kernel_samsung_a34x-permissive/drivers/media/platform/ti-vpe/vpe.c
2024-04-28 15:51:13 +02:00

2634 lines
67 KiB
C

/*
* TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
*
* Copyright (c) 2013 Texas Instruments Inc.
* David Griego, <dagriego@biglakesoftware.com>
* Dale Farnsworth, <dale@farnsworth.org>
* Archit Taneja, <archit@ti.com>
*
* Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
* Pawel Osciak, <pawel@osciak.com>
* Marek Szyprowski, <m.szyprowski@samsung.com>
*
* Based on the virtual v4l2-mem2mem example device
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <linux/log2.h>
#include <linux/sizes.h>
#include <media/v4l2-common.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-v4l2.h>
#include <media/videobuf2-dma-contig.h>
#include "vpdma.h"
#include "vpdma_priv.h"
#include "vpe_regs.h"
#include "sc.h"
#include "csc.h"
#define VPE_MODULE_NAME "vpe"
/* minimum and maximum frame sizes */
#define MIN_W 32
#define MIN_H 32
#define MAX_W 2048
#define MAX_H 1184
/* required alignments */
#define S_ALIGN 0 /* multiple of 1 */
#define H_ALIGN 1 /* multiple of 2 */
/* flags that indicate a format can be used for capture/output */
#define VPE_FMT_TYPE_CAPTURE (1 << 0)
#define VPE_FMT_TYPE_OUTPUT (1 << 1)
/* used as plane indices */
#define VPE_MAX_PLANES 2
#define VPE_LUMA 0
#define VPE_CHROMA 1
/* per m2m context info */
#define VPE_MAX_SRC_BUFS 3 /* need 3 src fields to de-interlace */
#define VPE_DEF_BUFS_PER_JOB 1 /* default one buffer per batch job */
/*
* each VPE context can need up to 3 config descriptors, 7 input descriptors,
* 3 output descriptors, and 10 control descriptors
*/
#define VPE_DESC_LIST_SIZE (10 * VPDMA_DTD_DESC_SIZE + \
13 * VPDMA_CFD_CTD_DESC_SIZE)
#define vpe_dbg(vpedev, fmt, arg...) \
dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
#define vpe_err(vpedev, fmt, arg...) \
dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
struct vpe_us_coeffs {
unsigned short anchor_fid0_c0;
unsigned short anchor_fid0_c1;
unsigned short anchor_fid0_c2;
unsigned short anchor_fid0_c3;
unsigned short interp_fid0_c0;
unsigned short interp_fid0_c1;
unsigned short interp_fid0_c2;
unsigned short interp_fid0_c3;
unsigned short anchor_fid1_c0;
unsigned short anchor_fid1_c1;
unsigned short anchor_fid1_c2;
unsigned short anchor_fid1_c3;
unsigned short interp_fid1_c0;
unsigned short interp_fid1_c1;
unsigned short interp_fid1_c2;
unsigned short interp_fid1_c3;
};
/*
* Default upsampler coefficients
*/
static const struct vpe_us_coeffs us_coeffs[] = {
{
/* Coefficients for progressive input */
0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
},
{
/* Coefficients for Top Field Interlaced input */
0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
/* Coefficients for Bottom Field Interlaced input */
0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
},
};
/*
* the following registers are for configuring some of the parameters of the
* motion and edge detection blocks inside DEI, these generally remain the same,
* these could be passed later via userspace if some one needs to tweak these.
*/
struct vpe_dei_regs {
unsigned long mdt_spacial_freq_thr_reg; /* VPE_DEI_REG2 */
unsigned long edi_config_reg; /* VPE_DEI_REG3 */
unsigned long edi_lut_reg0; /* VPE_DEI_REG4 */
unsigned long edi_lut_reg1; /* VPE_DEI_REG5 */
unsigned long edi_lut_reg2; /* VPE_DEI_REG6 */
unsigned long edi_lut_reg3; /* VPE_DEI_REG7 */
};
/*
* default expert DEI register values, unlikely to be modified.
*/
static const struct vpe_dei_regs dei_regs = {
.mdt_spacial_freq_thr_reg = 0x020C0804u,
.edi_config_reg = 0x0118100Cu,
.edi_lut_reg0 = 0x08040200u,
.edi_lut_reg1 = 0x1010100Cu,
.edi_lut_reg2 = 0x10101010u,
.edi_lut_reg3 = 0x10101010u,
};
/*
* The port_data structure contains per-port data.
*/
struct vpe_port_data {
enum vpdma_channel channel; /* VPDMA channel */
u8 vb_index; /* input frame f, f-1, f-2 index */
u8 vb_part; /* plane index for co-panar formats */
};
/*
* Define indices into the port_data tables
*/
#define VPE_PORT_LUMA1_IN 0
#define VPE_PORT_CHROMA1_IN 1
#define VPE_PORT_LUMA2_IN 2
#define VPE_PORT_CHROMA2_IN 3
#define VPE_PORT_LUMA3_IN 4
#define VPE_PORT_CHROMA3_IN 5
#define VPE_PORT_MV_IN 6
#define VPE_PORT_MV_OUT 7
#define VPE_PORT_LUMA_OUT 8
#define VPE_PORT_CHROMA_OUT 9
#define VPE_PORT_RGB_OUT 10
static const struct vpe_port_data port_data[11] = {
[VPE_PORT_LUMA1_IN] = {
.channel = VPE_CHAN_LUMA1_IN,
.vb_index = 0,
.vb_part = VPE_LUMA,
},
[VPE_PORT_CHROMA1_IN] = {
.channel = VPE_CHAN_CHROMA1_IN,
.vb_index = 0,
.vb_part = VPE_CHROMA,
},
[VPE_PORT_LUMA2_IN] = {
.channel = VPE_CHAN_LUMA2_IN,
.vb_index = 1,
.vb_part = VPE_LUMA,
},
[VPE_PORT_CHROMA2_IN] = {
.channel = VPE_CHAN_CHROMA2_IN,
.vb_index = 1,
.vb_part = VPE_CHROMA,
},
[VPE_PORT_LUMA3_IN] = {
.channel = VPE_CHAN_LUMA3_IN,
.vb_index = 2,
.vb_part = VPE_LUMA,
},
[VPE_PORT_CHROMA3_IN] = {
.channel = VPE_CHAN_CHROMA3_IN,
.vb_index = 2,
.vb_part = VPE_CHROMA,
},
[VPE_PORT_MV_IN] = {
.channel = VPE_CHAN_MV_IN,
},
[VPE_PORT_MV_OUT] = {
.channel = VPE_CHAN_MV_OUT,
},
[VPE_PORT_LUMA_OUT] = {
.channel = VPE_CHAN_LUMA_OUT,
.vb_part = VPE_LUMA,
},
[VPE_PORT_CHROMA_OUT] = {
.channel = VPE_CHAN_CHROMA_OUT,
.vb_part = VPE_CHROMA,
},
[VPE_PORT_RGB_OUT] = {
.channel = VPE_CHAN_RGB_OUT,
.vb_part = VPE_LUMA,
},
};
/* driver info for each of the supported video formats */
struct vpe_fmt {
char *name; /* human-readable name */
u32 fourcc; /* standard format identifier */
u8 types; /* CAPTURE and/or OUTPUT */
u8 coplanar; /* set for unpacked Luma and Chroma */
/* vpdma format info for each plane */
struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
};
static struct vpe_fmt vpe_formats[] = {
{
.name = "NV16 YUV 422 co-planar",
.fourcc = V4L2_PIX_FMT_NV16,
.types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
.coplanar = 1,
.vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
&vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
},
},
{
.name = "NV12 YUV 420 co-planar",
.fourcc = V4L2_PIX_FMT_NV12,
.types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
.coplanar = 1,
.vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
&vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
},
},
{
.name = "YUYV 422 packed",
.fourcc = V4L2_PIX_FMT_YUYV,
.types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
.coplanar = 0,
.vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YCB422],
},
},
{
.name = "UYVY 422 packed",
.fourcc = V4L2_PIX_FMT_UYVY,
.types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
.coplanar = 0,
.vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CBY422],
},
},
{
.name = "RGB888 packed",
.fourcc = V4L2_PIX_FMT_RGB24,
.types = VPE_FMT_TYPE_CAPTURE,
.coplanar = 0,
.vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
},
},
{
.name = "ARGB32",
.fourcc = V4L2_PIX_FMT_RGB32,
.types = VPE_FMT_TYPE_CAPTURE,
.coplanar = 0,
.vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
},
},
{
.name = "BGR888 packed",
.fourcc = V4L2_PIX_FMT_BGR24,
.types = VPE_FMT_TYPE_CAPTURE,
.coplanar = 0,
.vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
},
},
{
.name = "ABGR32",
.fourcc = V4L2_PIX_FMT_BGR32,
.types = VPE_FMT_TYPE_CAPTURE,
.coplanar = 0,
.vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
},
},
{
.name = "RGB565",
.fourcc = V4L2_PIX_FMT_RGB565,
.types = VPE_FMT_TYPE_CAPTURE,
.coplanar = 0,
.vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB565],
},
},
{
.name = "RGB5551",
.fourcc = V4L2_PIX_FMT_RGB555,
.types = VPE_FMT_TYPE_CAPTURE,
.coplanar = 0,
.vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGBA16_5551],
},
},
};
/*
* per-queue, driver-specific private data.
