kernel_samsung_a34x-permissive/drivers/misc/mediatek/dramc/mt6739/mtk_dramc.c
2024-04-28 15:51:13 +02:00

1089 lines
25 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2019 MediaTek Inc.
*/
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/kallsyms.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/vmalloc.h>
#include <linux/memblock.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <asm/cacheflush.h>
/* #include <mach/mtk_clkmgr.h> */
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_fdt.h>
#include <asm/setup.h>
#include <mt-plat/upmu_common.h>
#include <mach/upmu_sw.h>
#include <mach/upmu_hw.h>
#include <mt-plat/mtk_io.h>
/* #include <mt-plat/dma.h> */
#include <mt-plat/sync_write.h>
#include "mtk_dramc.h"
#include "dramc.h"
#include "emi_bwl.h"
#ifdef CONFIG_OF_RESERVED_MEM
#define DRAM_R0_DUMMY_READ_RESERVED_KEY "reserve-memory-dram_r0_dummy_read"
#define DRAM_R1_DUMMY_READ_RESERVED_KEY "reserve-memory-dram_r1_dummy_read"
#include <linux/of_reserved_mem.h>
/* #include <mt-plat/mtk_memcfg.h> */
#endif
#include <mt-plat/aee.h>
#include <mt-plat/mtk_chip.h>
struct mem_desc {
u64 start;
u64 size;
};
struct dram_info {
u32 rank_num;
struct mem_desc rank_info[4];
};
void __iomem *DRAMC_AO_CHA_BASE_ADDR;
void __iomem *DRAMC_NAO_CHA_BASE_ADDR;
void __iomem *DDRPHY_CHA_BASE_ADDR;
#define DRAM_RSV_SIZE 0x1000
static DEFINE_MUTEX(dram_dfs_mutex);
unsigned char No_DummyRead;
unsigned int DRAM_TYPE;
unsigned int CBT_MODE;
/*extern bool spm_vcorefs_is_dvfs_in_porgress(void);*/
#define Reg_Sync_Writel(addr, val) writel(val, IOMEM(addr))
#define Reg_Readl(addr) readl(IOMEM(addr))
static unsigned int dram_rank_num;
phys_addr_t dram_rank0_addr, dram_rank1_addr;
struct dram_info *g_dram_info_dummy_read, *get_dram_info;
struct dram_info dram_info_dummy_read;
#define DRAMC_RSV_TAG "[DRAMC_RSV]"
#define dramc_rsv_aee_warn(string, args...) do {\
pr_info("[ERR]"string, ##args); \
aee_kernel_warning(DRAMC_RSV_TAG, "[ERR]"string, ##args); \
} while (0)
/* Return 0 if success, -1 if failure */
static int __init dram_dummy_read_fixup(void)
{
int ret = 0;
ret = acquire_buffer_from_memory_lowpower(&dram_rank1_addr);
/* Success to acquire memory */
if (ret == 0) {
pr_info("%s: %pa\n", __func__, &dram_rank1_addr);
return 0;
}
/* error occurs */
pr_info("%s: failed to acquire last 1 page(%d)\n", __func__, ret);
return -1;
}
static int __init dt_scan_dram_info(unsigned long node,
const char *uname, int depth, void *data)
{
char *type = (char *)of_get_flat_dt_prop(node, "device_type", NULL);
const __be32 *reg, *endp;
unsigned long l;
/* We are scanning "memory" nodes only */
if (type == NULL) {
/*
* The longtrail doesn't have a device_type on the
* /memory node, so look for the node called /memory@0.
