAG(%a6)
|
|
|
|
WORK:
|
|
#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
|
|
#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
|
|
|
|
#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
|
|
#--2**L * (PIby2_1), 2**L * (PIby2_2)
|
|
|
|
mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
|
|
sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
|
|
|
|
mov.l &0xA2F9836E,FP_SCR0_HI(%a6)
|
|
mov.l &0x4E44152A,FP_SCR0_LO(%a6)
|
|
mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
|
|
|
|
fmov.x %fp0,%fp2
|
|
fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
|
|
|
|
#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
|
|
#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
|
|
#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
|
|
#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
|
|
#--US THE DESIRED VALUE IN FLOATING POINT.
|
|
mov.l %a1,%d2
|
|
swap %d2
|
|
and.l &0x80000000,%d2
|
|
or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL
|
|
mov.l %d2,TWOTO63(%a6)
|
|
fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED
|
|
fsub.s TWOTO63(%a6),%fp2 # fp2 = N
|
|
# fintrz.x %fp2,%fp2
|
|
|
|
#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
|
|
mov.l %d1,%d2 # d2 = L
|
|
|
|
add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
|
|
mov.w %d2,FP_SCR0_EX(%a6)
|
|
mov.l &0xC90FDAA2,FP_SCR0_HI(%a6)
|
|
clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1
|
|
|
|
add.l &0x00003FDD,%d1
|
|
mov.w %d1,FP_SCR1_EX(%a6)
|
|
mov.l &0x85A308D3,FP_SCR1_HI(%a6)
|
|
clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2
|
|
|
|
mov.b ENDFLAG(%a6),%d1
|
|
|
|
#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
|
|
#--P2 = 2**(L) * Piby2_2
|
|
fmov.x %fp2,%fp4 # fp4 = N
|
|
fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1
|
|
fmov.x %fp2,%fp5 # fp5 = N
|
|
fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2
|
|
fmov.x %fp4,%fp3 # fp3 = W = N*P1
|
|
|
|
#--we want P+p = W+w but |p| <= half ulp of P
|
|
#--Then, we need to compute A := R-P and a := r-p
|
|
fadd.x %fp5,%fp3 # fp3 = P
|
|
fsub.x %fp3,%fp4 # fp4 = W-P
|
|
|
|
fsub.x %fp3,%fp0 # fp0 = A := R - P
|
|
fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w
|
|
|
|
fmov.x %fp0,%fp3 # fp3 = A
|
|
fsub.x %fp4,%fp1 # fp1 = a := r - p
|
|
|
|
#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
|
|
#--|r| <= half ulp of R.
|
|
fadd.x %fp1,%fp0 # fp0 = R := A+a
|
|
#--No need to calculate r if this is the last loop
|
|
cmp.b %d1,&0
|
|
bgt.w RESTORE
|
|
|
|
#--Need to calculate r
|
|
fsub.x %fp0,%fp3 # fp3 = A-R
|
|
fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
|
|
bra.w LOOP
|
|
|
|
RESTORE:
|
|
fmov.l %fp2,INT(%a6)
|
|
mov.l (%sp)+,%d2 # restore d2
|
|
fmovm.x (%sp)+,&0x3c # restore {fp2-fp5}
|
|
|
|
mov.l INT(%a6),%d1
|
|
ror.l &1,%d1
|
|
|
|
bra.w TANCONT
|
|
|
|
#########################################################################
|
|
# satan(): computes the arctangent of a normalized number #
|
|
# satand(): computes the arctangent of a denormalized number #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = arctan(X) #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 2 ulps in 64 significant bit, #
|
|
# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. #
|
|
# #
|
|
# Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. #
|
|
# Note that k = -4, -3,..., or 3. #
|
|
# Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 #
|
|
# significant bits of X with a bit-1 attached at the 6-th #
|
|
# bit position. Define u to be u = (X-F) / (1 + X*F). #
|
|
# #
|
|
# Step 3. Approximate arctan(u) by a polynomial poly. #
|
|
# #
|
|
# Step 4. Return arctan(F) + poly, arctan(F) is fetched from a #
|
|
# table of values calculated beforehand. Exit. #
|
|
# #
|
|
# Step 5. If |X| >= 16, go to Step 7. #
|
|
# #
|
|
# Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. #
|
|
# #
|
|
# Step 7. Define X' = -1/X. Approximate arctan(X') by an odd #
|
|
# polynomial in X'. #
|
|
# Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. #
|
|
# #
|
|
#########################################################################
|
|
|
|
ATANA3: long 0xBFF6687E,0x314987D8
|
|
ATANA2: long 0x4002AC69,0x34A26DB3
|
|
ATANA1: long 0xBFC2476F,0x4E1DA28E
|
|
|
|
ATANB6: long 0x3FB34444,0x7F876989
|
|
ATANB5: long 0xBFB744EE,0x7FAF45DB
|
|
ATANB4: long 0x3FBC71C6,0x46940220
|
|
ATANB3: long 0xBFC24924,0x921872F9
|
|
ATANB2: long 0x3FC99999,0x99998FA9
|
|
ATANB1: long 0xBFD55555,0x55555555
|
|
|
|
ATANC5: long 0xBFB70BF3,0x98539E6A
|
|
ATANC4: long 0x3FBC7187,0x962D1D7D
|
|
ATANC3: long 0xBFC24924,0x827107B8
|
|
ATANC2: long 0x3FC99999,0x9996263E
|
|
ATANC1: long 0xBFD55555,0x55555536
|
|
|
|
PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
|
|
NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000
|
|
|
|
PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000
|
|
NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000
|
|
|
|
ATANTBL:
|
|
long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000
|
|
long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000
|
|
long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000
|
|
long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000
|
|
long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000
|
|
long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000
|
|
long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000
|
|
long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000
|
|
long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000
|
|
long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000
|
|
long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000
|
|
long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000
|
|
long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000
|
|
long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000
|
|
long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000
|
|
long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000
|
|
long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000
|
|
long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000
|
|
long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000
|
|
long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000
|
|
long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000
|
|
long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000
|
|
long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000
|
|
long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000
|
|
long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000
|
|
long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000
|
|
long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000
|
|
long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000
|
|
long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000
|
|
long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000
|
|
long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000
|
|
long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000
|
|
long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000
|
|
long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000
|
|
long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000
|
|
long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000
|
|
long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000
|
|
long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000
|
|
long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000
|
|
long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000
|
|
long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000
|
|
long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000
|
|
long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000
|
|
long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000
|
|
long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000
|
|
long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000
|
|
long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000
|
|
long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000
|
|
long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000
|
|
long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000
|
|
long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000
|
|
long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000
|
|
long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000
|
|
long 0x3FFE0000,0x97731420,0x365E538C,0x00000000
|
|
long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000
|
|
long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000
|
|
long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000
|
|
long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000
|
|
long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000
|
|
long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000
|
|
long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000
|
|
long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000
|
|
long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000
|
|
long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000
|
|
long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000
|
|
long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000
|
|
long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000
|
|
long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000
|
|
long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000
|
|
long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000
|
|
long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000
|
|
long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000
|
|
long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000
|
|
long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000
|
|
long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000
|
|
long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000
|
|
long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000
|
|
long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000
|
|
long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000
|
|
long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000
|
|
long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000
|
|
long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000
|
|
long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000
|
|
long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000
|
|
long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000
|
|
long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000
|
|
long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000
|
|
long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000
|
|
long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000
|
|
long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000
|
|
long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000
|
|
long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000
|
|
long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000
|
|
long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000
|
|
long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000
|
|
long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000
|
|
long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000
|
|
long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000
|
|
long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000
|
|
long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000
|
|
long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000
|
|
long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000
|
|
long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000
|
|
long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000
|
|
long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000
|
|
long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000
|
|
long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000
|
|
long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000
|
|
long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000
|
|
long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000
|
|
long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000
|
|
long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000
|
|
long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000
|
|
long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000
|
|
long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000
|
|
long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000
|
|
long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000
|
|
long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000
|
|
long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000
|
|
long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000
|
|
long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000
|
|
long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000
|
|
long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000
|
|
long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000
|
|
long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000
|
|
long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000
|
|
long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000
|
|
long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000
|
|
|
|
set X,FP_SCR0
|
|
set XDCARE,X+2
|
|
set XFRAC,X+4
|
|
set XFRACLO,X+8
|
|
|
|
set ATANF,FP_SCR1
|
|
set ATANFHI,ATANF+4
|
|
set ATANFLO,ATANF+8
|
|
|
|
global satan
|
|
#--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
|
|
satan:
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
|
|
mov.l (%a0),%d1
|
|
mov.w 4(%a0),%d1
|
|
fmov.x %fp0,X(%a6)
|
|
and.l &0x7FFFFFFF,%d1
|
|
|
|
cmp.l %d1,&0x3FFB8000 # |X| >= 1/16?
|
|
bge.b ATANOK1
|
|
bra.w ATANSM
|
|
|
|
ATANOK1:
|
|
cmp.l %d1,&0x4002FFFF # |X| < 16 ?
|
|
ble.b ATANMAIN
|
|
bra.w ATANBIG
|
|
|
|
#--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
|
|
#--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
|
|
#--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
|
|
#--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
|
|
#--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
|
|
#--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
|
|
#--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
|
|
#--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
|
|
#--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
|
|
#--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
|
|
#--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
|
|
#--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
|
|
#--WILL INVOLVE A VERY LONG POLYNOMIAL.
|
|
|
|
#--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
|
|
#--WE CHOSE F TO BE +-2^K * 1.BBBB1
|
|
#--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
|
|
#--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
|
|
#--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
|
|
#-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
|
|
|
|
ATANMAIN:
|
|
|
|
and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS
|
|
or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1
|
|
mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F
|
|
|
|
fmov.x %fp0,%fp1 # FP1 IS X
|
|
fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0
|
|
fsub.x X(%a6),%fp0 # FP0 IS X-F
|
|
fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F
|
|
fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F)
|
|
|
|
#--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
|
|
#--CREATE ATAN(F) AND STORE IT IN ATANF, AND
|
|
#--SAVE REGISTERS FP2.
|
|
|
|
mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY
|
|
mov.l %d1,%d2 # THE EXP AND 16 BITS OF X
|
|
and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION
|
|
and.l &0x7FFF0000,%d2 # EXPONENT OF F
|
|
sub.l &0x3FFB0000,%d2 # K+4
|
|
asr.l &1,%d2
|
|
add.l %d2,%d1 # THE 7 BITS IDENTIFYING F
|
|
asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|)
|
|
lea ATANTBL(%pc),%a1
|
|
add.l %d1,%a1 # ADDRESS OF ATAN(|F|)
|
|
mov.l (%a1)+,ATANF(%a6)
|
|
mov.l (%a1)+,ATANFHI(%a6)
|
|
mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|)
|
|
mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN
|
|
and.l &0x80000000,%d1 # SIGN(F)
|
|
or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|)
|
|
mov.l (%sp)+,%d2 # RESTORE d2
|
|
|
|
#--THAT'S ALL I HAVE TO DO FOR NOW,
|
|
#--BUT ALAS, THE DIVIDE IS STILL CRANKING!
|
|
|
|
#--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
|
|
#--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
|
|
#--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
|
|
#--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
|
|
#--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3.
|
|
#--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
|
|
#--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED
|
|
|
|
fmovm.x &0x04,-(%sp) # save fp2
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.x %fp1,%fp1
|
|
fmov.d ATANA3(%pc),%fp2
|
|
fadd.x %fp1,%fp2 # A3+V
|
|
fmul.x %fp1,%fp2 # V*(A3+V)
|
|
fmul.x %fp0,%fp1 # U*V
|
|
fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V)
|
|
fmul.d ATANA1(%pc),%fp1 # A1*U*V
|
|
fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V))
|
|
fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED
|
|
|
|
fmovm.x (%sp)+,&0x20 # restore fp2
|
|
|
|
fmov.l %d0,%fpcr # restore users rnd mode,prec
|
|
fadd.x ATANF(%a6),%fp0 # ATAN(X)
|
|
bra t_inx2
|
|
|
|
ATANBORS:
|
|
#--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
|
|
#--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
|
|
cmp.l %d1,&0x3FFF8000
|
|
bgt.w ATANBIG # I.E. |X| >= 16
|
|
|
|
ATANSM:
|
|
#--|X| <= 1/16
|
|
#--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
|
|
#--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
|
|
#--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
|
|
#--WHERE Y = X*X, AND Z = Y*Y.
|
|
|
|
cmp.l %d1,&0x3FD78000
|
|
blt.w ATANTINY
|
|
|
|
#--COMPUTE POLYNOMIAL
|
|
fmovm.x &0x0c,-(%sp) # save fp2/fp3
|
|
|
|
fmul.x %fp0,%fp0 # FPO IS Y = X*X
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y
|
|
|
|
fmov.d ATANB6(%pc),%fp2
|
|
fmov.d ATANB5(%pc),%fp3
|
|
|
|
fmul.x %fp1,%fp2 # Z*B6
|
|
fmul.x %fp1,%fp3 # Z*B5
|
|
|
|
fadd.d ATANB4(%pc),%fp2 # B4+Z*B6
|
|
fadd.d ATANB3(%pc),%fp3 # B3+Z*B5
|
|
|
|
fmul.x %fp1,%fp2 # Z*(B4+Z*B6)
|
|
fmul.x %fp3,%fp1 # Z*(B3+Z*B5)
|
|
|
|
fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6)
|
|
fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5)
|
|
|
|
fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6))
|
|
fmul.x X(%a6),%fp0 # X*Y
|
|
|
|
fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
|
|
|
|
fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])
|
|
|
|
fmovm.x (%sp)+,&0x30 # restore fp2/fp3
|
|
|
|
fmov.l %d0,%fpcr # restore users rnd mode,prec
|
|
fadd.x X(%a6),%fp0
|
|
bra t_inx2
|
|
|
|
ATANTINY:
|
|
#--|X| < 2^(-40), ATAN(X) = X
|
|
|
|
fmov.l %d0,%fpcr # restore users rnd mode,prec
|
|
mov.b &FMOV_OP,%d1 # last inst is MOVE
|
|
fmov.x X(%a6),%fp0 # last inst - possible exception set
|
|
|
|
bra t_catch
|
|
|
|
ATANBIG:
|
|
#--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,
|
|
#--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
|
|
cmp.l %d1,&0x40638000
|
|
bgt.w ATANHUGE
|
|
|
|
#--APPROXIMATE ATAN(-1/X) BY
|
|
#--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
|
|
#--THIS CAN BE RE-WRITTEN AS
|
|
#--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.
|
|
|
|
fmovm.x &0x0c,-(%sp) # save fp2/fp3
|
|
|
|
fmov.s &0xBF800000,%fp1 # LOAD -1
|
|
fdiv.x %fp0,%fp1 # FP1 IS -1/X
|
|
|
|
#--DIVIDE IS STILL CRANKING
|
|
|
|
fmov.x %fp1,%fp0 # FP0 IS X'
|
|
fmul.x %fp0,%fp0 # FP0 IS Y = X'*X'
|
|
fmov.x %fp1,X(%a6) # X IS REALLY X'
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y
|
|
|
|
fmov.d ATANC5(%pc),%fp3
|
|
fmov.d ATANC4(%pc),%fp2
|
|
|
|
fmul.x %fp1,%fp3 # Z*C5
|
|
fmul.x %fp1,%fp2 # Z*B4
|
|
|
|
fadd.d ATANC3(%pc),%fp3 # C3+Z*C5
|
|
fadd.d ATANC2(%pc),%fp2 # C2+Z*C4
|
|
|
|
fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED
|
|
fmul.x %fp0,%fp2 # Y*(C2+Z*C4)
|
|
|
|
fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5)
|
|
fmul.x X(%a6),%fp0 # X'*Y
|
|
|
|
fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
|
|
|
|
fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)]
|
|
# ... +[Y*(B2+Z*(B4+Z*B6))])
|
|
fadd.x X(%a6),%fp0
|
|
|
|
fmovm.x (%sp)+,&0x30 # restore fp2/fp3
|
|
|
|
fmov.l %d0,%fpcr # restore users rnd mode,prec
|
|
tst.b (%a0)
|
|
bpl.b pos_big
|
|
|
|
neg_big:
|
|
fadd.x NPIBY2(%pc),%fp0
|
|
bra t_minx2
|
|
|
|
pos_big:
|
|
fadd.x PPIBY2(%pc),%fp0
|
|
bra t_pinx2
|
|
|
|
ATANHUGE:
|
|
#--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
|
|
tst.b (%a0)
|
|
bpl.b pos_huge
|
|
|
|
neg_huge:
|
|
fmov.x NPIBY2(%pc),%fp0
|
|
fmov.l %d0,%fpcr
|
|
fadd.x PTINY(%pc),%fp0
|
|
bra t_minx2
|
|
|
|
pos_huge:
|
|
fmov.x PPIBY2(%pc),%fp0
|
|
fmov.l %d0,%fpcr
|
|
fadd.x NTINY(%pc),%fp0
|
|
bra t_pinx2
|
|
|
|
global satand
|
|
#--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
|
|
satand:
|
|
bra t_extdnrm
|
|
|
|
#########################################################################
|
|
# sasin(): computes the inverse sine of a normalized input #
|
|
# sasind(): computes the inverse sine of a denormalized input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = arcsin(X) #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 3 ulps in 64 significant bit, #
|
|
# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# #
|
|
# ASIN #
|
|
# 1. If |X| >= 1, go to 3. #
|
|
# #
|
|
# 2. (|X| < 1) Calculate asin(X) by #
|
|
# z := sqrt( [1-X][1+X] ) #
|
|
# asin(X) = atan( x / z ). #
|
|
# Exit. #
|
|
# #
|
|
# 3. If |X| > 1, go to 5. #
|
|
# #
|
|
# 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.#
|
|
# #
|
|
# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
|
|
# Exit. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global sasin
|
|
sasin:
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
|
|
mov.l (%a0),%d1
|
|
mov.w 4(%a0),%d1
|
|
and.l &0x7FFFFFFF,%d1
|
|
cmp.l %d1,&0x3FFF8000
|
|
bge.b ASINBIG
|
|
|
|
# This catch is added here for the '060 QSP. Originally, the call to
|
|
# satan() would handle this case by causing the exception which would
|
|
# not be caught until gen_except(). Now, with the exceptions being
|
|
# detected inside of satan(), the exception would have been handled there
|
|
# instead of inside sasin() as expected.
|
|
cmp.l %d1,&0x3FD78000
|
|
blt.w ASINTINY
|
|
|
|
#--THIS IS THE USUAL CASE, |X| < 1
|
|
#--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) )
|
|
|
|
ASINMAIN:
|
|
fmov.s &0x3F800000,%fp1
|
|
fsub.x %fp0,%fp1 # 1-X
|
|
fmovm.x &0x4,-(%sp) # {fp2}
|
|
fmov.s &0x3F800000,%fp2
|
|
fadd.x %fp0,%fp2 # 1+X
|
|
fmul.x %fp2,%fp1 # (1+X)(1-X)
|
|
fmovm.x (%sp)+,&0x20 # {fp2}
|
|
fsqrt.x %fp1 # SQRT([1-X][1+X])
|
|
fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X])
|
|
fmovm.x &0x01,-(%sp) # save X/SQRT(...)
|
|
lea (%sp),%a0 # pass ptr to X/SQRT(...)
|
|
bsr satan
|
|
add.l &0xc,%sp # clear X/SQRT(...) from stack
|
|
bra t_inx2
|
|
|
|
ASINBIG:
|
|
fabs.x %fp0 # |X|
|
|
fcmp.s %fp0,&0x3F800000
|
|
fbgt t_operr # cause an operr exception
|
|
|
|
#--|X| = 1, ASIN(X) = +- PI/2.
|
|
ASINONE:
|
|
fmov.x PIBY2(%pc),%fp0
|
|
mov.l (%a0),%d1
|
|
and.l &0x80000000,%d1 # SIGN BIT OF X
|
|
or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT
|
|
mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT
|
|
fmov.l %d0,%fpcr
|
|
fmul.s (%sp)+,%fp0
|
|
bra t_inx2
|
|
|
|
#--|X| < 2^(-40), ATAN(X) = X
|
|
ASINTINY:
|
|
fmov.l %d0,%fpcr # restore users rnd mode,prec
|
|
mov.b &FMOV_OP,%d1 # last inst is MOVE
|
|
fmov.x (%a0),%fp0 # last inst - possible exception
|
|
bra t_catch
|
|
|
|
global sasind
|
|
#--ASIN(X) = X FOR DENORMALIZED X
|
|
sasind:
|
|
bra t_extdnrm
|
|
|
|
#########################################################################
|
|
# sacos(): computes the inverse cosine of a normalized input #
|
|
# sacosd(): computes the inverse cosine of a denormalized input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = arccos(X) #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 3 ulps in 64 significant bit, #
|
|
# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# #
|
|
# ACOS #
|
|
# 1. If |X| >= 1, go to 3. #
|
|
# #
|
|
# 2. (|X| < 1) Calculate acos(X) by #
|
|
# z := (1-X) / (1+X) #
|
|
# acos(X) = 2 * atan( sqrt(z) ). #
|
|
# Exit. #
|
|
# #
|
|
# 3. If |X| > 1, go to 5. #
|
|
# #
|
|
# 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. #
|
|
# #
|
|
# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
|
|
# Exit. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global sacos
|
|
sacos:
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
|
|
mov.l (%a0),%d1 # pack exp w/ upper 16 fraction
|
|
mov.w 4(%a0),%d1
|
|
and.l &0x7FFFFFFF,%d1
|
|
cmp.l %d1,&0x3FFF8000
|
|
bge.b ACOSBIG
|
|
|
|
#--THIS IS THE USUAL CASE, |X| < 1
|
|
#--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) )
|
|
|
|
ACOSMAIN:
|
|
fmov.s &0x3F800000,%fp1
|
|
fadd.x %fp0,%fp1 # 1+X
|
|
fneg.x %fp0 # -X
|
|
fadd.s &0x3F800000,%fp0 # 1-X
|
|
fdiv.x %fp1,%fp0 # (1-X)/(1+X)
|
|
fsqrt.x %fp0 # SQRT((1-X)/(1+X))
|
|
mov.l %d0,-(%sp) # save original users fpcr
|
|
clr.l %d0
|
|
fmovm.x &0x01,-(%sp) # save SQRT(...) to stack
|
|
lea (%sp),%a0 # pass ptr to sqrt
|
|
bsr satan # ATAN(SQRT([1-X]/[1+X]))
|
|
add.l &0xc,%sp # clear SQRT(...) from stack
|
|
|
|
fmov.l (%sp)+,%fpcr # restore users round prec,mode
|
|
fadd.x %fp0,%fp0 # 2 * ATAN( STUFF )
|
|
bra t_pinx2
|
|
|
|
ACOSBIG:
|
|
fabs.x %fp0
|
|
fcmp.s %fp0,&0x3F800000
|
|
fbgt t_operr # cause an operr exception
|
|
|
|
#--|X| = 1, ACOS(X) = 0 OR PI
|
|
tst.b (%a0) # is X positive or negative?