* there is one source queue and one destination queue for each m2m context.
*/
struct vpe_q_data {
unsigned int width; /* frame width */
unsigned int height; /* frame height */
unsigned int nplanes; /* Current number of planes */
unsigned int bytesperline[VPE_MAX_PLANES]; /* bytes per line in memory */
enum v4l2_colorspace colorspace;
enum v4l2_field field; /* supported field value */
unsigned int flags;
unsigned int sizeimage[VPE_MAX_PLANES]; /* image size in memory */
struct v4l2_rect c_rect; /* crop/compose rectangle */
struct vpe_fmt *fmt; /* format info */
};
/* vpe_q_data flag bits */
#define Q_DATA_FRAME_1D BIT(0)
#define Q_DATA_MODE_TILED BIT(1)
#define Q_DATA_INTERLACED_ALTERNATE BIT(2)
#define Q_DATA_INTERLACED_SEQ_TB BIT(3)
#define Q_IS_INTERLACED (Q_DATA_INTERLACED_ALTERNATE | \
Q_DATA_INTERLACED_SEQ_TB)
enum {
Q_DATA_SRC = 0,
Q_DATA_DST = 1,
};
/* find our format description corresponding to the passed v4l2_format */
static struct vpe_fmt *__find_format(u32 fourcc)
{
struct vpe_fmt *fmt;
unsigned int k;
for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
fmt = &vpe_formats[k];
if (fmt->fourcc == fourcc)
return fmt;
}
return NULL;
}
static struct vpe_fmt *find_format(struct v4l2_format *f)
{
return __find_format(f->fmt.pix.pixelformat);
}
/*
* there is one vpe_dev structure in the driver, it is shared by
* all instances.
*/
struct vpe_dev {
struct v4l2_device v4l2_dev;
struct video_device vfd;
struct v4l2_m2m_dev *m2m_dev;
atomic_t num_instances; /* count of driver instances */
dma_addr_t loaded_mmrs; /* shadow mmrs in device */
struct mutex dev_mutex;
spinlock_t lock;
int irq;
void __iomem *base;
struct resource *res;
struct vpdma_data vpdma_data;
struct vpdma_data *vpdma; /* vpdma data handle */
struct sc_data *sc; /* scaler data handle */
struct csc_data *csc; /* csc data handle */
};
/*
* There is one vpe_ctx structure for each m2m context.
*/
struct vpe_ctx {
struct v4l2_fh fh;
struct vpe_dev *dev;
struct v4l2_ctrl_handler hdl;
unsigned int field; /* current field */
unsigned int sequence; /* current frame/field seq */
unsigned int aborting; /* abort after next irq */
unsigned int bufs_per_job; /* input buffers per batch */
unsigned int bufs_completed; /* bufs done in this batch */
struct vpe_q_data q_data[2]; /* src & dst queue data */
struct vb2_v4l2_buffer *src_vbs[VPE_MAX_SRC_BUFS];
struct vb2_v4l2_buffer *dst_vb;
dma_addr_t mv_buf_dma[2]; /* dma addrs of motion vector in/out bufs */
void *mv_buf[2]; /* virtual addrs of motion vector bufs */
size_t mv_buf_size; /* current motion vector buffer size */
struct vpdma_buf mmr_adb; /* shadow reg addr/data block */
struct vpdma_buf sc_coeff_h; /* h coeff buffer */
struct vpdma_buf sc_coeff_v; /* v coeff buffer */
struct vpdma_desc_list desc_list; /* DMA descriptor list */
bool deinterlacing; /* using de-interlacer */
bool load_mmrs; /* have new shadow reg values */
unsigned int src_mv_buf_selector;
};
/*
* M2M devices get 2 queues.
* Return the queue given the type.
*/
static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
enum v4l2_buf_type type)
{
switch (type) {
case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
case V4L2_BUF_TYPE_VIDEO_OUTPUT:
return &ctx->q_data[Q_DATA_SRC];
case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
return &ctx->q_data[Q_DATA_DST];
default:
return NULL;
}
return NULL;
}
static u32 read_reg(struct vpe_dev *dev, int offset)
{
return ioread32(dev->base + offset);
}
static void write_reg(struct vpe_dev *dev, int offset, u32 value)
{
iowrite32(value, dev->base + offset);
}
/* register field read/write helpers */
static int get_field(u32 value, u32 mask, int shift)
{
return (value & (mask << shift)) >> shift;
}
static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
{
return get_field(read_reg(dev, offset), mask, shift);
}
static void write_field(u32 *valp, u32 field, u32 mask, int shift)
{
u32 val = *valp;
val &= ~(mask << shift);
val |= (field & mask) << shift;
*valp = val;
}
static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
u32 mask, int shift)
{
u32 val = read_reg(dev, offset);
write_field(&val, field, mask, shift);
write_reg(dev, offset, val);
}
/*
* DMA address/data block for the shadow registers
*/
struct vpe_mmr_adb {
struct vpdma_adb_hdr out_fmt_hdr;
u32 out_fmt_reg[1];
u32 out_fmt_pad[3];
struct vpdma_adb_hdr us1_hdr;
u32 us1_regs[8];
struct vpdma_adb_hdr us2_hdr;
u32 us2_regs[8];
struct vpdma_adb_hdr us3_hdr;
u32 us3_regs[8];
struct vpdma_adb_hdr dei_hdr;
u32 dei_regs[8];
struct vpdma_adb_hdr sc_hdr0;
u32 sc_regs0[7];
u32 sc_pad0[1];
struct vpdma_adb_hdr sc_hdr8;
u32 sc_regs8[6];
u32 sc_pad8[2];
struct vpdma_adb_hdr sc_hdr17;
u32 sc_regs17[9];
u32 sc_pad17[3];
struct vpdma_adb_hdr csc_hdr;
u32 csc_regs[6];
u32 csc_pad[2];
};
#define GET_OFFSET_TOP(ctx, obj, reg) \
((obj)->res->start - ctx->dev->res->start + reg)
#define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a) \
VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
/*
* Set the headers for all of the address/data block structures.
*/
static void init_adb_hdrs(struct vpe_ctx *ctx)
{
VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
};
/*
* Allocate or re-allocate the motion vector DMA buffers
* There are two buffers, one for input and one for output.
* However, the roles are reversed after each field is processed.
* In other words, after each field is processed, the previous
* output (dst) MV buffer becomes the new input (src) MV buffer.
*/
static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
{
struct device *dev = ctx->dev->v4l2_dev.dev;
if (ctx->mv_buf_size == size)
return 0;
if (ctx->mv_buf[0])
dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
ctx->mv_buf_dma[0]);
if (ctx->mv_buf[1])
dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
ctx->mv_buf_dma[1]);
if (size == 0)
return 0;
ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
GFP_KERNEL);
if (!ctx->mv_buf[0]) {
vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
return -ENOMEM;
}
ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
GFP_KERNEL);
if (!ctx->mv_buf[1]) {
vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
dma_free_coherent(dev, size, ctx->mv_buf[0],
ctx->mv_buf_dma[0]);
return -ENOMEM;
}
ctx->mv_buf_size = size;
ctx->src_mv_buf_selector = 0;
return 0;
}
static void free_mv_buffers(struct vpe_ctx *ctx)
{
realloc_mv_buffers(ctx, 0);
}
/*
* While de-interlacing, we keep the two most recent input buffers
* around. This function frees those two buffers when we have
* finished processing the current stream.