*/
if (depth != 1 || strcmp(uname, "memory@0") != 0)
return 0;
} else if (strcmp(type, "memory") != 0)
return 0;
reg = (const __be32 *)of_get_flat_dt_prop(node,
(const char *)"reg", (int *)&l);
if (reg == NULL)
return 0;
endp = reg + (l / sizeof(__be32));
if (node) {
get_dram_info =
(struct dram_info *)of_get_flat_dt_prop(node,
"orig_dram_info", NULL);
if (get_dram_info == NULL) {
No_DummyRead = 1;
return 0;
}
g_dram_info_dummy_read = &dram_info_dummy_read;
dram_info_dummy_read.rank_num = get_dram_info->rank_num;
dram_rank_num = get_dram_info->rank_num;
pr_info("[DRAMC] dram info dram rank number = %d\n",
g_dram_info_dummy_read->rank_num);
if (dram_rank_num == SINGLE_RANK) {
dram_info_dummy_read.rank_info[0].start = dram_rank0_addr;
dram_info_dummy_read.rank_info[1].start = dram_rank0_addr;
pr_info("[DRAMC] dram info dram rank0 base = 0x%llx\n",
g_dram_info_dummy_read->rank_info[0].start);
} else if (dram_rank_num == DUAL_RANK) {
/* No dummy read address for rank1, try to fix it up */
if (dram_rank1_addr == 0 && dram_dummy_read_fixup() != 0) {
No_DummyRead = 1;
dramc_rsv_aee_warn("dram dummy read reserve fail on rank1 !!!\n");
}
dram_info_dummy_read.rank_info[0].start = dram_rank0_addr;
dram_info_dummy_read.rank_info[1].start = dram_rank1_addr;
pr_info("[DRAMC] dram info dram rank0 base = 0x%llx\n",
g_dram_info_dummy_read->rank_info[0].start);
pr_info("[DRAMC] dram info dram rank1 base = 0x%llx\n",
g_dram_info_dummy_read->rank_info[1].start);
} else {
No_DummyRead = 1;
pr_info("[DRAMC] dram info dram rank number incorrect !!!\n");
}
}
return node;
}
#ifdef CONFIG_MTK_DRAMC_PASR
#define __ETT__ 0
int enter_pasr_dpd_config(unsigned char segment_rank0,
unsigned char segment_rank1)
{
/* for D-3, support run time MRW */
unsigned int rank_pasr_segment[2];
unsigned int dramc0_spcmd, dramc0_pd_ctrl, dramc0_padctl4;
unsigned int i, cnt = 1000;
rank_pasr_segment[0] = segment_rank0 & 0xFF; /* for rank0 */
rank_pasr_segment[1] = segment_rank1 & 0xFF; /* for rank1 */
pr_info("[DRAMC0] PASR r0 = 0x%x r1 = 0x%x\n", rank_pasr_segment[0], rank_pasr_segment[1]);
/* backup original data */
dramc0_spcmd = readl(PDEF_DRAMC0_REG_1E4);
dramc0_pd_ctrl = readl(PDEF_DRAMC0_REG_1DC);
dramc0_padctl4 = readl(PDEF_DRAMC0_REG_0E4);
/* Set MIOCKCTRLOFF(0x1dc[26])=1: not stop to DRAM clock! */
writel(dramc0_pd_ctrl | 0x04000000, PDEF_DRAMC0_REG_1DC);
/* fix CKE */
writel(dramc0_padctl4 | 0x00000004, PDEF_DRAMC0_REG_0E4);
udelay(1);
for (i = 0; i < 2; i++) {
/* set MRS settings include rank number, segment information and MRR17 */
writel(((i << 28) | (rank_pasr_segment[i] << 16) | 0x00000011), PDEF_DRAMC0_REG_088);
/* Mode register write command enable */
writel(0x00000001, PDEF_DRAMC0_REG_1E4);
/* wait MRW command response */
/* wait >1us */
/* gpt_busy_wait_us(1); */
do {
if (cnt-- == 0) {
pr_info("[DRAMC0] PASR MRW fail!\n");
return -1;
}
udelay(1);
} while ((readl(PDEF_DRAMC0_REG_3B8) & 0x00000001) == 0x0);
mb(); /* make sure the DRAM have been read */
/* Mode register write command disable */
writel(0x0, PDEF_DRAMC0_REG_1E4);
}
/* release fix CKE */