|
|
bpl.b ACOSP1
|
|
|
|
#--X = -1
|
|
#Returns PI and inexact exception
|
|
ACOSM1:
|
|
fmov.x PI(%pc),%fp0 # load PI
|
|
fmov.l %d0,%fpcr # load round mode,prec
|
|
fadd.s &0x00800000,%fp0 # add a small value
|
|
bra t_pinx2
|
|
|
|
ACOSP1:
|
|
bra ld_pzero # answer is positive zero
|
|
|
|
global sacosd
|
|
#--ACOS(X) = PI/2 FOR DENORMALIZED X
|
|
sacosd:
|
|
fmov.l %d0,%fpcr # load user's rnd mode/prec
|
|
fmov.x PIBY2(%pc),%fp0
|
|
bra t_pinx2
|
|
|
|
#########################################################################
|
|
# setox(): computes the exponential for a normalized input #
|
|
# setoxd(): computes the exponential for a denormalized input #
|
|
# setoxm1(): computes the exponential minus 1 for a normalized input #
|
|
# setoxm1d(): computes the exponential minus 1 for a denormalized input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = exp(X) or exp(X)-1 #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 0.85 ulps in 64 significant bit, #
|
|
# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM and IMPLEMENTATION **************************************** #
|
|
# #
|
|
# setoxd #
|
|
# ------ #
|
|
# Step 1. Set ans := 1.0 #
|
|
# #
|
|
# Step 2. Return ans := ans + sign(X)*2^(-126). Exit. #
|
|
# Notes: This will always generate one exception -- inexact. #
|
|
# #
|
|
# #
|
|
# setox #
|
|
# ----- #
|
|
# #
|
|
# Step 1. Filter out extreme cases of input argument. #
|
|
# 1.1 If |X| >= 2^(-65), go to Step 1.3. #
|
|
# 1.2 Go to Step 7. #
|
|
# 1.3 If |X| < 16380 log(2), go to Step 2. #
|
|
# 1.4 Go to Step 8. #
|
|
# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.#
|
|
# To avoid the use of floating-point comparisons, a #
|
|
# compact representation of |X| is used. This format is a #
|
|
# 32-bit integer, the upper (more significant) 16 bits #
|
|
# are the sign and biased exponent field of |X|; the #
|
|
# lower 16 bits are the 16 most significant fraction #
|
|
# (including the explicit bit) bits of |X|. Consequently, #
|
|
# the comparisons in Steps 1.1 and 1.3 can be performed #
|
|
# by integer comparison. Note also that the constant #
|
|
# 16380 log(2) used in Step 1.3 is also in the compact #
|
|
# form. Thus taking the branch to Step 2 guarantees #
|
|
# |X| < 16380 log(2). There is no harm to have a small #
|
|
# number of cases where |X| is less than, but close to, #
|
|
# 16380 log(2) and the branch to Step 9 is taken. #
|
|
# #
|
|
# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
|
|
# 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 #
|
|
# was taken) #
|
|
# 2.2 N := round-to-nearest-integer( X * 64/log2 ). #
|
|
# 2.3 Calculate J = N mod 64; so J = 0,1,2,..., #
|
|
# or 63. #
|
|
# 2.4 Calculate M = (N - J)/64; so N = 64M + J. #
|
|
# 2.5 Calculate the address of the stored value of #
|
|
# 2^(J/64). #
|
|
# 2.6 Create the value Scale = 2^M. #
|
|
# Notes: The calculation in 2.2 is really performed by #
|
|
# Z := X * constant #
|
|
# N := round-to-nearest-integer(Z) #
|
|
# where #
|
|
# constant := single-precision( 64/log 2 ). #
|
|
# #
|
|
# Using a single-precision constant avoids memory #
|
|
# access. Another effect of using a single-precision #
|
|
# "constant" is that the calculated value Z is #
|
|
# #
|
|
# Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). #
|
|
# #
|
|
# This error has to be considered later in Steps 3 and 4. #
|
|
# #
|
|
# Step 3. Calculate X - N*log2/64. #
|
|
# 3.1 R := X + N*L1, #
|
|
# where L1 := single-precision(-log2/64). #
|
|
# 3.2 R := R + N*L2, #
|
|
# L2 := extended-precision(-log2/64 - L1).#
|
|
# Notes: a) The way L1 and L2 are chosen ensures L1+L2 #
|
|
# approximate the value -log2/64 to 88 bits of accuracy. #
|
|
# b) N*L1 is exact because N is no longer than 22 bits #
|
|
# and L1 is no longer than 24 bits. #
|
|
# c) The calculation X+N*L1 is also exact due to #
|
|
# cancellation. Thus, R is practically X+N(L1+L2) to full #
|
|
# 64 bits. #
|
|
# d) It is important to estimate how large can |R| be #
|
|
# after Step 3.2. #
|
|
# #
|
|
# N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) #
|
|
# X*64/log2 (1+eps) = N + f, |f| <= 0.5 #
|
|
# X*64/log2 - N = f - eps*X 64/log2 #
|
|
# X - N*log2/64 = f*log2/64 - eps*X #
|
|
# #
|
|
# #
|
|
# Now |X| <= 16446 log2, thus #
|
|
# #
|
|
# |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 #
|
|
# <= 0.57 log2/64. #
|
|
# This bound will be used in Step 4. #
|
|
# #
|
|
# Step 4. Approximate exp(R)-1 by a polynomial #
|
|
# p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) #
|
|
# Notes: a) In order to reduce memory access, the coefficients #
|
|
# are made as "short" as possible: A1 (which is 1/2), A4 #
|
|
# and A5 are single precision; A2 and A3 are double #
|
|
# precision. #
|
|
# b) Even with the restrictions above, #
|
|
# |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. #
|
|
# Note that 0.0062 is slightly bigger than 0.57 log2/64. #
|
|
# c) To fully utilize the pipeline, p is separated into #
|
|
# two independent pieces of roughly equal complexities #
|
|
# p = [ R + R*S*(A2 + S*A4) ] + #
|
|
# [ S*(A1 + S*(A3 + S*A5)) ] #
|
|
# where S = R*R. #
|
|
# #
|
|
# Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by #
|
|
# ans := T + ( T*p + t) #
|
|
# where T and t are the stored values for 2^(J/64). #
|
|
# Notes: 2^(J/64) is stored as T and t where T+t approximates #
|
|
# 2^(J/64) to roughly 85 bits; T is in extended precision #
|
|
# and t is in single precision. Note also that T is #
|
|
# rounded to 62 bits so that the last two bits of T are #
|
|
# zero. The reason for such a special form is that T-1, #
|
|
# T-2, and T-8 will all be exact --- a property that will #
|
|
# give much more accurate computation of the function #
|
|
# EXPM1. #
|
|
# #
|
|
# Step 6. Reconstruction of exp(X) #
|
|
# exp(X) = 2^M * 2^(J/64) * exp(R). #
|
|
# 6.1 If AdjFlag = 0, go to 6.3 #
|
|
# 6.2 ans := ans * AdjScale #
|
|
# 6.3 Restore the user FPCR #
|
|
# 6.4 Return ans := ans * Scale. Exit. #
|
|
# Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, #
|
|
# |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will #
|
|
# neither overflow nor underflow. If AdjFlag = 1, that #
|
|
# means that #
|
|
# X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. #
|
|
# Hence, exp(X) may overflow or underflow or neither. #
|
|
# When that is the case, AdjScale = 2^(M1) where M1 is #
|
|
# approximately M. Thus 6.2 will never cause #
|
|
# over/underflow. Possible exception in 6.4 is overflow #
|
|
# or underflow. The inexact exception is not generated in #
|
|
# 6.4. Although one can argue that the inexact flag #
|
|
# should always be raised, to simulate that exception #
|
|
# cost to much than the flag is worth in practical uses. #
|
|
# #
|
|
# Step 7. Return 1 + X. #
|
|
# 7.1 ans := X #
|
|
# 7.2 Restore user FPCR. #
|
|
# 7.3 Return ans := 1 + ans. Exit #
|
|
# Notes: For non-zero X, the inexact exception will always be #
|
|
# raised by 7.3. That is the only exception raised by 7.3.#
|
|
# Note also that we use the FMOVEM instruction to move X #
|
|
# in Step 7.1 to avoid unnecessary trapping. (Although #
|
|
# the FMOVEM may not seem relevant since X is normalized, #
|
|
# the precaution will be useful in the library version of #
|
|
# this code where the separate entry for denormalized #
|
|
# inputs will be done away with.) #
|
|
# #
|
|
# Step 8. Handle exp(X) where |X| >= 16380log2. #
|
|
# 8.1 If |X| > 16480 log2, go to Step 9. #
|
|
# (mimic 2.2 - 2.6) #
|
|
# 8.2 N := round-to-integer( X * 64/log2 ) #
|
|
# 8.3 Calculate J = N mod 64, J = 0,1,...,63 #
|
|
# 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, #
|
|
# AdjFlag := 1. #
|
|
# 8.5 Calculate the address of the stored value #
|
|
# 2^(J/64). #
|
|
# 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. #
|
|
# 8.7 Go to Step 3. #
|
|
# Notes: Refer to notes for 2.2 - 2.6. #
|
|
# #
|
|
# Step 9. Handle exp(X), |X| > 16480 log2. #
|
|
# 9.1 If X < 0, go to 9.3 #
|
|
# 9.2 ans := Huge, go to 9.4 #
|
|
# 9.3 ans := Tiny. #
|
|
# 9.4 Restore user FPCR. #
|
|
# 9.5 Return ans := ans * ans. Exit. #
|
|
# Notes: Exp(X) will surely overflow or underflow, depending on #
|
|
# X's sign. "Huge" and "Tiny" are respectively large/tiny #
|
|
# extended-precision numbers whose square over/underflow #
|
|
# with an inexact result. Thus, 9.5 always raises the #
|
|
# inexact together with either overflow or underflow. #
|
|
# #
|
|
# setoxm1d #
|
|
# -------- #
|
|
# #
|
|
# Step 1. Set ans := 0 #
|
|
# #
|
|
# Step 2. Return ans := X + ans. Exit. #
|
|
# Notes: This will return X with the appropriate rounding #
|
|
# precision prescribed by the user FPCR. #
|
|
# #
|
|
# setoxm1 #
|
|
# ------- #
|
|
# #
|
|
# Step 1. Check |X| #
|
|
# 1.1 If |X| >= 1/4, go to Step 1.3. #
|
|
# 1.2 Go to Step 7. #
|
|
# 1.3 If |X| < 70 log(2), go to Step 2. #
|
|
# 1.4 Go to Step 10. #
|
|
# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.#
|
|
# However, it is conceivable |X| can be small very often #
|
|
# because EXPM1 is intended to evaluate exp(X)-1 #
|
|
# accurately when |X| is small. For further details on #
|
|
# the comparisons, see the notes on Step 1 of setox. #
|
|
# #
|
|
# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
|
|
# 2.1 N := round-to-nearest-integer( X * 64/log2 ). #
|
|
# 2.2 Calculate J = N mod 64; so J = 0,1,2,..., #
|
|
# or 63. #
|
|
# 2.3 Calculate M = (N - J)/64; so N = 64M + J. #
|
|
# 2.4 Calculate the address of the stored value of #
|
|
# 2^(J/64). #
|
|
# 2.5 Create the values Sc = 2^M and #
|
|
# OnebySc := -2^(-M). #
|
|
# Notes: See the notes on Step 2 of setox. #
|
|
# #
|
|
# Step 3. Calculate X - N*log2/64. #
|
|
# 3.1 R := X + N*L1, #
|
|
# where L1 := single-precision(-log2/64). #
|
|
# 3.2 R := R + N*L2, #
|
|
# L2 := extended-precision(-log2/64 - L1).#
|
|
# Notes: Applying the analysis of Step 3 of setox in this case #
|
|
# shows that |R| <= 0.0055 (note that |X| <= 70 log2 in #
|
|
# this case). #
|
|
# #
|
|
# Step 4. Approximate exp(R)-1 by a polynomial #
|
|
# p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) #
|
|
# Notes: a) In order to reduce memory access, the coefficients #
|
|
# are made as "short" as possible: A1 (which is 1/2), A5 #
|
|
# and A6 are single precision; A2, A3 and A4 are double #
|
|
# precision. #
|
|
# b) Even with the restriction above, #
|
|
# |p - (exp(R)-1)| < |R| * 2^(-72.7) #
|
|
# for all |R| <= 0.0055. #
|
|
# c) To fully utilize the pipeline, p is separated into #
|
|
# two independent pieces of roughly equal complexity #
|
|
# p = [ R*S*(A2 + S*(A4 + S*A6)) ] + #
|
|
# [ R + S*(A1 + S*(A3 + S*A5)) ] #
|
|
# where S = R*R. #
|
|
# #
|
|
# Step 5. Compute 2^(J/64)*p by #
|
|
# p := T*p #
|
|
# where T and t are the stored values for 2^(J/64). #
|
|
# Notes: 2^(J/64) is stored as T and t where T+t approximates #
|
|
# 2^(J/64) to roughly 85 bits; T is in extended precision #
|
|
# and t is in single precision. Note also that T is #
|
|
# rounded to 62 bits so that the last two bits of T are #
|
|
# zero. The reason for such a special form is that T-1, #
|
|
# T-2, and T-8 will all be exact --- a property that will #
|
|
# be exploited in Step 6 below. The total relative error #
|
|
# in p is no bigger than 2^(-67.7) compared to the final #
|
|
# result. #
|
|
# #
|
|
# Step 6. Reconstruction of exp(X)-1 #
|
|
# exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). #
|
|
# 6.1 If M <= 63, go to Step 6.3. #
|
|
# 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 #
|
|
# 6.3 If M >= -3, go to 6.5. #
|
|
# 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 #
|
|
# 6.5 ans := (T + OnebySc) + (p + t). #
|
|
# 6.6 Restore user FPCR. #
|
|
# 6.7 Return ans := Sc * ans. Exit. #
|
|
# Notes: The various arrangements of the expressions give #
|
|
# accurate evaluations. #
|
|
# #
|
|
# Step 7. exp(X)-1 for |X| < 1/4. #
|
|
# 7.1 If |X| >= 2^(-65), go to Step 9. #
|
|
# 7.2 Go to Step 8. #
|
|
# #
|
|
# Step 8. Calculate exp(X)-1, |X| < 2^(-65). #
|
|
# 8.1 If |X| < 2^(-16312), goto 8.3 #
|
|
# 8.2 Restore FPCR; return ans := X - 2^(-16382). #
|
|
# Exit. #
|
|
# 8.3 X := X * 2^(140). #
|
|
# 8.4 Restore FPCR; ans := ans - 2^(-16382). #
|
|
# Return ans := ans*2^(140). Exit #
|
|
# Notes: The idea is to return "X - tiny" under the user #
|
|
# precision and rounding modes. To avoid unnecessary #
|
|
# inefficiency, we stay away from denormalized numbers #
|
|
# the best we can. For |X| >= 2^(-16312), the #
|
|
# straightforward 8.2 generates the inexact exception as #
|
|
# the case warrants. #
|
|
# #
|
|
# Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial #
|
|
# p = X + X*X*(B1 + X*(B2 + ... + X*B12)) #
|
|
# Notes: a) In order to reduce memory access, the coefficients #
|
|
# are made as "short" as possible: B1 (which is 1/2), B9 #
|
|
# to B12 are single precision; B3 to B8 are double #
|
|
# precision; and B2 is double extended. #
|
|
# b) Even with the restriction above, #
|
|
# |p - (exp(X)-1)| < |X| 2^(-70.6) #
|
|
# for all |X| <= 0.251. #
|
|
# Note that 0.251 is slightly bigger than 1/4. #
|
|
# c) To fully preserve accuracy, the polynomial is #
|
|
# computed as #
|
|
# X + ( S*B1 + Q ) where S = X*X and #
|
|
# Q = X*S*(B2 + X*(B3 + ... + X*B12)) #
|
|
# d) To fully utilize the pipeline, Q is separated into #
|
|
# two independent pieces of roughly equal complexity #
|
|
# Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + #
|
|
# [ S*S*(B3 + S*(B5 + ... + S*B11)) ] #
|
|
# #
|
|
# Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. #
|
|
# 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all #
|
|
# practical purposes. Therefore, go to Step 1 of setox. #
|
|
# 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical #
|
|
# purposes. #
|
|
# ans := -1 #
|
|
# Restore user FPCR #
|
|
# Return ans := ans + 2^(-126). Exit. #
|
|
# Notes: 10.2 will always create an inexact and return -1 + tiny #
|
|
# in the user rounding precision and mode. #
|
|
# #
|
|
#########################################################################
|
|
|
|
L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
|
|
|
|
EEXPA3: long 0x3FA55555,0x55554CC1
|
|
EEXPA2: long 0x3FC55555,0x55554A54
|
|
|
|
EM1A4: long 0x3F811111,0x11174385
|
|
EM1A3: long 0x3FA55555,0x55554F5A
|
|
|
|
EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000
|
|
|
|
EM1B8: long 0x3EC71DE3,0xA5774682
|
|
EM1B7: long 0x3EFA01A0,0x19D7CB68
|
|
|
|
EM1B6: long 0x3F2A01A0,0x1A019DF3
|
|
EM1B5: long 0x3F56C16C,0x16C170E2
|
|
|
|
EM1B4: long 0x3F811111,0x11111111
|
|
EM1B3: long 0x3FA55555,0x55555555
|
|
|
|
EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
|
|
long 0x00000000
|
|
|
|
TWO140: long 0x48B00000,0x00000000
|
|
TWON140:
|
|
long 0x37300000,0x00000000
|
|
|
|
EEXPTBL:
|
|
long 0x3FFF0000,0x80000000,0x00000000,0x00000000
|
|
long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
|
|
long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
|
|
long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
|
|
long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
|
|
long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
|
|
long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
|
|
long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
|
|
long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
|
|
long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
|
|
long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
|
|
long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
|
|
long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
|
|
long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
|
|
long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
|
|
long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
|
|
long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
|
|
long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
|
|
long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
|
|
long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
|
|
long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
|
|
long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
|
|
long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
|
|
long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
|
|
long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
|
|
long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
|
|
long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
|
|
long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
|
|
long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
|
|
long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
|
|
long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
|
|
long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
|
|
long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
|
|
long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
|
|
long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
|
|
long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
|
|
long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
|
|
long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
|
|
long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
|
|
long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
|
|
long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
|
|
long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
|
|
long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
|
|
long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
|
|
long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
|
|
long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
|
|
long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
|
|
long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
|
|
long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
|
|
long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
|
|
long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
|
|
long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
|
|
long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
|
|
long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
|
|
long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
|
|
long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
|
|
long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
|
|
long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
|
|
long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
|
|
long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
|
|
long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
|
|
long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
|
|
long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
|
|
long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
|
|
|
|
set ADJFLAG,L_SCR2
|
|
set SCALE,FP_SCR0
|
|
set ADJSCALE,FP_SCR1
|
|
set SC,FP_SCR0
|
|
set ONEBYSC,FP_SCR1
|
|
|
|
global setox
|
|
setox:
|
|
#--entry point for EXP(X), here X is finite, non-zero, and not NaN's
|
|
|
|
#--Step 1.
|
|
mov.l (%a0),%d1 # load part of input X
|
|
and.l &0x7FFF0000,%d1 # biased expo. of X
|
|
cmp.l %d1,&0x3FBE0000 # 2^(-65)
|
|
bge.b EXPC1 # normal case
|
|
bra EXPSM
|
|
|
|
EXPC1:
|
|
#--The case |X| >= 2^(-65)
|
|
mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
|
|
cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits
|
|
blt.b EXPMAIN # normal case
|
|
bra EEXPBIG
|
|
|
|
EXPMAIN:
|
|
#--Step 2.
|
|
#--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
|
|
fmov.x (%a0),%fp0 # load input from (a0)
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
|
|
fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
|
|
mov.l &0,ADJFLAG(%a6)
|
|
fmov.l %fp0,%d1 # N = int( X * 64/log2 )
|
|
lea EEXPTBL(%pc),%a1
|
|
fmov.l %d1,%fp0 # convert to floating-format
|
|
|
|
mov.l %d1,L_SCR1(%a6) # save N temporarily
|
|
and.l &0x3F,%d1 # D0 is J = N mod 64
|
|
lsl.l &4,%d1
|
|
add.l %d1,%a1 # address of 2^(J/64)
|
|
mov.l L_SCR1(%a6),%d1
|
|
asr.l &6,%d1 # D0 is M
|
|
add.w &0x3FFF,%d1 # biased expo. of 2^(M)
|
|
mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB
|
|
|
|
EXPCONT1:
|
|
#--Step 3.
|
|
#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
|
|
#--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
|
|
fmov.x %fp0,%fp2
|
|
fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
|
|
fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
|
|
fadd.x %fp1,%fp0 # X + N*L1
|
|
fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
|
|
|
|
#--Step 4.
|
|
#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
|
|
#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
|
|
#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
|
|
#--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.x %fp1,%fp1 # fp1 IS S = R*R
|
|
|
|
fmov.s &0x3AB60B70,%fp2 # fp2 IS A5
|
|
|
|
fmul.x %fp1,%fp2 # fp2 IS S*A5
|
|
fmov.x %fp1,%fp3
|
|
fmul.s &0x3C088895,%fp3 # fp3 IS S*A4
|
|
|
|
fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5
|
|
fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4
|
|
|
|
fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5)
|
|
mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended
|
|
mov.l &0x80000000,SCALE+4(%a6)
|
|
clr.l SCALE+8(%a6)
|
|
|
|
fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4)
|
|
|
|
fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5)
|
|
fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4)
|
|
|
|
fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5))
|
|
fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4),
|
|
|
|
fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64)
|
|
fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1
|
|
|
|
#--Step 5
|
|
#--final reconstruction process
|
|
#--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
|
|
|
|
fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1)
|
|
fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
|
|
fadd.s (%a1),%fp0 # accurate 2^(J/64)
|
|
|
|
fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*...