*/
static void free_vbs(struct vpe_ctx *ctx)
{
struct vpe_dev *dev = ctx->dev;
unsigned long flags;
if (ctx->src_vbs[2] == NULL)
return;
spin_lock_irqsave(&dev->lock, flags);
if (ctx->src_vbs[2]) {
v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
ctx->src_vbs[2] = NULL;
ctx->src_vbs[1] = NULL;
}
spin_unlock_irqrestore(&dev->lock, flags);
}
/*
* Enable or disable the VPE clocks
*/
static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
{
u32 val = 0;
if (on)
val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
write_reg(dev, VPE_CLK_ENABLE, val);
}
static void vpe_top_reset(struct vpe_dev *dev)
{
write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
VPE_DATA_PATH_CLK_RESET_SHIFT);
usleep_range(100, 150);
write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
VPE_DATA_PATH_CLK_RESET_SHIFT);
}
static void vpe_top_vpdma_reset(struct vpe_dev *dev)
{
write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
VPE_VPDMA_CLK_RESET_SHIFT);
usleep_range(100, 150);
write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
VPE_VPDMA_CLK_RESET_SHIFT);
}
/*
* Load the correct of upsampler coefficients into the shadow MMRs
*/
static void set_us_coefficients(struct vpe_ctx *ctx)
{
struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
u32 *us1_reg = &mmr_adb->us1_regs[0];
u32 *us2_reg = &mmr_adb->us2_regs[0];
u32 *us3_reg = &mmr_adb->us3_regs[0];
const unsigned short *cp, *end_cp;
cp = &us_coeffs[0].anchor_fid0_c0;
if (s_q_data->flags & Q_IS_INTERLACED) /* interlaced */
cp += sizeof(us_coeffs[0]) / sizeof(*cp);
end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
while (cp < end_cp) {
write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
*us2_reg++ = *us1_reg;
*us3_reg++ = *us1_reg++;
}
ctx->load_mmrs = true;
}
/*
* Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
*/
static void set_cfg_modes(struct vpe_ctx *ctx)
{
struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
u32 *us1_reg0 = &mmr_adb->us1_regs[0];
u32 *us2_reg0 = &mmr_adb->us2_regs[0];
u32 *us3_reg0 = &mmr_adb->us3_regs[0];
int cfg_mode = 1;
/*
* Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
* Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
*/
if (fmt->fourcc == V4L2_PIX_FMT_NV12)
cfg_mode = 0;
write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
ctx->load_mmrs = true;
}
static void set_line_modes(struct vpe_ctx *ctx)
{
struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
int line_mode = 1;
if (fmt->fourcc == V4L2_PIX_FMT_NV12)
line_mode = 0; /* double lines to line buffer */
/* regs for now */
vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
/* frame start for input luma */
vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
VPE_CHAN_LUMA1_IN);
vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
VPE_CHAN_LUMA2_IN);
vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
VPE_CHAN_LUMA3_IN);
/* frame start for input chroma */
vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
VPE_CHAN_CHROMA1_IN);
vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
VPE_CHAN_CHROMA2_IN);
vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
VPE_CHAN_CHROMA3_IN);
/* frame start for MV in client */
vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
VPE_CHAN_MV_IN);
}
/*
* Set the shadow registers that are modified when the source
* format changes.
*/
static void set_src_registers(struct vpe_ctx *ctx)
{
set_us_coefficients(ctx);
}
/*
* Set the shadow registers that are modified when the destination
* format changes.
*/
static void set_dst_registers(struct vpe_ctx *ctx)
{
struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
enum v4l2_colorspace clrspc = ctx->q_data[Q_DATA_DST].colorspace;
struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
u32 val = 0;
if (clrspc == V4L2_COLORSPACE_SRGB) {
val |= VPE_RGB_OUT_SELECT;
vpdma_set_bg_color(ctx->dev->vpdma,
(struct vpdma_data_format *)fmt->vpdma_fmt[0], 0xff);
} else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
val |= VPE_COLOR_SEPARATE_422;
/*
* the source of CHR_DS and CSC is always the scaler, irrespective of
* whether it's used or not
*/
val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
if (fmt->fourcc != V4L2_PIX_FMT_NV12)
val |= VPE_DS_BYPASS;
mmr_adb->out_fmt_reg[0] = val;
ctx->load_mmrs = true;
}
/*
* Set the de-interlacer shadow register values
*/
static void set_dei_regs(struct vpe_ctx *ctx)
{
struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
unsigned int src_h = s_q_data->c_rect.height;
unsigned int src_w = s_q_data->c_rect.width;
u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
bool deinterlace = true;
u32 val = 0;
/*
* according to TRM, we should set DEI in progressive bypass mode when
* the input content is progressive, however, DEI is bypassed correctly
* for both progressive and interlace content in interlace bypass mode.
* It has been recommended not to use progressive bypass mode.
*/
if (!(s_q_data->flags & Q_IS_INTERLACED) || !ctx->deinterlacing) {
deinterlace = false;
val = VPE_DEI_INTERLACE_BYPASS;
}
src_h = deinterlace ? src_h * 2 : src_h;
val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
(src_w << VPE_DEI_WIDTH_SHIFT) |
VPE_DEI_FIELD_FLUSH;
*dei_mmr0 = val;
ctx->load_mmrs = true;
}
static void set_dei_shadow_registers(struct vpe_ctx *ctx)
{
struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
u32 *dei_mmr = &mmr_adb->dei_regs[0];
const struct vpe_dei_regs *cur = &dei_regs;
dei_mmr[2] = cur->mdt_spacial_freq_thr_reg;
dei_mmr[3] = cur->edi_config_reg;
dei_mmr[4] = cur->edi_lut_reg0;
dei_mmr[5] = cur->edi_lut_reg1;
dei_mmr[6] = cur->edi_lut_reg2;
dei_mmr[7] = cur->edi_lut_reg3;
ctx->load_mmrs = true;
}
static void config_edi_input_mode(struct vpe_ctx *ctx, int mode)
{
struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
u32 *edi_config_reg = &mmr_adb->dei_regs[3];
if (mode & 0x2)
write_field(edi_config_reg, 1, 1, 2); /* EDI_ENABLE_3D */
if (mode & 0x3)
write_field(edi_config_reg, 1, 1, 3); /* EDI_CHROMA_3D */
write_field(edi_config_reg, mode, VPE_EDI_INP_MODE_MASK,
VPE_EDI_INP_MODE_SHIFT);
ctx->load_mmrs = true;
}
/*
* Set the shadow registers whose values are modified when either the
* source or destination format is changed.
*/
static int set_srcdst_params(struct vpe_ctx *ctx)
{
struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
unsigned int src_w = s_q_data->c_rect.width;
unsigned int src_h = s_q_data->c_rect.height;
unsigned int dst_w = d_q_data->c_rect.width;
unsigned int dst_h = d_q_data->c_rect.height;
size_t mv_buf_size;
int ret;
ctx->sequence = 0;
ctx->field = V4L2_FIELD_TOP;
if ((s_q_data->flags & Q_IS_INTERLACED) &&
!(d_q_data->flags & Q_IS_INTERLACED)) {
int bytes_per_line;
const struct vpdma_data_format *mv =
&vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
/*
* we make sure that the source image has a 16 byte aligned
* stride, we need to do the same for the motion vector buffer
* by aligning it's stride to the next 16 byte boundry. this
* extra space will not be used by the de-interlacer, but will
* ensure that vpdma operates correctly
*/
bytes_per_line = ALIGN((s_q_data->width * mv->depth) >> 3,
VPDMA_STRIDE_ALIGN);
mv_buf_size = bytes_per_line * s_q_data->height;
ctx->deinterlacing = true;
src_h <<= 1;
} else {
ctx->deinterlacing = false;
mv_buf_size = 0;
}
