6db4831e98
Android 14
703 lines
18 KiB
C
703 lines
18 KiB
C
/*
|
|
* Copyright (C) 2015 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/arm-smccc.h>
|
|
#include <linux/types.h>
|
|
#include <linux/jump_label.h>
|
|
#include <uapi/linux/psci.h>
|
|
|
|
#include <kvm/arm_psci.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/extable.h>
|
|
#include <asm/kprobes.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_host.h>
|
|
#include <asm/kvm_hyp.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/thread_info.h>
|
|
#include <asm/vectors.h>
|
|
|
|
extern struct exception_table_entry __start___kvm_ex_table;
|
|
extern struct exception_table_entry __stop___kvm_ex_table;
|
|
|
|
/* Check whether the FP regs were dirtied while in the host-side run loop: */
|
|
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* When the system doesn't support FP/SIMD, we cannot rely on
|
|
* the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
|
|
* abort on the very first access to FP and thus we should never
|
|
* see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
|
|
* trap the accesses.
|
|
*/
|
|
if (!system_supports_fpsimd() ||
|
|
vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
|
|
vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
|
|
KVM_ARM64_FP_HOST);
|
|
|
|
return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
|
|
}
|
|
|
|
/* Save the 32-bit only FPSIMD system register state */
|
|
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu_el1_is_32bit(vcpu))
|
|
return;
|
|
|
|
vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
|
|
}
|
|
|
|
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* We are about to set CPTR_EL2.TFP to trap all floating point
|
|
* register accesses to EL2, however, the ARM ARM clearly states that
|
|
* traps are only taken to EL2 if the operation would not otherwise
|
|
* trap to EL1. Therefore, always make sure that for 32-bit guests,
|
|
* we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
|
|
* If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
|
|
* it will cause an exception.
|
|
*/
|
|
if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
|
|
write_sysreg(1 << 30, fpexc32_el2);
|
|
isb();
|
|
}
|
|
}
|
|
|
|
static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
|
|
write_sysreg(1 << 15, hstr_el2);
|
|
|
|
/*
|
|
* Make sure we trap PMU access from EL0 to EL2. Also sanitize
|
|
* PMSELR_EL0 to make sure it never contains the cycle
|
|
* counter, which could make a PMXEVCNTR_EL0 access UNDEF at
|
|
* EL1 instead of being trapped to EL2.
|
|
*/
|
|
write_sysreg(0, pmselr_el0);
|
|
write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
|
|
write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
|
|
}
|
|
|
|
static void __hyp_text __deactivate_traps_common(void)
|
|
{
|
|
write_sysreg(0, hstr_el2);
|
|
write_sysreg(0, pmuserenr_el0);
|
|
}
|
|
|
|
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 val;
|
|
|
|
val = read_sysreg(cpacr_el1);
|
|
val |= CPACR_EL1_TTA;
|
|
val &= ~CPACR_EL1_ZEN;
|
|
if (!update_fp_enabled(vcpu)) {
|
|
val &= ~CPACR_EL1_FPEN;
|
|
__activate_traps_fpsimd32(vcpu);
|
|
}
|
|
|
|
write_sysreg(val, cpacr_el1);
|
|
|
|
write_sysreg(kvm_get_hyp_vector(), vbar_el1);
|
|
}
|
|
NOKPROBE_SYMBOL(activate_traps_vhe);
|
|
|
|
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 val;
|
|
|
|
__activate_traps_common(vcpu);
|
|
|
|
val = CPTR_EL2_DEFAULT;
|
|
val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
|
|
if (!update_fp_enabled(vcpu)) {
|
|
val |= CPTR_EL2_TFP;
|
|
__activate_traps_fpsimd32(vcpu);
|
|
}
|
|
|
|
write_sysreg(val, cptr_el2);
|
|
}
|
|
|
|
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 hcr = vcpu->arch.hcr_el2;
|
|
|
|
write_sysreg(hcr, hcr_el2);
|
|
|
|
if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
|
|
write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
|
|
|
|
if (has_vhe())
|
|
activate_traps_vhe(vcpu);
|
|
else
|
|
__activate_traps_nvhe(vcpu);
|
|
}
|
|
|
|
static void deactivate_traps_vhe(void)
|
|
{
|
|
const char *host_vectors = vectors;
|
|
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
|
|
write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
|
|
|
|
if (!arm64_kernel_unmapped_at_el0())
|
|
host_vectors = __this_cpu_read(this_cpu_vector);
|
|
write_sysreg(host_vectors, vbar_el1);
|
|
}
|
|
NOKPROBE_SYMBOL(deactivate_traps_vhe);
|
|
|
|
static void __hyp_text __deactivate_traps_nvhe(void)
|
|
{
|
|
u64 mdcr_el2 = read_sysreg(mdcr_el2);
|
|
|
|
__deactivate_traps_common();
|
|
|
|
mdcr_el2 &= MDCR_EL2_HPMN_MASK;
|
|
mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
|
|
|
|
write_sysreg(mdcr_el2, mdcr_el2);
|
|
write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
|
|
write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
|
|
}
|
|
|
|
static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* If we pended a virtual abort, preserve it until it gets
|
|
* cleared. See D1.14.3 (Virtual Interrupts) for details, but
|
|
* the crucial bit is "On taking a vSError interrupt,
|
|
* HCR_EL2.VSE is cleared to 0."