|
|
mov.l ADJFLAG(%a6),%d1
|
|
|
|
#--Step 6
|
|
tst.l %d1
|
|
beq.b NORMAL
|
|
ADJUST:
|
|
fmul.x ADJSCALE(%a6),%fp0
|
|
NORMAL:
|
|
fmov.l %d0,%fpcr # restore user FPCR
|
|
mov.b &FMUL_OP,%d1 # last inst is MUL
|
|
fmul.x SCALE(%a6),%fp0 # multiply 2^(M)
|
|
bra t_catch
|
|
|
|
EXPSM:
|
|
#--Step 7
|
|
fmovm.x (%a0),&0x80 # load X
|
|
fmov.l %d0,%fpcr
|
|
fadd.s &0x3F800000,%fp0 # 1+X in user mode
|
|
bra t_pinx2
|
|
|
|
EEXPBIG:
|
|
#--Step 8
|
|
cmp.l %d1,&0x400CB27C # 16480 log2
|
|
bgt.b EXP2BIG
|
|
#--Steps 8.2 -- 8.6
|
|
fmov.x (%a0),%fp0 # load input from (a0)
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
|
|
fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
|
|
mov.l &1,ADJFLAG(%a6)
|
|
fmov.l %fp0,%d1 # N = int( X * 64/log2 )
|
|
lea EEXPTBL(%pc),%a1
|
|
fmov.l %d1,%fp0 # convert to floating-format
|
|
mov.l %d1,L_SCR1(%a6) # save N temporarily
|
|
and.l &0x3F,%d1 # D0 is J = N mod 64
|
|
lsl.l &4,%d1
|
|
add.l %d1,%a1 # address of 2^(J/64)
|
|
mov.l L_SCR1(%a6),%d1
|
|
asr.l &6,%d1 # D0 is K
|
|
mov.l %d1,L_SCR1(%a6) # save K temporarily
|
|
asr.l &1,%d1 # D0 is M1
|
|
sub.l %d1,L_SCR1(%a6) # a1 is M
|
|
add.w &0x3FFF,%d1 # biased expo. of 2^(M1)
|
|
mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1)
|
|
mov.l &0x80000000,ADJSCALE+4(%a6)
|
|
clr.l ADJSCALE+8(%a6)
|
|
mov.l L_SCR1(%a6),%d1 # D0 is M
|
|
add.w &0x3FFF,%d1 # biased expo. of 2^(M)
|
|
bra.w EXPCONT1 # go back to Step 3
|
|
|
|
EXP2BIG:
|
|
#--Step 9
|
|
tst.b (%a0) # is X positive or negative?
|
|
bmi t_unfl2
|
|
bra t_ovfl2
|
|
|
|
global setoxd
|
|
setoxd:
|
|
#--entry point for EXP(X), X is denormalized
|
|
mov.l (%a0),-(%sp)
|
|
andi.l &0x80000000,(%sp)
|
|
ori.l &0x00800000,(%sp) # sign(X)*2^(-126)
|
|
|
|
fmov.s &0x3F800000,%fp0
|
|
|
|
fmov.l %d0,%fpcr
|
|
fadd.s (%sp)+,%fp0
|
|
bra t_pinx2
|
|
|
|
global setoxm1
|
|
setoxm1:
|
|
#--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
|
|
|
|
#--Step 1.
|
|
#--Step 1.1
|
|
mov.l (%a0),%d1 # load part of input X
|
|
and.l &0x7FFF0000,%d1 # biased expo. of X
|
|
cmp.l %d1,&0x3FFD0000 # 1/4
|
|
bge.b EM1CON1 # |X| >= 1/4
|
|
bra EM1SM
|
|
|
|
EM1CON1:
|
|
#--Step 1.3
|
|
#--The case |X| >= 1/4
|
|
mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
|
|
cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits
|
|
ble.b EM1MAIN # 1/4 <= |X| <= 70log2
|
|
bra EM1BIG
|
|
|
|
EM1MAIN:
|
|
#--Step 2.
|
|
#--This is the case: 1/4 <= |X| <= 70 log2.
|
|
fmov.x (%a0),%fp0 # load input from (a0)
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
|
|
fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
|
|
fmov.l %fp0,%d1 # N = int( X * 64/log2 )
|
|
lea EEXPTBL(%pc),%a1
|
|
fmov.l %d1,%fp0 # convert to floating-format
|
|
|
|
mov.l %d1,L_SCR1(%a6) # save N temporarily
|
|
and.l &0x3F,%d1 # D0 is J = N mod 64
|
|
lsl.l &4,%d1
|
|
add.l %d1,%a1 # address of 2^(J/64)
|
|
mov.l L_SCR1(%a6),%d1
|
|
asr.l &6,%d1 # D0 is M
|
|
mov.l %d1,L_SCR1(%a6) # save a copy of M
|
|
|
|
#--Step 3.
|
|
#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
|
|
#--a0 points to 2^(J/64), D0 and a1 both contain M
|
|
fmov.x %fp0,%fp2
|
|
fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
|
|
fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
|
|
fadd.x %fp1,%fp0 # X + N*L1
|
|
fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
|
|
add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M
|
|
|
|
#--Step 4.
|
|
#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
|
|
#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
|
|
#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
|
|
#--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.x %fp1,%fp1 # fp1 IS S = R*R
|
|
|
|
fmov.s &0x3950097B,%fp2 # fp2 IS a6
|
|
|
|
fmul.x %fp1,%fp2 # fp2 IS S*A6
|
|
fmov.x %fp1,%fp3
|
|
fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5
|
|
|
|
fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6
|
|
fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5
|
|
mov.w %d1,SC(%a6) # SC is 2^(M) in extended
|
|
mov.l &0x80000000,SC+4(%a6)
|
|
clr.l SC+8(%a6)
|
|
|
|
fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6)
|
|
mov.l L_SCR1(%a6),%d1 # D0 is M
|
|
neg.w %d1 # D0 is -M
|
|
fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5)
|
|
add.w &0x3FFF,%d1 # biased expo. of 2^(-M)
|
|
fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6)
|
|
fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5)
|
|
|
|
fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6))
|
|
or.w &0x8000,%d1 # signed/expo. of -2^(-M)
|
|
mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M)
|
|
mov.l &0x80000000,ONEBYSC+4(%a6)
|
|
clr.l ONEBYSC+8(%a6)
|
|
fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5))
|
|
|
|
fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6))
|
|
fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5))
|
|
|
|
fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1
|
|
|
|
fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
|
|
|
|
#--Step 5
|
|
#--Compute 2^(J/64)*p
|
|
|
|
fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1)
|
|
|
|
#--Step 6
|
|
#--Step 6.1
|
|
mov.l L_SCR1(%a6),%d1 # retrieve M
|
|
cmp.l %d1,&63
|
|
ble.b MLE63
|
|
#--Step 6.2 M >= 64
|
|
fmov.s 12(%a1),%fp1 # fp1 is t
|
|
fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc
|
|
fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released
|
|
fadd.x (%a1),%fp0 # T+(p+(t+OnebySc))
|
|
bra EM1SCALE
|
|
MLE63:
|
|
#--Step 6.3 M <= 63
|
|
cmp.l %d1,&-3
|
|
bge.b MGEN3
|
|
MLTN3:
|
|
#--Step 6.4 M <= -4
|
|
fadd.s 12(%a1),%fp0 # p+t
|
|
fadd.x (%a1),%fp0 # T+(p+t)
|
|
fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t))
|
|
bra EM1SCALE
|
|
MGEN3:
|
|
#--Step 6.5 -3 <= M <= 63
|
|
fmov.x (%a1)+,%fp1 # fp1 is T
|
|
fadd.s (%a1),%fp0 # fp0 is p+t
|
|
fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc
|
|
fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t)
|
|
|
|
EM1SCALE:
|
|
#--Step 6.6
|
|
fmov.l %d0,%fpcr
|
|
fmul.x SC(%a6),%fp0
|
|
bra t_inx2
|
|
|
|
EM1SM:
|
|
#--Step 7 |X| < 1/4.
|
|
cmp.l %d1,&0x3FBE0000 # 2^(-65)
|
|
bge.b EM1POLY
|
|
|
|
EM1TINY:
|
|
#--Step 8 |X| < 2^(-65)
|
|
cmp.l %d1,&0x00330000 # 2^(-16312)
|
|
blt.b EM12TINY
|
|
#--Step 8.2
|
|
mov.l &0x80010000,SC(%a6) # SC is -2^(-16382)
|
|
mov.l &0x80000000,SC+4(%a6)
|
|
clr.l SC+8(%a6)
|
|
fmov.x (%a0),%fp0
|
|
fmov.l %d0,%fpcr
|
|
mov.b &FADD_OP,%d1 # last inst is ADD
|
|
fadd.x SC(%a6),%fp0
|
|
bra t_catch
|
|
|
|
EM12TINY:
|
|
#--Step 8.3
|
|
fmov.x (%a0),%fp0
|
|
fmul.d TWO140(%pc),%fp0
|
|
mov.l &0x80010000,SC(%a6)
|
|
mov.l &0x80000000,SC+4(%a6)
|
|
clr.l SC+8(%a6)
|
|
fadd.x SC(%a6),%fp0
|
|
fmov.l %d0,%fpcr
|
|
mov.b &FMUL_OP,%d1 # last inst is MUL
|
|
fmul.d TWON140(%pc),%fp0
|
|
bra t_catch
|
|
|
|
EM1POLY:
|
|
#--Step 9 exp(X)-1 by a simple polynomial
|
|
fmov.x (%a0),%fp0 # fp0 is X
|
|
fmul.x %fp0,%fp0 # fp0 is S := X*X
|
|
fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
|
|
fmov.s &0x2F30CAA8,%fp1 # fp1 is B12
|
|
fmul.x %fp0,%fp1 # fp1 is S*B12
|
|
fmov.s &0x310F8290,%fp2 # fp2 is B11
|
|
fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12
|
|
|
|
fmul.x %fp0,%fp2 # fp2 is S*B11
|
|
fmul.x %fp0,%fp1 # fp1 is S*(B10 + ...
|
|
|
|
fadd.s &0x3493F281,%fp2 # fp2 is B9+S*...
|
|
fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*...
|
|
|
|
fmul.x %fp0,%fp2 # fp2 is S*(B9+...
|
|
fmul.x %fp0,%fp1 # fp1 is S*(B8+...
|
|
|
|
fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*...
|
|
fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*...
|
|
|
|
fmul.x %fp0,%fp2 # fp2 is S*(B7+...
|
|
fmul.x %fp0,%fp1 # fp1 is S*(B6+...
|
|
|
|
fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*...
|
|
fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*...
|
|
|
|
fmul.x %fp0,%fp2 # fp2 is S*(B5+...
|
|
fmul.x %fp0,%fp1 # fp1 is S*(B4+...
|
|
|
|
fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*...
|
|
fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*...
|
|
|
|
fmul.x %fp0,%fp2 # fp2 is S*(B3+...
|
|
fmul.x %fp0,%fp1 # fp1 is S*(B2+...
|
|
|
|
fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...)
|
|
fmul.x (%a0),%fp1 # fp1 is X*S*(B2...
|
|
|
|
fmul.s &0x3F000000,%fp0 # fp0 is S*B1
|
|
fadd.x %fp2,%fp1 # fp1 is Q
|
|
|
|
fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
|
|
|
|
fadd.x %fp1,%fp0 # fp0 is S*B1+Q
|
|
|
|
fmov.l %d0,%fpcr
|
|
fadd.x (%a0),%fp0
|
|
bra t_inx2
|
|
|
|
EM1BIG:
|
|
#--Step 10 |X| > 70 log2
|
|
mov.l (%a0),%d1
|
|
cmp.l %d1,&0
|
|
bgt.w EXPC1
|
|
#--Step 10.2
|
|
fmov.s &0xBF800000,%fp0 # fp0 is -1
|
|
fmov.l %d0,%fpcr
|
|
fadd.s &0x00800000,%fp0 # -1 + 2^(-126)
|
|
bra t_minx2
|
|
|
|
global setoxm1d
|
|
setoxm1d:
|
|
#--entry point for EXPM1(X), here X is denormalized
|
|
#--Step 0.
|
|
bra t_extdnrm
|
|
|
|
#########################################################################
|
|
# sgetexp(): returns the exponent portion of the input argument. #
|
|
# The exponent bias is removed and the exponent value is #
|
|
# returned as an extended precision number in fp0. #
|
|
# sgetexpd(): handles denormalized numbers. #
|
|
# #
|
|
# sgetman(): extracts the mantissa of the input argument. The #
|
|
# mantissa is converted to an extended precision number w/ #
|
|
# an exponent of $3fff and is returned in fp0. The range of #
|
|
# the result is [1.0 - 2.0). #
|
|
# sgetmand(): handles denormalized numbers. #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = exponent(X) or mantissa(X) #
|
|
# #
|
|
#########################################################################
|
|
|
|
global sgetexp
|
|
sgetexp:
|
|
mov.w SRC_EX(%a0),%d0 # get the exponent
|
|
bclr &0xf,%d0 # clear the sign bit
|
|
subi.w &0x3fff,%d0 # subtract off the bias
|
|
fmov.w %d0,%fp0 # return exp in fp0
|
|
blt.b sgetexpn # it's negative
|
|
rts
|
|
|
|
sgetexpn:
|
|
mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
|
|
rts
|
|
|
|
global sgetexpd
|
|
sgetexpd:
|
|
bsr.l norm # normalize
|
|
neg.w %d0 # new exp = -(shft amt)
|
|
subi.w &0x3fff,%d0 # subtract off the bias
|
|
fmov.w %d0,%fp0 # return exp in fp0
|
|
mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
|
|
rts
|
|
|
|
global sgetman
|
|
sgetman:
|
|
mov.w SRC_EX(%a0),%d0 # get the exp
|
|
ori.w &0x7fff,%d0 # clear old exp
|
|
bclr &0xe,%d0 # make it the new exp +-3fff
|
|
|
|
# here, we build the result in a tmp location so as not to disturb the input
|
|
mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc
|
|
mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc
|
|
mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
|
|
fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0
|
|
bmi.b sgetmann # it's negative
|
|
rts
|
|
|
|
sgetmann:
|
|
mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
|
|
rts
|
|
|
|
#
|
|
# For denormalized numbers, shift the mantissa until the j-bit = 1,
|
|
# then load the exponent with +/1 $3fff.
|
|
#
|
|
global sgetmand
|
|
sgetmand:
|
|
bsr.l norm # normalize exponent
|
|
bra.b sgetman
|
|
|
|
#########################################################################
|
|
# scosh(): computes the hyperbolic cosine of a normalized input #
|
|
# scoshd(): computes the hyperbolic cosine of a denormalized input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = cosh(X) #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 3 ulps in 64 significant bit, #
|
|
# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# #
|
|
# COSH #
|
|
# 1. If |X| > 16380 log2, go to 3. #
|
|
# #
|
|
# 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae #
|
|
# y = |X|, z = exp(Y), and #
|
|
# cosh(X) = (1/2)*( z + 1/z ). #
|
|
# Exit. #
|
|
# #
|
|
# 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. #
|
|
# #
|
|
# 4. (16380 log2 < |X| <= 16480 log2) #
|
|
# cosh(X) = sign(X) * exp(|X|)/2. #
|
|
# However, invoking exp(|X|) may cause premature #
|
|
# overflow. Thus, we calculate sinh(X) as follows: #
|
|
# Y := |X| #
|
|
# Fact := 2**(16380) #
|
|
# Y' := Y - 16381 log2 #
|
|
# cosh(X) := Fact * exp(Y'). #
|
|
# Exit. #
|
|
# #
|
|
# 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
|
|
# Huge*Huge to generate overflow and an infinity with #
|
|
# the appropriate sign. Huge is the largest finite number #
|
|
# in extended format. Exit. #
|
|
# #
|
|
#########################################################################
|
|
|
|
TWO16380:
|
|
long 0x7FFB0000,0x80000000,0x00000000,0x00000000
|
|
|
|
global scosh
|
|
scosh:
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
|
|
mov.l (%a0),%d1
|
|
mov.w 4(%a0),%d1
|
|
and.l &0x7FFFFFFF,%d1
|
|
cmp.l %d1,&0x400CB167
|
|
bgt.b COSHBIG
|
|
|
|
#--THIS IS THE USUAL CASE, |X| < 16380 LOG2
|
|
#--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) )
|
|
|
|
fabs.x %fp0 # |X|
|
|
|
|
mov.l %d0,-(%sp)
|
|
clr.l %d0
|
|
fmovm.x &0x01,-(%sp) # save |X| to stack
|
|
lea (%sp),%a0 # pass ptr to |X|
|
|
bsr setox # FP0 IS EXP(|X|)
|
|
add.l &0xc,%sp # erase |X| from stack
|
|
fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|)
|
|
mov.l (%sp)+,%d0
|
|
|
|
fmov.s &0x3E800000,%fp1 # (1/4)
|
|
fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|))
|
|
|
|
fmov.l %d0,%fpcr
|
|
mov.b &FADD_OP,%d1 # last inst is ADD
|
|
fadd.x %fp1,%fp0
|
|
bra t_catch
|
|
|
|
COSHBIG:
|
|
cmp.l %d1,&0x400CB2B3
|
|
bgt.b COSHHUGE
|
|
|
|
fabs.x %fp0
|
|
fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD)
|
|
fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE
|
|
|
|
mov.l %d0,-(%sp)
|
|
clr.l %d0
|
|
fmovm.x &0x01,-(%sp) # save fp0 to stack
|
|
lea (%sp),%a0 # pass ptr to fp0
|
|
bsr setox
|
|
add.l &0xc,%sp # clear fp0 from stack
|
|
mov.l (%sp)+,%d0
|
|
|
|
fmov.l %d0,%fpcr
|
|
mov.b &FMUL_OP,%d1 # last inst is MUL
|
|
fmul.x TWO16380(%pc),%fp0
|
|
bra t_catch
|
|
|
|
COSHHUGE:
|
|
bra t_ovfl2
|
|
|
|
global scoshd
|
|
#--COSH(X) = 1 FOR DENORMALIZED X
|
|
scoshd:
|
|
fmov.s &0x3F800000,%fp0
|
|
|
|
fmov.l %d0,%fpcr
|
|
fadd.s &0x00800000,%fp0
|
|
bra t_pinx2
|
|
|
|
#########################################################################
|
|
# ssinh(): computes the hyperbolic sine of a normalized input #
|
|
# ssinhd(): computes the hyperbolic sine of a denormalized input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = sinh(X) #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 3 ulps in 64 significant bit, #
|
|
# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# #
|
|
# SINH #
|
|
# 1. If |X| > 16380 log2, go to 3. #
|
|
# #
|
|
# 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula #
|
|
# y = |X|, sgn = sign(X), and z = expm1(Y), #
|
|
# sinh(X) = sgn*(1/2)*( z + z/(1+z) ). #
|
|
# Exit. #
|
|
# #
|
|
# 3. If |X| > 16480 log2, go to 5. #
|
|
# #
|
|
# 4. (16380 log2 < |X| <= 16480 log2) #
|
|
# sinh(X) = sign(X) * exp(|X|)/2. #
|
|
# However, invoking exp(|X|) may cause premature overflow. #
|
|
# Thus, we calculate sinh(X) as follows: #
|
|
# Y := |X| #
|
|
# sgn := sign(X) #
|
|
# sgnFact := sgn * 2**(16380) #
|
|
# Y' := Y - 16381 log2 #
|
|
# sinh(X) := sgnFact * exp(Y'). #
|
|
# Exit. #
|
|
# #
|
|
# 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
|
|
# sign(X)*Huge*Huge to generate overflow and an infinity with #
|
|
# the appropriate sign. Huge is the largest finite number in #
|
|
# extended format. Exit. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global ssinh
|
|
ssinh:
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
|
|
mov.l (%a0),%d1
|
|
mov.w 4(%a0),%d1
|
|
mov.l %d1,%a1 # save (compacted) operand
|
|
and.l &0x7FFFFFFF,%d1
|
|
cmp.l %d1,&0x400CB167
|
|
bgt.b SINHBIG
|
|
|
|
#--THIS IS THE USUAL CASE, |X| < 16380 LOG2
|
|
#--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
|
|
|
|
fabs.x %fp0 # Y = |X|
|
|
|
|
movm.l &0x8040,-(%sp) # {a1/d0}
|
|
fmovm.x &0x01,-(%sp) # save Y on stack
|
|
lea (%sp),%a0 # pass ptr to Y
|
|
clr.l %d0
|
|
bsr setoxm1 # FP0 IS Z = EXPM1(Y)
|
|
add.l &0xc,%sp # clear Y from stack
|
|
fmov.l &0,%fpcr
|
|
movm.l (%sp)+,&0x0201 # {a1/d0}
|
|
|
|
fmov.x %fp0,%fp1
|
|
fadd.s &0x3F800000,%fp1 # 1+Z
|
|
fmov.x %fp0,-(%sp)
|
|
fdiv.x %fp1,%fp0 # Z/(1+Z)
|
|
mov.l %a1,%d1
|
|
and.l &0x80000000,%d1
|
|
or.l &0x3F000000,%d1
|
|
fadd.x (%sp)+,%fp0
|
|
mov.l %d1,-(%sp)
|
|
|
|
fmov.l %d0,%fpcr
|
|
mov.b &FMUL_OP,%d1 # last inst is MUL
|
|
fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set
|
|
bra t_catch
|
|
|
|
SINHBIG:
|
|
cmp.l %d1,&0x400CB2B3
|
|
bgt t_ovfl
|
|
fabs.x %fp0
|
|
fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD)
|
|
mov.l &0,-(%sp)
|
|
mov.l &0x80000000,-(%sp)
|
|
mov.l %a1,%d1
|
|
and.l &0x80000000,%d1
|
|
or.l &0x7FFB0000,%d1
|
|
mov.l %d1,-(%sp) # EXTENDED FMT
|
|
fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE
|
|
|
|
mov.l %d0,-(%sp)
|
|
clr.l %d0
|
|
fmovm.x &0x01,-(%sp) # save fp0 on stack
|
|
lea (%sp),%a0 # pass ptr to fp0
|
|
bsr setox
|
|
add.l &0xc,%sp # clear fp0 from stack
|
|
|
|
mov.l (%sp)+,%d0
|
|
fmov.l %d0,%fpcr
|
|
mov.b &FMUL_OP,%d1 # last inst is MUL
|
|
fmul.x (%sp)+,%fp0 # possible exception
|
|
bra t_catch
|
|
|
|
global ssinhd
|
|
#--SINH(X) = X FOR DENORMALIZED X
|
|
ssinhd:
|
|
bra t_extdnrm
|
|
|
|
#########################################################################
|
|
# stanh(): computes the hyperbolic tangent of a normalized input #
|
|
# stanhd(): computes the hyperbolic tangent of a denormalized input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = tanh(X) #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 3 ulps in 64 significant bit, #
|
|
# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# #
|
|
# TANH #
|
|
# 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. #
|
|
# #
|
|
# 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by #
|
|
# sgn := sign(X), y := 2|X|, z := expm1(Y), and #
|
|
# tanh(X) = sgn*( z/(2+z) ). #
|
|
# Exit. #
|
|
# #
|
|
# 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, #
|
|
# go to 7. #
|
|
# #
|
|
# 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. #
|
|
# #
|
|
# 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by #
|
|
# sgn := sign(X), y := 2|X|, z := exp(Y), #
|
|
# tanh(X) = sgn - [ sgn*2/(1+z) ]. #
|
|
# Exit. #
|
|
# #
|
|
# 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we #
|
|
# calculate Tanh(X) by #
|
|
# sgn := sign(X), Tiny := 2**(-126), #
|
|
# tanh(X) := sgn - sgn*Tiny. #
|
|
# Exit. #
|
|
# #
|
|
# 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. #
|
|
# #
|
|
#########################################################################
|
|
|
|
set X,FP_SCR0
|
|
set XFRAC,X+4
|
|
|
|
set SGN,L_SCR3
|
|
|
|
set V,FP_SCR0
|
|
|
|
global stanh
|
|
stanh:
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
|
|
fmov.x %fp0,X(%a6)
|
|
mov.l (%a0),%d1
|
|
mov.w 4(%a0),%d1
|
|
mov.l %d1,X(%a6)
|
|
and.l &0x7FFFFFFF,%d1
|
|
cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)?