free_vbs(ctx);
ctx->src_vbs[2] = ctx->src_vbs[1] = ctx->src_vbs[0] = NULL;
ret = realloc_mv_buffers(ctx, mv_buf_size);
if (ret)
return ret;
set_cfg_modes(ctx);
set_dei_regs(ctx);
csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
s_q_data->colorspace, d_q_data->colorspace);
sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
&mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
src_w, src_h, dst_w, dst_h);
return 0;
}
/*
* Return the vpe_ctx structure for a given struct file
*/
static struct vpe_ctx *file2ctx(struct file *file)
{
return container_of(file->private_data, struct vpe_ctx, fh);
}
/*
* mem2mem callbacks
*/
/*
* job_ready() - check whether an instance is ready to be scheduled to run
*/
static int job_ready(void *priv)
{
struct vpe_ctx *ctx = priv;
/*
* This check is needed as this might be called directly from driver
* When called by m2m framework, this will always satisfy, but when
* called from vpe_irq, this might fail. (src stream with zero buffers)
*/
if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) <= 0 ||
v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) <= 0)
return 0;
return 1;
}
static void job_abort(void *priv)
{
struct vpe_ctx *ctx = priv;
/* Will cancel the transaction in the next interrupt handler */
ctx->aborting = 1;
}
static void vpe_dump_regs(struct vpe_dev *dev)
{
#define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
vpe_dbg(dev, "VPE Registers:\n");
DUMPREG(PID);
DUMPREG(SYSCONFIG);
DUMPREG(INT0_STATUS0_RAW);
DUMPREG(INT0_STATUS0);
DUMPREG(INT0_ENABLE0);
DUMPREG(INT0_STATUS1_RAW);
DUMPREG(INT0_STATUS1);
DUMPREG(INT0_ENABLE1);
DUMPREG(CLK_ENABLE);
DUMPREG(CLK_RESET);
DUMPREG(CLK_FORMAT_SELECT);
DUMPREG(CLK_RANGE_MAP);
DUMPREG(US1_R0);
DUMPREG(US1_R1);
DUMPREG(US1_R2);
DUMPREG(US1_R3);
DUMPREG(US1_R4);
DUMPREG(US1_R5);
DUMPREG(US1_R6);
DUMPREG(US1_R7);
DUMPREG(US2_R0);
DUMPREG(US2_R1);
DUMPREG(US2_R2);
DUMPREG(US2_R3);
DUMPREG(US2_R4);
DUMPREG(US2_R5);
DUMPREG(US2_R6);
DUMPREG(US2_R7);
DUMPREG(US3_R0);
DUMPREG(US3_R1);
DUMPREG(US3_R2);
DUMPREG(US3_R3);
DUMPREG(US3_R4);
DUMPREG(US3_R5);
DUMPREG(US3_R6);
DUMPREG(US3_R7);
DUMPREG(DEI_FRAME_SIZE);
DUMPREG(MDT_BYPASS);
DUMPREG(MDT_SF_THRESHOLD);
DUMPREG(EDI_CONFIG);
DUMPREG(DEI_EDI_LUT_R0);
DUMPREG(DEI_EDI_LUT_R1);
DUMPREG(DEI_EDI_LUT_R2);
DUMPREG(DEI_EDI_LUT_R3);
DUMPREG(DEI_FMD_WINDOW_R0);
DUMPREG(DEI_FMD_WINDOW_R1);
DUMPREG(DEI_FMD_CONTROL_R0);
DUMPREG(DEI_FMD_CONTROL_R1);
DUMPREG(DEI_FMD_STATUS_R0);
DUMPREG(DEI_FMD_STATUS_R1);
DUMPREG(DEI_FMD_STATUS_R2);
#undef DUMPREG
sc_dump_regs(dev->sc);
csc_dump_regs(dev->csc);
}
static void add_out_dtd(struct vpe_ctx *ctx, int port)
{
struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
const struct vpe_port_data *p_data = &port_data[port];
struct vb2_buffer *vb = &ctx->dst_vb->vb2_buf;
struct vpe_fmt *fmt = q_data->fmt;
const struct vpdma_data_format *vpdma_fmt;
int mv_buf_selector = !ctx->src_mv_buf_selector;
dma_addr_t dma_addr;
u32 flags = 0;
u32 offset = 0;
u32 stride;
if (port == VPE_PORT_MV_OUT) {
vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
dma_addr = ctx->mv_buf_dma[mv_buf_selector];
q_data = &ctx->q_data[Q_DATA_SRC];
stride = ALIGN((q_data->width * vpdma_fmt->depth) >> 3,
VPDMA_STRIDE_ALIGN);
} else {
/* to incorporate interleaved formats */
int plane = fmt->coplanar ? p_data->vb_part : 0;
vpdma_fmt = fmt->vpdma_fmt[plane];
/*
* If we are using a single plane buffer and
* we need to set a separate vpdma chroma channel.
*/
if (q_data->nplanes == 1 && plane) {
dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
/* Compute required offset */
offset = q_data->bytesperline[0] * q_data->height;
} else {
dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
/* Use address as is, no offset */
offset = 0;
}
if (!dma_addr) {
vpe_err(ctx->dev,
"acquiring output buffer(%d) dma_addr failed\n",
port);
return;
}
/* Apply the offset */
dma_addr += offset;
stride = q_data->bytesperline[VPE_LUMA];
}
if (q_data->flags & Q_DATA_FRAME_1D)
flags |= VPDMA_DATA_FRAME_1D;
if (q_data->flags & Q_DATA_MODE_TILED)
flags |= VPDMA_DATA_MODE_TILED;
vpdma_set_max_size(ctx->dev->vpdma, VPDMA_MAX_SIZE1,
MAX_W, MAX_H);
vpdma_add_out_dtd(&ctx->desc_list, q_data->width,
stride, &q_data->c_rect,
vpdma_fmt, dma_addr, MAX_OUT_WIDTH_REG1,
MAX_OUT_HEIGHT_REG1, p_data->channel, flags);
}
static void add_in_dtd(struct vpe_ctx *ctx, int port)
{
struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
const struct vpe_port_data *p_data = &port_data[port];
struct vb2_buffer *vb = &ctx->src_vbs[p_data->vb_index]->vb2_buf;
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct vpe_fmt *fmt = q_data->fmt;
const struct vpdma_data_format *vpdma_fmt;
int mv_buf_selector = ctx->src_mv_buf_selector;
int field = vbuf->field == V4L2_FIELD_BOTTOM;
int frame_width, frame_height;
dma_addr_t dma_addr;
u32 flags = 0;
u32 offset = 0;
u32 stride;
if (port == VPE_PORT_MV_IN) {
vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
dma_addr = ctx->mv_buf_dma[mv_buf_selector];
stride = ALIGN((q_data->width * vpdma_fmt->depth) >> 3,
VPDMA_STRIDE_ALIGN);
} else {
/* to incorporate interleaved formats */
int plane = fmt->coplanar ? p_data->vb_part : 0;
vpdma_fmt = fmt->vpdma_fmt[plane];
/*
* If we are using a single plane buffer and
* we need to set a separate vpdma chroma channel.
*/
if (q_data->nplanes == 1 && plane) {
dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
/* Compute required offset */
offset = q_data->bytesperline[0] * q_data->height;
} else {
dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
/* Use address as is, no offset */
offset = 0;
}
if (!dma_addr) {
vpe_err(ctx->dev,
"acquiring output buffer(%d) dma_addr failed\n",
port);
return;
}
/* Apply the offset */
dma_addr += offset;
stride = q_data->bytesperline[VPE_LUMA];
if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB) {
/*
* Use top or bottom field from same vb alternately
* f,f-1,f-2 = TBT when seq is even
* f,f-1,f-2 = BTB when seq is odd
*/
field = (p_data->vb_index + (ctx->sequence % 2)) % 2;
if (field) {
/*
* bottom field of a SEQ_TB buffer
* Skip the top field data by
*/
int height = q_data->height / 2;
int bpp = fmt->fourcc == V4L2_PIX_FMT_NV12 ?
1 : (vpdma_fmt->depth >> 3);
if (plane)
height /= 2;
dma_addr += q_data->width * height * bpp;
}
}
}
if (q_data->flags & Q_DATA_FRAME_1D)
flags |= VPDMA_DATA_FRAME_1D;
if (q_data->flags & Q_DATA_MODE_TILED)
flags |= VPDMA_DATA_MODE_TILED;
frame_width = q_data->c_rect.width;
frame_height = q_data->c_rect.height;
if (p_data->vb_part && fmt->fourcc == V4L2_PIX_FMT_NV12)
frame_height /= 2;
vpdma_add_in_dtd(&ctx->desc_list, q_data->width, stride,
&q_data->c_rect, vpdma_fmt, dma_addr,
p_data->channel, field, flags, frame_width,
frame_height, 0, 0);
}
/*
* Enable the expected IRQ sources
*/
static void enable_irqs(struct vpe_ctx *ctx)
{
write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
VPE_DS1_UV_ERROR_INT);
vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, true);
}
static void disable_irqs(struct vpe_ctx *ctx)
{
write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);
vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, false);
}
/* device_run() - prepares and starts the device
*
* This function is only called when both the source and destination
* buffers are in place.