writel(dramc0_padctl4, PDEF_DRAMC0_REG_0E4);
/* recover Set MIOCKCTRLOFF(0x1dc[26]) */
/* Set MIOCKCTRLOFF(0x1DC[26])=0: stop to DRAM clock */
writel(dramc0_pd_ctrl, PDEF_DRAMC0_REG_1DC);
/* writel(0x00000004, PDEF_DRAMC0_REG_088); */
pr_info("[DRAMC0] PASR offset 0x88 = 0x%x\n", readl(PDEF_DRAMC0_REG_088));
writel(dramc0_spcmd, PDEF_DRAMC0_REG_1E4);
return 0;
#if 0
if (segment_rank1 == 0xFF) { /*all segments of rank1 are not reserved -> rank1 enter DPD*/
slp_dpd_en(1);
}
#endif
/*slp_pasr_en(1, segment_rank0 | (segment_rank1 << 8));*/
}
int exit_pasr_dpd_config(void)
{
int ret;
/*slp_dpd_en(0);*/
/*slp_pasr_en(0, 0);*/
ret = enter_pasr_dpd_config(0, 0);
return ret;
}
#else
int enter_pasr_dpd_config(unsigned char segment_rank0, unsigned char segment_rank1)
{
return 0;
}
int exit_pasr_dpd_config(void)
{
return 0;
}
#endif
#define MEM_TEST_SIZE 0x2000
#define PATTERN1 0x5A5A5A5A
#define PATTERN2 0xA5A5A5A5
int Binning_DRAM_complex_mem_test(void)
{
unsigned char *MEM8_BASE;
unsigned short *MEM16_BASE;
unsigned int *MEM32_BASE;
unsigned int *MEM_BASE;
unsigned long mem_ptr;
unsigned char pattern8;
unsigned short pattern16;
unsigned int i, j, size, pattern32;
unsigned int value;
unsigned int len = MEM_TEST_SIZE;
void *ptr;
int ret = 1;
ptr = vmalloc(MEM_TEST_SIZE);
if (!ptr) {
/* pr_info("fail to vmalloc\n"); */
/*ASSERT(0);*/
ret = -24;
goto fail;
}
MEM8_BASE = (unsigned char *)ptr;
MEM16_BASE = (unsigned short *)ptr;
MEM32_BASE = (unsigned int *)ptr;
MEM_BASE = (unsigned int *)ptr;
/*pr_info("Test DRAM start address 0x%lx\n", (unsigned long)ptr);*/
pr_info("Test DRAM start address %p\n", ptr);
pr_info("Test DRAM SIZE 0x%x\n", MEM_TEST_SIZE);
size = len >> 2;
/* === Verify the tied bits (tied high) === */
for (i = 0; i < size; i++)
MEM32_BASE[i] = 0;
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0) {
/* return -1; */
ret = -1;
goto fail;
} else
MEM32_BASE[i] = 0xffffffff;
}
/* === Verify the tied bits (tied low) === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xffffffff) {
/* return -2; */
ret = -2;
goto fail;
} else
MEM32_BASE[i] = 0x00;
}
/* === Verify pattern 1 (0x00~0xff) === */
pattern8 = 0x00;
for (i = 0; i < len; i++)
MEM8_BASE[i] = pattern8++;
pattern8 = 0x00;
for (i = 0; i < len; i++) {
if (MEM8_BASE[i] != pattern8++) {
/* return -3; */
ret = -3;
goto fail;
}
}
/* === Verify pattern 2 (0x00~0xff) === */
pattern8 = 0x00;
for (i = j = 0; i < len; i += 2, j++) {
if (MEM8_BASE[i] == pattern8)
MEM16_BASE[j] = pattern8;
if (MEM16_BASE[j] != pattern8) {
/* return -4; */
ret = -4;
goto fail;
}
pattern8 += 2;
}
/* === Verify pattern 3 (0x00~0xffff) === */
pattern16 = 0x00;
for (i = 0; i < (len >> 1); i++)
MEM16_BASE[i] = pattern16++;
pattern16 = 0x00;
for (i = 0; i < (len >> 1); i++) {
if (MEM16_BASE[i] != pattern16++) {
/* return -5; */
ret = -5;
goto fail;
}
}
/* === Verify pattern 4 (0x00~0xffffffff) === */
pattern32 = 0x00;
for (i = 0; i < (len >> 2); i++)
MEM32_BASE[i] = pattern32++;
pattern32 = 0x00;
for (i = 0; i < (len >> 2); i++) {
if (MEM32_BASE[i] != pattern32++) {
/* return -6; */
ret = -6;
goto fail;
}
}