|
|
blt.w TANHBORS # yes
|
|
cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2?
|
|
bgt.w TANHBORS # yes
|
|
|
|
#--THIS IS THE USUAL CASE
|
|
#--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
|
|
|
|
mov.l X(%a6),%d1
|
|
mov.l %d1,SGN(%a6)
|
|
and.l &0x7FFF0000,%d1
|
|
add.l &0x00010000,%d1 # EXPONENT OF 2|X|
|
|
mov.l %d1,X(%a6)
|
|
and.l &0x80000000,SGN(%a6)
|
|
fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X|
|
|
|
|
mov.l %d0,-(%sp)
|
|
clr.l %d0
|
|
fmovm.x &0x1,-(%sp) # save Y on stack
|
|
lea (%sp),%a0 # pass ptr to Y
|
|
bsr setoxm1 # FP0 IS Z = EXPM1(Y)
|
|
add.l &0xc,%sp # clear Y from stack
|
|
mov.l (%sp)+,%d0
|
|
|
|
fmov.x %fp0,%fp1
|
|
fadd.s &0x40000000,%fp1 # Z+2
|
|
mov.l SGN(%a6),%d1
|
|
fmov.x %fp1,V(%a6)
|
|
eor.l %d1,V(%a6)
|
|
|
|
fmov.l %d0,%fpcr # restore users round prec,mode
|
|
fdiv.x V(%a6),%fp0
|
|
bra t_inx2
|
|
|
|
TANHBORS:
|
|
cmp.l %d1,&0x3FFF8000
|
|
blt.w TANHSM
|
|
|
|
cmp.l %d1,&0x40048AA1
|
|
bgt.w TANHHUGE
|
|
|
|
#-- (5/2) LOG2 < |X| < 50 LOG2,
|
|
#--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),
|
|
#--TANH(X) = SGN - SGN*2/[EXP(Y)+1].
|
|
|
|
mov.l X(%a6),%d1
|
|
mov.l %d1,SGN(%a6)
|
|
and.l &0x7FFF0000,%d1
|
|
add.l &0x00010000,%d1 # EXPO OF 2|X|
|
|
mov.l %d1,X(%a6) # Y = 2|X|
|
|
and.l &0x80000000,SGN(%a6)
|
|
mov.l SGN(%a6),%d1
|
|
fmov.x X(%a6),%fp0 # Y = 2|X|
|
|
|
|
mov.l %d0,-(%sp)
|
|
clr.l %d0
|
|
fmovm.x &0x01,-(%sp) # save Y on stack
|
|
lea (%sp),%a0 # pass ptr to Y
|
|
bsr setox # FP0 IS EXP(Y)
|
|
add.l &0xc,%sp # clear Y from stack
|
|
mov.l (%sp)+,%d0
|
|
mov.l SGN(%a6),%d1
|
|
fadd.s &0x3F800000,%fp0 # EXP(Y)+1
|
|
|
|
eor.l &0xC0000000,%d1 # -SIGN(X)*2
|
|
fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT
|
|
fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ]
|
|
|
|
mov.l SGN(%a6),%d1
|
|
or.l &0x3F800000,%d1 # SGN
|
|
fmov.s %d1,%fp0 # SGN IN SGL FMT
|
|
|
|
fmov.l %d0,%fpcr # restore users round prec,mode
|
|
mov.b &FADD_OP,%d1 # last inst is ADD
|
|
fadd.x %fp1,%fp0
|
|
bra t_inx2
|
|
|
|
TANHSM:
|
|
fmov.l %d0,%fpcr # restore users round prec,mode
|
|
mov.b &FMOV_OP,%d1 # last inst is MOVE
|
|
fmov.x X(%a6),%fp0 # last inst - possible exception set
|
|
bra t_catch
|
|
|
|
#---RETURN SGN(X) - SGN(X)EPS
|
|
TANHHUGE:
|
|
mov.l X(%a6),%d1
|
|
and.l &0x80000000,%d1
|
|
or.l &0x3F800000,%d1
|
|
fmov.s %d1,%fp0
|
|
and.l &0x80000000,%d1
|
|
eor.l &0x80800000,%d1 # -SIGN(X)*EPS
|
|
|
|
fmov.l %d0,%fpcr # restore users round prec,mode
|
|
fadd.s %d1,%fp0
|
|
bra t_inx2
|
|
|
|
global stanhd
|
|
#--TANH(X) = X FOR DENORMALIZED X
|
|
stanhd:
|
|
bra t_extdnrm
|
|
|
|
#########################################################################
|
|
# slogn(): computes the natural logarithm of a normalized input #
|
|
# slognd(): computes the natural logarithm of a denormalized input #
|
|
# slognp1(): computes the log(1+X) of a normalized input #
|
|
# slognp1d(): computes the log(1+X) of a denormalized input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = log(X) or log(1+X) #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 2 ulps in 64 significant bit, #
|
|
# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# LOGN: #
|
|
# Step 1. If |X-1| < 1/16, approximate log(X) by an odd #
|
|
# polynomial in u, where u = 2(X-1)/(X+1). Otherwise, #
|
|
# move on to Step 2. #
|
|
# #
|
|
# Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first #
|
|
# seven significant bits of Y plus 2**(-7), i.e. #
|
|
# F = 1.xxxxxx1 in base 2 where the six "x" match those #
|
|
# of Y. Note that |Y-F| <= 2**(-7). #
|
|
# #
|
|
# Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a #
|
|
# polynomial in u, log(1+u) = poly. #
|
|
# #
|
|
# Step 4. Reconstruct #
|
|
# log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) #
|
|
# by k*log(2) + (log(F) + poly). The values of log(F) are #
|
|
# calculated beforehand and stored in the program. #
|
|
# #
|
|
# lognp1: #
|
|
# Step 1: If |X| < 1/16, approximate log(1+X) by an odd #
|
|
# polynomial in u where u = 2X/(2+X). Otherwise, move on #
|
|
# to Step 2. #
|
|
# #
|
|
# Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done #
|
|
# in Step 2 of the algorithm for LOGN and compute #
|
|
# log(1+X) as k*log(2) + log(F) + poly where poly #
|
|
# approximates log(1+u), u = (Y-F)/F. #
|
|
# #
|
|
# Implementation Notes: #
|
|
# Note 1. There are 64 different possible values for F, thus 64 #
|
|
# log(F)'s need to be tabulated. Moreover, the values of #
|
|
# 1/F are also tabulated so that the division in (Y-F)/F #
|
|
# can be performed by a multiplication. #
|
|
# #
|
|
# Note 2. In Step 2 of lognp1, in order to preserved accuracy, #
|
|
# the value Y-F has to be calculated carefully when #
|
|
# 1/2 <= X < 3/2. #
|
|
# #
|
|
# Note 3. To fully exploit the pipeline, polynomials are usually #
|
|
# separated into two parts evaluated independently before #
|
|
# being added up. #
|
|
# #
|
|
#########################################################################
|
|
LOGOF2:
|
|
long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
|
|
|
|
one:
|
|
long 0x3F800000
|
|
zero:
|
|
long 0x00000000
|
|
infty:
|
|
long 0x7F800000
|
|
negone:
|
|
long 0xBF800000
|
|
|
|
LOGA6:
|
|
long 0x3FC2499A,0xB5E4040B
|
|
LOGA5:
|
|
long 0xBFC555B5,0x848CB7DB
|
|
|
|
LOGA4:
|
|
long 0x3FC99999,0x987D8730
|
|
LOGA3:
|
|
long 0xBFCFFFFF,0xFF6F7E97
|
|
|
|
LOGA2:
|
|
long 0x3FD55555,0x555555A4
|
|
LOGA1:
|
|
long 0xBFE00000,0x00000008
|
|
|
|
LOGB5:
|
|
long 0x3F175496,0xADD7DAD6
|
|
LOGB4:
|
|
long 0x3F3C71C2,0xFE80C7E0
|
|
|
|
LOGB3:
|
|
long 0x3F624924,0x928BCCFF
|
|
LOGB2:
|
|
long 0x3F899999,0x999995EC
|
|
|
|
LOGB1:
|
|
long 0x3FB55555,0x55555555
|
|
TWO:
|
|
long 0x40000000,0x00000000
|
|
|
|
LTHOLD:
|
|
long 0x3f990000,0x80000000,0x00000000,0x00000000
|
|
|
|
LOGTBL:
|
|
long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000
|
|
long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000
|
|
long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000
|
|
long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000
|
|
long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000
|
|
long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000
|
|
long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000
|
|
long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000
|
|
long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000
|
|
long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000
|
|
long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000
|
|
long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000
|
|
long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000
|
|
long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000
|
|
long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000
|
|
long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000
|
|
long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000
|
|
long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000
|
|
long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000
|
|
long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000
|
|
long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000
|
|
long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000
|
|
long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000
|
|
long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000
|
|
long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000
|
|
long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000
|
|
long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000
|
|
long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000
|
|
long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000
|
|
long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000
|
|
long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000
|
|
long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000
|
|
long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000
|
|
long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000
|
|
long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000
|
|
long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000
|
|
long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000
|
|
long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000
|
|
long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000
|
|
long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000
|
|
long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000
|
|
long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000
|
|
long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000
|
|
long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000
|
|
long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000
|
|
long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000
|
|
long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000
|
|
long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000
|
|
long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000
|
|
long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000
|
|
long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000
|
|
long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000
|
|
long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000
|
|
long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000
|
|
long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000
|
|
long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000
|
|
long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000
|
|
long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000
|
|
long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000
|
|
long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000
|
|
long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000
|
|
long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000
|
|
long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000
|
|
long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000
|
|
long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000
|
|
long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000
|
|
long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000
|
|
long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000
|
|
long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000
|
|
long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000
|
|
long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000
|
|
long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000
|
|
long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000
|
|
long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000
|
|
long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000
|
|
long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000
|
|
long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000
|
|
long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000
|
|
long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000
|
|
long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000
|
|
long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000
|
|
long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000
|
|
long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000
|
|
long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000
|
|
long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000
|
|
long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000
|
|
long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000
|
|
long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000
|
|
long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000
|
|
long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000
|
|
long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000
|
|
long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000
|
|
long 0x3FFE0000,0x94458094,0x45809446,0x00000000
|
|
long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000
|
|
long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000
|
|
long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000
|
|
long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000
|
|
long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000
|
|
long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000
|
|
long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000
|
|
long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000
|
|
long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000
|
|
long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000
|
|
long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000
|
|
long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000
|
|
long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000
|
|
long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000
|
|
long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000
|
|
long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000
|
|
long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000
|
|
long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000
|
|
long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000
|
|
long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000
|
|
long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000
|
|
long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000
|
|
long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000
|
|
long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000
|
|
long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000
|
|
long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000
|
|
long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000
|
|
long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000
|
|
long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000
|
|
long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000
|
|
long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000
|
|
long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000
|
|
long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000
|
|
long 0x3FFE0000,0x80808080,0x80808081,0x00000000
|
|
long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000
|
|
|
|
set ADJK,L_SCR1
|
|
|
|
set X,FP_SCR0
|
|
set XDCARE,X+2
|
|
set XFRAC,X+4
|
|
|
|
set F,FP_SCR1
|
|
set FFRAC,F+4
|
|
|
|
set KLOG2,FP_SCR0
|
|
|
|
set SAVEU,FP_SCR0
|
|
|
|
global slogn
|
|
#--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S
|
|
slogn:
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
mov.l &0x00000000,ADJK(%a6)
|
|
|
|
LOGBGN:
|
|
#--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS
|
|
#--A FINITE, NON-ZERO, NORMALIZED NUMBER.
|
|
|
|
mov.l (%a0),%d1
|
|
mov.w 4(%a0),%d1
|
|
|
|
mov.l (%a0),X(%a6)
|
|
mov.l 4(%a0),X+4(%a6)
|
|
mov.l 8(%a0),X+8(%a6)
|
|
|
|
cmp.l %d1,&0 # CHECK IF X IS NEGATIVE
|
|
blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID
|
|
# X IS POSITIVE, CHECK IF X IS NEAR 1
|
|
cmp.l %d1,&0x3ffef07d # IS X < 15/16?
|
|
blt.b LOGMAIN # YES
|
|
cmp.l %d1,&0x3fff8841 # IS X > 17/16?
|
|
ble.w LOGNEAR1 # NO
|
|
|
|
LOGMAIN:
|
|
#--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1
|
|
|
|
#--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.
|
|
#--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
|
|
#--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)
|
|
#-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).
|
|
#--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING
|
|
#--LOG(1+U) CAN BE VERY EFFICIENT.
|
|
#--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO
|
|
#--DIVISION IS NEEDED TO CALCULATE (Y-F)/F.
|
|
|
|
#--GET K, Y, F, AND ADDRESS OF 1/F.
|
|
asr.l &8,%d1
|
|
asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X
|
|
sub.l &0x3FFF,%d1 # THIS IS K
|
|
add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM.
|
|
lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F)
|
|
fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT
|
|
|
|
#--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
|
|
mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X
|
|
mov.l XFRAC(%a6),FFRAC(%a6)
|
|
and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y
|
|
or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT
|
|
mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F
|
|
and.l &0x7E000000,%d1
|
|
asr.l &8,%d1
|
|
asr.l &8,%d1
|
|
asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT
|
|
add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F
|
|
|
|
fmov.x X(%a6),%fp0
|
|
mov.l &0x3fff0000,F(%a6)
|
|
clr.l F+8(%a6)
|
|
fsub.x F(%a6),%fp0 # Y-F
|
|
fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY
|
|
#--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K
|
|
#--REGISTERS SAVED: FPCR, FP1, FP2
|
|
|
|
LP1CONT1:
|
|
#--AN RE-ENTRY POINT FOR LOGNP1
|
|
fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F
|
|
fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY
|
|
fmov.x %fp0,%fp2
|
|
fmul.x %fp2,%fp2 # FP2 IS V=U*U
|
|
fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1
|
|
|
|
#--LOG(1+U) IS APPROXIMATED BY
|
|
#--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS
|
|
#--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))]
|
|
|
|
fmov.x %fp2,%fp3
|
|
fmov.x %fp2,%fp1
|
|
|
|
fmul.d LOGA6(%pc),%fp1 # V*A6
|
|
fmul.d LOGA5(%pc),%fp2 # V*A5
|
|
|
|
fadd.d LOGA4(%pc),%fp1 # A4+V*A6
|
|
fadd.d LOGA3(%pc),%fp2 # A3+V*A5
|
|
|
|
fmul.x %fp3,%fp1 # V*(A4+V*A6)
|
|
fmul.x %fp3,%fp2 # V*(A3+V*A5)
|
|
|
|
fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6)
|
|
fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5)
|
|
|
|
fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6))
|
|
add.l &16,%a0 # ADDRESS OF LOG(F)
|
|
fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5))
|
|
|
|
fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6))
|
|
fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5))
|
|
|
|
fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6))
|
|
fmovm.x (%sp)+,&0x30 # RESTORE FP2-3
|
|
fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U)
|
|
|
|
fmov.l %d0,%fpcr
|
|
fadd.x KLOG2(%a6),%fp0 # FINAL ADD
|
|
bra t_inx2
|
|
|
|
|
|
LOGNEAR1:
|
|
|
|
# if the input is exactly equal to one, then exit through ld_pzero.
|
|
# if these 2 lines weren't here, the correct answer would be returned
|
|
# but the INEX2 bit would be set.
|
|
fcmp.b %fp0,&0x1 # is it equal to one?
|
|
fbeq.l ld_pzero # yes
|
|
|
|
#--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT.
|
|
fmov.x %fp0,%fp1
|
|
fsub.s one(%pc),%fp1 # FP1 IS X-1
|
|
fadd.s one(%pc),%fp0 # FP0 IS X+1
|
|
fadd.x %fp1,%fp1 # FP1 IS 2(X-1)
|
|
#--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL
|
|
#--IN U, U = 2(X-1)/(X+1) = FP1/FP0
|
|
|
|
LP1CONT2:
|
|
#--THIS IS AN RE-ENTRY POINT FOR LOGNP1
|
|
fdiv.x %fp0,%fp1 # FP1 IS U
|
|
fmovm.x &0xc,-(%sp) # SAVE FP2-3
|
|
#--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3
|
|
#--LET V=U*U, W=V*V, CALCULATE
|
|
#--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY
|
|
#--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] )
|
|
fmov.x %fp1,%fp0
|
|
fmul.x %fp0,%fp0 # FP0 IS V
|
|
fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1
|
|
fmov.x %fp0,%fp1
|
|
fmul.x %fp1,%fp1 # FP1 IS W
|
|
|
|
fmov.d LOGB5(%pc),%fp3
|
|
fmov.d LOGB4(%pc),%fp2
|
|
|
|
fmul.x %fp1,%fp3 # W*B5
|
|
fmul.x %fp1,%fp2 # W*B4
|
|
|
|
fadd.d LOGB3(%pc),%fp3 # B3+W*B5
|
|
fadd.d LOGB2(%pc),%fp2 # B2+W*B4
|
|
|
|
fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED
|
|
|
|
fmul.x %fp0,%fp2 # V*(B2+W*B4)
|
|
|
|
fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5)
|
|
fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V
|
|
|
|
fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED
|
|
fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED
|
|
|
|
fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] )
|
|
|
|
fmov.l %d0,%fpcr
|
|
fadd.x SAVEU(%a6),%fp0
|
|
bra t_inx2
|
|
|
|
#--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID
|
|
LOGNEG:
|
|
bra t_operr
|
|
|
|
global slognd
|
|
slognd:
|
|
#--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT
|
|
|
|
mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0
|
|
|
|
#----normalize the input value by left shifting k bits (k to be determined
|
|
#----below), adjusting exponent and storing -k to ADJK
|
|
#----the value TWOTO100 is no longer needed.
|
|
#----Note that this code assumes the denormalized input is NON-ZERO.
|
|
|
|
movm.l &0x3f00,-(%sp) # save some registers {d2-d7}
|
|
mov.l (%a0),%d3 # D3 is exponent of smallest norm. #
|
|
mov.l 4(%a0),%d4
|
|
mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X)
|
|
clr.l %d2 # D2 used for holding K
|
|
|
|
tst.l %d4
|
|
bne.b Hi_not0
|
|
|
|
Hi_0:
|
|
mov.l %d5,%d4
|
|
clr.l %d5
|
|
mov.l &32,%d2
|
|
clr.l %d6
|
|
bfffo %d4{&0:&32},%d6
|
|
lsl.l %d6,%d4
|
|
add.l %d6,%d2 # (D3,D4,D5) is normalized
|
|
|
|
mov.l %d3,X(%a6)
|
|
mov.l %d4,XFRAC(%a6)
|
|
mov.l %d5,XFRAC+4(%a6)
|
|
neg.l %d2
|
|
mov.l %d2,ADJK(%a6)
|
|
fmov.x X(%a6),%fp0
|
|
movm.l (%sp)+,&0xfc # restore registers {d2-d7}
|
|
lea X(%a6),%a0
|
|
bra.w LOGBGN # begin regular log(X)
|
|
|
|
Hi_not0:
|
|
clr.l %d6
|
|
bfffo %d4{&0:&32},%d6 # find first 1
|
|
mov.l %d6,%d2 # get k
|
|
lsl.l %d6,%d4
|
|
mov.l %d5,%d7 # a copy of D5
|
|
lsl.l %d6,%d5
|
|
neg.l %d6
|
|
add.l &32,%d6
|
|
lsr.l %d6,%d7
|
|
or.l %d7,%d4 # (D3,D4,D5) normalized
|
|
|
|
mov.l %d3,X(%a6)
|
|
mov.l %d4,XFRAC(%a6)
|
|
mov.l %d5,XFRAC+4(%a6)
|
|
neg.l %d2
|
|
mov.l %d2,ADJK(%a6)
|
|
fmov.x X(%a6),%fp0
|
|
movm.l (%sp)+,&0xfc # restore registers {d2-d7}
|
|
lea X(%a6),%a0
|
|
bra.w LOGBGN # begin regular log(X)
|
|
|
|
global slognp1
|
|
#--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S
|
|
slognp1:
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
fabs.x %fp0 # test magnitude
|
|
fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold
|
|
fbgt.w LP1REAL # if greater, continue
|
|
fmov.l %d0,%fpcr
|
|
mov.b &FMOV_OP,%d1 # last inst is MOVE
|
|
fmov.x (%a0),%fp0 # return signed argument
|
|
bra t_catch
|
|
|
|
LP1REAL:
|
|
fmov.x (%a0),%fp0 # LOAD INPUT
|
|
mov.l &0x00000000,ADJK(%a6)
|
|
fmov.x %fp0,%fp1 # FP1 IS INPUT Z
|
|
fadd.s one(%pc),%fp0 # X := ROUND(1+Z)
|
|
fmov.x %fp0,X(%a6)
|
|
mov.w XFRAC(%a6),XDCARE(%a6)
|
|
mov.l X(%a6),%d1
|
|
cmp.l %d1,&0
|
|
ble.w LP1NEG0 # LOG OF ZERO OR -VE
|
|
cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]?
|
|
blt.w LOGMAIN
|
|
cmp.l %d1,&0x3fffc000
|
|
bgt.w LOGMAIN
|
|
#--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z,
|
|
#--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE,
|
|
#--SIMPLY INVOKE LOG(X) FOR LOG(1+Z).
|
|
|
|
LP1NEAR1:
|
|
#--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)
|
|
cmp.l %d1,&0x3ffef07d
|
|
blt.w LP1CARE
|
|
cmp.l %d1,&0x3fff8841
|
|
bgt.w LP1CARE
|
|
|
|
LP1ONE16:
|
|
#--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)
|
|
#--WHERE U = 2Z/(2+Z) = 2Z/(1+X).
|
|
fadd.x %fp1,%fp1 # FP1 IS 2Z
|
|
fadd.s one(%pc),%fp0 # FP0 IS 1+X
|
|
#--U = FP1/FP0
|
|
bra.w LP1CONT2
|
|
|
|
LP1CARE:
|
|
#--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
|
|
#--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
|
|
#--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2],
|
|
#--THERE ARE ONLY TWO CASES.