*/
static void device_run(void *priv)
{
struct vpe_ctx *ctx = priv;
struct sc_data *sc = ctx->dev->sc;
struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
if (ctx->deinterlacing && s_q_data->flags & Q_DATA_INTERLACED_SEQ_TB &&
ctx->sequence % 2 == 0) {
/* When using SEQ_TB buffers, When using it first time,
* No need to remove the buffer as the next field is present
* in the same buffer. (so that job_ready won't fail)
* It will be removed when using bottom field
*/
ctx->src_vbs[0] = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
WARN_ON(ctx->src_vbs[0] == NULL);
} else {
ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
WARN_ON(ctx->src_vbs[0] == NULL);
}
ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
WARN_ON(ctx->dst_vb == NULL);
if (ctx->deinterlacing) {
if (ctx->src_vbs[2] == NULL) {
ctx->src_vbs[2] = ctx->src_vbs[0];
WARN_ON(ctx->src_vbs[2] == NULL);
ctx->src_vbs[1] = ctx->src_vbs[0];
WARN_ON(ctx->src_vbs[1] == NULL);
}
/*
* we have output the first 2 frames through line average, we
* now switch to EDI de-interlacer
*/
if (ctx->sequence == 2)
config_edi_input_mode(ctx, 0x3); /* EDI (Y + UV) */
}
/* config descriptors */
if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
set_line_modes(ctx);
ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
ctx->load_mmrs = false;
}
if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
sc->load_coeff_h) {
vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
&ctx->sc_coeff_h, 0);
sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
sc->load_coeff_h = false;
}
if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
sc->load_coeff_v) {
vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);
sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
sc->load_coeff_v = false;
}
/* output data descriptors */
if (ctx->deinterlacing)
add_out_dtd(ctx, VPE_PORT_MV_OUT);
if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
add_out_dtd(ctx, VPE_PORT_RGB_OUT);
} else {
add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
if (d_q_data->fmt->coplanar)
add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
}
/* input data descriptors */
if (ctx->deinterlacing) {
add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);
add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
}
add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);
if (ctx->deinterlacing)
add_in_dtd(ctx, VPE_PORT_MV_IN);
/* sync on channel control descriptors for input ports */
vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);
if (ctx->deinterlacing) {
vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
VPE_CHAN_LUMA2_IN);
vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
VPE_CHAN_CHROMA2_IN);
vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
VPE_CHAN_LUMA3_IN);
vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
VPE_CHAN_CHROMA3_IN);
vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
}
/* sync on channel control descriptors for output ports */
if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
VPE_CHAN_RGB_OUT);
} else {
vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
VPE_CHAN_LUMA_OUT);
if (d_q_data->fmt->coplanar)
vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
VPE_CHAN_CHROMA_OUT);
}
if (ctx->deinterlacing)
vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);
enable_irqs(ctx);
vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list, 0);
}
static void dei_error(struct vpe_ctx *ctx)
{
dev_warn(ctx->dev->v4l2_dev.dev,
"received DEI error interrupt\n");
}
static void ds1_uv_error(struct vpe_ctx *ctx)
{
dev_warn(ctx->dev->v4l2_dev.dev,
"received downsampler error interrupt\n");
}
static irqreturn_t vpe_irq(int irq_vpe, void *data)
{
struct vpe_dev *dev = (struct vpe_dev *)data;
struct vpe_ctx *ctx;
struct vpe_q_data *d_q_data;
struct vb2_v4l2_buffer *s_vb, *d_vb;
unsigned long flags;
u32 irqst0, irqst1;
bool list_complete = false;
irqst0 = read_reg(dev, VPE_INT0_STATUS0);
if (irqst0) {
write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
}
irqst1 = read_reg(dev, VPE_INT0_STATUS1);
if (irqst1) {
write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
}
ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
if (!ctx) {
vpe_err(dev, "instance released before end of transaction\n");
goto handled;
}
if (irqst1) {
if (irqst1 & VPE_DEI_ERROR_INT) {
irqst1 &= ~VPE_DEI_ERROR_INT;
dei_error(ctx);
}
if (irqst1 & VPE_DS1_UV_ERROR_INT) {
irqst1 &= ~VPE_DS1_UV_ERROR_INT;
ds1_uv_error(ctx);
}
}
if (irqst0) {
if (irqst0 & VPE_INT0_LIST0_COMPLETE)
vpdma_clear_list_stat(ctx->dev->vpdma, 0, 0);
irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
list_complete = true;
}
if (irqst0 | irqst1) {
dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
irqst0, irqst1);
}
/*
* Setup next operation only when list complete IRQ occurs
* otherwise, skip the following code
*/
if (!list_complete)
goto handled;
disable_irqs(ctx);
vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
vpdma_reset_desc_list(&ctx->desc_list);
/* the previous dst mv buffer becomes the next src mv buffer */
ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;
s_vb = ctx->src_vbs[0];
d_vb = ctx->dst_vb;
d_vb->flags = s_vb->flags;
d_vb->vb2_buf.timestamp = s_vb->vb2_buf.timestamp;
if (s_vb->flags & V4L2_BUF_FLAG_TIMECODE)
d_vb->timecode = s_vb->timecode;
d_vb->sequence = ctx->sequence;
s_vb->sequence = ctx->sequence;
d_q_data = &ctx->q_data[Q_DATA_DST];
if (d_q_data->flags & Q_IS_INTERLACED) {
d_vb->field = ctx->field;
if (ctx->field == V4L2_FIELD_BOTTOM) {
ctx->sequence++;
ctx->field = V4L2_FIELD_TOP;
} else {
WARN_ON(ctx->field != V4L2_FIELD_TOP);
ctx->field = V4L2_FIELD_BOTTOM;
}
} else {
d_vb->field = V4L2_FIELD_NONE;
ctx->sequence++;
}
if (ctx->deinterlacing) {
/*
* Allow source buffer to be dequeued only if it won't be used
* in the next iteration. All vbs are initialized to first
* buffer and we are shifting buffers every iteration, for the
* first two iterations, no buffer will be dequeued.
* This ensures that driver will keep (n-2)th (n-1)th and (n)th
* field when deinterlacing is enabled
*/
if (ctx->src_vbs[2] != ctx->src_vbs[1])
s_vb = ctx->src_vbs[2];
else
s_vb = NULL;
}
spin_lock_irqsave(&dev->lock, flags);
if (s_vb)
v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
spin_unlock_irqrestore(&dev->lock, flags);
if (ctx->deinterlacing) {
ctx->src_vbs[2] = ctx->src_vbs[1];
ctx->src_vbs[1] = ctx->src_vbs[0];
}
/*
* Since the vb2_buf_done has already been called fir therse
* buffer we can now NULL them out so that we won't try
* to clean out stray pointer later on.
*/
ctx->src_vbs[0] = NULL;
ctx->dst_vb = NULL;
if (ctx->aborting)
goto finished;
ctx->bufs_completed++;
if (ctx->bufs_completed < ctx->bufs_per_job && job_ready(ctx)) {
device_run(ctx);
goto handled;
}
finished:
vpe_dbg(ctx->dev, "finishing transaction\n");
ctx->bufs_completed = 0;
v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx);
handled:
return IRQ_HANDLED;
}
/*
* video ioctls
*/
static int vpe_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strncpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver) - 1);
strncpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card) - 1);
snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
VPE_MODULE_NAME);
cap->device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
return 0;
}
static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
{
int i, index;
struct vpe_fmt *fmt = NULL;
index = 0;
for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
if (vpe_formats[i].types & type) {
if (index == f->index) {
fmt = &vpe_formats[i];
break;
}
index++;
}
}
if (!fmt)
return -EINVAL;
strncpy(f->description, fmt->name, sizeof(f->description) - 1);
f->pixelformat = fmt->fourcc;
return 0;
}
static int vpe_enum_fmt(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
if (V4L2_TYPE_IS_OUTPUT(f->type))
return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);
return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
}
static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
struct vpe_ctx *ctx = file2ctx(file);
struct vb2_queue *vq;
struct vpe_q_data *q_data;
int i;
vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
if (!vq)
return -EINVAL;
q_data = get_q_data(ctx, f->type);
pix->width = q_data->width;
pix->height = q_data->height;
pix->pixelformat = q_data->fmt->fourcc;
pix->field = q_data->field;
if (V4L2_TYPE_IS_OUTPUT(f->type)) {
pix->colorspace = q_data->colorspace;
} else {
struct vpe_q_data *s_q_data;
/* get colorspace from the source queue */
s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
pix->colorspace = s_q_data->colorspace;
}
pix->num_planes = q_data->nplanes;
for (i = 0; i < pix->num_planes; i++) {
pix->plane_fmt[i].bytesperline = q_data->bytesperline[i];
pix->plane_fmt[i].sizeimage = q_data->sizeimage[i];
}
return 0;
}
static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
struct vpe_fmt *fmt, int type)
{
struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
struct v4l2_plane_pix_format *plane_fmt;
unsigned int w_align;
int i, depth, depth_bytes, height;
unsigned int stride = 0;
if (!fmt || !(fmt->types & type)) {
vpe_dbg(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
pix->pixelformat);
fmt = __find_format(V4L2_PIX_FMT_YUYV);
}
if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE
&& pix->field != V4L2_FIELD_SEQ_TB)
pix->field = V4L2_FIELD_NONE;
depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
/*
* the line stride should 16 byte aligned for VPDMA to work, based on
* the bytes per pixel, figure out how much the width should be aligned
* to make sure line stride is 16 byte aligned
*/
depth_bytes = depth >> 3;
if (depth_bytes == 3) {
/*
* if bpp is 3(as in some RGB formats), the pixel width doesn't
* really help in ensuring line stride is 16 byte aligned
*/
w_align = 4;
} else {
/*
* for the remainder bpp(4, 2 and 1), the pixel width alignment
* can ensure a line stride alignment of 16 bytes. For example,
* if bpp is 2, then the line stride can be 16 byte aligned if
* the width is 8 byte aligned
*/
/*
* HACK: using order_base_2() here causes lots of asm output
* errors with smatch, on i386:
* ./arch/x86/include/asm/bitops.h:457:22:
* warning: asm output is not an lvalue
* Perhaps some gcc optimization is doing the wrong thing
* there.