/* === Pattern 5: Filling memory range with 0x44332211 === */
for (i = 0; i < size; i++)
MEM32_BASE[i] = 0x44332211;
/* === Read Check then Fill Memory with a5a5a5a5 Pattern === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0x44332211) {
/* return -7; */
ret = -7;
goto fail;
} else {
MEM32_BASE[i] = 0xa5a5a5a5;
}
}
/* === Read Check then Fill Memory with */
/* 00 Byte Pattern at offset 0h === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xa5a5a5a5) {
/* return -8; */
ret = -8;
goto fail;
} else {
MEM8_BASE[i * 4] = 0x00;
}
}
/* === Read Check then Fill Memory with */
/* 00 Byte Pattern at offset 2h === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xa5a5a500) {
/* return -9; */
ret = -9;
goto fail;
} else {
MEM8_BASE[i * 4 + 2] = 0x00;
}
}
/* === Read Check then Fill Memory with */
/* 00 Byte Pattern at offset 1h === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xa500a500) {
/* return -10; */
ret = -10;
goto fail;
} else {
MEM8_BASE[i * 4 + 1] = 0x00;
}
}
/* === Read Check then Fill Memory with */
/* 00 Byte Pattern at offset 3h === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xa5000000) {
/* return -11; */
ret = -11;
goto fail;
} else {
MEM8_BASE[i * 4 + 3] = 0x00;
}
}
/* === Read Check then Fill Memory with ffff */
/* Word Pattern at offset 1h == */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0x00000000) {
/* return -12; */
ret = -12;
goto fail;
} else {
MEM16_BASE[i * 2 + 1] = 0xffff;
}
}
/* === Read Check then Fill Memory with ffff */
/* Word Pattern at offset 0h == */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xffff0000) {
/* return -13; */
ret = -13;
goto fail;
} else {
MEM16_BASE[i * 2] = 0xffff;
}
}
/*=== Read Check === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xffffffff) {
/* return -14; */
ret = -14;
goto fail;
}
}
/************************************************
* Additional verification
************************************************/
/* === stage 1 => write 0 === */
for (i = 0; i < size; i++)
MEM_BASE[i] = PATTERN1;
/* === stage 2 => read 0, write 0xF === */
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != PATTERN1) {
/* return -15; */
ret = -15;
goto fail;
}
MEM_BASE[i] = PATTERN2;
}
/* === stage 3 => read 0xF, write 0 === */
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != PATTERN2) {
/* return -16; */
ret = -16;
goto fail;
}
MEM_BASE[i] = PATTERN1;
}
/* === stage 4 => read 0, write 0xF === */
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != PATTERN1) {
/* return -17; */
ret = -17;
goto fail;
}
MEM_BASE[i] = PATTERN2;
}
/* === stage 5 => read 0xF, write 0 === */
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != PATTERN2) {
/* return -18; */
ret = -18;
goto fail;
}
MEM_BASE[i] = PATTERN1;
}
/* === stage 6 => read 0 === */
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != PATTERN1) {
/* return -19; */
ret = -19;
goto fail;
}
}
/* === 1/2/4-byte combination test === */
mem_ptr = (unsigned long)MEM_BASE;
while (mem_ptr < ((unsigned long)MEM_BASE + (size << 2))) {
*((unsigned char *)mem_ptr) = 0x78;
mem_ptr += 1;
*((unsigned char *)mem_ptr) = 0x56;