|
|
#--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z
|
|
#--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z
|
|
#--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF
|
|
#--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED.
|
|
|
|
mov.l XFRAC(%a6),FFRAC(%a6)
|
|
and.l &0xFE000000,FFRAC(%a6)
|
|
or.l &0x01000000,FFRAC(%a6) # F OBTAINED
|
|
cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1
|
|
bge.b KISZERO
|
|
|
|
KISNEG1:
|
|
fmov.s TWO(%pc),%fp0
|
|
mov.l &0x3fff0000,F(%a6)
|
|
clr.l F+8(%a6)
|
|
fsub.x F(%a6),%fp0 # 2-F
|
|
mov.l FFRAC(%a6),%d1
|
|
and.l &0x7E000000,%d1
|
|
asr.l &8,%d1
|
|
asr.l &8,%d1
|
|
asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F
|
|
fadd.x %fp1,%fp1 # GET 2Z
|
|
fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3}
|
|
fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z
|
|
lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F
|
|
add.l %d1,%a0
|
|
fmov.s negone(%pc),%fp1 # FP1 IS K = -1
|
|
bra.w LP1CONT1
|
|
|
|
KISZERO:
|
|
fmov.s one(%pc),%fp0
|
|
mov.l &0x3fff0000,F(%a6)
|
|
clr.l F+8(%a6)
|
|
fsub.x F(%a6),%fp0 # 1-F
|
|
mov.l FFRAC(%a6),%d1
|
|
and.l &0x7E000000,%d1
|
|
asr.l &8,%d1
|
|
asr.l &8,%d1
|
|
asr.l &4,%d1
|
|
fadd.x %fp1,%fp0 # FP0 IS Y-F
|
|
fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3}
|
|
lea LOGTBL(%pc),%a0
|
|
add.l %d1,%a0 # A0 IS ADDRESS OF 1/F
|
|
fmov.s zero(%pc),%fp1 # FP1 IS K = 0
|
|
bra.w LP1CONT1
|
|
|
|
LP1NEG0:
|
|
#--FPCR SAVED. D0 IS X IN COMPACT FORM.
|
|
cmp.l %d1,&0
|
|
blt.b LP1NEG
|
|
LP1ZERO:
|
|
fmov.s negone(%pc),%fp0
|
|
|
|
fmov.l %d0,%fpcr
|
|
bra t_dz
|
|
|
|
LP1NEG:
|
|
fmov.s zero(%pc),%fp0
|
|
|
|
fmov.l %d0,%fpcr
|
|
bra t_operr
|
|
|
|
global slognp1d
|
|
#--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT
|
|
# Simply return the denorm
|
|
slognp1d:
|
|
bra t_extdnrm
|
|
|
|
#########################################################################
|
|
# satanh(): computes the inverse hyperbolic tangent of a norm input #
|
|
# satanhd(): computes the inverse hyperbolic tangent of a denorm input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = arctanh(X) #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 3 ulps in 64 significant bit, #
|
|
# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# #
|
|
# ATANH #
|
|
# 1. If |X| >= 1, go to 3. #
|
|
# #
|
|
# 2. (|X| < 1) Calculate atanh(X) by #
|
|
# sgn := sign(X) #
|
|
# y := |X| #
|
|
# z := 2y/(1-y) #
|
|
# atanh(X) := sgn * (1/2) * logp1(z) #
|
|
# Exit. #
|
|
# #
|
|
# 3. If |X| > 1, go to 5. #
|
|
# #
|
|
# 4. (|X| = 1) Generate infinity with an appropriate sign and #
|
|
# divide-by-zero by #
|
|
# sgn := sign(X) #
|
|
# atan(X) := sgn / (+0). #
|
|
# Exit. #
|
|
# #
|
|
# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
|
|
# Exit. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global satanh
|
|
satanh:
|
|
mov.l (%a0),%d1
|
|
mov.w 4(%a0),%d1
|
|
and.l &0x7FFFFFFF,%d1
|
|
cmp.l %d1,&0x3FFF8000
|
|
bge.b ATANHBIG
|
|
|
|
#--THIS IS THE USUAL CASE, |X| < 1
|
|
#--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z).
|
|
|
|
fabs.x (%a0),%fp0 # Y = |X|
|
|
fmov.x %fp0,%fp1
|
|
fneg.x %fp1 # -Y
|
|
fadd.x %fp0,%fp0 # 2Y
|
|
fadd.s &0x3F800000,%fp1 # 1-Y
|
|
fdiv.x %fp1,%fp0 # 2Y/(1-Y)
|
|
mov.l (%a0),%d1
|
|
and.l &0x80000000,%d1
|
|
or.l &0x3F000000,%d1 # SIGN(X)*HALF
|
|
mov.l %d1,-(%sp)
|
|
|
|
mov.l %d0,-(%sp) # save rnd prec,mode
|
|
clr.l %d0 # pass ext prec,RN
|
|
fmovm.x &0x01,-(%sp) # save Z on stack
|
|
lea (%sp),%a0 # pass ptr to Z
|
|
bsr slognp1 # LOG1P(Z)
|
|
add.l &0xc,%sp # clear Z from stack
|
|
|
|
mov.l (%sp)+,%d0 # fetch old prec,mode
|
|
fmov.l %d0,%fpcr # load it
|
|
mov.b &FMUL_OP,%d1 # last inst is MUL
|
|
fmul.s (%sp)+,%fp0
|
|
bra t_catch
|
|
|
|
ATANHBIG:
|
|
fabs.x (%a0),%fp0 # |X|
|
|
fcmp.s %fp0,&0x3F800000
|
|
fbgt t_operr
|
|
bra t_dz
|
|
|
|
global satanhd
|
|
#--ATANH(X) = X FOR DENORMALIZED X
|
|
satanhd:
|
|
bra t_extdnrm
|
|
|
|
#########################################################################
|
|
# slog10(): computes the base-10 logarithm of a normalized input #
|
|
# slog10d(): computes the base-10 logarithm of a denormalized input #
|
|
# slog2(): computes the base-2 logarithm of a normalized input #
|
|
# slog2d(): computes the base-2 logarithm of a denormalized input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = log_10(X) or log_2(X) #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 1.7 ulps in 64 significant bit, #
|
|
# i.e. within 0.5003 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# #
|
|
# slog10d: #
|
|
# #
|
|
# Step 0. If X < 0, create a NaN and raise the invalid operation #
|
|
# flag. Otherwise, save FPCR in D1; set FpCR to default. #
|
|
# Notes: Default means round-to-nearest mode, no floating-point #
|
|
# traps, and precision control = double extended. #
|
|
# #
|
|
# Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
|
|
# Notes: Even if X is denormalized, log(X) is always normalized. #
|
|
# #
|
|
# Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
|
|
# 2.1 Restore the user FPCR #
|
|
# 2.2 Return ans := Y * INV_L10. #
|
|
# #
|
|
# slog10: #
|
|
# #
|
|
# Step 0. If X < 0, create a NaN and raise the invalid operation #
|
|
# flag. Otherwise, save FPCR in D1; set FpCR to default. #
|
|
# Notes: Default means round-to-nearest mode, no floating-point #
|
|
# traps, and precision control = double extended. #
|
|
# #
|
|
# Step 1. Call sLogN to obtain Y = log(X), the natural log of X. #
|
|
# #
|
|
# Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
|
|
# 2.1 Restore the user FPCR #
|
|
# 2.2 Return ans := Y * INV_L10. #
|
|
# #
|
|
# sLog2d: #
|
|
# #
|
|
# Step 0. If X < 0, create a NaN and raise the invalid operation #
|
|
# flag. Otherwise, save FPCR in D1; set FpCR to default. #
|
|
# Notes: Default means round-to-nearest mode, no floating-point #
|
|
# traps, and precision control = double extended. #
|
|
# #
|
|
# Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
|
|
# Notes: Even if X is denormalized, log(X) is always normalized. #
|
|
# #
|
|
# Step 2. Compute log_10(X) = log(X) * (1/log(2)). #
|
|
# 2.1 Restore the user FPCR #
|
|
# 2.2 Return ans := Y * INV_L2. #
|
|
# #
|
|
# sLog2: #
|
|
# #
|
|
# Step 0. If X < 0, create a NaN and raise the invalid operation #
|
|
# flag. Otherwise, save FPCR in D1; set FpCR to default. #
|
|
# Notes: Default means round-to-nearest mode, no floating-point #
|
|
# traps, and precision control = double extended. #
|
|
# #
|
|
# Step 1. If X is not an integer power of two, i.e., X != 2^k, #
|
|
# go to Step 3. #
|
|
# #
|
|
# Step 2. Return k. #
|
|
# 2.1 Get integer k, X = 2^k. #
|
|
# 2.2 Restore the user FPCR. #
|
|
# 2.3 Return ans := convert-to-double-extended(k). #
|
|
# #
|
|
# Step 3. Call sLogN to obtain Y = log(X), the natural log of X. #
|
|
# #
|
|
# Step 4. Compute log_2(X) = log(X) * (1/log(2)). #
|
|
# 4.1 Restore the user FPCR #
|
|
# 4.2 Return ans := Y * INV_L2. #
|
|
# #
|
|
#########################################################################
|
|
|
|
INV_L10:
|
|
long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000
|
|
|
|
INV_L2:
|
|
long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000
|
|
|
|
global slog10
|
|
#--entry point for Log10(X), X is normalized
|
|
slog10:
|
|
fmov.b &0x1,%fp0
|
|
fcmp.x %fp0,(%a0) # if operand == 1,
|
|
fbeq.l ld_pzero # return an EXACT zero
|
|
|
|
mov.l (%a0),%d1
|
|
blt.w invalid
|
|
mov.l %d0,-(%sp)
|
|
clr.l %d0
|
|
bsr slogn # log(X), X normal.
|
|
fmov.l (%sp)+,%fpcr
|
|
fmul.x INV_L10(%pc),%fp0
|
|
bra t_inx2
|
|
|
|
global slog10d
|
|
#--entry point for Log10(X), X is denormalized
|
|
slog10d:
|
|
mov.l (%a0),%d1
|
|
blt.w invalid
|
|
mov.l %d0,-(%sp)
|
|
clr.l %d0
|
|
bsr slognd # log(X), X denorm.
|
|
fmov.l (%sp)+,%fpcr
|
|
fmul.x INV_L10(%pc),%fp0
|
|
bra t_minx2
|
|
|
|
global slog2
|
|
#--entry point for Log2(X), X is normalized
|
|
slog2:
|
|
mov.l (%a0),%d1
|
|
blt.w invalid
|
|
|
|
mov.l 8(%a0),%d1
|
|
bne.b continue # X is not 2^k
|
|
|
|
mov.l 4(%a0),%d1
|
|
and.l &0x7FFFFFFF,%d1
|
|
bne.b continue
|
|
|
|
#--X = 2^k.
|
|
mov.w (%a0),%d1
|
|
and.l &0x00007FFF,%d1
|
|
sub.l &0x3FFF,%d1
|
|
beq.l ld_pzero
|
|
fmov.l %d0,%fpcr
|
|
fmov.l %d1,%fp0
|
|
bra t_inx2
|
|
|
|
continue:
|
|
mov.l %d0,-(%sp)
|
|
clr.l %d0
|
|
bsr slogn # log(X), X normal.
|
|
fmov.l (%sp)+,%fpcr
|
|
fmul.x INV_L2(%pc),%fp0
|
|
bra t_inx2
|
|
|
|
invalid:
|
|
bra t_operr
|
|
|
|
global slog2d
|
|
#--entry point for Log2(X), X is denormalized
|
|
slog2d:
|
|
mov.l (%a0),%d1
|
|
blt.w invalid
|
|
mov.l %d0,-(%sp)
|
|
clr.l %d0
|
|
bsr slognd # log(X), X denorm.
|
|
fmov.l (%sp)+,%fpcr
|
|
fmul.x INV_L2(%pc),%fp0
|
|
bra t_minx2
|
|
|
|
#########################################################################
|
|
# stwotox(): computes 2**X for a normalized input #
|
|
# stwotoxd(): computes 2**X for a denormalized input #
|
|
# stentox(): computes 10**X for a normalized input #
|
|
# stentoxd(): computes 10**X for a denormalized input #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = 2**X or 10**X #
|
|
# #
|
|
# ACCURACY and MONOTONICITY ******************************************* #
|
|
# The returned result is within 2 ulps in 64 significant bit, #
|
|
# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
|
|
# rounded to double precision. The result is provably monotonic #
|
|
# in double precision. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# #
|
|
# twotox #
|
|
# 1. If |X| > 16480, go to ExpBig. #
|
|
# #
|
|
# 2. If |X| < 2**(-70), go to ExpSm. #
|
|
# #
|
|
# 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore #
|
|
# decompose N as #
|
|
# N = 64(M + M') + j, j = 0,1,2,...,63. #
|
|
# #
|
|
# 4. Overwrite r := r * log2. Then #
|
|
# 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
|
|
# Go to expr to compute that expression. #
|
|
# #
|
|
# tentox #
|
|
# 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. #
|
|
# #
|
|
# 2. If |X| < 2**(-70), go to ExpSm. #
|
|
# #
|
|
# 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set #
|
|
# N := round-to-int(y). Decompose N as #
|
|
# N = 64(M + M') + j, j = 0,1,2,...,63. #
|
|
# #
|
|
# 4. Define r as #
|
|
# r := ((X - N*L1)-N*L2) * L10 #
|
|
# where L1, L2 are the leading and trailing parts of #
|
|
# log_10(2)/64 and L10 is the natural log of 10. Then #
|
|
# 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
|
|
# Go to expr to compute that expression. #
|
|
# #
|
|
# expr #
|
|
# 1. Fetch 2**(j/64) from table as Fact1 and Fact2. #
|
|
# #
|
|
# 2. Overwrite Fact1 and Fact2 by #
|
|
# Fact1 := 2**(M) * Fact1 #
|
|
# Fact2 := 2**(M) * Fact2 #
|
|
# Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). #
|
|
# #
|
|
# 3. Calculate P where 1 + P approximates exp(r): #
|
|
# P = r + r*r*(A1+r*(A2+...+r*A5)). #
|
|
# #
|
|
# 4. Let AdjFact := 2**(M'). Return #
|
|
# AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). #
|
|
# Exit. #
|
|
# #
|
|
# ExpBig #
|
|
# 1. Generate overflow by Huge * Huge if X > 0; otherwise, #
|
|
# generate underflow by Tiny * Tiny. #
|
|
# #
|
|
# ExpSm #
|
|
# 1. Return 1 + X. #
|
|
# #
|
|
#########################################################################
|
|
|
|
L2TEN64:
|
|
long 0x406A934F,0x0979A371 # 64LOG10/LOG2
|
|
L10TWO1:
|
|
long 0x3F734413,0x509F8000 # LOG2/64LOG10
|
|
|
|
L10TWO2:
|
|
long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000
|
|
|
|
LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000
|
|
|
|
LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
|
|
|
|
EXPA5: long 0x3F56C16D,0x6F7BD0B2
|
|
EXPA4: long 0x3F811112,0x302C712C
|
|
EXPA3: long 0x3FA55555,0x55554CC1
|
|
EXPA2: long 0x3FC55555,0x55554A54
|
|
EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000
|
|
|
|
TEXPTBL:
|
|
long 0x3FFF0000,0x80000000,0x00000000,0x3F738000
|
|
long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA
|
|
long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9
|
|
long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9
|
|
long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA
|
|
long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C
|
|
long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1
|
|
long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA
|
|
long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373
|
|
long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670
|
|
long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700
|
|
long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0
|
|
long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D
|
|
long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319
|
|
long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B
|
|
long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5
|
|
long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A
|
|
long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B
|
|
long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF
|
|
long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA
|
|
long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD
|
|
long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E
|
|
long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B
|
|
long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB
|
|
long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB
|
|
long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274
|
|
long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C
|
|
long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00
|
|
long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301
|
|
long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367
|
|
long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F
|
|
long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C
|
|
long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB
|
|
long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB
|
|
long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C
|
|
long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA
|
|
long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD
|
|
long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51
|
|
long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A
|
|
long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2
|
|
long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB
|
|
long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17
|
|
long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C
|
|
long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8
|
|
long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53
|
|
long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE
|
|
long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124
|
|
long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243
|
|
long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A
|
|
long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61
|
|
long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610
|
|
long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1
|
|
long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12
|
|
long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE
|
|
long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4
|
|
long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F
|
|
long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A
|
|
long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A
|
|
long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC
|
|
long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F
|
|
long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A
|
|
long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795
|
|
long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B
|
|
long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581
|
|
|
|
set INT,L_SCR1
|
|
|
|
set X,FP_SCR0
|
|
set XDCARE,X+2
|
|
set XFRAC,X+4
|
|
|
|
set ADJFACT,FP_SCR0
|
|
|
|
set FACT1,FP_SCR0
|
|
set FACT1HI,FACT1+4
|
|
set FACT1LOW,FACT1+8
|
|
|
|
set FACT2,FP_SCR1
|
|
set FACT2HI,FACT2+4
|
|
set FACT2LOW,FACT2+8
|
|
|
|
global stwotox
|
|
#--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
|
|
stwotox:
|
|
fmovm.x (%a0),&0x80 # LOAD INPUT
|
|
|
|
mov.l (%a0),%d1
|
|
mov.w 4(%a0),%d1
|
|
fmov.x %fp0,X(%a6)
|
|
and.l &0x7FFFFFFF,%d1
|
|
|
|
cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)?
|
|
bge.b TWOOK1
|
|
bra.w EXPBORS
|
|
|
|
TWOOK1:
|
|
cmp.l %d1,&0x400D80C0 # |X| > 16480?
|
|
ble.b TWOMAIN
|
|
bra.w EXPBORS
|
|
|
|
TWOMAIN:
|
|
#--USUAL CASE, 2^(-70) <= |X| <= 16480
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.s &0x42800000,%fp1 # 64 * X
|
|
fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X)
|
|
mov.l %d2,-(%sp)
|
|
lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64)
|
|
fmov.l INT(%a6),%fp1 # N --> FLOATING FMT
|
|
mov.l INT(%a6),%d1
|
|
mov.l %d1,%d2
|
|
and.l &0x3F,%d1 # D0 IS J
|
|
asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64)
|
|
add.l %d1,%a1 # ADDRESS FOR 2^(J/64)
|
|
asr.l &6,%d2 # d2 IS L, N = 64L + J
|
|
mov.l %d2,%d1
|
|
asr.l &1,%d1 # D0 IS M
|
|
sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J
|
|
add.l &0x3FFF,%d2
|
|
|
|
#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
|
|
#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
|
|
#--ADJFACT = 2^(M').
|
|
#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
|
|
|
|
fmovm.x &0x0c,-(%sp) # save fp2/fp3
|
|
|
|
fmul.s &0x3C800000,%fp1 # (1/64)*N
|
|
mov.l (%a1)+,FACT1(%a6)
|
|
mov.l (%a1)+,FACT1HI(%a6)
|
|
mov.l (%a1)+,FACT1LOW(%a6)
|
|
mov.w (%a1)+,FACT2(%a6)
|
|
|
|
fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X)
|
|
|
|
mov.w (%a1)+,FACT2HI(%a6)
|
|
clr.w FACT2HI+2(%a6)
|
|
clr.l FACT2LOW(%a6)
|
|
add.w %d1,FACT1(%a6)
|
|
fmul.x LOG2(%pc),%fp0 # FP0 IS R
|
|
add.w %d1,FACT2(%a6)
|
|
|
|
bra.w expr
|
|
|
|
EXPBORS:
|
|
#--FPCR, D0 SAVED
|
|
cmp.l %d1,&0x3FFF8000
|
|
bgt.b TEXPBIG
|
|
|
|
#--|X| IS SMALL, RETURN 1 + X
|
|
|
|
fmov.l %d0,%fpcr # restore users round prec,mode
|
|
fadd.s &0x3F800000,%fp0 # RETURN 1 + X
|
|
bra t_pinx2
|
|
|
|
TEXPBIG:
|
|
#--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW
|
|
#--REGISTERS SAVE SO FAR ARE FPCR AND D0
|
|
mov.l X(%a6),%d1
|
|
cmp.l %d1,&0
|
|
blt.b EXPNEG
|
|
|
|
bra t_ovfl2 # t_ovfl expects positive value
|
|
|
|
EXPNEG:
|
|
bra t_unfl2 # t_unfl expects positive value
|
|
|
|
global stwotoxd
|
|
stwotoxd:
|
|
#--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT
|
|
|
|
fmov.l %d0,%fpcr # set user's rounding mode/precision
|
|
fmov.s &0x3F800000,%fp0 # RETURN 1 + X
|
|
mov.l (%a0),%d1
|
|
or.l &0x00800001,%d1
|
|
fadd.s %d1,%fp0
|
|
bra t_pinx2
|
|
|
|
global stentox
|
|
#--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
|
|
stentox:
|
|
fmovm.x (%a0),&0x80 # LOAD INPUT
|
|
|
|
mov.l (%a0),%d1
|
|
mov.w 4(%a0),%d1
|
|
fmov.x %fp0,X(%a6)
|
|
and.l &0x7FFFFFFF,%d1
|
|
|
|
cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)?
|
|
bge.b TENOK1
|
|
bra.w EXPBORS
|
|
|
|
TENOK1:
|
|
cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ?
|
|
ble.b TENMAIN
|
|
bra.w EXPBORS
|
|
|
|
TENMAIN:
|
|
#--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2
|
|
fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2)
|
|
mov.l %d2,-(%sp)
|
|
lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64)
|
|
fmov.l INT(%a6),%fp1 # N --> FLOATING FMT
|
|
mov.l INT(%a6),%d1
|
|
mov.l %d1,%d2
|
|
and.l &0x3F,%d1 # D0 IS J
|
|
asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64)
|
|
add.l %d1,%a1 # ADDRESS FOR 2^(J/64)
|
|
asr.l &6,%d2 # d2 IS L, N = 64L + J
|
|
mov.l %d2,%d1
|
|
asr.l &1,%d1 # D0 IS M
|
|
sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J
|
|
add.l &0x3FFF,%d2
|
|
|
|
#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
|
|
#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
|
|
#--ADJFACT = 2^(M').
|
|
#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
|
|
fmovm.x &0x0c,-(%sp) # save fp2/fp3
|
|
|
|
fmov.x %fp1,%fp2
|
|
|
|
fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD
|
|
mov.l (%a1)+,FACT1(%a6)
|
|
|
|
fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL
|
|
|
|
mov.l (%a1)+,FACT1HI(%a6)
|
|
mov.l (%a1)+,FACT1LOW(%a6)
|
|
fsub.x %fp1,%fp0 # X - N L_LEAD
|
|
mov.w (%a1)+,FACT2(%a6)
|
|
|
|
fsub.x %fp2,%fp0 # X - N L_TRAIL
|
|
|
|
mov.w (%a1)+,FACT2HI(%a6)
|
|
clr.w FACT2HI+2(%a6)
|
|
clr.l FACT2LOW(%a6)
|
|
|
|
fmul.x LOG10(%pc),%fp0 # FP0 IS R
|
|
add.w %d1,FACT1(%a6)
|
|
add.w %d1,FACT2(%a6)
|
|
|
|
expr:
|
|
#--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN.