|
|
*/
|
|
if (vcpu->arch.hcr_el2 & HCR_VSE)
|
|
vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
|
|
|
|
if (has_vhe())
|
|
deactivate_traps_vhe();
|
|
else
|
|
__deactivate_traps_nvhe();
|
|
}
|
|
|
|
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
|
|
{
|
|
__activate_traps_common(vcpu);
|
|
}
|
|
|
|
void deactivate_traps_vhe_put(void)
|
|
{
|
|
u64 mdcr_el2 = read_sysreg(mdcr_el2);
|
|
|
|
mdcr_el2 &= MDCR_EL2_HPMN_MASK |
|
|
MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
|
|
MDCR_EL2_TPMS;
|
|
|
|
write_sysreg(mdcr_el2, mdcr_el2);
|
|
|
|
__deactivate_traps_common();
|
|
}
|
|
|
|
static void __hyp_text __activate_vm(struct kvm *kvm)
|
|
{
|
|
write_sysreg(kvm->arch.vttbr, vttbr_el2);
|
|
}
|
|
|
|
static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
|
|
{
|
|
write_sysreg(0, vttbr_el2);
|
|
}
|
|
|
|
/* Save VGICv3 state on non-VHE systems */
|
|
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
|
|
__vgic_v3_save_state(vcpu);
|
|
__vgic_v3_deactivate_traps(vcpu);
|
|
}
|
|
}
|
|
|
|
/* Restore VGICv3 state on non_VEH systems */
|
|
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
|
|
__vgic_v3_activate_traps(vcpu);
|
|
__vgic_v3_restore_state(vcpu);
|
|
}
|
|
}
|
|
|
|
static bool __hyp_text __true_value(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static bool __hyp_text __false_value(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static hyp_alternate_select(__check_arm_834220,
|
|
__false_value, __true_value,
|
|
ARM64_WORKAROUND_834220);
|
|
|
|
static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
|
|
{
|
|
u64 par, tmp;
|
|
|
|
/*
|
|
* Resolve the IPA the hard way using the guest VA.
|
|
*
|
|
* Stage-1 translation already validated the memory access
|
|
* rights. As such, we can use the EL1 translation regime, and
|
|
* don't have to distinguish between EL0 and EL1 access.
|
|
*
|
|
* We do need to save/restore PAR_EL1 though, as we haven't
|
|
* saved the guest context yet, and we may return early...
|
|
*/
|
|
par = read_sysreg(par_el1);
|
|
if (!__kvm_at("s1e1r", far))
|
|
tmp = read_sysreg(par_el1);
|
|
else
|
|
tmp = 1; /* back to the guest */
|
|
write_sysreg(par, par_el1);
|
|
|
|
if (unlikely(tmp & 1))
|
|
return false; /* Translation failed, back to guest */
|
|
|
|
/* Convert PAR to HPFAR format */
|
|
*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
|
|
return true;
|
|
}
|
|
|
|
static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
|
|
{
|
|
u8 ec;
|
|
u64 esr;
|
|
u64 hpfar, far;
|
|
|
|
esr = vcpu->arch.fault.esr_el2;
|
|
ec = ESR_ELx_EC(esr);
|
|
|
|
if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
|
|
return true;
|
|
|
|
far = read_sysreg_el2(far);
|
|
|
|
/*
|
|
* The HPFAR can be invalid if the stage 2 fault did not
|
|
* happen during a stage 1 page table walk (the ESR_EL2.S1PTW
|
|
* bit is clear) and one of the two following cases are true:
|
|
* 1. The fault was due to a permission fault
|
|
* 2. The processor carries errata 834220
|
|
*
|
|
* Therefore, for all non S1PTW faults where we either have a
|
|
* permission fault or the errata workaround is enabled, we
|
|
* resolve the IPA using the AT instruction.