* Let's get rid of them by doing the calculus on two steps
*/
w_align = roundup_pow_of_two(VPDMA_DESC_ALIGN / depth_bytes);
w_align = ilog2(w_align);
}
v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
&pix->height, MIN_H, MAX_H, H_ALIGN,
S_ALIGN);
if (!pix->num_planes || pix->num_planes > 2)
pix->num_planes = fmt->coplanar ? 2 : 1;
else if (pix->num_planes > 1 && !fmt->coplanar)
pix->num_planes = 1;
pix->pixelformat = fmt->fourcc;
/*
* For the actual image parameters, we need to consider the field
* height of the image for SEQ_TB buffers.
*/
if (pix->field == V4L2_FIELD_SEQ_TB)
height = pix->height / 2;
else
height = pix->height;
if (!pix->colorspace) {
if (fmt->fourcc == V4L2_PIX_FMT_RGB24 ||
fmt->fourcc == V4L2_PIX_FMT_BGR24 ||
fmt->fourcc == V4L2_PIX_FMT_RGB32 ||
fmt->fourcc == V4L2_PIX_FMT_BGR32) {
pix->colorspace = V4L2_COLORSPACE_SRGB;
} else {
if (height > 1280) /* HD */
pix->colorspace = V4L2_COLORSPACE_REC709;
else /* SD */
pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
}
}
memset(pix->reserved, 0, sizeof(pix->reserved));
for (i = 0; i < pix->num_planes; i++) {
plane_fmt = &pix->plane_fmt[i];
depth = fmt->vpdma_fmt[i]->depth;
stride = (pix->width * fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
if (stride > plane_fmt->bytesperline)
plane_fmt->bytesperline = stride;
plane_fmt->bytesperline = clamp_t(u32, plane_fmt->bytesperline,
stride,
VPDMA_MAX_STRIDE);
plane_fmt->bytesperline = ALIGN(plane_fmt->bytesperline,
VPDMA_STRIDE_ALIGN);
if (i == VPE_LUMA) {
plane_fmt->sizeimage = pix->height *
plane_fmt->bytesperline;
if (pix->num_planes == 1 && fmt->coplanar)
plane_fmt->sizeimage += pix->height *
plane_fmt->bytesperline *
fmt->vpdma_fmt[VPE_CHROMA]->depth >> 3;
} else { /* i == VIP_CHROMA */
plane_fmt->sizeimage = (pix->height *
plane_fmt->bytesperline *
depth) >> 3;
}
memset(plane_fmt->reserved, 0, sizeof(plane_fmt->reserved));
}
return 0;
}
static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
struct vpe_ctx *ctx = file2ctx(file);
struct vpe_fmt *fmt = find_format(f);
if (V4L2_TYPE_IS_OUTPUT(f->type))
return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
else
return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
}
static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
{
struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
struct v4l2_plane_pix_format *plane_fmt;
struct vpe_q_data *q_data;
struct vb2_queue *vq;
int i;
vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
if (!vq)
return -EINVAL;
if (vb2_is_busy(vq)) {
vpe_err(ctx->dev, "queue busy\n");
return -EBUSY;
}
q_data = get_q_data(ctx, f->type);
if (!q_data)
return -EINVAL;
q_data->fmt = find_format(f);
q_data->width = pix->width;
q_data->height = pix->height;
q_data->colorspace = pix->colorspace;
q_data->field = pix->field;
q_data->nplanes = pix->num_planes;
for (i = 0; i < pix->num_planes; i++) {
plane_fmt = &pix->plane_fmt[i];
q_data->bytesperline[i] = plane_fmt->bytesperline;
q_data->sizeimage[i] = plane_fmt->sizeimage;
}
q_data->c_rect.left = 0;
q_data->c_rect.top = 0;
q_data->c_rect.width = q_data->width;
q_data->c_rect.height = q_data->height;
if (q_data->field == V4L2_FIELD_ALTERNATE)
q_data->flags |= Q_DATA_INTERLACED_ALTERNATE;
else if (q_data->field == V4L2_FIELD_SEQ_TB)
q_data->flags |= Q_DATA_INTERLACED_SEQ_TB;
else
q_data->flags &= ~Q_IS_INTERLACED;
/* the crop height is halved for the case of SEQ_TB buffers */
if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
q_data->c_rect.height /= 2;
vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
f->type, q_data->width, q_data->height, q_data->fmt->fourcc,
q_data->bytesperline[VPE_LUMA]);
if (q_data->nplanes == 2)
vpe_dbg(ctx->dev, " bpl_uv %d\n",
q_data->bytesperline[VPE_CHROMA]);
return 0;
}
static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
int ret;
struct vpe_ctx *ctx = file2ctx(file);
ret = vpe_try_fmt(file, priv, f);
if (ret)
return ret;
ret = __vpe_s_fmt(ctx, f);
if (ret)
return ret;
if (V4L2_TYPE_IS_OUTPUT(f->type))
set_src_registers(ctx);
else
set_dst_registers(ctx);
return set_srcdst_params(ctx);
}
static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
{
struct vpe_q_data *q_data;
int height;
if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
(s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
return -EINVAL;
q_data = get_q_data(ctx, s->type);
if (!q_data)
return -EINVAL;
switch (s->target) {
case V4L2_SEL_TGT_COMPOSE:
/*
* COMPOSE target is only valid for capture buffer type, return
* error for output buffer type
*/
if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
return -EINVAL;
break;
case V4L2_SEL_TGT_CROP:
/*
* CROP target is only valid for output buffer type, return
* error for capture buffer type
*/
if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
break;
/*
* bound and default crop/compose targets are invalid targets to
* try/set
*/
default:
return -EINVAL;
}
/*
* For SEQ_TB buffers, crop height should be less than the height of
* the field height, not the buffer height
*/
if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
height = q_data->height / 2;
else
height = q_data->height;
if (s->r.top < 0 || s->r.left < 0) {
vpe_err(ctx->dev, "negative values for top and left\n");
s->r.top = s->r.left = 0;
}
v4l_bound_align_image(&s->r.width, MIN_W, q_data->width, 1,
&s->r.height, MIN_H, height, H_ALIGN, S_ALIGN);
/* adjust left/top if cropping rectangle is out of bounds */
if (s->r.left + s->r.width > q_data->width)
s->r.left = q_data->width - s->r.width;
if (s->r.top + s->r.height > q_data->height)
s->r.top = q_data->height - s->r.height;
return 0;
}
static int vpe_g_selection(struct file *file, void *fh,
struct v4l2_selection *s)
{
struct vpe_ctx *ctx = file2ctx(file);
struct vpe_q_data *q_data;
bool use_c_rect = false;
if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
(s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
return -EINVAL;
q_data = get_q_data(ctx, s->type);
if (!q_data)
return -EINVAL;
switch (s->target) {
case V4L2_SEL_TGT_COMPOSE_DEFAULT:
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
return -EINVAL;
break;
case V4L2_SEL_TGT_CROP_BOUNDS:
case V4L2_SEL_TGT_CROP_DEFAULT:
if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
break;
case V4L2_SEL_TGT_COMPOSE:
if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
return -EINVAL;
use_c_rect = true;
break;
case V4L2_SEL_TGT_CROP:
if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
use_c_rect = true;
break;
default:
return -EINVAL;
}
if (use_c_rect) {
/*
* for CROP/COMPOSE target type, return c_rect params from the
* respective buffer type
*/
s->r = q_data->c_rect;
} else {
/*
* for DEFAULT/BOUNDS target type, return width and height from
* S_FMT of the respective buffer type
*/
s->r.left = 0;
s->r.top = 0;
s->r.width = q_data->width;
s->r.height = q_data->height;
}
return 0;
}
static int vpe_s_selection(struct file *file, void *fh,
struct v4l2_selection *s)
{
struct vpe_ctx *ctx = file2ctx(file);
struct vpe_q_data *q_data;
struct v4l2_selection sel = *s;
int ret;
ret = __vpe_try_selection(ctx, &sel);
if (ret)
return ret;
q_data = get_q_data(ctx, sel.type);
if (!q_data)
return -EINVAL;
if ((q_data->c_rect.left == sel.r.left) &&
(q_data->c_rect.top == sel.r.top) &&
(q_data->c_rect.width == sel.r.width) &&
(q_data->c_rect.height == sel.r.height)) {
vpe_dbg(ctx->dev,
"requested crop/compose values are already set\n");
return 0;
}
q_data->c_rect = sel.r;
return set_srcdst_params(ctx);
}
/*
* defines number of buffers/frames a context can process with VPE before