mem_ptr += 1;
*((unsigned short *)mem_ptr) = 0x1234;
mem_ptr += 2;
*((unsigned int *)mem_ptr) = 0x12345678;
mem_ptr += 4;
*((unsigned short *)mem_ptr) = 0x5678;
mem_ptr += 2;
*((unsigned char *)mem_ptr) = 0x34;
mem_ptr += 1;
*((unsigned char *)mem_ptr) = 0x12;
mem_ptr += 1;
*((unsigned int *)mem_ptr) = 0x12345678;
mem_ptr += 4;
*((unsigned char *)mem_ptr) = 0x78;
mem_ptr += 1;
*((unsigned char *)mem_ptr) = 0x56;
mem_ptr += 1;
*((unsigned short *)mem_ptr) = 0x1234;
mem_ptr += 2;
*((unsigned int *)mem_ptr) = 0x12345678;
mem_ptr += 4;
*((unsigned short *)mem_ptr) = 0x5678;
mem_ptr += 2;
*((unsigned char *)mem_ptr) = 0x34;
mem_ptr += 1;
*((unsigned char *)mem_ptr) = 0x12;
mem_ptr += 1;
*((unsigned int *)mem_ptr) = 0x12345678;
mem_ptr += 4;
}
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != 0x12345678) {
/* return -20; */
ret = -20;
goto fail;
}
}
/* === Verify pattern 1 (0x00~0xff) === */
pattern8 = 0x00;
MEM8_BASE[0] = pattern8;
for (i = 0; i < size * 4; i++) {
unsigned char waddr8, raddr8;
waddr8 = i + 1;
raddr8 = i;
if (i < size * 4 - 1)
MEM8_BASE[waddr8] = pattern8 + 1;
if (MEM8_BASE[raddr8] != pattern8) {
/* return -21; */
ret = -21;
goto fail;
}
pattern8++;
}
/* === Verify pattern 2 (0x00~0xffff) === */
pattern16 = 0x00;
MEM16_BASE[0] = pattern16;
for (i = 0; i < size * 2; i++) {
if (i < size * 2 - 1)
MEM16_BASE[i + 1] = pattern16 + 1;
if (MEM16_BASE[i] != pattern16) {
/* return -22; */
ret = -22;
goto fail;
}
pattern16++;
}
/* === Verify pattern 3 (0x00~0xffffffff) === */
pattern32 = 0x00;
MEM32_BASE[0] = pattern32;
for (i = 0; i < size; i++) {
if (i < size - 1)
MEM32_BASE[i + 1] = pattern32 + 1;
if (MEM32_BASE[i] != pattern32) {
/* return -23; */
ret = -23;
goto fail;
}
pattern32++;
}
pr_info("complex R/W mem test pass\n");
fail:
vfree(ptr);
return ret;
}
unsigned int ucDram_Register_Read(unsigned int u4reg_addr)
{
unsigned int pu4reg_value;
pu4reg_value = readl(IOMEM(DRAMC_AO_CHA_BASE_ADDR + (u4reg_addr))) |
readl(IOMEM(DDRPHY_CHA_BASE_ADDR + (u4reg_addr))) |
readl(IOMEM(DRAMC_NAO_CHA_BASE_ADDR + (u4reg_addr)));
return pu4reg_value;
}
unsigned int lpDram_Register_Read(unsigned int Reg_base, unsigned int Offset)
{
if ((Reg_base == DRAMC_NAO_CHA) && (Offset < 0x1000))
return readl(IOMEM(DRAMC_NAO_CHA_BASE_ADDR + Offset));
else if ((Reg_base == DRAMC_AO_CHA) && (Offset < 0x1000))
return readl(IOMEM(DRAMC_AO_CHA_BASE_ADDR + Offset));
else if ((Reg_base == PHY_AO_CHA) && (Offset < 0x1000))
return readl(IOMEM(DDRPHY_CHA_BASE_ADDR + Offset));
pr_info("lpDram_Register_Read: unsupported Reg_base (%d)\n", Reg_base);
return 0;
}
EXPORT_SYMBOL(lpDram_Register_Read);
/* clone from legacy platform */
unsigned int get_dram_data_rate(void)
{
unsigned int MEMPLL1_DIV, MEMPLL1_NCPO, MEMPLL1_FOUT;
unsigned int MEMPLL2_FOUT, MEMPLL2_FBSEL, MEMPLL2_FBDIV;
unsigned int MEMPLL2_M4PDIV;
MEMPLL1_DIV = (ucDram_Register_Read(0x0604) & (0x0000007f << 25)) >> 25;
MEMPLL1_NCPO = (ucDram_Register_Read(0x0624) & (0x7fffffff << 1)) >> 1;
MEMPLL2_FBSEL = (ucDram_Register_Read(0x0608) & (0x00000003 << 10)) >> 10;
MEMPLL2_FBSEL = 1 << MEMPLL2_FBSEL;