|
|
*/
|
|
if (!(esr & ESR_ELx_S1PTW) &&
|
|
(__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
|
|
if (!__translate_far_to_hpfar(far, &hpfar))
|
|
return false;
|
|
} else {
|
|
hpfar = read_sysreg(hpfar_el2);
|
|
}
|
|
|
|
vcpu->arch.fault.far_el2 = far;
|
|
vcpu->arch.fault.hpfar_el2 = hpfar;
|
|
return true;
|
|
}
|
|
|
|
/* Skip an instruction which has been emulated. Returns true if
|
|
* execution can continue or false if we need to exit hyp mode because
|
|
* single-step was in effect.
|
|
*/
|
|
static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
|
|
{
|
|
*vcpu_pc(vcpu) = read_sysreg_el2(elr);
|
|
|
|
if (vcpu_mode_is_32bit(vcpu)) {
|
|
vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
|
|
kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
|
write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
|
|
} else {
|
|
*vcpu_pc(vcpu) += 4;
|
|
}
|
|
|
|
write_sysreg_el2(*vcpu_pc(vcpu), elr);
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
|
|
vcpu->arch.fault.esr_el2 =
|
|
(ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;
|
|
|
|
if (has_vhe())
|
|
write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
|
|
cpacr_el1);
|
|
else
|
|
write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
|
|
cptr_el2);
|
|
|
|
isb();
|
|
|
|
if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
|
|
/*
|
|
* In the SVE case, VHE is assumed: it is enforced by
|
|
* Kconfig and kvm_arch_init().
|
|
*/
|
|
if (system_supports_sve() &&
|
|
(vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
|
|
struct thread_struct *thread = container_of(
|
|
host_fpsimd,
|
|
struct thread_struct, uw.fpsimd_state);
|
|
|
|
sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
|
|
} else {
|
|
__fpsimd_save_state(host_fpsimd);
|
|
}
|
|
|
|
vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
|
|
}
|
|
|
|
__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
|
|
|
|
/* Skip restoring fpexc32 for AArch64 guests */
|
|
if (!(read_sysreg(hcr_el2) & HCR_RW))
|
|
write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
|
|
fpexc32_el2);
|
|
|
|
vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Return true when we were able to fixup the guest exit and should return to
|
|
* the guest, false when we should restore the host state and return to the
|
|
* main run loop.
|
|
*/
|
|
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
|
|
vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
|
|
|
|
/*
|
|
* We're using the raw exception code in order to only process
|
|
* the trap if no SError is pending. We will come back to the
|
|
* same PC once the SError has been injected, and replay the
|
|
* trapping instruction.
|
|
*/
|
|
if (*exit_code != ARM_EXCEPTION_TRAP)
|
|
goto exit;
|
|
|
|
/*
|
|
* We trap the first access to the FP/SIMD to save the host context
|
|
* and restore the guest context lazily.
|
|
* If FP/SIMD is not implemented, handle the trap and inject an
|
|
* undefined instruction exception to the guest.
|
|
*/
|
|
if (system_supports_fpsimd() &&
|
|
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
|
|
return __hyp_switch_fpsimd(vcpu);
|
|
|
|
if (!__populate_fault_info(vcpu))
|
|
return true;
|
|
|
|
if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
|
|
bool valid;
|
|
|
|
valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
|
|
kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
|
|
kvm_vcpu_dabt_isvalid(vcpu) &&
|
|
!kvm_vcpu_dabt_isextabt(vcpu) &&
|
|
!kvm_vcpu_abt_iss1tw(vcpu);
|
|
|
|
if (valid) {
|
|
int ret = __vgic_v2_perform_cpuif_access(vcpu);
|
|
|
|
if (ret == 1 && __skip_instr(vcpu))
|
|
return true;
|
|
|
|
if (ret == -1) {
|
|
/* Promote an illegal access to an
|
|
* SError. If we would be returning
|
|
* due to single-step clear the SS
|
|
* bit so handle_exit knows what to
|
|
* do after dealing with the error.