* switching to a different context. default value is 1 buffer per context
*/
#define V4L2_CID_VPE_BUFS_PER_JOB (V4L2_CID_USER_TI_VPE_BASE + 0)
static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct vpe_ctx *ctx =
container_of(ctrl->handler, struct vpe_ctx, hdl);
switch (ctrl->id) {
case V4L2_CID_VPE_BUFS_PER_JOB:
ctx->bufs_per_job = ctrl->val;
break;
default:
vpe_err(ctx->dev, "Invalid control\n");
return -EINVAL;
}
return 0;
}
static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
.s_ctrl = vpe_s_ctrl,
};
static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
.vidioc_querycap = vpe_querycap,
.vidioc_enum_fmt_vid_cap_mplane = vpe_enum_fmt,
.vidioc_g_fmt_vid_cap_mplane = vpe_g_fmt,
.vidioc_try_fmt_vid_cap_mplane = vpe_try_fmt,
.vidioc_s_fmt_vid_cap_mplane = vpe_s_fmt,
.vidioc_enum_fmt_vid_out_mplane = vpe_enum_fmt,
.vidioc_g_fmt_vid_out_mplane = vpe_g_fmt,
.vidioc_try_fmt_vid_out_mplane = vpe_try_fmt,
.vidioc_s_fmt_vid_out_mplane = vpe_s_fmt,
.vidioc_g_selection = vpe_g_selection,
.vidioc_s_selection = vpe_s_selection,
.vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
.vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
.vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
.vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
.vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
.vidioc_streamon = v4l2_m2m_ioctl_streamon,
.vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
/*
* Queue operations
*/
static int vpe_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers, unsigned int *nplanes,
unsigned int sizes[], struct device *alloc_devs[])
{
int i;
struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
struct vpe_q_data *q_data;
q_data = get_q_data(ctx, vq->type);
*nplanes = q_data->nplanes;
for (i = 0; i < *nplanes; i++)
sizes[i] = q_data->sizeimage[i];
vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
sizes[VPE_LUMA]);
if (q_data->nplanes == 2)
vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);
return 0;
}
static int vpe_buf_prepare(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct vpe_q_data *q_data;
int i, num_planes;
vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);
q_data = get_q_data(ctx, vb->vb2_queue->type);
num_planes = q_data->nplanes;
if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
if (!(q_data->flags & Q_IS_INTERLACED)) {
vbuf->field = V4L2_FIELD_NONE;
} else {
if (vbuf->field != V4L2_FIELD_TOP &&
vbuf->field != V4L2_FIELD_BOTTOM &&
vbuf->field != V4L2_FIELD_SEQ_TB)
return -EINVAL;
}
}
for (i = 0; i < num_planes; i++) {
if (vb2_plane_size(vb, i) < q_data->sizeimage[i]) {
vpe_err(ctx->dev,
"data will not fit into plane (%lu < %lu)\n",
vb2_plane_size(vb, i),
(long) q_data->sizeimage[i]);
return -EINVAL;
}
}
for (i = 0; i < num_planes; i++)
vb2_set_plane_payload(vb, i, q_data->sizeimage[i]);
return 0;
}
static void vpe_buf_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
}
static int check_srcdst_sizes(struct vpe_ctx *ctx)
{
struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
unsigned int src_w = s_q_data->c_rect.width;
unsigned int src_h = s_q_data->c_rect.height;
unsigned int dst_w = d_q_data->c_rect.width;
unsigned int dst_h = d_q_data->c_rect.height;
if (src_w == dst_w && src_h == dst_h)
return 0;
if (src_h <= SC_MAX_PIXEL_HEIGHT &&
src_w <= SC_MAX_PIXEL_WIDTH &&
dst_h <= SC_MAX_PIXEL_HEIGHT &&
dst_w <= SC_MAX_PIXEL_WIDTH)
return 0;
return -1;
}
static void vpe_return_all_buffers(struct vpe_ctx *ctx, struct vb2_queue *q,
enum vb2_buffer_state state)
{
struct vb2_v4l2_buffer *vb;
unsigned long flags;
for (;;) {
if (V4L2_TYPE_IS_OUTPUT(q->type))
vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
else
vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
if (!vb)
break;
spin_lock_irqsave(&ctx->dev->lock, flags);
v4l2_m2m_buf_done(vb, state);
spin_unlock_irqrestore(&ctx->dev->lock, flags);
}
/*
* Cleanup the in-transit vb2 buffers that have been
* removed from their respective queue already but for
* which procecessing has not been completed yet.
*/
if (V4L2_TYPE_IS_OUTPUT(q->type)) {
spin_lock_irqsave(&ctx->dev->lock, flags);
if (ctx->src_vbs[2])
v4l2_m2m_buf_done(ctx->src_vbs[2], state);
if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
v4l2_m2m_buf_done(ctx->src_vbs[1], state);
if (ctx->src_vbs[0] &&
(ctx->src_vbs[0] != ctx->src_vbs[1]) &&
(ctx->src_vbs[0] != ctx->src_vbs[2]))
v4l2_m2m_buf_done(ctx->src_vbs[0], state);
ctx->src_vbs[2] = NULL;
ctx->src_vbs[1] = NULL;
ctx->src_vbs[0] = NULL;
spin_unlock_irqrestore(&ctx->dev->lock, flags);
} else {
if (ctx->dst_vb) {
spin_lock_irqsave(&ctx->dev->lock, flags);
v4l2_m2m_buf_done(ctx->dst_vb, state);
ctx->dst_vb = NULL;
spin_unlock_irqrestore(&ctx->dev->lock, flags);
}
}
}
static int vpe_start_streaming(struct vb2_queue *q, unsigned int count)
{
struct vpe_ctx *ctx = vb2_get_drv_priv(q);
/* Check any of the size exceed maximum scaling sizes */
if (check_srcdst_sizes(ctx)) {
vpe_err(ctx->dev,
"Conversion setup failed, check source and destination parameters\n"
);
vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_QUEUED);
return -EINVAL;
}
if (ctx->deinterlacing)
config_edi_input_mode(ctx, 0x0);
if (ctx->sequence != 0)
set_srcdst_params(ctx);
return 0;
}
static void vpe_stop_streaming(struct vb2_queue *q)
{
struct vpe_ctx *ctx = vb2_get_drv_priv(q);
vpe_dump_regs(ctx->dev);
vpdma_dump_regs(ctx->dev->vpdma);
vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_ERROR);
}
static const struct vb2_ops vpe_qops = {
.queue_setup = vpe_queue_setup,
.buf_prepare = vpe_buf_prepare,
.buf_queue = vpe_buf_queue,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.start_streaming = vpe_start_streaming,
.stop_streaming = vpe_stop_streaming,
};
static int queue_init(void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq)
{
struct vpe_ctx *ctx = priv;
struct vpe_dev *dev = ctx->dev;
int ret;
memset(src_vq, 0, sizeof(*src_vq));
src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
src_vq->drv_priv = ctx;
src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
src_vq->ops = &vpe_qops;
src_vq->mem_ops = &vb2_dma_contig_memops;
src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
src_vq->lock = &dev->dev_mutex;
src_vq->dev = dev->v4l2_dev.dev;
ret = vb2_queue_init(src_vq);
if (ret)
return ret;
memset(dst_vq, 0, sizeof(*dst_vq));
dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
dst_vq->drv_priv = ctx;
dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
dst_vq->ops = &vpe_qops;
dst_vq->mem_ops = &vb2_dma_contig_memops;
dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
dst_vq->lock = &dev->dev_mutex;
dst_vq->dev = dev->v4l2_dev.dev;
return vb2_queue_init(dst_vq);
}
static const struct v4l2_ctrl_config vpe_bufs_per_job = {
.ops = &vpe_ctrl_ops,
.id = V4L2_CID_VPE_BUFS_PER_JOB,
.name = "Buffers Per Transaction",
.type = V4L2_CTRL_TYPE_INTEGER,
.def = VPE_DEF_BUFS_PER_JOB,
.min = 1,
.max = VIDEO_MAX_FRAME,
.step = 1,
};
/*
* File operations
*/
static int vpe_open(struct file *file)
{
struct vpe_dev *dev = video_drvdata(file);
struct vpe_q_data *s_q_data;
struct v4l2_ctrl_handler *hdl;
struct vpe_ctx *ctx;
int ret;
vpe_dbg(dev, "vpe_open\n");
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->dev = dev;
if (mutex_lock_interruptible(&dev->dev_mutex)) {
ret = -ERESTARTSYS;
goto free_ctx;
}
ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
VPDMA_LIST_TYPE_NORMAL);
if (ret != 0)
goto unlock;
ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
if (ret != 0)