MEMPLL2_FBDIV = (ucDram_Register_Read(0x0618) & (0x0000007f << 2)) >> 2;
MEMPLL2_M4PDIV = (ucDram_Register_Read(0x060c) & (0x00000003 << 10)) >> 10;
MEMPLL2_M4PDIV = 1 << (MEMPLL2_M4PDIV + 1);
/* 1PLL: 26*MEMPLL1_NCPO/MEMPLL1_DIV*MEMPLL2_FBSEL*MEMPLL2_FBDIV/2^24 */
/* 3PLL: 26*MEMPLL1_NCPO/MEMPLL1_DIV*MEMPLL2_M4PDIV*MEMPLL2_FBDIV*2/2^24 */
MEMPLL1_FOUT = (MEMPLL1_NCPO / MEMPLL1_DIV) * 26;
if ((ucDram_Register_Read(0x0640) & 0x3) == 3) {
/* 1PLL */
MEMPLL2_FOUT = (((MEMPLL1_FOUT * MEMPLL2_FBSEL) >> 12) * MEMPLL2_FBDIV) >> 12;
} else {
/* 2 or 3 PLL */
MEMPLL2_FOUT = (((MEMPLL1_FOUT * MEMPLL2_M4PDIV * 2) >> 12) * MEMPLL2_FBDIV) >> 12;
}
#if 0
pr_info("MEMPLL1_DIV=%d, MEMPLL1_NCPO=%d, MEMPLL2_FBSEL=%d, MEMPLL2_FBDIV=%d\n",
MEMPLL1_DIV, MEMPLL1_NCPO, MEMPLL2_FBSEL, MEMPLL2_FBDIV);
pr_info("MEMPLL2_M4PDIV=%d, MEMPLL1_FOUT=%d, MEMPLL2_FOUT=%d\n",
MEMPLL2_M4PDIV, MEMPLL1_FOUT, MEMPLL2_FOUT);
#endif
/* workaround (Darren) */
MEMPLL2_FOUT++;
switch (MEMPLL2_FOUT) {
case 1066:
case 1333:
break;
default:
pr_info("[DRAMC] MemFreq region is incorrect MEMPLL2_FOUT=%d\n", MEMPLL2_FOUT);
}
return MEMPLL2_FOUT;
}
EXPORT_SYMBOL(get_dram_data_rate);
unsigned int read_dram_temperature(unsigned char channel)
{
unsigned int value = 0;
if (channel == CHANNEL_A) {
value =
(readl(IOMEM(DRAMC_NAO_CHA_BASE_ADDR + 0x3b8)) >> 8) & 0x7;
}
return value;
}
unsigned int get_shuffle_status(void)
{
/* TODO */
return 0;
/* return (readl(PDEF_DRAMC0_CHA_REG_0E4) & 0x6) >> 1; */
/* HPM = 0, LPM = 1, ULPM = 2; */
}
int get_ddr_type(void)
{
int type = get_dram_type();
switch (type) {
case 2:
return TYPE_LPDDR2;
case 3:
return TYPE_LPDDR3;
default:
return -1;
}
}
EXPORT_SYMBOL(get_ddr_type);
int get_emi_ch_num(void)
{
/* XXX: only support 1 channel */
return 1;
}
EXPORT_SYMBOL(get_emi_ch_num);
int dram_steps_freq(unsigned int step)
{
int freq = -1;
switch (step) {
case 0:
freq = 1333;
break;
case 1:
freq = 1066;
break;
case 2:
freq = 1066;
break;
case 3:
freq = 1066;
break;
default:
return -1;
}
return freq;
}
EXPORT_SYMBOL(dram_steps_freq);
int dram_can_support_fh(void)
{
if (No_DummyRead)
return 0;
/*
* LPDDR2 cannot support DVFS
*/
if (get_ddr_type() == TYPE_LPDDR2)
return 0;
return 1;
}
EXPORT_SYMBOL(dram_can_support_fh);
#ifdef CONFIG_OF_RESERVED_MEM
int dram_dummy_read_reserve_mem_of_init(struct reserved_mem *rmem)
{
phys_addr_t rptr = 0;
unsigned int rsize = 0;
rptr = rmem->base;
rsize = (unsigned int)rmem->size;
if (strstr(DRAM_R0_DUMMY_READ_RESERVED_KEY, rmem->name)) {
if (rsize < DRAM_RSV_SIZE) {
pr_info("[DRAMC] Can NOT reserve memory for Rank0\n");
No_DummyRead = 1;
return 0;
}
dram_rank0_addr = rptr;
dram_rank_num++;
pr_info("[dram_dummy_read_reserve_mem_of_init] dram_rank0_addr = %pa, size = 0x%x\n",
&dram_rank0_addr, rsize);
}
if (strstr(DRAM_R1_DUMMY_READ_RESERVED_KEY, rmem->name)) {
if (rsize < DRAM_RSV_SIZE) {
pr_info("[DRAMC] Can NOT reserve memory for Rank1\n");
No_DummyRead = 1;
return 0;
}
dram_rank1_addr = rptr;
dram_rank_num++;
pr_info("[dram_dummy_read_reserve_mem_of_init] dram_rank1_addr = %pa, size = 0x%x\n",
&dram_rank1_addr, rsize);
}
return 0;
}