|
|
#--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64).
|
|
#--FP0 IS R. THE FOLLOWING CODE COMPUTES
|
|
#-- 2**(M'+M) * 2**(J/64) * EXP(R)
|
|
|
|
fmov.x %fp0,%fp1
|
|
fmul.x %fp1,%fp1 # FP1 IS S = R*R
|
|
|
|
fmov.d EXPA5(%pc),%fp2 # FP2 IS A5
|
|
fmov.d EXPA4(%pc),%fp3 # FP3 IS A4
|
|
|
|
fmul.x %fp1,%fp2 # FP2 IS S*A5
|
|
fmul.x %fp1,%fp3 # FP3 IS S*A4
|
|
|
|
fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5
|
|
fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4
|
|
|
|
fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5)
|
|
fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4)
|
|
|
|
fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5)
|
|
fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4)
|
|
|
|
fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5))
|
|
fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4)
|
|
fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1
|
|
|
|
fmovm.x (%sp)+,&0x30 # restore fp2/fp3
|
|
|
|
#--FINAL RECONSTRUCTION PROCESS
|
|
#--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0)
|
|
|
|
fmul.x FACT1(%a6),%fp0
|
|
fadd.x FACT2(%a6),%fp0
|
|
fadd.x FACT1(%a6),%fp0
|
|
|
|
fmov.l %d0,%fpcr # restore users round prec,mode
|
|
mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT
|
|
mov.l (%sp)+,%d2
|
|
mov.l &0x80000000,ADJFACT+4(%a6)
|
|
clr.l ADJFACT+8(%a6)
|
|
mov.b &FMUL_OP,%d1 # last inst is MUL
|
|
fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT
|
|
bra t_catch
|
|
|
|
global stentoxd
|
|
stentoxd:
|
|
#--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT
|
|
|
|
fmov.l %d0,%fpcr # set user's rounding mode/precision
|
|
fmov.s &0x3F800000,%fp0 # RETURN 1 + X
|
|
mov.l (%a0),%d1
|
|
or.l &0x00800001,%d1
|
|
fadd.s %d1,%fp0
|
|
bra t_pinx2
|
|
|
|
#########################################################################
|
|
# sscale(): computes the destination operand scaled by the source #
|
|
# operand. If the absoulute value of the source operand is #
|
|
# >= 2^14, an overflow or underflow is returned. #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to double-extended source operand X #
|
|
# a1 = pointer to double-extended destination operand Y #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = scale(X,Y) #
|
|
# #
|
|
#########################################################################
|
|
|
|
set SIGN, L_SCR1
|
|
|
|
global sscale
|
|
sscale:
|
|
mov.l %d0,-(%sp) # store off ctrl bits for now
|
|
|
|
mov.w DST_EX(%a1),%d1 # get dst exponent
|
|
smi.b SIGN(%a6) # use SIGN to hold dst sign
|
|
andi.l &0x00007fff,%d1 # strip sign from dst exp
|
|
|
|
mov.w SRC_EX(%a0),%d0 # check src bounds
|
|
andi.w &0x7fff,%d0 # clr src sign bit
|
|
cmpi.w %d0,&0x3fff # is src ~ ZERO?
|
|
blt.w src_small # yes
|
|
cmpi.w %d0,&0x400c # no; is src too big?
|
|
bgt.w src_out # yes
|
|
|
|
#
|
|
# Source is within 2^14 range.
|
|
#
|
|
src_ok:
|
|
fintrz.x SRC(%a0),%fp0 # calc int of src
|
|
fmov.l %fp0,%d0 # int src to d0
|
|
# don't want any accrued bits from the fintrz showing up later since
|
|
# we may need to read the fpsr for the last fp op in t_catch2().
|
|
fmov.l &0x0,%fpsr
|
|
|
|
tst.b DST_HI(%a1) # is dst denormalized?
|
|
bmi.b sok_norm
|
|
|
|
# the dst is a DENORM. normalize the DENORM and add the adjustment to
|
|
# the src value. then, jump to the norm part of the routine.
|
|
sok_dnrm:
|
|
mov.l %d0,-(%sp) # save src for now
|
|
|
|
mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy
|
|
mov.l DST_HI(%a1),FP_SCR0_HI(%a6)
|
|
mov.l DST_LO(%a1),FP_SCR0_LO(%a6)
|
|
|
|
lea FP_SCR0(%a6),%a0 # pass ptr to DENORM
|
|
bsr.l norm # normalize the DENORM
|
|
neg.l %d0
|
|
add.l (%sp)+,%d0 # add adjustment to src
|
|
|
|
fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM
|
|
|
|
cmpi.w %d0,&-0x3fff # is the shft amt really low?
|
|
bge.b sok_norm2 # thank goodness no
|
|
|
|
# the multiply factor that we're trying to create should be a denorm
|
|
# for the multiply to work. therefore, we're going to actually do a
|
|
# multiply with a denorm which will cause an unimplemented data type
|
|
# exception to be put into the machine which will be caught and corrected
|
|
# later. we don't do this with the DENORMs above because this method
|
|
# is slower. but, don't fret, I don't see it being used much either.
|
|
fmov.l (%sp)+,%fpcr # restore user fpcr
|
|
mov.l &0x80000000,%d1 # load normalized mantissa
|
|
subi.l &-0x3fff,%d0 # how many should we shift?
|
|
neg.l %d0 # make it positive
|
|
cmpi.b %d0,&0x20 # is it > 32?
|
|
bge.b sok_dnrm_32 # yes
|
|
lsr.l %d0,%d1 # no; bit stays in upper lw
|
|
clr.l -(%sp) # insert zero low mantissa
|
|
mov.l %d1,-(%sp) # insert new high mantissa
|
|
clr.l -(%sp) # make zero exponent
|
|
bra.b sok_norm_cont
|
|
sok_dnrm_32:
|
|
subi.b &0x20,%d0 # get shift count
|
|
lsr.l %d0,%d1 # make low mantissa longword
|
|
mov.l %d1,-(%sp) # insert new low mantissa
|
|
clr.l -(%sp) # insert zero high mantissa
|
|
clr.l -(%sp) # make zero exponent
|
|
bra.b sok_norm_cont
|
|
|
|
# the src will force the dst to a DENORM value or worse. so, let's
|
|
# create an fp multiply that will create the result.
|
|
sok_norm:
|
|
fmovm.x DST(%a1),&0x80 # load fp0 with normalized src
|
|
sok_norm2:
|
|
fmov.l (%sp)+,%fpcr # restore user fpcr
|
|
|
|
addi.w &0x3fff,%d0 # turn src amt into exp value
|
|
swap %d0 # put exponent in high word
|
|
clr.l -(%sp) # insert new exponent
|
|
mov.l &0x80000000,-(%sp) # insert new high mantissa
|
|
mov.l %d0,-(%sp) # insert new lo mantissa
|
|
|
|
sok_norm_cont:
|
|
fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2
|
|
mov.b &FMUL_OP,%d1 # last inst is MUL
|
|
fmul.x (%sp)+,%fp0 # do the multiply
|
|
bra t_catch2 # catch any exceptions
|
|
|
|
#
|
|
# Source is outside of 2^14 range. Test the sign and branch
|
|
# to the appropriate exception handler.
|
|
#
|
|
src_out:
|
|
mov.l (%sp)+,%d0 # restore ctrl bits
|
|
exg %a0,%a1 # swap src,dst ptrs
|
|
tst.b SRC_EX(%a1) # is src negative?
|
|
bmi t_unfl # yes; underflow
|
|
bra t_ovfl_sc # no; overflow
|
|
|
|
#
|
|
# The source input is below 1, so we check for denormalized numbers
|
|
# and set unfl.
|
|
#
|
|
src_small:
|
|
tst.b DST_HI(%a1) # is dst denormalized?
|
|
bpl.b ssmall_done # yes
|
|
|
|
mov.l (%sp)+,%d0
|
|
fmov.l %d0,%fpcr # no; load control bits
|
|
mov.b &FMOV_OP,%d1 # last inst is MOVE
|
|
fmov.x DST(%a1),%fp0 # simply return dest
|
|
bra t_catch2
|
|
ssmall_done:
|
|
mov.l (%sp)+,%d0 # load control bits into d1
|
|
mov.l %a1,%a0 # pass ptr to dst
|
|
bra t_resdnrm
|
|
|
|
#########################################################################
|
|
# smod(): computes the fp MOD of the input values X,Y. #
|
|
# srem(): computes the fp (IEEE) REM of the input values X,Y. #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input X #
|
|
# a1 = pointer to extended precision input Y #
|
|
# d0 = round precision,mode #
|
|
# #
|
|
# The input operands X and Y can be either normalized or #
|
|
# denormalized. #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = FREM(X,Y) or FMOD(X,Y) #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# #
|
|
# Step 1. Save and strip signs of X and Y: signX := sign(X), #
|
|
# signY := sign(Y), X := |X|, Y := |Y|, #
|
|
# signQ := signX EOR signY. Record whether MOD or REM #
|
|
# is requested. #
|
|
# #
|
|
# Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. #
|
|
# If (L < 0) then #
|
|
# R := X, go to Step 4. #
|
|
# else #
|
|
# R := 2^(-L)X, j := L. #
|
|
# endif #
|
|
# #
|
|
# Step 3. Perform MOD(X,Y) #
|
|
# 3.1 If R = Y, go to Step 9. #
|
|
# 3.2 If R > Y, then { R := R - Y, Q := Q + 1} #
|
|
# 3.3 If j = 0, go to Step 4. #
|
|
# 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to #
|
|
# Step 3.1. #
|
|
# #
|
|
# Step 4. At this point, R = X - QY = MOD(X,Y). Set #
|
|
# Last_Subtract := false (used in Step 7 below). If #
|
|
# MOD is requested, go to Step 6. #
|
|
# #
|
|
# Step 5. R = MOD(X,Y), but REM(X,Y) is requested. #
|
|
# 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to #
|
|
# Step 6. #
|
|
# 5.2 If R > Y/2, then { set Last_Subtract := true, #
|
|
# Q := Q + 1, Y := signY*Y }. Go to Step 6. #
|
|
# 5.3 This is the tricky case of R = Y/2. If Q is odd, #
|
|
# then { Q := Q + 1, signX := -signX }. #
|
|
# #
|
|
# Step 6. R := signX*R. #
|
|
# #
|
|
# Step 7. If Last_Subtract = true, R := R - Y. #
|
|
# #
|
|
# Step 8. Return signQ, last 7 bits of Q, and R as required. #
|
|
# #
|
|
# Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, #
|
|
# X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), #
|
|
# R := 0. Return signQ, last 7 bits of Q, and R. #
|
|
# #
|
|
#########################################################################
|
|
|
|
set Mod_Flag,L_SCR3
|
|
set Sc_Flag,L_SCR3+1
|
|
|
|
set SignY,L_SCR2
|
|
set SignX,L_SCR2+2
|
|
set SignQ,L_SCR3+2
|
|
|
|
set Y,FP_SCR0
|
|
set Y_Hi,Y+4
|
|
set Y_Lo,Y+8
|
|
|
|
set R,FP_SCR1
|
|
set R_Hi,R+4
|
|
set R_Lo,R+8
|
|
|
|
Scale:
|
|
long 0x00010000,0x80000000,0x00000000,0x00000000
|
|
|
|
global smod
|
|
smod:
|
|
clr.b FPSR_QBYTE(%a6)
|
|
mov.l %d0,-(%sp) # save ctrl bits
|
|
clr.b Mod_Flag(%a6)
|
|
bra.b Mod_Rem
|
|
|
|
global srem
|
|
srem:
|
|
clr.b FPSR_QBYTE(%a6)
|
|
mov.l %d0,-(%sp) # save ctrl bits
|
|
mov.b &0x1,Mod_Flag(%a6)
|
|
|
|
Mod_Rem:
|
|
#..Save sign of X and Y
|
|
movm.l &0x3f00,-(%sp) # save data registers
|
|
mov.w SRC_EX(%a0),%d3
|
|
mov.w %d3,SignY(%a6)
|
|
and.l &0x00007FFF,%d3 # Y := |Y|
|
|
|
|
#
|
|
mov.l SRC_HI(%a0),%d4
|
|
mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y|
|
|
|
|
tst.l %d3
|
|
bne.b Y_Normal
|
|
|
|
mov.l &0x00003FFE,%d3 # $3FFD + 1
|
|
tst.l %d4
|
|
bne.b HiY_not0
|
|
|
|
HiY_0:
|
|
mov.l %d5,%d4
|
|
clr.l %d5
|
|
sub.l &32,%d3
|
|
clr.l %d6
|
|
bfffo %d4{&0:&32},%d6
|
|
lsl.l %d6,%d4
|
|
sub.l %d6,%d3 # (D3,D4,D5) is normalized
|
|
# ...with bias $7FFD
|
|
bra.b Chk_X
|
|
|
|
HiY_not0:
|
|
clr.l %d6
|
|
bfffo %d4{&0:&32},%d6
|
|
sub.l %d6,%d3
|
|
lsl.l %d6,%d4
|
|
mov.l %d5,%d7 # a copy of D5
|
|
lsl.l %d6,%d5
|
|
neg.l %d6
|
|
add.l &32,%d6
|
|
lsr.l %d6,%d7
|
|
or.l %d7,%d4 # (D3,D4,D5) normalized
|
|
# ...with bias $7FFD
|
|
bra.b Chk_X
|
|
|
|
Y_Normal:
|
|
add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized
|
|
# ...with bias $7FFD
|
|
|
|
Chk_X:
|
|
mov.w DST_EX(%a1),%d0
|
|
mov.w %d0,SignX(%a6)
|
|
mov.w SignY(%a6),%d1
|
|
eor.l %d0,%d1
|
|
and.l &0x00008000,%d1
|
|
mov.w %d1,SignQ(%a6) # sign(Q) obtained
|
|
and.l &0x00007FFF,%d0
|
|
mov.l DST_HI(%a1),%d1
|
|
mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X|
|
|
tst.l %d0
|
|
bne.b X_Normal
|
|
mov.l &0x00003FFE,%d0
|
|
tst.l %d1
|
|
bne.b HiX_not0
|
|
|
|
HiX_0:
|
|
mov.l %d2,%d1
|
|
clr.l %d2
|
|
sub.l &32,%d0
|
|
clr.l %d6
|
|
bfffo %d1{&0:&32},%d6
|
|
lsl.l %d6,%d1
|
|
sub.l %d6,%d0 # (D0,D1,D2) is normalized
|
|
# ...with bias $7FFD
|
|
bra.b Init
|
|
|
|
HiX_not0:
|
|
clr.l %d6
|
|
bfffo %d1{&0:&32},%d6
|
|
sub.l %d6,%d0
|
|
lsl.l %d6,%d1
|
|
mov.l %d2,%d7 # a copy of D2
|
|
lsl.l %d6,%d2
|
|
neg.l %d6
|
|
add.l &32,%d6
|
|
lsr.l %d6,%d7
|
|
or.l %d7,%d1 # (D0,D1,D2) normalized
|
|
# ...with bias $7FFD
|
|
bra.b Init
|
|
|
|
X_Normal:
|
|
add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized
|
|
# ...with bias $7FFD
|
|
|
|
Init:
|
|
#
|
|
mov.l %d3,L_SCR1(%a6) # save biased exp(Y)
|
|
mov.l %d0,-(%sp) # save biased exp(X)
|
|
sub.l %d3,%d0 # L := expo(X)-expo(Y)
|
|
|
|
clr.l %d6 # D6 := carry <- 0
|
|
clr.l %d3 # D3 is Q
|
|
mov.l &0,%a1 # A1 is k; j+k=L, Q=0
|
|
|
|
#..(Carry,D1,D2) is R
|
|
tst.l %d0
|
|
bge.b Mod_Loop_pre
|
|
|
|
#..expo(X) < expo(Y). Thus X = mod(X,Y)
|
|
#
|
|
mov.l (%sp)+,%d0 # restore d0
|
|
bra.w Get_Mod
|
|
|
|
Mod_Loop_pre:
|
|
addq.l &0x4,%sp # erase exp(X)
|
|
#..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L
|
|
Mod_Loop:
|
|
tst.l %d6 # test carry bit
|
|
bgt.b R_GT_Y
|
|
|
|
#..At this point carry = 0, R = (D1,D2), Y = (D4,D5)
|
|
cmp.l %d1,%d4 # compare hi(R) and hi(Y)
|
|
bne.b R_NE_Y
|
|
cmp.l %d2,%d5 # compare lo(R) and lo(Y)
|
|
bne.b R_NE_Y
|
|
|
|
#..At this point, R = Y
|
|
bra.w Rem_is_0
|
|
|
|
R_NE_Y:
|
|
#..use the borrow of the previous compare
|
|
bcs.b R_LT_Y # borrow is set iff R < Y
|
|
|
|
R_GT_Y:
|
|
#..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0
|
|
#..and Y < (D1,D2) < 2Y. Either way, perform R - Y
|
|
sub.l %d5,%d2 # lo(R) - lo(Y)
|
|
subx.l %d4,%d1 # hi(R) - hi(Y)
|
|
clr.l %d6 # clear carry
|
|
addq.l &1,%d3 # Q := Q + 1
|
|
|
|
R_LT_Y:
|
|
#..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0.
|
|
tst.l %d0 # see if j = 0.
|
|
beq.b PostLoop
|
|
|
|
add.l %d3,%d3 # Q := 2Q
|
|
add.l %d2,%d2 # lo(R) = 2lo(R)
|
|
roxl.l &1,%d1 # hi(R) = 2hi(R) + carry
|
|
scs %d6 # set Carry if 2(R) overflows
|
|
addq.l &1,%a1 # k := k+1
|
|
subq.l &1,%d0 # j := j - 1
|
|
#..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y.
|
|
|
|
bra.b Mod_Loop
|
|
|
|
PostLoop:
|
|
#..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y.
|
|
|
|
#..normalize R.
|
|
mov.l L_SCR1(%a6),%d0 # new biased expo of R
|
|
tst.l %d1
|
|
bne.b HiR_not0
|
|
|
|
HiR_0:
|
|
mov.l %d2,%d1
|
|
clr.l %d2
|
|
sub.l &32,%d0
|
|
clr.l %d6
|
|
bfffo %d1{&0:&32},%d6
|
|
lsl.l %d6,%d1
|
|
sub.l %d6,%d0 # (D0,D1,D2) is normalized
|
|
# ...with bias $7FFD
|
|
bra.b Get_Mod
|
|
|
|
HiR_not0:
|
|
clr.l %d6
|
|
bfffo %d1{&0:&32},%d6
|
|
bmi.b Get_Mod # already normalized
|
|
sub.l %d6,%d0
|
|
lsl.l %d6,%d1
|
|
mov.l %d2,%d7 # a copy of D2
|
|
lsl.l %d6,%d2
|
|
neg.l %d6
|
|
add.l &32,%d6
|
|
lsr.l %d6,%d7
|
|
or.l %d7,%d1 # (D0,D1,D2) normalized
|
|
|
|
#
|
|
Get_Mod:
|
|
cmp.l %d0,&0x000041FE
|
|
bge.b No_Scale
|
|
Do_Scale:
|
|
mov.w %d0,R(%a6)
|
|
mov.l %d1,R_Hi(%a6)
|
|
mov.l %d2,R_Lo(%a6)
|
|
mov.l L_SCR1(%a6),%d6
|
|
mov.w %d6,Y(%a6)
|
|
mov.l %d4,Y_Hi(%a6)
|
|
mov.l %d5,Y_Lo(%a6)
|
|
fmov.x R(%a6),%fp0 # no exception
|
|
mov.b &1,Sc_Flag(%a6)
|
|
bra.b ModOrRem
|
|
No_Scale:
|
|
mov.l %d1,R_Hi(%a6)
|
|
mov.l %d2,R_Lo(%a6)
|
|
sub.l &0x3FFE,%d0
|
|
mov.w %d0,R(%a6)
|
|
mov.l L_SCR1(%a6),%d6
|
|
sub.l &0x3FFE,%d6
|
|
mov.l %d6,L_SCR1(%a6)
|
|
fmov.x R(%a6),%fp0
|
|
mov.w %d6,Y(%a6)
|
|
mov.l %d4,Y_Hi(%a6)
|
|
mov.l %d5,Y_Lo(%a6)
|
|
clr.b Sc_Flag(%a6)
|
|
|
|
#
|
|
ModOrRem:
|
|
tst.b Mod_Flag(%a6)
|
|
beq.b Fix_Sign
|
|
|
|
mov.l L_SCR1(%a6),%d6 # new biased expo(Y)
|
|
subq.l &1,%d6 # biased expo(Y/2)
|
|
cmp.l %d0,%d6
|
|
blt.b Fix_Sign
|
|
bgt.b Last_Sub
|
|
|
|
cmp.l %d1,%d4
|
|
bne.b Not_EQ
|
|
cmp.l %d2,%d5
|
|
bne.b Not_EQ
|
|
bra.w Tie_Case
|
|
|
|
Not_EQ:
|
|
bcs.b Fix_Sign
|
|
|
|
Last_Sub:
|
|
#
|
|
fsub.x Y(%a6),%fp0 # no exceptions
|
|
addq.l &1,%d3 # Q := Q + 1
|
|
|
|
#
|
|
Fix_Sign:
|
|
#..Get sign of X
|
|
mov.w SignX(%a6),%d6
|
|
bge.b Get_Q
|
|
fneg.x %fp0
|
|
|
|
#..Get Q
|
|
#
|
|
Get_Q:
|
|
clr.l %d6
|
|
mov.w SignQ(%a6),%d6 # D6 is sign(Q)
|
|
mov.l &8,%d7
|
|
lsr.l %d7,%d6
|
|
and.l &0x0000007F,%d3 # 7 bits of Q
|
|
or.l %d6,%d3 # sign and bits of Q
|
|
# swap %d3
|
|
# fmov.l %fpsr,%d6
|
|
# and.l &0xFF00FFFF,%d6
|
|
# or.l %d3,%d6
|
|
# fmov.l %d6,%fpsr # put Q in fpsr
|
|
mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr
|
|
|
|
#
|
|
Restore:
|
|
movm.l (%sp)+,&0xfc # {%d2-%d7}
|
|
mov.l (%sp)+,%d0
|
|
fmov.l %d0,%fpcr
|
|
tst.b Sc_Flag(%a6)
|
|
beq.b Finish
|
|
mov.b &FMUL_OP,%d1 # last inst is MUL
|
|
fmul.x Scale(%pc),%fp0 # may cause underflow
|
|
bra t_catch2
|
|
# the '040 package did this apparently to see if the dst operand for the
|
|
# preceding fmul was a denorm. but, it better not have been since the
|
|
# algorithm just got done playing with fp0 and expected no exceptions
|
|
# as a result. trust me...
|
|
# bra t_avoid_unsupp # check for denorm as a
|
|
# ;result of the scaling
|
|
|
|
Finish:
|
|
mov.b &FMOV_OP,%d1 # last inst is MOVE
|
|
fmov.x %fp0,%fp0 # capture exceptions & round
|
|
bra t_catch2
|
|
|
|
Rem_is_0:
|
|
#..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1)
|
|
addq.l &1,%d3
|
|
cmp.l %d0,&8 # D0 is j
|
|
bge.b Q_Big
|
|
|
|
lsl.l %d0,%d3
|
|
bra.b Set_R_0
|
|
|
|
Q_Big:
|
|
clr.l %d3
|
|
|
|
Set_R_0:
|
|
fmov.s &0x00000000,%fp0
|
|
clr.b Sc_Flag(%a6)
|
|
bra.w Fix_Sign
|
|
|
|
Tie_Case:
|
|
#..Check parity of Q
|
|
mov.l %d3,%d6
|
|
and.l &0x00000001,%d6
|
|
tst.l %d6
|
|
beq.w Fix_Sign # Q is even
|
|
|
|
#..Q is odd, Q := Q + 1, signX := -signX
|
|
addq.l &1,%d3
|
|
mov.w SignX(%a6),%d6
|
|
eor.l &0x00008000,%d6
|
|
mov.w %d6,SignX(%a6)
|
|
bra.w Fix_Sign
|
|
|
|
#########################################################################
|
|
# XDEF **************************************************************** #
|
|
# tag(): return the optype of the input ext fp number #
|
|
# #
|
|
# This routine is used by the 060FPLSP. #
|
|
# #
|
|
# XREF **************************************************************** #
|
|
# None #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision operand #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# d0 = value of type tag #
|
|
# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# Simply test the exponent, j-bit, and mantissa values to #
|
|
# determine the type of operand. #
|
|
# If it's an unnormalized zero, alter the operand and force it #
|
|
# to be a normal zero. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global tag
|
|
tag:
|
|
mov.w FTEMP_EX(%a0), %d0 # extract exponent
|
|
andi.w &0x7fff, %d0 # strip off sign
|
|
cmpi.w %d0, &0x7fff # is (EXP == MAX)?