goto free_desc_list;
ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
if (ret != 0)
goto free_mmr_adb;
ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
if (ret != 0)
goto free_sc_h;
init_adb_hdrs(ctx);
v4l2_fh_init(&ctx->fh, video_devdata(file));
file->private_data = &ctx->fh;
hdl = &ctx->hdl;
v4l2_ctrl_handler_init(hdl, 1);
v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
if (hdl->error) {
ret = hdl->error;
goto exit_fh;
}
ctx->fh.ctrl_handler = hdl;
v4l2_ctrl_handler_setup(hdl);
s_q_data = &ctx->q_data[Q_DATA_SRC];
s_q_data->fmt = __find_format(V4L2_PIX_FMT_YUYV);
s_q_data->width = 1920;
s_q_data->height = 1080;
s_q_data->nplanes = 1;
s_q_data->bytesperline[VPE_LUMA] = (s_q_data->width *
s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
s_q_data->sizeimage[VPE_LUMA] = (s_q_data->bytesperline[VPE_LUMA] *
s_q_data->height);
s_q_data->colorspace = V4L2_COLORSPACE_REC709;
s_q_data->field = V4L2_FIELD_NONE;
s_q_data->c_rect.left = 0;
s_q_data->c_rect.top = 0;
s_q_data->c_rect.width = s_q_data->width;
s_q_data->c_rect.height = s_q_data->height;
s_q_data->flags = 0;
ctx->q_data[Q_DATA_DST] = *s_q_data;
set_dei_shadow_registers(ctx);
set_src_registers(ctx);
set_dst_registers(ctx);
ret = set_srcdst_params(ctx);
if (ret)
goto exit_fh;
ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
if (IS_ERR(ctx->fh.m2m_ctx)) {
ret = PTR_ERR(ctx->fh.m2m_ctx);
goto exit_fh;
}
v4l2_fh_add(&ctx->fh);
/*
* for now, just report the creation of the first instance, we can later
* optimize the driver to enable or disable clocks when the first
* instance is created or the last instance released
*/
if (atomic_inc_return(&dev->num_instances) == 1)
vpe_dbg(dev, "first instance created\n");
ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;
ctx->load_mmrs = true;
vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
ctx, ctx->fh.m2m_ctx);
mutex_unlock(&dev->dev_mutex);
return 0;
exit_fh:
v4l2_ctrl_handler_free(hdl);
v4l2_fh_exit(&ctx->fh);
vpdma_free_desc_buf(&ctx->sc_coeff_v);
free_sc_h:
vpdma_free_desc_buf(&ctx->sc_coeff_h);
free_mmr_adb:
vpdma_free_desc_buf(&ctx->mmr_adb);
free_desc_list:
vpdma_free_desc_list(&ctx->desc_list);
unlock:
mutex_unlock(&dev->dev_mutex);
free_ctx:
kfree(ctx);
return ret;
}
static int vpe_release(struct file *file)
{
struct vpe_dev *dev = video_drvdata(file);
struct vpe_ctx *ctx = file2ctx(file);
vpe_dbg(dev, "releasing instance %p\n", ctx);
mutex_lock(&dev->dev_mutex);
free_mv_buffers(ctx);
vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
vpdma_free_desc_list(&ctx->desc_list);
vpdma_free_desc_buf(&ctx->mmr_adb);
vpdma_free_desc_buf(&ctx->sc_coeff_v);
vpdma_free_desc_buf(&ctx->sc_coeff_h);
v4l2_fh_del(&ctx->fh);
v4l2_fh_exit(&ctx->fh);
v4l2_ctrl_handler_free(&ctx->hdl);
v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
kfree(ctx);
/*
* for now, just report the release of the last instance, we can later
* optimize the driver to enable or disable clocks when the first
* instance is created or the last instance released
*/
if (atomic_dec_return(&dev->num_instances) == 0)
vpe_dbg(dev, "last instance released\n");
mutex_unlock(&dev->dev_mutex);
return 0;
}
static const struct v4l2_file_operations vpe_fops = {
.owner = THIS_MODULE,
.open = vpe_open,
.release = vpe_release,
.poll = v4l2_m2m_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = v4l2_m2m_fop_mmap,
};
static const struct video_device vpe_videodev = {
.name = VPE_MODULE_NAME,
.fops = &vpe_fops,
.ioctl_ops = &vpe_ioctl_ops,
.minor = -1,
.release = video_device_release_empty,
.vfl_dir = VFL_DIR_M2M,
};
static const struct v4l2_m2m_ops m2m_ops = {
.device_run = device_run,
.job_ready = job_ready,
.job_abort = job_abort,
};
static int vpe_runtime_get(struct platform_device *pdev)
{
int r;
dev_dbg(&pdev->dev, "vpe_runtime_get\n");
r = pm_runtime_get_sync(&pdev->dev);
WARN_ON(r < 0);
if (r)
pm_runtime_put_noidle(&pdev->dev);
return r < 0 ? r : 0;
}
static void vpe_runtime_put(struct platform_device *pdev)
{
int r;
dev_dbg(&pdev->dev, "vpe_runtime_put\n");
r = pm_runtime_put_sync(&pdev->dev);
WARN_ON(r < 0 && r != -ENOSYS);
}
static void vpe_fw_cb(struct platform_device *pdev)
{
struct vpe_dev *dev = platform_get_drvdata(pdev);
struct video_device *vfd;
int ret;
vfd = &dev->vfd;
*vfd = vpe_videodev;
vfd->lock = &dev->dev_mutex;
vfd->v4l2_dev = &dev->v4l2_dev;
ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
if (ret) {
vpe_err(dev, "Failed to register video device\n");
vpe_set_clock_enable(dev, 0);
vpe_runtime_put(pdev);
pm_runtime_disable(&pdev->dev);
v4l2_m2m_release(dev->m2m_dev);
v4l2_device_unregister(&dev->v4l2_dev);
return;
}
video_set_drvdata(vfd, dev);
dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
vfd->num);
}
static int vpe_probe(struct platform_device *pdev)
{
struct vpe_dev *dev;
int ret, irq, func;
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
spin_lock_init(&dev->lock);
ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
if (ret)
return ret;
atomic_set(&dev->num_instances, 0);
mutex_init(&dev->dev_mutex);
dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"vpe_top");
/*
* HACK: we get resource info from device tree in the form of a list of
* VPE sub blocks, the driver currently uses only the base of vpe_top
* for register access, the driver should be changed later to access
* registers based on the sub block base addresses
*/
dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
if (!dev->base) {
ret = -ENOMEM;
goto v4l2_dev_unreg;
}
irq = platform_get_irq(pdev, 0);
ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
dev);
if (ret)
goto v4l2_dev_unreg;
platform_set_drvdata(pdev, dev);
dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
if (IS_ERR(dev->m2m_dev)) {
vpe_err(dev, "Failed to init mem2mem device\n");
ret = PTR_ERR(dev->m2m_dev);
goto v4l2_dev_unreg;
}
pm_runtime_enable(&pdev->dev);
ret = vpe_runtime_get(pdev);
if (ret)
goto rel_m2m;
/* Perform clk enable followed by reset */
vpe_set_clock_enable(dev, 1);
vpe_top_reset(dev);
func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
VPE_PID_FUNC_SHIFT);
vpe_dbg(dev, "VPE PID function %x\n", func);
vpe_top_vpdma_reset(dev);
dev->sc = sc_create(pdev, "sc");
if (IS_ERR(dev->sc)) {
ret = PTR_ERR(dev->sc);
goto runtime_put;
}
dev->csc = csc_create(pdev, "csc");
if (IS_ERR(dev->csc)) {
ret = PTR_ERR(dev->csc);
goto runtime_put;
}
dev->vpdma = &dev->vpdma_data;
ret = vpdma_create(pdev, dev->vpdma, vpe_fw_cb);
if (ret)
goto runtime_put;
return 0;
runtime_put:
vpe_runtime_put(pdev);
rel_m2m:
pm_runtime_disable(&pdev->dev);
v4l2_m2m_release(dev->m2m_dev);
v4l2_dev_unreg:
v4l2_device_unregister(&dev->v4l2_dev);
return ret;
}
static int vpe_remove(struct platform_device *pdev)
{
struct vpe_dev *dev = platform_get_drvdata(pdev);
v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);
v4l2_m2m_release(dev->m2m_dev);
video_unregister_device(&dev->vfd);
v4l2_device_unregister(&dev->v4l2_dev);
vpe_set_clock_enable(dev, 0);
vpe_runtime_put(pdev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#if defined(CONFIG_OF)
static const struct of_device_id vpe_of_match[] = {
{
.compatible = "ti,vpe",
},
{},
};
MODULE_DEVICE_TABLE(of, vpe_of_match);
#endif
static struct platform_driver vpe_pdrv = {
.probe = vpe_probe,
.remove = vpe_remove,
.driver = {
.name = VPE_MODULE_NAME,
.of_match_table = of_match_ptr(vpe_of_match),
},
};
module_platform_driver(vpe_pdrv);
MODULE_DESCRIPTION("TI VPE driver");
MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
MODULE_LICENSE("GPL");