RESERVEDMEM_OF_DECLARE(dram_reserve_r0_dummy_read_init,
DRAM_R0_DUMMY_READ_RESERVED_KEY,
dram_dummy_read_reserve_mem_of_init);
RESERVEDMEM_OF_DECLARE(dram_reserve_r1_dummy_read_init,
DRAM_R1_DUMMY_READ_RESERVED_KEY,
dram_dummy_read_reserve_mem_of_init);
#endif
static ssize_t complex_mem_test_show(struct device_driver *driver, char *buf)
{
int ret;
ret = Binning_DRAM_complex_mem_test();
if (ret > 0)
return snprintf(buf, PAGE_SIZE, "MEM Test all pass\n");
else
return snprintf(buf, PAGE_SIZE, "MEM TEST failed %d\n", ret);
}
static ssize_t complex_mem_test_store(struct device_driver *driver,
const char *buf, size_t count)
{
/*snprintf(buf, "do nothing\n");*/
return count;
}
static ssize_t read_dram_data_rate_show(struct device_driver *driver, char *buf)
{
return snprintf(buf, PAGE_SIZE, "DRAM data rate = %d\n",
get_dram_data_rate());
}
static ssize_t read_dram_data_rate_store(struct device_driver *driver,
const char *buf, size_t count)
{
return count;
}
#define DRIVER_ATTR(_name, _mode, _show, _store) \
struct driver_attribute driver_attr_##_name = \
__ATTR(_name, _mode, _show, _store)
static DRIVER_ATTR(emi_clk_mem_test, 0664,
complex_mem_test_show, complex_mem_test_store);
static DRIVER_ATTR(read_dram_data_rate, 0664,
read_dram_data_rate_show, read_dram_data_rate_store);
/*DRIVER_ATTR(dram_dfs, 0664, dram_dfs_show, dram_dfs_store);*/
static int dram_probe(struct platform_device *pdev)
{
int ret = 0;
unsigned int i;
struct resource *res;
void __iomem *base_temp[3];
struct device_node *node = NULL;
pr_info("[DRAMC] module probe.\n");
for (i = 0; i <= 2; i++) {
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
base_temp[i] = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base_temp[i])) {
pr_info("[DRAMC] unable to map %d base\n", i);
return -EINVAL;
}
}
DRAMC_AO_CHA_BASE_ADDR = base_temp[0];
DRAMC_NAO_CHA_BASE_ADDR = base_temp[1];
DDRPHY_CHA_BASE_ADDR = base_temp[2];
pr_info("[DRAMC]get DRAMC_AO_CHA_BASE_ADDR @ %p\n", DRAMC_AO_CHA_BASE_ADDR);
pr_info("[DRAMC]get DDRPHY_CHA_BASE_ADDR @ %p\n", DDRPHY_CHA_BASE_ADDR);
pr_info("[DRAMC]get DRAMC_NAO_CHA_BASE_ADDR @ %p\n", DRAMC_NAO_CHA_BASE_ADDR);
node = of_find_compatible_node(NULL, NULL, "mediatek,sleep");
if (node) {
SLEEP_BASE_ADDR = of_iomap(node, 0);
pr_info("[DRAMC]get SLEEP_BASE_ADDR @ %p\n",
SLEEP_BASE_ADDR);
} else {
pr_info("[DRAMC]can't find SLEEP_BASE_ADDR compatible node\n");
return -1;
}
DRAM_TYPE = get_ddr_type();
pr_info("[DRAMC Driver] dram type =%d\n", DRAM_TYPE);
if (!DRAM_TYPE) {
pr_info("[DRAMC Driver] dram type error !!\n");
return -1;
}
pr_info("[DRAMC Driver] Dram Data Rate = %d\n", get_dram_data_rate());
pr_info("[DRAMC Driver] shuffle_status = %d\n", get_shuffle_status());
ret = driver_create_file(pdev->dev.driver,
&driver_attr_emi_clk_mem_test);
if (ret) {
pr_info("fail to create the emi_clk_mem_test sysfs files\n");
return ret;
}
ret = driver_create_file(pdev->dev.driver,
&driver_attr_read_dram_data_rate);
if (ret) {
pr_info("fail to create the read dram data rate sysfs files\n");
return ret;
}
if (dram_can_support_fh())
pr_info("[DRAMC Driver] dram can support DFS\n");