|
|
beq.b inf_or_nan_x
|
|
not_inf_or_nan_x:
|
|
btst &0x7,FTEMP_HI(%a0)
|
|
beq.b not_norm_x
|
|
is_norm_x:
|
|
mov.b &NORM, %d0
|
|
rts
|
|
not_norm_x:
|
|
tst.w %d0 # is exponent = 0?
|
|
bne.b is_unnorm_x
|
|
not_unnorm_x:
|
|
tst.l FTEMP_HI(%a0)
|
|
bne.b is_denorm_x
|
|
tst.l FTEMP_LO(%a0)
|
|
bne.b is_denorm_x
|
|
is_zero_x:
|
|
mov.b &ZERO, %d0
|
|
rts
|
|
is_denorm_x:
|
|
mov.b &DENORM, %d0
|
|
rts
|
|
is_unnorm_x:
|
|
bsr.l unnorm_fix # convert to norm,denorm,or zero
|
|
rts
|
|
is_unnorm_reg_x:
|
|
mov.b &UNNORM, %d0
|
|
rts
|
|
inf_or_nan_x:
|
|
tst.l FTEMP_LO(%a0)
|
|
bne.b is_nan_x
|
|
mov.l FTEMP_HI(%a0), %d0
|
|
and.l &0x7fffffff, %d0 # msb is a don't care!
|
|
bne.b is_nan_x
|
|
is_inf_x:
|
|
mov.b &INF, %d0
|
|
rts
|
|
is_nan_x:
|
|
mov.b &QNAN, %d0
|
|
rts
|
|
|
|
#############################################################
|
|
|
|
qnan: long 0x7fff0000, 0xffffffff, 0xffffffff
|
|
|
|
#########################################################################
|
|
# XDEF **************************************************************** #
|
|
# t_dz(): Handle 060FPLSP dz exception for "flogn" emulation. #
|
|
# t_dz2(): Handle 060FPLSP dz exception for "fatanh" emulation. #
|
|
# #
|
|
# These rouitnes are used by the 060FPLSP package. #
|
|
# #
|
|
# XREF **************************************************************** #
|
|
# None #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision source operand. #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = default DZ result. #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# Transcendental emulation for the 060FPLSP has detected that #
|
|
# a DZ exception should occur for the instruction. If DZ is disabled, #
|
|
# return the default result. #
|
|
# If DZ is enabled, the dst operand should be returned unscathed #
|
|
# in fp0 while fp1 is used to create a DZ exception so that the #
|
|
# operating system can log that such an event occurred. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global t_dz
|
|
t_dz:
|
|
tst.b SRC_EX(%a0) # check sign for neg or pos
|
|
bpl.b dz_pinf # branch if pos sign
|
|
|
|
global t_dz2
|
|
t_dz2:
|
|
ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ
|
|
|
|
btst &dz_bit,FPCR_ENABLE(%a6)
|
|
bne.b dz_minf_ena
|
|
|
|
# dz is disabled. return a -INF.
|
|
fmov.s &0xff800000,%fp0 # return -INF
|
|
rts
|
|
|
|
# dz is enabled. create a dz exception so the user can record it
|
|
# but use fp1 instead. return the dst operand unscathed in fp0.
|
|
dz_minf_ena:
|
|
fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed
|
|
fmov.l USER_FPCR(%a6),%fpcr
|
|
fmov.s &0xbf800000,%fp1 # load -1
|
|
fdiv.s &0x00000000,%fp1 # -1 / 0
|
|
rts
|
|
|
|
dz_pinf:
|
|
ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ
|
|
|
|
btst &dz_bit,FPCR_ENABLE(%a6)
|
|
bne.b dz_pinf_ena
|
|
|
|
# dz is disabled. return a +INF.
|
|
fmov.s &0x7f800000,%fp0 # return +INF
|
|
rts
|
|
|
|
# dz is enabled. create a dz exception so the user can record it
|
|
# but use fp1 instead. return the dst operand unscathed in fp0.
|
|
dz_pinf_ena:
|
|
fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed
|
|
fmov.l USER_FPCR(%a6),%fpcr
|
|
fmov.s &0x3f800000,%fp1 # load +1
|
|
fdiv.s &0x00000000,%fp1 # +1 / 0
|
|
rts
|
|
|
|
#########################################################################
|
|
# XDEF **************************************************************** #
|
|
# t_operr(): Handle 060FPLSP OPERR exception during emulation. #
|
|
# #
|
|
# This routine is used by the 060FPLSP package. #
|
|
# #
|
|
# XREF **************************************************************** #
|
|
# None. #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# fp1 = source operand #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = default result #
|
|
# fp1 = unchanged #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# An operand error should occur as the result of transcendental #
|
|
# emulation in the 060FPLSP. If OPERR is disabled, just return a NAN #
|
|
# in fp0. If OPERR is enabled, return the dst operand unscathed in fp0 #
|
|
# and the source operand in fp1. Use fp2 to create an OPERR exception #
|
|
# so that the operating system can log the event. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global t_operr
|
|
t_operr:
|
|
ori.l &opnan_mask,USER_FPSR(%a6) # set NAN/OPERR/AIOP
|
|
|
|
btst &operr_bit,FPCR_ENABLE(%a6)
|
|
bne.b operr_ena
|
|
|
|
# operr is disabled. return a QNAN in fp0
|
|
fmovm.x qnan(%pc),&0x80 # return QNAN
|
|
rts
|
|
|
|
# operr is enabled. create an operr exception so the user can record it
|
|
# but use fp2 instead. return the dst operand unscathed in fp0.
|
|
operr_ena:
|
|
fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed
|
|
fmov.l USER_FPCR(%a6),%fpcr
|
|
fmovm.x &0x04,-(%sp) # save fp2
|
|
fmov.s &0x7f800000,%fp2 # load +INF
|
|
fmul.s &0x00000000,%fp2 # +INF x 0
|
|
fmovm.x (%sp)+,&0x20 # restore fp2
|
|
rts
|
|
|
|
pls_huge:
|
|
long 0x7ffe0000,0xffffffff,0xffffffff
|
|
mns_huge:
|
|
long 0xfffe0000,0xffffffff,0xffffffff
|
|
pls_tiny:
|
|
long 0x00000000,0x80000000,0x00000000
|
|
mns_tiny:
|
|
long 0x80000000,0x80000000,0x00000000
|
|
|
|
#########################################################################
|
|
# XDEF **************************************************************** #
|
|
# t_unfl(): Handle 060FPLSP underflow exception during emulation. #
|
|
# t_unfl2(): Handle 060FPLSP underflow exception during #
|
|
# emulation. result always positive. #
|
|
# #
|
|
# This routine is used by the 060FPLSP package. #
|
|
# #
|
|
# XREF **************************************************************** #
|
|
# None. #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision source operand #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = default underflow result #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# An underflow should occur as the result of transcendental #
|
|
# emulation in the 060FPLSP. Create an underflow by using "fmul" #
|
|
# and two very small numbers of appropriate sign so the operating #
|
|
# system can log the event. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global t_unfl
|
|
t_unfl:
|
|
tst.b SRC_EX(%a0)
|
|
bpl.b unf_pos
|
|
|
|
global t_unfl2
|
|
t_unfl2:
|
|
ori.l &unfinx_mask+neg_mask,USER_FPSR(%a6) # set N/UNFL/INEX2/AUNFL/AINEX
|
|
|
|
fmov.l USER_FPCR(%a6),%fpcr
|
|
fmovm.x mns_tiny(%pc),&0x80
|
|
fmul.x pls_tiny(%pc),%fp0
|
|
|
|
fmov.l %fpsr,%d0
|
|
rol.l &0x8,%d0
|
|
mov.b %d0,FPSR_CC(%a6)
|
|
rts
|
|
unf_pos:
|
|
ori.w &unfinx_mask,FPSR_EXCEPT(%a6) # set UNFL/INEX2/AUNFL/AINEX
|
|
|
|
fmov.l USER_FPCR(%a6),%fpcr
|
|
fmovm.x pls_tiny(%pc),&0x80
|
|
fmul.x %fp0,%fp0
|
|
|
|
fmov.l %fpsr,%d0
|
|
rol.l &0x8,%d0
|
|
mov.b %d0,FPSR_CC(%a6)
|
|
rts
|
|
|
|
#########################################################################
|
|
# XDEF **************************************************************** #
|
|
# t_ovfl(): Handle 060FPLSP overflow exception during emulation. #
|
|
# (monadic) #
|
|
# t_ovfl2(): Handle 060FPLSP overflow exception during #
|
|
# emulation. result always positive. (dyadic) #
|
|
# t_ovfl_sc(): Handle 060FPLSP overflow exception during #
|
|
# emulation for "fscale". #
|
|
# #
|
|
# This routine is used by the 060FPLSP package. #
|
|
# #
|
|
# XREF **************************************************************** #
|
|
# None. #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision source operand #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = default underflow result #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# An overflow should occur as the result of transcendental #
|
|
# emulation in the 060FPLSP. Create an overflow by using "fmul" #
|
|
# and two very lareg numbers of appropriate sign so the operating #
|
|
# system can log the event. #
|
|
# For t_ovfl_sc() we take special care not to lose the INEX2 bit. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global t_ovfl_sc
|
|
t_ovfl_sc:
|
|
ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX
|
|
|
|
mov.b %d0,%d1 # fetch rnd prec,mode
|
|
andi.b &0xc0,%d1 # extract prec
|
|
beq.w ovfl_work
|
|
|
|
# dst op is a DENORM. we have to normalize the mantissa to see if the
|
|
# result would be inexact for the given precision. make a copy of the
|
|
# dst so we don't screw up the version passed to us.
|
|
mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6)
|
|
mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6)
|
|
mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6)
|
|
lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0
|
|
movm.l &0xc080,-(%sp) # save d0-d1/a0
|
|
bsr.l norm # normalize mantissa
|
|
movm.l (%sp)+,&0x0103 # restore d0-d1/a0
|
|
|
|
cmpi.b %d1,&0x40 # is precision sgl?
|
|
bne.b ovfl_sc_dbl # no; dbl
|
|
ovfl_sc_sgl:
|
|
tst.l LOCAL_LO(%a0) # is lo lw of sgl set?
|
|
bne.b ovfl_sc_inx # yes
|
|
tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set?
|
|
bne.b ovfl_sc_inx # yes
|
|
bra.w ovfl_work # don't set INEX2
|
|
ovfl_sc_dbl:
|
|
mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of
|
|
andi.l &0x7ff,%d1 # dbl mantissa set?
|
|
beq.w ovfl_work # no; don't set INEX2
|
|
ovfl_sc_inx:
|
|
ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2
|
|
bra.b ovfl_work # continue
|
|
|
|
global t_ovfl
|
|
t_ovfl:
|
|
ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX
|
|
ovfl_work:
|
|
tst.b SRC_EX(%a0)
|
|
bpl.b ovfl_p
|
|
ovfl_m:
|
|
fmov.l USER_FPCR(%a6),%fpcr
|
|
fmovm.x mns_huge(%pc),&0x80
|
|
fmul.x pls_huge(%pc),%fp0
|
|
|
|
fmov.l %fpsr,%d0
|
|
rol.l &0x8,%d0
|
|
ori.b &neg_mask,%d0
|
|
mov.b %d0,FPSR_CC(%a6)
|
|
rts
|
|
ovfl_p:
|
|
fmov.l USER_FPCR(%a6),%fpcr
|
|
fmovm.x pls_huge(%pc),&0x80
|
|
fmul.x pls_huge(%pc),%fp0
|
|
|
|
fmov.l %fpsr,%d0
|
|
rol.l &0x8,%d0
|
|
mov.b %d0,FPSR_CC(%a6)
|
|
rts
|
|
|
|
global t_ovfl2
|
|
t_ovfl2:
|
|
ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX
|
|
fmov.l USER_FPCR(%a6),%fpcr
|
|
fmovm.x pls_huge(%pc),&0x80
|
|
fmul.x pls_huge(%pc),%fp0
|
|
|
|
fmov.l %fpsr,%d0
|
|
rol.l &0x8,%d0
|
|
mov.b %d0,FPSR_CC(%a6)
|
|
rts
|
|
|
|
#########################################################################
|
|
# XDEF **************************************************************** #
|
|
# t_catch(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during #
|
|
# emulation. #
|
|
# t_catch2(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during #
|
|
# emulation. #
|
|
# #
|
|
# These routines are used by the 060FPLSP package. #
|
|
# #
|
|
# XREF **************************************************************** #
|
|
# None. #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# fp0 = default underflow or overflow result #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = default result #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# If an overflow or underflow occurred during the last #
|
|
# instruction of transcendental 060FPLSP emulation, then it has already #
|
|
# occurred and has been logged. Now we need to see if an inexact #
|
|
# exception should occur. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global t_catch2
|
|
t_catch2:
|
|
fmov.l %fpsr,%d0
|
|
or.l %d0,USER_FPSR(%a6)
|
|
bra.b inx2_work
|
|
|
|
global t_catch
|
|
t_catch:
|
|
fmov.l %fpsr,%d0
|
|
or.l %d0,USER_FPSR(%a6)
|
|
|
|
#########################################################################
|
|
# XDEF **************************************************************** #
|
|
# t_inx2(): Handle inexact 060FPLSP exception during emulation. #
|
|
# t_pinx2(): Handle inexact 060FPLSP exception for "+" results. #
|
|
# t_minx2(): Handle inexact 060FPLSP exception for "-" results. #
|
|
# #
|
|
# XREF **************************************************************** #
|
|
# None. #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# fp0 = default result #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = default result #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# The last instruction of transcendental emulation for the #
|
|
# 060FPLSP should be inexact. So, if inexact is enabled, then we create #
|
|
# the event here by adding a large and very small number together #
|
|
# so that the operating system can log the event. #
|
|
# Must check, too, if the result was zero, in which case we just #
|
|
# set the FPSR bits and return. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global t_inx2
|
|
t_inx2:
|
|
fblt.w t_minx2
|
|
fbeq.w inx2_zero
|
|
|
|
global t_pinx2
|
|
t_pinx2:
|
|
ori.w &inx2a_mask,FPSR_EXCEPT(%a6) # set INEX2/AINEX
|
|
bra.b inx2_work
|
|
|
|
global t_minx2
|
|
t_minx2:
|
|
ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6)
|
|
|
|
inx2_work:
|
|
btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
|
|
bne.b inx2_work_ena # yes
|
|
rts
|
|
inx2_work_ena:
|
|
fmov.l USER_FPCR(%a6),%fpcr # insert user's exceptions
|
|
fmov.s &0x3f800000,%fp1 # load +1
|
|
fadd.x pls_tiny(%pc),%fp1 # cause exception
|
|
rts
|
|
|
|
inx2_zero:
|
|
mov.b &z_bmask,FPSR_CC(%a6)
|
|
ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX/AINEX
|
|
rts
|
|
|
|
#########################################################################
|
|
# XDEF **************************************************************** #
|
|
# t_extdnrm(): Handle DENORM inputs in 060FPLSP. #
|
|
# t_resdnrm(): Handle DENORM inputs in 060FPLSP for "fscale". #
|
|
# #
|
|
# This routine is used by the 060FPLSP package. #
|
|
# #
|
|
# XREF **************************************************************** #
|
|
# None. #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to extended precision input operand #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# fp0 = default result #
|
|
# #
|
|
# ALGORITHM *********************************************************** #
|
|
# For all functions that have a denormalized input and that #
|
|
# f(x)=x, this is the entry point. #
|
|
# DENORM value is moved using "fmove" which triggers an exception #
|
|
# if enabled so the operating system can log the event. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global t_extdnrm
|
|
t_extdnrm:
|
|
fmov.l USER_FPCR(%a6),%fpcr
|
|
fmov.x SRC_EX(%a0),%fp0
|
|
fmov.l %fpsr,%d0
|
|
ori.l &unfinx_mask,%d0
|
|
or.l %d0,USER_FPSR(%a6)
|
|
rts
|
|
|
|
global t_resdnrm
|
|
t_resdnrm:
|
|
fmov.l USER_FPCR(%a6),%fpcr
|
|
fmov.x SRC_EX(%a0),%fp0
|
|
fmov.l %fpsr,%d0
|
|
or.l %d0,USER_FPSR(%a6)
|
|
rts
|
|
|
|
##########################################
|
|
|
|
#
|
|
# sto_cos:
|
|
# This is used by fsincos library emulation. The correct
|
|
# values are already in fp0 and fp1 so we do nothing here.
|
|
#
|
|
global sto_cos
|
|
sto_cos:
|
|
rts
|
|
|
|
##########################################
|
|
|
|
#
|
|
# dst_qnan --- force result when destination is a NaN
|
|
#
|
|
global dst_qnan
|
|
dst_qnan:
|
|
fmov.x DST(%a1),%fp0
|
|
tst.b DST_EX(%a1)
|
|
bmi.b dst_qnan_m
|
|
dst_qnan_p:
|
|
mov.b &nan_bmask,FPSR_CC(%a6)
|
|
rts
|
|
dst_qnan_m:
|
|
mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6)
|
|
rts
|
|
|
|
#
|
|
# src_qnan --- force result when source is a NaN
|
|
#
|
|
global src_qnan
|
|
src_qnan:
|
|
fmov.x SRC(%a0),%fp0
|
|
tst.b SRC_EX(%a0)
|
|
bmi.b src_qnan_m
|
|
src_qnan_p:
|
|
mov.b &nan_bmask,FPSR_CC(%a6)
|
|
rts
|
|
src_qnan_m:
|
|
mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6)