|
|
*/
|
|
if (!__skip_instr(vcpu))
|
|
*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
|
|
*exit_code = ARM_EXCEPTION_EL1_SERROR;
|
|
}
|
|
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
|
|
(kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
|
|
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
|
|
int ret = __vgic_v3_perform_cpuif_access(vcpu);
|
|
|
|
if (ret == 1 && __skip_instr(vcpu))
|
|
return true;
|
|
}
|
|
|
|
exit:
|
|
/* Return to the host kernel and handle the exit */
|
|
return false;
|
|
}
|
|
|
|
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!cpus_have_const_cap(ARM64_SSBD))
|
|
return false;
|
|
|
|
return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
|
|
}
|
|
|
|
static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_ARM64_SSBD
|
|
/*
|
|
* The host runs with the workaround always present. If the
|
|
* guest wants it disabled, so be it...
|
|
*/
|
|
if (__needs_ssbd_off(vcpu) &&
|
|
__hyp_this_cpu_read(arm64_ssbd_callback_required))
|
|
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
|
|
#endif
|
|
}
|
|
|
|
static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_ARM64_SSBD
|
|
/*
|
|
* If the guest has disabled the workaround, bring it back on.
|
|
*/
|
|
if (__needs_ssbd_off(vcpu) &&
|
|
__hyp_this_cpu_read(arm64_ssbd_callback_required))
|
|
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
|
|
#endif
|
|
}
|
|
|
|
/* Switch to the guest for VHE systems running in EL2 */
|
|
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpu_context *host_ctxt;
|
|
struct kvm_cpu_context *guest_ctxt;
|
|
u64 exit_code;
|
|
|
|
host_ctxt = vcpu->arch.host_cpu_context;
|
|
host_ctxt->__hyp_running_vcpu = vcpu;
|
|
guest_ctxt = &vcpu->arch.ctxt;
|
|
|
|
sysreg_save_host_state_vhe(host_ctxt);
|
|
|
|
__activate_traps(vcpu);
|
|
__activate_vm(vcpu->kvm);
|
|
|
|
sysreg_restore_guest_state_vhe(guest_ctxt);
|
|
__debug_switch_to_guest(vcpu);
|
|
|
|
__set_guest_arch_workaround_state(vcpu);
|
|
|
|
do {
|
|
/* Jump in the fire! */
|
|
exit_code = __guest_enter(vcpu, host_ctxt);
|
|
|
|
/* And we're baaack! */
|
|
} while (fixup_guest_exit(vcpu, &exit_code));
|
|
|
|
__set_host_arch_workaround_state(vcpu);
|
|
|
|
sysreg_save_guest_state_vhe(guest_ctxt);
|
|
|
|
__deactivate_traps(vcpu);
|
|
|
|
sysreg_restore_host_state_vhe(host_ctxt);
|
|
|
|
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
|
|
__fpsimd_save_fpexc32(vcpu);
|
|
|
|
__debug_switch_to_host(vcpu);
|
|
|
|
return exit_code;
|
|
}
|
|
NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
|
|
|
|
/* Switch to the guest for legacy non-VHE systems */
|
|
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpu_context *host_ctxt;
|
|
struct kvm_cpu_context *guest_ctxt;
|
|
u64 exit_code;
|
|
|
|
vcpu = kern_hyp_va(vcpu);
|
|
|
|
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
|
|
host_ctxt->__hyp_running_vcpu = vcpu;
|
|
guest_ctxt = &vcpu->arch.ctxt;
|
|
|
|
__sysreg_save_state_nvhe(host_ctxt);
|
|
__debug_save_host_buffers_nvhe(vcpu);
|
|
|
|
__activate_traps(vcpu);
|
|
__activate_vm(kern_hyp_va(vcpu->kvm));
|
|
|
|
__hyp_vgic_restore_state(vcpu);
|
|
__timer_enable_traps(vcpu);
|
|
|
|
/*
|
|
* We must restore the 32-bit state before the sysregs, thanks
|
|
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
|
|
*/
|
|
__sysreg32_restore_state(vcpu);
|
|
__sysreg_restore_state_nvhe(guest_ctxt);
|
|
__debug_switch_to_guest(vcpu);
|
|
|
|
__set_guest_arch_workaround_state(vcpu);
|
|
|
|
do {
|
|
/* Jump in the fire! */
|
|
exit_code = __guest_enter(vcpu, host_ctxt);
|
|
|
|
/* And we're baaack! */
|
|
} while (fixup_guest_exit(vcpu, &exit_code));
|
|
|
|
__set_host_arch_workaround_state(vcpu);
|
|
|
|
__sysreg_save_state_nvhe(guest_ctxt);
|
|
__sysreg32_save_state(vcpu);
|
|
__timer_disable_traps(vcpu);
|
|
__hyp_vgic_save_state(vcpu);
|
|
|
|
__deactivate_traps(vcpu);
|
|
__deactivate_vm(vcpu);
|
|
|
|
__sysreg_restore_state_nvhe(host_ctxt);
|
|
|
|
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
|
|
__fpsimd_save_fpexc32(vcpu);
|
|
|
|
__debug_switch_to_host(vcpu);
|
|
/*
|
|
* This must come after restoring the host sysregs, since a non-VHE
|
|
* system may enable SPE here and make use of the TTBRs.