else
pr_info("[DRAMC Driver] dram can not support DFS\n");
return 0;
}
static int dram_remove(struct platform_device *dev)
{
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id dram_of_ids[] = {
{.compatible = "mediatek,dramc",},
{}
};
#endif
static struct platform_driver dram_test_drv = {
.probe = dram_probe,
.remove = dram_remove,
.driver = {
.name = "emi_clk_test",
.owner = THIS_MODULE,
#ifdef CONFIG_OF
.of_match_table = dram_of_ids,
#endif
},
};
/* int __init dram_test_init(void) */
static int __init dram_test_init(void)
{
int ret = 0;
ret = platform_driver_register(&dram_test_drv);
if (ret) {
pr_info("[DRAMC] init fail, ret 0x%x\n", ret);
return ret;
}
if (of_scan_flat_dt(dt_scan_dram_info, NULL) > 0) {
pr_info("[DRAMC]find dt_scan_dram_info\n");
} else {
pr_info("[DRAMC]can't find dt_scan_dram_info\n");
return -1;
}
return ret;
}
static void __exit dram_test_exit(void)
{
platform_driver_unregister(&dram_test_drv);
}
postcore_initcall(dram_test_init);
module_exit(dram_test_exit);
void *mt_dramc_chn_base_get(int channel)
{
switch (channel) {
case 0:
return DRAMC_AO_CHA_BASE_ADDR;
default:
return NULL;
}
}
EXPORT_SYMBOL(mt_dramc_chn_base_get);
void *mt_dramc_nao_chn_base_get(int channel)
{
switch (channel) {
case 0:
return DRAMC_NAO_CHA_BASE_ADDR;
default:
return NULL;
}
}
EXPORT_SYMBOL(mt_dramc_nao_chn_base_get);
void *mt_ddrphy_chn_base_get(int channel)
{
switch (channel) {
case 0:
return DDRPHY_CHA_BASE_ADDR;
default:
return NULL;
}
}
EXPORT_SYMBOL(mt_ddrphy_chn_base_get);
#ifdef LAST_DRAMC_IP_BASED
unsigned int mt_dramc_chn_get(unsigned int emi_cona)
{
switch ((emi_cona >> 8) & 0x3) {
case 0:
return 1;
default:
pr_info("[LastDRAMC] invalid channel num (emi_cona = 0x%x)\n", emi_cona);
}
return 0;
}
unsigned int mt_dramc_chp_get(unsigned int emi_cona)
{
unsigned int chp;
chp = (emi_cona >> 2) & 0x3;
return chp + 7;
}
phys_addr_t mt_dramc_rankbase_get(unsigned int rank)
{
if (rank >= get_dram_info->rank_num)
return 0;
return get_dram_info->rank_info[rank].start;
}
unsigned int mt_dramc_ta_support_ranks(void)
{
/*MT6739 :support single rank only*/
return SINGLE_RANK;
}
phys_addr_t mt_dramc_ta_reserve_addr(unsigned int rank)
{
switch (rank) {
case 0:
return dram_rank0_addr;
case 1:
return dram_rank1_addr;
default:
return 0;
}
}
unsigned int mt_dramc_ta_addr_set(unsigned int rank, unsigned int temp_addr)
{
/*MT6739 : 0x38[3:0] ->test addr [31:28],ofset 0x3c[23:0] ->test addr [27:4]*/
unsigned int test_agent_base_temp;
test_agent_base_temp = (Reg_Readl(DRAMC_AO_CHA_BASE_ADDR+0x3c) & ~(0xffffff)) | ((temp_addr>>4) & 0xffffff);
Reg_Sync_Writel(DRAMC_AO_CHA_BASE_ADDR+0x3c, test_agent_base_temp);
test_agent_base_temp = ((Reg_Readl(DRAMC_AO_CHA_BASE_ADDR+0x38) & ~(0xf)) | ((temp_addr>>28) & 0xf));
Reg_Sync_Writel(DRAMC_AO_CHA_BASE_ADDR+0x38, test_agent_base_temp);
/*pr_info("\n\n[LastDRAMC] temp addr =0x%x",test_agent_base_temp);*/
return 1;
}
EXPORT_SYMBOL(mt_dramc_ta_addr_set);
#endif
unsigned int platform_support_dram_type(void)
{
return 1;
}
EXPORT_SYMBOL(platform_support_dram_type);
MODULE_DESCRIPTION("MediaTek DRAMC Driver v0.1");