|
|
rts
|
|
|
|
##########################################
|
|
|
|
#
|
|
# Native instruction support
|
|
#
|
|
# Some systems may need entry points even for 68060 native
|
|
# instructions. These routines are provided for
|
|
# convenience.
|
|
#
|
|
global _fadds_
|
|
_fadds_:
|
|
fmov.l %fpcr,-(%sp) # save fpcr
|
|
fmov.l &0x00000000,%fpcr # clear fpcr for load
|
|
fmov.s 0x8(%sp),%fp0 # load sgl dst
|
|
fmov.l (%sp)+,%fpcr # restore fpcr
|
|
fadd.s 0x8(%sp),%fp0 # fadd w/ sgl src
|
|
rts
|
|
|
|
global _faddd_
|
|
_faddd_:
|
|
fmov.l %fpcr,-(%sp) # save fpcr
|
|
fmov.l &0x00000000,%fpcr # clear fpcr for load
|
|
fmov.d 0x8(%sp),%fp0 # load dbl dst
|
|
fmov.l (%sp)+,%fpcr # restore fpcr
|
|
fadd.d 0xc(%sp),%fp0 # fadd w/ dbl src
|
|
rts
|
|
|
|
global _faddx_
|
|
_faddx_:
|
|
fmovm.x 0x4(%sp),&0x80 # load ext dst
|
|
fadd.x 0x10(%sp),%fp0 # fadd w/ ext src
|
|
rts
|
|
|
|
global _fsubs_
|
|
_fsubs_:
|
|
fmov.l %fpcr,-(%sp) # save fpcr
|
|
fmov.l &0x00000000,%fpcr # clear fpcr for load
|
|
fmov.s 0x8(%sp),%fp0 # load sgl dst
|
|
fmov.l (%sp)+,%fpcr # restore fpcr
|
|
fsub.s 0x8(%sp),%fp0 # fsub w/ sgl src
|
|
rts
|
|
|
|
global _fsubd_
|
|
_fsubd_:
|
|
fmov.l %fpcr,-(%sp) # save fpcr
|
|
fmov.l &0x00000000,%fpcr # clear fpcr for load
|
|
fmov.d 0x8(%sp),%fp0 # load dbl dst
|
|
fmov.l (%sp)+,%fpcr # restore fpcr
|
|
fsub.d 0xc(%sp),%fp0 # fsub w/ dbl src
|
|
rts
|
|
|
|
global _fsubx_
|
|
_fsubx_:
|
|
fmovm.x 0x4(%sp),&0x80 # load ext dst
|
|
fsub.x 0x10(%sp),%fp0 # fsub w/ ext src
|
|
rts
|
|
|
|
global _fmuls_
|
|
_fmuls_:
|
|
fmov.l %fpcr,-(%sp) # save fpcr
|
|
fmov.l &0x00000000,%fpcr # clear fpcr for load
|
|
fmov.s 0x8(%sp),%fp0 # load sgl dst
|
|
fmov.l (%sp)+,%fpcr # restore fpcr
|
|
fmul.s 0x8(%sp),%fp0 # fmul w/ sgl src
|
|
rts
|
|
|
|
global _fmuld_
|
|
_fmuld_:
|
|
fmov.l %fpcr,-(%sp) # save fpcr
|
|
fmov.l &0x00000000,%fpcr # clear fpcr for load
|
|
fmov.d 0x8(%sp),%fp0 # load dbl dst
|
|
fmov.l (%sp)+,%fpcr # restore fpcr
|
|
fmul.d 0xc(%sp),%fp0 # fmul w/ dbl src
|
|
rts
|
|
|
|
global _fmulx_
|
|
_fmulx_:
|
|
fmovm.x 0x4(%sp),&0x80 # load ext dst
|
|
fmul.x 0x10(%sp),%fp0 # fmul w/ ext src
|
|
rts
|
|
|
|
global _fdivs_
|
|
_fdivs_:
|
|
fmov.l %fpcr,-(%sp) # save fpcr
|
|
fmov.l &0x00000000,%fpcr # clear fpcr for load
|
|
fmov.s 0x8(%sp),%fp0 # load sgl dst
|
|
fmov.l (%sp)+,%fpcr # restore fpcr
|
|
fdiv.s 0x8(%sp),%fp0 # fdiv w/ sgl src
|
|
rts
|
|
|
|
global _fdivd_
|
|
_fdivd_:
|
|
fmov.l %fpcr,-(%sp) # save fpcr
|
|
fmov.l &0x00000000,%fpcr # clear fpcr for load
|
|
fmov.d 0x8(%sp),%fp0 # load dbl dst
|
|
fmov.l (%sp)+,%fpcr # restore fpcr
|
|
fdiv.d 0xc(%sp),%fp0 # fdiv w/ dbl src
|
|
rts
|
|
|
|
global _fdivx_
|
|
_fdivx_:
|
|
fmovm.x 0x4(%sp),&0x80 # load ext dst
|
|
fdiv.x 0x10(%sp),%fp0 # fdiv w/ ext src
|
|
rts
|
|
|
|
global _fabss_
|
|
_fabss_:
|
|
fabs.s 0x4(%sp),%fp0 # fabs w/ sgl src
|
|
rts
|
|
|
|
global _fabsd_
|
|
_fabsd_:
|
|
fabs.d 0x4(%sp),%fp0 # fabs w/ dbl src
|
|
rts
|
|
|
|
global _fabsx_
|
|
_fabsx_:
|
|
fabs.x 0x4(%sp),%fp0 # fabs w/ ext src
|
|
rts
|
|
|
|
global _fnegs_
|
|
_fnegs_:
|
|
fneg.s 0x4(%sp),%fp0 # fneg w/ sgl src
|
|
rts
|
|
|
|
global _fnegd_
|
|
_fnegd_:
|
|
fneg.d 0x4(%sp),%fp0 # fneg w/ dbl src
|
|
rts
|
|
|
|
global _fnegx_
|
|
_fnegx_:
|
|
fneg.x 0x4(%sp),%fp0 # fneg w/ ext src
|
|
rts
|
|
|
|
global _fsqrts_
|
|
_fsqrts_:
|
|
fsqrt.s 0x4(%sp),%fp0 # fsqrt w/ sgl src
|
|
rts
|
|
|
|
global _fsqrtd_
|
|
_fsqrtd_:
|
|
fsqrt.d 0x4(%sp),%fp0 # fsqrt w/ dbl src
|
|
rts
|
|
|
|
global _fsqrtx_
|
|
_fsqrtx_:
|
|
fsqrt.x 0x4(%sp),%fp0 # fsqrt w/ ext src
|
|
rts
|
|
|
|
global _fints_
|
|
_fints_:
|
|
fint.s 0x4(%sp),%fp0 # fint w/ sgl src
|
|
rts
|
|
|
|
global _fintd_
|
|
_fintd_:
|
|
fint.d 0x4(%sp),%fp0 # fint w/ dbl src
|
|
rts
|
|
|
|
global _fintx_
|
|
_fintx_:
|
|
fint.x 0x4(%sp),%fp0 # fint w/ ext src
|
|
rts
|
|
|
|
global _fintrzs_
|
|
_fintrzs_:
|
|
fintrz.s 0x4(%sp),%fp0 # fintrz w/ sgl src
|
|
rts
|
|
|
|
global _fintrzd_
|
|
_fintrzd_:
|
|
fintrz.d 0x4(%sp),%fp0 # fintrx w/ dbl src
|
|
rts
|
|
|
|
global _fintrzx_
|
|
_fintrzx_:
|
|
fintrz.x 0x4(%sp),%fp0 # fintrz w/ ext src
|
|
rts
|
|
|
|
########################################################################
|
|
|
|
#########################################################################
|
|
# src_zero(): Return signed zero according to sign of src operand. #
|
|
#########################################################################
|
|
global src_zero
|
|
src_zero:
|
|
tst.b SRC_EX(%a0) # get sign of src operand
|
|
bmi.b ld_mzero # if neg, load neg zero
|
|
|
|
#
|
|
# ld_pzero(): return a positive zero.
|
|
#
|
|
global ld_pzero
|
|
ld_pzero:
|
|
fmov.s &0x00000000,%fp0 # load +0
|
|
mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
|
|
rts
|
|
|
|
# ld_mzero(): return a negative zero.
|
|
global ld_mzero
|
|
ld_mzero:
|
|
fmov.s &0x80000000,%fp0 # load -0
|
|
mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits
|
|
rts
|
|
|
|
#########################################################################
|
|
# dst_zero(): Return signed zero according to sign of dst operand. #
|
|
#########################################################################
|
|
global dst_zero
|
|
dst_zero:
|
|
tst.b DST_EX(%a1) # get sign of dst operand
|
|
bmi.b ld_mzero # if neg, load neg zero
|
|
bra.b ld_pzero # load positive zero
|
|
|
|
#########################################################################
|
|
# src_inf(): Return signed inf according to sign of src operand. #
|
|
#########################################################################
|
|
global src_inf
|
|
src_inf:
|
|
tst.b SRC_EX(%a0) # get sign of src operand
|
|
bmi.b ld_minf # if negative branch
|
|
|
|
#
|
|
# ld_pinf(): return a positive infinity.
|
|
#
|
|
global ld_pinf
|
|
ld_pinf:
|
|
fmov.s &0x7f800000,%fp0 # load +INF
|
|
mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit
|
|
rts
|
|
|
|
#
|
|
# ld_minf():return a negative infinity.
|
|
#
|
|
global ld_minf
|
|
ld_minf:
|
|
fmov.s &0xff800000,%fp0 # load -INF
|
|
mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
|
|
rts
|
|
|
|
#########################################################################
|
|
# dst_inf(): Return signed inf according to sign of dst operand. #
|
|
#########################################################################
|
|
global dst_inf
|
|
dst_inf:
|
|
tst.b DST_EX(%a1) # get sign of dst operand
|
|
bmi.b ld_minf # if negative branch
|
|
bra.b ld_pinf
|
|
|
|
global szr_inf
|
|
#################################################################
|
|
# szr_inf(): Return +ZERO for a negative src operand or #
|
|
# +INF for a positive src operand. #
|
|
# Routine used for fetox, ftwotox, and ftentox. #
|
|
#################################################################
|
|
szr_inf:
|
|
tst.b SRC_EX(%a0) # check sign of source
|
|
bmi.b ld_pzero
|
|
bra.b ld_pinf
|
|
|
|
#########################################################################
|
|
# sopr_inf(): Return +INF for a positive src operand or #
|
|
# jump to operand error routine for a negative src operand. #
|
|
# Routine used for flogn, flognp1, flog10, and flog2. #
|
|
#########################################################################
|
|
global sopr_inf
|
|
sopr_inf:
|
|
tst.b SRC_EX(%a0) # check sign of source
|
|
bmi.w t_operr
|
|
bra.b ld_pinf
|
|
|
|
#################################################################
|
|
# setoxm1i(): Return minus one for a negative src operand or #
|
|
# positive infinity for a positive src operand. #
|
|
# Routine used for fetoxm1. #
|
|
#################################################################
|
|
global setoxm1i
|
|
setoxm1i:
|
|
tst.b SRC_EX(%a0) # check sign of source
|
|
bmi.b ld_mone
|
|
bra.b ld_pinf
|
|
|
|
#########################################################################
|
|
# src_one(): Return signed one according to sign of src operand. #
|
|
#########################################################################
|
|
global src_one
|
|
src_one:
|
|
tst.b SRC_EX(%a0) # check sign of source
|
|
bmi.b ld_mone
|
|
|
|
#
|
|
# ld_pone(): return positive one.
|
|
#
|
|
global ld_pone
|
|
ld_pone:
|
|
fmov.s &0x3f800000,%fp0 # load +1
|
|
clr.b FPSR_CC(%a6)
|
|
rts
|
|
|
|
#
|
|
# ld_mone(): return negative one.
|
|
#
|
|
global ld_mone
|
|
ld_mone:
|
|
fmov.s &0xbf800000,%fp0 # load -1
|
|
mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
|
|
rts
|
|
|
|
ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235
|
|
mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235
|
|
|
|
#################################################################
|
|
# spi_2(): Return signed PI/2 according to sign of src operand. #
|
|
#################################################################
|
|
global spi_2
|
|
spi_2:
|
|
tst.b SRC_EX(%a0) # check sign of source
|
|
bmi.b ld_mpi2
|
|
|
|
#
|
|
# ld_ppi2(): return positive PI/2.
|
|
#
|
|
global ld_ppi2
|
|
ld_ppi2:
|
|
fmov.l %d0,%fpcr
|
|
fmov.x ppiby2(%pc),%fp0 # load +pi/2
|
|
bra.w t_pinx2 # set INEX2
|
|
|
|
#
|
|
# ld_mpi2(): return negative PI/2.
|
|
#
|
|
global ld_mpi2
|
|
ld_mpi2:
|
|
fmov.l %d0,%fpcr
|
|
fmov.x mpiby2(%pc),%fp0 # load -pi/2
|
|
bra.w t_minx2 # set INEX2
|
|
|
|
####################################################
|
|
# The following routines give support for fsincos. #
|
|
####################################################
|
|
|
|
#
|
|
# ssincosz(): When the src operand is ZERO, store a one in the
|
|
# cosine register and return a ZERO in fp0 w/ the same sign
|
|
# as the src operand.
|
|
#
|
|
global ssincosz
|
|
ssincosz:
|
|
fmov.s &0x3f800000,%fp1
|
|
tst.b SRC_EX(%a0) # test sign
|
|
bpl.b sincoszp
|
|
fmov.s &0x80000000,%fp0 # return sin result in fp0
|
|
mov.b &z_bmask+neg_bmask,FPSR_CC(%a6)
|
|
rts
|
|
sincoszp:
|
|
fmov.s &0x00000000,%fp0 # return sin result in fp0
|
|
mov.b &z_bmask,FPSR_CC(%a6)
|
|
rts
|
|
|
|
#
|
|
# ssincosi(): When the src operand is INF, store a QNAN in the cosine
|
|
# register and jump to the operand error routine for negative
|
|
# src operands.
|
|
#
|
|
global ssincosi
|
|
ssincosi:
|
|
fmov.x qnan(%pc),%fp1 # load NAN
|
|
bra.w t_operr
|
|
|
|
#
|
|
# ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine
|
|
# register and branch to the src QNAN routine.
|
|
#
|
|
global ssincosqnan
|
|
ssincosqnan:
|
|
fmov.x LOCAL_EX(%a0),%fp1
|
|
bra.w src_qnan
|
|
|
|
########################################################################
|
|
|
|
global smod_sdnrm
|
|
global smod_snorm
|
|
smod_sdnrm:
|
|
smod_snorm:
|
|
mov.b DTAG(%a6),%d1
|
|
beq.l smod
|
|
cmpi.b %d1,&ZERO
|
|
beq.w smod_zro
|
|
cmpi.b %d1,&INF
|
|
beq.l t_operr
|
|
cmpi.b %d1,&DENORM
|
|
beq.l smod
|
|
bra.l dst_qnan
|
|
|
|
global smod_szero
|
|
smod_szero:
|
|
mov.b DTAG(%a6),%d1
|
|
beq.l t_operr
|
|
cmpi.b %d1,&ZERO
|
|
beq.l t_operr
|
|
cmpi.b %d1,&INF
|
|
beq.l t_operr
|
|
cmpi.b %d1,&DENORM
|
|
beq.l t_operr
|
|
bra.l dst_qnan
|
|
|
|
global smod_sinf
|
|
smod_sinf:
|
|
mov.b DTAG(%a6),%d1
|
|
beq.l smod_fpn
|
|
cmpi.b %d1,&ZERO
|
|
beq.l smod_zro
|
|
cmpi.b %d1,&INF
|
|
beq.l t_operr
|
|
cmpi.b %d1,&DENORM
|
|
beq.l smod_fpn
|
|
bra.l dst_qnan
|
|
|
|
smod_zro:
|
|
srem_zro:
|
|
mov.b SRC_EX(%a0),%d1 # get src sign
|
|
mov.b DST_EX(%a1),%d0 # get dst sign
|
|
eor.b %d0,%d1 # get qbyte sign
|
|
andi.b &0x80,%d1
|
|
mov.b %d1,FPSR_QBYTE(%a6)
|
|
tst.b %d0
|
|
bpl.w ld_pzero
|
|
bra.w ld_mzero
|
|
|
|
smod_fpn:
|
|
srem_fpn:
|
|
clr.b FPSR_QBYTE(%a6)
|
|
mov.l %d0,-(%sp)
|
|
mov.b SRC_EX(%a0),%d1 # get src sign
|
|
mov.b DST_EX(%a1),%d0 # get dst sign
|
|
eor.b %d0,%d1 # get qbyte sign
|
|
andi.b &0x80,%d1
|
|
mov.b %d1,FPSR_QBYTE(%a6)
|
|
cmpi.b DTAG(%a6),&DENORM
|
|
bne.b smod_nrm
|
|
lea DST(%a1),%a0
|
|
mov.l (%sp)+,%d0
|
|
bra t_resdnrm
|
|
smod_nrm:
|
|
fmov.l (%sp)+,%fpcr
|
|
fmov.x DST(%a1),%fp0
|
|
tst.b DST_EX(%a1)
|
|
bmi.b smod_nrm_neg
|
|
rts
|
|
|
|
smod_nrm_neg:
|
|
mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' code
|
|
rts
|
|
|
|
#########################################################################
|
|
global srem_snorm
|
|
global srem_sdnrm
|
|
srem_sdnrm:
|
|
srem_snorm:
|
|
mov.b DTAG(%a6),%d1
|
|
beq.l srem
|
|
cmpi.b %d1,&ZERO
|
|
beq.w srem_zro
|
|
cmpi.b %d1,&INF
|
|
beq.l t_operr
|
|
cmpi.b %d1,&DENORM
|
|
beq.l srem
|
|
bra.l dst_qnan
|
|
|
|
global srem_szero
|
|
srem_szero:
|
|
mov.b DTAG(%a6),%d1
|
|
beq.l t_operr
|
|
cmpi.b %d1,&ZERO
|
|
beq.l t_operr
|
|
cmpi.b %d1,&INF
|
|
beq.l t_operr
|
|
cmpi.b %d1,&DENORM
|
|
beq.l t_operr
|
|
bra.l dst_qnan
|
|
|
|
global srem_sinf
|
|
srem_sinf:
|
|
mov.b DTAG(%a6),%d1
|
|
beq.w srem_fpn
|
|
cmpi.b %d1,&ZERO
|
|
beq.w srem_zro
|
|
cmpi.b %d1,&INF
|
|
beq.l t_operr
|
|
cmpi.b %d1,&DENORM
|
|
beq.l srem_fpn
|
|
bra.l dst_qnan
|
|
|
|
#########################################################################
|
|
|
|
global sscale_snorm
|
|
global sscale_sdnrm
|
|
sscale_snorm:
|
|
sscale_sdnrm:
|
|
mov.b DTAG(%a6),%d1
|
|
beq.l sscale
|
|
cmpi.b %d1,&ZERO
|
|
beq.l dst_zero
|
|
cmpi.b %d1,&INF
|
|
beq.l dst_inf
|
|
cmpi.b %d1,&DENORM
|
|
beq.l sscale
|
|
bra.l dst_qnan
|
|
|
|
global sscale_szero
|
|
sscale_szero:
|
|
mov.b DTAG(%a6),%d1
|
|
beq.l sscale
|
|
cmpi.b %d1,&ZERO
|
|
beq.l dst_zero
|
|
cmpi.b %d1,&INF
|
|
beq.l dst_inf
|
|
cmpi.b %d1,&DENORM
|
|
beq.l sscale
|
|
bra.l dst_qnan
|
|
|
|
global sscale_sinf
|
|
sscale_sinf:
|
|
mov.b DTAG(%a6),%d1
|
|
beq.l t_operr
|
|
cmpi.b %d1,&QNAN
|
|
beq.l dst_qnan
|
|
bra.l t_operr
|
|
|
|
########################################################################
|
|
|
|
global sop_sqnan
|
|
sop_sqnan:
|
|
mov.b DTAG(%a6),%d1
|
|
cmpi.b %d1,&QNAN
|
|
beq.l dst_qnan
|
|
bra.l src_qnan
|
|
|
|
#########################################################################
|
|
# norm(): normalize the mantissa of an extended precision input. the #
|
|
# input operand should not be normalized already. #
|
|
# #
|
|
# XDEF **************************************************************** #
|
|
# norm() #
|
|
# #
|
|
# XREF **************************************************************** #
|
|
# none #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer fp extended precision operand to normalize #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# d0 = number of bit positions the mantissa was shifted #
|
|
# a0 = the input operand's mantissa is normalized; the exponent #
|
|
# is unchanged. #
|
|
# #
|
|
#########################################################################
|
|
global norm
|
|
norm:
|
|
mov.l %d2, -(%sp) # create some temp regs
|
|
mov.l %d3, -(%sp)
|
|
|
|
mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa)
|
|
mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa)
|
|
|
|
bfffo %d0{&0:&32}, %d2 # how many places to shift?
|
|
beq.b norm_lo # hi(man) is all zeroes!
|
|
|
|
norm_hi:
|
|
lsl.l %d2, %d0 # left shift hi(man)
|
|
bfextu %d1{&0:%d2}, %d3 # extract lo bits
|
|
|
|
or.l %d3, %d0 # create hi(man)
|
|
lsl.l %d2, %d1 # create lo(man)
|
|
|
|
mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
|
|
mov.l %d1, FTEMP_LO(%a0) # store new lo(man)
|
|
|
|
mov.l %d2, %d0 # return shift amount
|
|
|
|
mov.l (%sp)+, %d3 # restore temp regs
|
|
mov.l (%sp)+, %d2
|
|
|
|
rts
|
|
|
|
norm_lo:
|
|
bfffo %d1{&0:&32}, %d2 # how many places to shift?
|
|
lsl.l %d2, %d1 # shift lo(man)
|
|
add.l &32, %d2 # add 32 to shft amount
|
|
|
|
mov.l %d1, FTEMP_HI(%a0) # store hi(man)
|
|
clr.l FTEMP_LO(%a0) # lo(man) is now zero
|
|
|
|
mov.l %d2, %d0 # return shift amount
|
|
|
|
mov.l (%sp)+, %d3 # restore temp regs
|
|
mov.l (%sp)+, %d2
|
|
|
|
rts
|
|
|
|
#########################################################################
|
|
# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO #
|
|
# - returns corresponding optype tag #
|
|
# #
|
|
# XDEF **************************************************************** #
|
|
# unnorm_fix() #
|
|
# #
|
|
# XREF **************************************************************** #
|
|
# norm() - normalize the mantissa #
|
|
# #
|
|
# INPUT *************************************************************** #
|
|
# a0 = pointer to unnormalized extended precision number #
|
|
# #
|
|
# OUTPUT ************************************************************** #
|
|
# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO #
|
|
# a0 = input operand has been converted to a norm, denorm, or #
|
|
# zero; both the exponent and mantissa are changed. #
|
|
# #
|
|
#########################################################################
|
|
|
|
global unnorm_fix
|
|
unnorm_fix:
|
|
bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed?
|
|
bne.b unnorm_shift # hi(man) is not all zeroes
|
|
|
|
#
|
|
# hi(man) is all zeroes so see if any bits in lo(man) are set
|
|
#
|
|
unnorm_chk_lo:
|
|
bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero?
|
|
beq.w unnorm_zero # yes
|
|
|
|
add.w &32, %d0 # no; fix shift distance
|
|
|
|
#
|
|
# d0 = # shifts needed for complete normalization
|
|
#
|
|
unnorm_shift:
|
|
clr.l %d1 # clear top word
|
|
mov.w FTEMP_EX(%a0), %d1 # extract exponent
|
|
and.w &0x7fff, %d1 # strip off sgn
|
|
|
|
cmp.w %d0, %d1 # will denorm push exp < 0?
|
|
bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0
|
|
|
|
#
|
|
# exponent would not go < 0. therefore, number stays normalized
|
|
#
|
|
sub.w %d0, %d1 # shift exponent value
|
|
mov.w FTEMP_EX(%a0), %d0 # load old exponent
|
|
and.w &0x8000, %d0 # save old sign
|
|
or.w %d0, %d1 # {sgn,new exp}
|
|
mov.w %d1, FTEMP_EX(%a0) # insert new exponent
|
|
|
|
bsr.l norm # normalize UNNORM
|
|
|
|
mov.b &NORM, %d0 # return new optype tag
|
|
rts
|
|
|
|
#
|
|
# exponent would go < 0, so only denormalize until exp = 0
|
|
#
|
|
unnorm_nrm_zero:
|
|
cmp.b %d1, &32 # is exp <= 32?
|
|
bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent
|
|
|
|
bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man)
|
|
mov.l %d0, FTEMP_HI(%a0) # save new hi(man)
|
|
|
|
mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
|
|
lsl.l %d1, %d0 # extract new lo(man)
|
|
mov.l %d0, FTEMP_LO(%a0) # save new lo(man)
|
|
|
|
and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
|
|
|
|
mov.b &DENORM, %d0 # return new optype tag
|
|
rts
|
|
|
|
#
|
|
# only mantissa bits set are in lo(man)
|
|
#
|
|
unnorm_nrm_zero_lrg:
|
|
sub.w &32, %d1 # adjust shft amt by 32
|
|
|
|
mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
|
|
lsl.l %d1, %d0 # left shift lo(man)
|
|
|
|
mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
|
|
clr.l FTEMP_LO(%a0) # lo(man) = 0
|
|
|
|
and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
|
|
|
|
mov.b &DENORM, %d0 # return new optype tag
|
|
rts
|
|
|
|
#
|
|
# whole mantissa is zero so this UNNORM is actually a zero
|
|
#
|
|
unnorm_zero:
|
|
and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero
|
|
|
|
mov.b &ZERO, %d0 # fix optype tag
|
|
rts
|