|
|
*/
|
|
__debug_restore_host_buffers_nvhe(vcpu);
|
|
|
|
return exit_code;
|
|
}
|
|
|
|
static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
|
|
|
|
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
|
|
struct kvm_cpu_context *__host_ctxt)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned long str_va;
|
|
|
|
vcpu = __host_ctxt->__hyp_running_vcpu;
|
|
|
|
if (read_sysreg(vttbr_el2)) {
|
|
__timer_disable_traps(vcpu);
|
|
__deactivate_traps(vcpu);
|
|
__deactivate_vm(vcpu);
|
|
__sysreg_restore_state_nvhe(__host_ctxt);
|
|
}
|
|
|
|
/*
|
|
* Force the panic string to be loaded from the literal pool,
|
|
* making sure it is a kernel address and not a PC-relative
|
|
* reference.
|
|
*/
|
|
asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
|
|
|
|
__hyp_do_panic(str_va,
|
|
spsr, elr,
|
|
read_sysreg(esr_el2), read_sysreg_el2(far),
|
|
read_sysreg(hpfar_el2), par, vcpu);
|
|
}
|
|
|
|
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
|
|
struct kvm_cpu_context *host_ctxt)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
vcpu = host_ctxt->__hyp_running_vcpu;
|
|
|
|
__deactivate_traps(vcpu);
|
|
sysreg_restore_host_state_vhe(host_ctxt);
|
|
|
|
panic(__hyp_panic_string,
|
|
spsr, elr,
|
|
read_sysreg_el2(esr), read_sysreg_el2(far),
|
|
read_sysreg(hpfar_el2), par, vcpu);
|
|
}
|
|
NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
|
|
|
|
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
|
|
{
|
|
u64 spsr = read_sysreg_el2(spsr);
|
|
u64 elr = read_sysreg_el2(elr);
|
|
u64 par = read_sysreg(par_el1);
|
|
|
|
if (!has_vhe())
|
|
__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
|
|
else
|
|
__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
|
|
|
|
unreachable();
|
|
}
|
|
|
|
asmlinkage void __hyp_text kvm_unexpected_el2_exception(void)
|
|
{
|
|
unsigned long addr, fixup;
|
|
struct kvm_cpu_context *host_ctxt;
|
|
struct exception_table_entry *entry, *end;
|
|
unsigned long elr_el2 = read_sysreg(elr_el2);
|
|
|
|
entry = hyp_symbol_addr(__start___kvm_ex_table);
|
|
end = hyp_symbol_addr(__stop___kvm_ex_table);
|
|
host_ctxt = __hyp_this_cpu_ptr(kvm_host_cpu_state);
|
|
|
|
while (entry < end) {
|
|
addr = (unsigned long)&entry->insn + entry->insn;
|
|
fixup = (unsigned long)&entry->fixup + entry->fixup;
|
|
|
|
if (addr != elr_el2) {
|
|
entry++;
|
|
continue;
|
|
}
|
|
|
|
write_sysreg(fixup, elr_el2);
|
|
return;
|
|
}
|
|
|
|
hyp_panic(host_ctxt);
|
|
}
|